JP2006176628A - Cation-dyeable polyester and high-tenacity cation-dyeable polyester fiber - Google Patents

Cation-dyeable polyester and high-tenacity cation-dyeable polyester fiber Download PDF

Info

Publication number
JP2006176628A
JP2006176628A JP2004370883A JP2004370883A JP2006176628A JP 2006176628 A JP2006176628 A JP 2006176628A JP 2004370883 A JP2004370883 A JP 2004370883A JP 2004370883 A JP2004370883 A JP 2004370883A JP 2006176628 A JP2006176628 A JP 2006176628A
Authority
JP
Japan
Prior art keywords
dyeable polyester
cationic dyeable
polyester
mol
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004370883A
Other languages
Japanese (ja)
Other versions
JP4817654B2 (en
Inventor
Ryoji Tsukamoto
亮二 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2004370883A priority Critical patent/JP4817654B2/en
Publication of JP2006176628A publication Critical patent/JP2006176628A/en
Application granted granted Critical
Publication of JP4817654B2 publication Critical patent/JP4817654B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cation-dyeable polyester which generates a very small amount of deposits on a spinneret even when continuously spun for long hours and exhibits excellent moldability, and a copolyester fiber. <P>SOLUTION: The cation-dyeable polyester comprises a copolyester containing 0-10 mass ppm of metal elements having a true specific gravity of at least 5.0 and comprising at least 80 mol% and less than 99.7 mol%, based on all recurring units, of at least one recurring unit selected from the group consisting of ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, ethylene naphthalate, trimethylene naphthalate and tetramethylene naphthalate and has copolymerized at least 0.3 mol% and less than 20 mol% of a compound represented by general formula (I) as a copolymerized component. The high-tenacity cation-dyeable polyester fiber is obtained by melt-forming the cation-dyeable polyester and has a tensile strength of at least 3.5 cN/dtex. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はカチオン可染性ポリエステル及び高強力カチオン可染ポリエステル繊維に関する。さらに詳しくは、真比重5.0以上の金属元素、特にアンチモン、ゲルマニウムの含有量が極めて少なく、色相に優れ、繊維製造時の成形性に優れているという性能を有したカチオン可染性ポリエステル及び高強力カチオン可染性ポリエステル繊維に関する。   The present invention relates to cationic dyeable polyesters and high strength cationic dyeable polyester fibers. More specifically, the cationic dyeable polyester having the performance that the content of a metal element having a true specific gravity of 5.0 or more, particularly antimony and germanium, is extremely small, excellent in hue, and excellent in moldability at the time of fiber production; It relates to a high-strength cationic dyeable polyester fiber.

ポリエステル、特にポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート及びポリテトラメチレンテレフタレートは、その機械的、物理的、化学的性能が優れているため、繊維、フィルム、その他の成形物に広く利用されている。特にポリエチレンテレフタレートはその特性、価格の面から非常に幅広い用途で利用されている。   Polyesters, especially polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate and polytetramethylene terephthalate are widely used in fibers, films and other molded products because of their excellent mechanical, physical and chemical performance. Yes. In particular, polyethylene terephthalate is used in a very wide range of applications because of its characteristics and price.

ポリエチレンテレフタレートに代表されるポリエステルは、用途に応じて様々な改質がなされており、様々な成分を共重合させた共重合ポリエステルが広く知られており、特にカチオン可染性を有する成分を共重合せしめたカチオン可染性ポリエステルは衣料用途を中心に広く知られている。   Polyesters typified by polyethylene terephthalate have been modified in various ways depending on the application, and copolyesters obtained by copolymerizing various components are widely known. In particular, components having cationic dyeability are co-polymerized. Polymerized cationic dyeable polyester is widely known mainly for apparel use.

このようなカチオン可染性ポリエステルを得るために通常用いられるポリエチレンテレフタレートは、通常例えばテレフタル酸とエチレングリコールとを直接エステル化反応させるか、テレフタル酸ジメチルのようなテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか、又はテレフタル酸とエチレンオキサイドとを反応さて、テレフタル酸のエチレングリコールエステル及び/又はその低重合体を生成させる。次いでこの反応生成物を重縮合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることによって製造されており、この製造工程のいずれかの段階で共重合成分であるカチオン可染性モノマーを添加してカチオン可染性ポリエステルを製造している。しかしながら、一般にカチオン可染性ポリエステルに使用されるカチオン可染性モノマーはイオン成分であることから、ポリエステル重合段階において、イオン結合性分子間力が働き、溶融粘度が上昇してしまう為、高分子量のカチオン可染性ポリエステルを製造することは困難であった。このような問題を改良する為に、イオン結合性分子間力の小さいカチオン可染モノマーを共重合する技術が開示されている(例えば特許文献1参照。)。   Polyethylene terephthalate which is usually used to obtain such a cationic dyeable polyester is usually obtained by directly esterifying terephthalic acid and ethylene glycol, for example, or lower alkyl ester of terephthalic acid such as dimethyl terephthalate and ethylene glycol. Is transesterified, or terephthalic acid and ethylene oxide are reacted to produce an ethylene glycol ester of terephthalic acid and / or a low polymer thereof. Next, this reaction product is produced by heating under reduced pressure in the presence of a polycondensation catalyst to cause a polycondensation reaction until a predetermined polymerization degree is reached, and a cation which is a copolymerization component at any stage of this production process. A cationic dyeable polyester is produced by adding a dyeable monomer. However, since the cation dyeable monomer generally used in the cation dyeable polyester is an ionic component, the ion-bonding intermolecular force acts in the polyester polymerization stage, resulting in an increase in melt viscosity. It was difficult to produce a cationic dyeable polyester. In order to improve such a problem, a technique for copolymerizing a cationic dyeable monomer having a small ion-binding intermolecular force has been disclosed (for example, see Patent Document 1).

これらのポリエステルにおいては、重縮合反応段階で使用する触媒の種類によって、反応速度及び得られるポリエステルの品質が大きく左右されることはよく知られている。この点について従来から検討の結果、ポリエチレンテレフタレートの重縮合触媒としては、優れた重縮合触媒性能を有し、かつ色相の良好なポリエステルが得られるなどの理由からアンチモン化合物が最も広く使用されている。   In these polyesters, it is well known that the reaction rate and the quality of the resulting polyester greatly depend on the type of catalyst used in the polycondensation reaction stage. As a result of conventional studies on this point, as a polycondensation catalyst for polyethylene terephthalate, an antimony compound is most widely used because it has excellent polycondensation catalyst performance and a polyester having a good hue. .

しかしながら、アンチモン化合物を重縮合触媒として使用したポリエステルを例えば長時間にわたって連続的に溶融紡糸し繊維化しようとした場合、口金孔周辺に異物(以下、単に口金異物と称することがある。)が付着堆積し、溶融ポリマー流れの曲がり現象(ベンディング)が発生することがある。するとこれが原因となって紡糸、延伸工程において毛羽及び/又は断糸などを発生するという成形性の問題がある。   However, when a polyester using an antimony compound as a polycondensation catalyst is continuously melt-spun for a long time, for example, to make a fiber, foreign matter (hereinafter, sometimes referred to simply as a base foreign matter) adheres to the periphery of the base hole. Accumulation and bending of the molten polymer flow (bending) may occur. As a result, there is a problem of formability that fluff and / or yarn breakage occurs in the spinning and drawing processes.

またペットボトル用などのポリエステル触媒としては、一般的にゲルマニウム化合物が使用されているが、ゲルマニウムは稀少金属であり、高価な為、得られる製品の価格が高くなってしまうことが問題となっている。   In addition, germanium compounds are generally used as polyester catalysts for PET bottles, but germanium is a rare metal and is expensive, so the price of the resulting product becomes high. Yes.

該アンチモン化合物やゲルマニウム化合物以外の重縮合触媒として、チタンテトラブトキシドのようなチタン化合物を用いることも提案されている。このようなチタン化合物を使用した場合、上記のような口金異物の堆積に起因する成形性の問題は解決できる。しかし、得られたポリエステル自身が黄色く着色されており、また溶融熱安定性も不良であるという新たな問題が発生する。この着色問題を解決するために、コバルト化合物をポリエステルに添加して黄味を抑えることが一般的に行われている。確かにコバルト化合物を添加することによってポリエステルの色相(b値)は改善することができるが、コバルト化合物を添加することによってポリエステルの溶融熱安定性がさらに低下し、ポリマーの分解も起こりやすくなるという問題がある。 It has also been proposed to use a titanium compound such as titanium tetrabutoxide as a polycondensation catalyst other than the antimony compound and germanium compound. When such a titanium compound is used, the above-described problem of formability due to the accumulation of foreign matter in the die can be solved. However, there is a new problem that the obtained polyester itself is colored yellow and that the heat stability of the melt is poor. In order to solve this coloring problem, it is a common practice to suppress yellowishness by adding a cobalt compound to polyester. Certainly, the hue (b * value) of the polyester can be improved by adding a cobalt compound. However, the addition of a cobalt compound further lowers the melt heat stability of the polyester and tends to cause degradation of the polymer. There is a problem.

このような問題を解決する為に、チタン化合物と特定のリン化合物とを反応させて得られた生成物を(例えば特許文献2、特許文献3参照。)、またチタン化合物と特定のリン化合物の未反応混合物あるいは反応生成物を(例えば特許文献4参照。)、それぞれポリエステル製造用触媒として使用することが開示されている。また、同手法を用いたカチオン可染性ポリエステルについても開示されている(例えば特許文献5、特許文献6参照。)。確かにこの方法によればポリエステルの溶融熱安定性は向上し、得られるポリマーの色相も大きく改善されるが、これらの方法ではポリエステル製造時の重合反応速度が遅い為、ポリエステルの生産性がやや劣ってしまう問題を有している。   In order to solve such a problem, a product obtained by reacting a titanium compound with a specific phosphorus compound (see, for example, Patent Document 2 and Patent Document 3), or a titanium compound and a specific phosphorus compound are used. It is disclosed that an unreacted mixture or a reaction product (see, for example, Patent Document 4) is used as a catalyst for polyester production. Further, a cationic dyeable polyester using the same technique is also disclosed (see, for example, Patent Document 5 and Patent Document 6). Certainly, this method improves the melt heat stability of the polyester and greatly improves the hue of the resulting polymer. However, in these methods, the polymerization reaction rate during the production of the polyester is slow, so that the productivity of the polyester is slightly higher. Has the problem of being inferior.

ポリエステルの成形安定性を向上させるには、前記のように触媒としてアンチモンを使用しないことが有効な手段であるが、アンチモンを使用しない方法では、糸のカラー(色相)が低下してしまうため、従来は使用に供することができなかった。したがって触媒としてアンチモンを使用せず、かつ色相に優れたポリエステルが求められていた。   In order to improve the molding stability of the polyester, it is an effective means not to use antimony as a catalyst as described above. However, in the method not using antimony, the color (hue) of the yarn is lowered, Previously, it could not be used. Therefore, there has been a demand for a polyester that does not use antimony as a catalyst and has an excellent hue.

一方ポリエステルの色相を改善する試みとしては染料を混練したポリエステルが開示されているが(例えば特許文献7〜11参照。)、色相改善のレベルとしてはまだ十分なものではなかった。   On the other hand, polyesters kneaded with dyes have been disclosed as attempts to improve the hue of polyesters (see, for example, Patent Documents 7 to 11), but the level of hue improvement has not been sufficient.

特開平1−162822号公報JP-A-1-162822 国際公開第01/00706号パンフレットInternational Publication No. 01/00706 Pamphlet 国際公開第03/008479号パンフレットInternational Publication No. 03/008479 Pamphlet 国際公開第03/027166号パンフレットInternational Publication No. 03/027166 Pamphlet 特開2003−119273号公報JP 2003-119273 A 特開2003−119620号公報JP 2003-119620 A 特開平3−231918号公報JP-A-3-231918 特開平11−158257号公報Japanese Patent Laid-Open No. 11-158257 特開平11−158361号公報Japanese Patent Laid-Open No. 11-158361 特開2004−204136号公報JP 2004-204136 A 特開2004−204137号公報JP 2004-204137 A

本発明の目的は色相に優れ、長時間連続的に紡糸しても、口金への付着物の発生量が非常に少なく、優れた成形性を有するカチオン可染性ポリエステルを提供することにある。また別の目的は鮮明な外観を有し、高強力繊維を得ることができるカチオン可染性ポリエステルを提供することである。   An object of the present invention is to provide a cationic dyeable polyester that has excellent hue and generates a very small amount of deposits on the die even when spinning continuously for a long time and has excellent moldability. Another object is to provide a cationic dyeable polyester having a clear appearance and capable of obtaining high strength fibers.

本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。
すなわち本発明は、真比重5.0以上の金属元素の含有量が0〜10質量ppm以下であり、エチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、エチレンナフタレート、トリメチレンナフタレート及びテトラメチレンナフタレートよりなる群から選ばれる少なくとも1種類の繰り返し単位が全繰返し単位中80モル%以上99.7モル%未満の共重合ポリエステルであって、共重合成分として下記一般式(I)で表される化合物を0.3モル%以上10モル%未満共重合されているカチオン可染性ポリエステル、及びこれを溶融成形して得られる引張強度が3.5cN/dtex以上である高強力カチオン可染性ポリエステル繊維であり、これによって上記の課題が解決できる。
As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention.
That is, in the present invention, the content of a metal element having a true specific gravity of 5.0 or more is 0 to 10 mass ppm or less, and ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, ethylene naphthalate, trimethylene naphthalate and tetramethylene naphthalate. At least one type of repeating unit selected from the group consisting of phthalates is a copolymerized polyester having a total repeating unit of 80 mol% or more and less than 99.7 mol%, and is represented by the following general formula (I) as a copolymerization component Cationic dyeable polyester copolymerized with 0.3 mol% or more and less than 10 mol% of compound, and high strength cationic dyeable polyester having a tensile strength of 3.5 cN / dtex or more obtained by melt molding the same This is a fiber and can solve the above problems.

Figure 2006176628
[上記式中、Rは水素又は炭素数1〜10のアルキル基を表し、Xは4級ホスホニウム塩、又は4級アンモニウム塩を表す。]
Figure 2006176628
[In the above formula, R represents hydrogen or an alkyl group having 1 to 10 carbon atoms, and X represents a quaternary phosphonium salt or a quaternary ammonium salt. ]

本発明によればポリエステルの優れた特性を保持しながら、アンチモンやゲルマニウム触媒を使用しないポリエステルの欠点であった色相の悪化を解消することができる。また、口金への付着物の発生量が非常に少なく、優れた成形性を有するポリエステルを提供することが出来る。   According to the present invention, it is possible to eliminate the deterioration of the hue, which is a defect of the polyester not using antimony or germanium catalyst, while maintaining the excellent characteristics of the polyester. Further, it is possible to provide a polyester having a very small amount of deposits on the die and having excellent moldability.

以下本発明を詳しく説明する。
本発明におけるカチオン可染性ポリエステルとは、テレフタル酸若しくはナフタレンジカルボン酸又はそのエステル形成性誘導体と、エチレングリコール、トリメチレングリコール、テトラメチレングリコール成分を重縮合反応せしめて得られるエチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、エチレンナフタレート、トリメチレンナフタレート及びテトラメチレンナフタレートよりなる群から選ばれる少なくとも1種類の繰り返し単位が全繰返し単位中80モル%以上99.7モル%未満であるポリエステルであり、下記一般式(I)で表される化合物が0.3モル%以上20モル%未満共重合されているポリエステルである。
The present invention will be described in detail below.
The cationic dyeable polyester in the present invention is an ethylene terephthalate or trimethylene terephthalate obtained by polycondensation reaction of terephthalic acid or naphthalene dicarboxylic acid or an ester-forming derivative thereof with ethylene glycol, trimethylene glycol or tetramethylene glycol components. , A polyester in which at least one repeating unit selected from the group consisting of tetramethylene terephthalate, ethylene naphthalate, trimethylene naphthalate and tetramethylene naphthalate is 80 mol% or more and less than 99.7 mol% in all repeating units. The polyester represented by the following general formula (I) is copolymerized by 0.3 mol% or more and less than 20 mol%.

Figure 2006176628
[上記式中、Rは水素又は炭素数1〜10のアルキル基を表し、Xは4級ホスホニウム塩、又は4級アンモニウム塩を表す。]
Figure 2006176628
[In the above formula, R represents hydrogen or an alkyl group having 1 to 10 carbon atoms, and X represents a quaternary phosphonium salt or a quaternary ammonium salt. ]

ここで上記一般式(I)で表される化合物としては、5−スルホイソフタル酸あるいはその低級アルキルエステルの4級ホスホニウム塩又は4級アンモニウム塩である。4級ホスホニウム塩、4級アンモニウム塩としてはアルキル基、ベンジル基、フェニル基が置換された4級ホスホニウム塩、4級アンモニウム塩が好ましく、特に4級ホスホニウム塩であることが好ましい。また4つある置換基は同一であっても異なっていても良い。上記一般式(I)で表される化合物の具体例としては、5−スルホイソフタル酸テトラブチルホスホニウム塩、5−スルホイソフタル酸エチルトリブチルホスホニウム塩、5−スルホイソフタル酸ベンジルトリブチルホスホニウム塩、5−スルホイソフタル酸フェニルトリブチルホスホニウム塩、5−スルホイソフタル酸テトラフェニルホスホニウム塩、5−スルホイソフタル酸ブチルトリフェニルホスホニウム塩、5−スルホイソフタル酸ベンジルトリフェニルホスホニウム塩、あるいはこれらイソフタル酸誘導体のジメチルエステル、ジエチルエステルが好ましく例示される。   Here, the compound represented by the above general formula (I) is quaternary phosphonium salt or quaternary ammonium salt of 5-sulfoisophthalic acid or a lower alkyl ester thereof. The quaternary phosphonium salt and quaternary ammonium salt are preferably a quaternary phosphonium salt or a quaternary ammonium salt substituted with an alkyl group, a benzyl group or a phenyl group, and particularly preferably a quaternary phosphonium salt. Further, the four substituents may be the same or different. Specific examples of the compound represented by the above general formula (I) include 5-sulfoisophthalic acid tetrabutylphosphonium salt, 5-sulfoisophthalic acid ethyltributylphosphonium salt, 5-sulfoisophthalic acid benzyltributylphosphonium salt, 5-sulfoisophthalate. Isophthalic acid phenyltributylphosphonium salt, 5-sulfoisophthalic acid tetraphenylphosphonium salt, 5-sulfoisophthalic acid butyltriphenylphosphonium salt, 5-sulfoisophthalic acid benzyltriphenylphosphonium salt, or dimethyl ester or diethyl ester of these isophthalic acid derivatives Is preferably exemplified.

また、本発明のカチオン可染性ポリエステルに共重合されている上記一般式(I)の化合物の共重合量が0.3モル%未満の場合、カチオン染料に対する染色性が不十分となり、また20モル%以上の場合カチオン可染性ポリエステルそのものの耐熱性や溶融紡糸された繊維の強度が低下する為好ましくない。該共重合量は0.5モル%以上10モル%以下が好ましく、0.8モル%以上7モル%以下がより好ましく、1モル%以上5モル%未満の範囲が更に好ましい。   Further, when the copolymerization amount of the compound of the above general formula (I) copolymerized with the cationic dyeable polyester of the present invention is less than 0.3 mol%, the dyeability with respect to the cationic dye becomes insufficient, and 20 If it is at least mol%, the heat resistance of the cationic dyeable polyester itself and the strength of the melt-spun fiber are unfavorable. The copolymerization amount is preferably 0.5 mol% or more and 10 mol% or less, more preferably 0.8 mol% or more and 7 mol% or less, and further preferably in the range of 1 mol% or more and less than 5 mol%.

また、本発明のカチオン可染性ポリエステルは同時に、エチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、エチレンナフタレート、トリメチレンナフタレート及びテトラメチレンナフタレートよりなる群から選ばれる少なくとも1種類の繰り返し単位が80モル%以上99.7モル%未満である必要がある。前述した繰り返し単位が80モル%未満である場合、本来ポリエステルが有している特徴が失われ、また99.7モル%以上である場合はカチオン染料に対する染色性が不十分となり好ましくない。該繰り返し単位は85モル%以上99.5モル%未満の範囲が好ましく、90モル%以上99モル%未満の範囲が更に好ましい。また上記のポリエステルの中でもポリエチレンテレフタレートが80モル%以上99.7モル%未満であることが好ましい。   Further, the cationic dyeable polyester of the present invention has at least one repeating unit selected from the group consisting of ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, ethylene naphthalate, trimethylene naphthalate and tetramethylene naphthalate. It needs to be 80 mol% or more and less than 99.7 mol%. When the above-mentioned repeating unit is less than 80 mol%, the inherent characteristics of the polyester are lost, and when it is 99.7 mol% or more, the dyeability with respect to the cationic dye is insufficient, which is not preferable. The repeating unit is preferably in the range of 85 mol% or more and less than 99.5 mol%, more preferably in the range of 90 mol% or more and less than 99 mol%. Moreover, it is preferable that polyethylene terephthalate is 80 mol% or more and less than 99.7 mol% among said polyester.

本発明における真比重5.0以上の金属元素とは通常ポリエステル中に含有される触媒や金属系の整色剤、艶消剤等に含有されている金属化合物に由来するものである。具体的には、アンチモン、ゲルマニウム、マンガン、コバルト、セリウム、錫、亜鉛、鉛又はカドミウム等が該当する。これらに対し、チタン、アルミニウム、カルシウム、マグネシウム、ナトリウム又はカリウム等はここでいう真比重5.0以上の金属には該当しない。   The metal element having a true specific gravity of 5.0 or more in the present invention is derived from a metal compound usually contained in a catalyst, a metal color adjuster, a matting agent and the like contained in a polyester. Specifically, antimony, germanium, manganese, cobalt, cerium, tin, zinc, lead, cadmium, and the like are applicable. On the other hand, titanium, aluminum, calcium, magnesium, sodium, potassium, and the like do not correspond to metals having a true specific gravity of 5.0 or more.

本発明のカチオン可染性ポリエステルは真比重5.0以上の金属元素の含有量が0〜10質量ppm以下である必要がある。含有される金属の種類によってその特徴、特性は変わる。例えばアンチモン金属の含有量が10質量ppmより多い場合、溶融紡糸時やフィルムの製膜時に異物となって口金やダイ周辺に付着し、長期間の連続成形性に悪影響を与える。ゲルマニウム金属の場合は、それ自体が高価な為、含有量が多くなると得られるカチオン可染性ポリエステルの価格が上昇してしまい好ましくない。また、鉛、カドミウムなどの金属の場合は金属元素そのものに毒性がある為、カチオン可染性ポリエステル中に多量に含有していることは好ましくない。該真比重5.0以上の金属元素の含有量は0〜7質量ppm以下であることが好ましく、0〜5質量ppm以下であることが更に好ましい。   The cationic dyeable polyester of the present invention needs to have a content of a metal element having a true specific gravity of 5.0 or more and 0 to 10 ppm by mass or less. The characteristics and properties vary depending on the type of metal contained. For example, when the content of antimony metal is more than 10 mass ppm, it becomes a foreign substance during melt spinning or film formation and adheres to the periphery of the die or die, which adversely affects long-term continuous formability. In the case of germanium metal, since it is expensive per se, an increase in the content increases the price of the resulting cationic dyeable polyester, which is not preferable. Further, in the case of metals such as lead and cadmium, since the metal element itself is toxic, it is not preferable that it is contained in a large amount in the cationic dyeable polyester. The content of the metal element having a true specific gravity of 5.0 or more is preferably 0 to 7 mass ppm or less, and more preferably 0 to 5 mass ppm or less.

本発明のカチオン可染性ポリエステルの固有粘度(溶媒:オルトクロロフェノール、測定温度:35℃)は0.55以上1.0以下の範囲であることが好ましい。固有粘度が0.55未満の場合、最終的に得られるカチオン可染性ポリエステル繊維の強度が低くなり、また1.0を超える場合、粘度が高すぎて溶融成形が困難となる為好ましくない。カチオン可染性ポリエステルの固有粘度は0.60以上0.90以下であることが更に好ましい。また、該固有粘度を高めるために、固相重合をせしめることが一般に行われているが、固相重合を施すことはカチオン可染性ポリエステルのコストを高めてしまうため、本発明の場合、固相重合しない方が好ましい。   The intrinsic viscosity (solvent: orthochlorophenol, measurement temperature: 35 ° C.) of the cationic dyeable polyester of the present invention is preferably in the range of 0.55 to 1.0. If the intrinsic viscosity is less than 0.55, the strength of the finally obtained cationic dyeable polyester fiber is low, and if it exceeds 1.0, the viscosity is too high and melt molding becomes difficult. The intrinsic viscosity of the cationic dyeable polyester is more preferably 0.60 or more and 0.90 or less. Further, in order to increase the intrinsic viscosity, solid phase polymerization is generally performed. However, since solid phase polymerization increases the cost of cationic dyeable polyester, It is preferable not to perform phase polymerization.

本発明のカチオン可染性ポリエステルは、濃度20mg/L、光路長1cmでのクロロホルム溶液において測定された380〜780nm領域の可視光吸収スペクトルでの最大吸収波長が540〜600nmの範囲にあり、且つその最大吸収波長での吸光度に対する下記各波長での吸光度の割合が下記式(1)〜(4)のすべてを満たす有機系整色剤を0.1〜10質量ppm含有していることが好ましい。
0.00≦A400/Amax≦0.20 (1)
0.10≦A500/Amax≦0.70 (2)
0.55≦A600/Amax≦1.00 (3)
0.00≦A700/Amax≦0.05 (4)
[上記数式中、A400、A500、A600及びA700はそれぞれ波長400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
The cationic dyeable polyester of the present invention has a maximum absorption wavelength in the visible light absorption spectrum in the range of 380 to 780 nm measured in a chloroform solution at a concentration of 20 mg / L and an optical path length of 1 cm, and is in the range of 540 to 600 nm. It is preferable that the ratio of the absorbance at each wavelength below with respect to the absorbance at the maximum absorption wavelength contains 0.1 to 10 ppm by mass of an organic color adjusting agent that satisfies all of the following formulas (1) to (4). .
0.00 ≦ A 400 / A max ≦ 0.20 (1)
0.10 ≦ A 500 / A max ≦ 0.70 (2)
0.55 ≦ A 600 / A max ≦ 1.00 (3)
0.00 ≦ A 700 / A max ≦ 0.05 (4)
[In the above formula, A 400 , A 500 , A 600 and A 700 are the absorbance in the visible light absorption spectrum at wavelengths of 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. Represents. ]

ここで可視光吸収スペクトルとは、通常分光光度計によって測定されるスペクトルであるが、本発明のカチオン可染性ポリエステルに含有される有機系整色剤溶液の可視光吸収スペクトルの最大吸収波長が540nm未満の場合は得られるカチオン可染性ポリエステルの赤味が強くなり、また600nmを超える場合は得られるカチオン可染性ポリエステルの青味が強くなる為好ましくない。最大吸収波長の範囲は545〜595nmの範囲が更に好ましい。また本発明のカチオン可染性ポリエステルに含有される有機系整色剤の濃度20mg/Lのクロロホルム溶液について光路長1cmにおいて可視光吸収スペクトルを測定したとき、最大吸収波長での吸光度に対する上記に示す各波長での吸光度の割合が上記数式(1)〜(4)のいずれか一つでも外れる場合、得られるカチオン可染性ポリエステルの着色が大きくなり好ましくない。上記式(1)〜(4)を満たし、さらにそれぞれ下記数式(5)〜(8)のいずれか1つ以上を満たすことがより好ましく、更に下記数式(5)〜(8)すべてを満たしていることがさらに好ましい。
0.00≦A400/Amax≦0.15 (5)
0.30≦A500/Amax≦0.60 (6)
0.60≦A600/Amax≦0.95 (7)
0.00≦A700/Amax≦0.03 (8)
[上記数式中、A400、A500、A600及びA700はそれぞれ波長400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
Here, the visible light absorption spectrum is a spectrum usually measured by a spectrophotometer, but the maximum absorption wavelength of the visible light absorption spectrum of the organic color matching agent solution contained in the cationic dyeable polyester of the present invention is When the thickness is less than 540 nm, the redness of the resulting cationic dyeable polyester becomes strong, and when it exceeds 600 nm, the blueness of the resulting cationic dyeable polyester becomes strong. The range of the maximum absorption wavelength is more preferably in the range of 545 to 595 nm. Further, when a visible light absorption spectrum is measured at an optical path length of 1 cm for a chloroform solution having a concentration of 20 mg / L of an organic color adjusting agent contained in the cationic dyeable polyester of the present invention, the above is shown for the absorbance at the maximum absorption wavelength. When the ratio of the absorbance at each wavelength is out of any one of the above formulas (1) to (4), the resulting cationic dyeable polyester is undesirably colored. It is more preferable to satisfy the above formulas (1) to (4), and more preferably to satisfy any one or more of the following formulas (5) to (8), and further satisfy all the following formulas (5) to (8). More preferably.
0.00 ≦ A 400 / A max ≦ 0.15 (5)
0.30 ≦ A 500 / A max ≦ 0.60 (6)
0.60 ≦ A 600 / A max ≦ 0.95 (7)
0.00 ≦ A 700 / A max ≦ 0.03 (8)
[In the above formula, A 400 , A 500 , A 600 and A 700 are the absorbance in the visible light absorption spectrum at wavelengths of 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. Represents. ]

更に本発明のカチオン可染性ポリエステルに含有される上述の有機系整色剤の含有量が、0.1質量ppm未満の場合、カチオン可染性ポリエステルの黄色味が強くなる。一方、10質量ppmを超える場合、明度が弱くなり見た目に黒味が強くなる為好ましくない。該有機系整色剤の含有量は0.3質量ppm〜9質量ppmの範囲が更に好ましい。   Furthermore, when the content of the above-mentioned organic color adjusting agent contained in the cationic dyeable polyester of the present invention is less than 0.1 ppm by mass, the yellow color of the cationic dyeable polyester becomes strong. On the other hand, if it exceeds 10 ppm by mass, the brightness becomes weak and the blackness becomes strong visually, which is not preferable. The content of the organic color adjusting agent is more preferably in the range of 0.3 mass ppm to 9 mass ppm.

本発明に使用する有機系整色剤は、窒素雰囲気下中、昇温速度10℃/分の条件で熱天秤にて測定したときの質量減少開始温度が250℃以上である整色用色素から選ばれることが好ましい。ここで、熱天秤で測定したときの質量減少開始温度とは、JIS K−7120に記載の質量減少開始温度(T)のことであり、有機系整色剤が有している耐熱性の指標となる。該質量減少開始温度が250℃未満である場合、有機系整色剤の耐熱性が不十分であることから最終的に得られるカチオン可染性ポリエステルの着色の原因となり好ましくない。該質量減少開始温度は300℃以上であることが更に好ましい。またカチオン可染性ポリエステルが溶融状態にある温度下で分解しないことが更に好ましい。 The organic color adjusting agent used in the present invention is a color adjusting dye having a mass decrease starting temperature of 250 ° C. or higher when measured with a thermobalance in a nitrogen atmosphere at a temperature rising rate of 10 ° C./min. It is preferable to be selected. Here, the mass decrease start temperature when measured with a thermobalance is the mass decrease start temperature (T 1 ) described in JIS K-7120, and the heat resistance of the organic color adjusting agent. It becomes an indicator. When the mass decrease starting temperature is less than 250 ° C., the heat resistance of the organic color adjusting agent is insufficient, which is not preferable because it causes coloring of the finally obtained cationic dyeable polyester. The mass decrease starting temperature is more preferably 300 ° C. or higher. It is further preferable that the cationic dyeable polyester does not decompose at a temperature at which it is in a molten state.

本発明のカチオン可染性ポリエステルの色相は特に厳密な制限はないが、本発明に使用されるべき有機系整色剤が添加されていないと、得られるカチオン可染性ポリエステルの色相が黄色味を帯びた色相となり好ましくないことがある。該カチオン可染性ポリエステルの色相は、140℃、2時間熱処理により結晶化を進めた後のL表色系におけるカラーa値が−9〜0、カラーb値が−2〜10の範囲にあることが好ましい。該カラー値は含有される有機系整色剤の量によって変化してくるが、カラーa値が−9より小さい場合、カチオン可染性ポリエステルは緑色味が強くなり、0より大きい場合は赤味が強くなり好ましくない。またカラーb値が−2より小さい場合、カチオン可染性ポリエステルは青味が強くなり、10より大きい場合は黄色味が強くなるため好ましくない。 The hue of the cationic dyeable polyester of the present invention is not particularly limited, but if the organic colorant to be used in the present invention is not added, the hue of the resulting cationic dyeable polyester is yellowish. May be unfavorable. The color of the cationic dyeable polyester is such that the color a * value in the L * a * b * color system after crystallization is advanced by heat treatment at 140 ° C. for 2 hours is −9 to 0, and the color b * value is − It is preferable that it exists in the range of 2-10. The color value varies depending on the amount of the organic color adjusting agent to be contained. When the color a * value is smaller than −9, the cationic dyeable polyester has a strong green color. The taste becomes strong and is not preferable. On the other hand, when the color b * value is less than −2, the cationic dyeable polyester is not preferable because the bluish color is strong, and when it is more than 10, the yellow color becomes strong.

また本発明におけるカチオン可染性ポリエステルは、必要に応じて少量の添加剤、例えば酸化防止剤、固相重合促進剤、蛍光増白剤、帯電防止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮光剤又は艶消剤等を含んでいてもよい。   Further, the cationic dyeable polyester in the present invention contains a small amount of additives as necessary, for example, an antioxidant, a solid phase polymerization accelerator, a fluorescent whitening agent, an antistatic agent, an antibacterial agent, an ultraviolet absorber, and a light stabilizer. Further, a heat stabilizer, a light shielding agent, a matting agent, or the like may be included.

本発明におけるカチオン可染性ポリエステルの製造方法は、通常知られているポリエステルの製造方法が用いられる。すなわち、まずテレフタル酸とエチレングリコールとを直接エステル化反応させる、又はテレフタル酸ジメチル(以下DMTと称することがある。)の如きテレフタル酸成分の低級アルキルエステルとエチレングリコールとをエステル交換反応させ、ジカルボン酸のグリコールエステル及び/又はその低重合体を製造する。共重合せしめるカチオン可染性モノマーについては、ジカルボン酸成分の低級アルキルエステルを使用する場合はテレフタル酸の低級アルキルエステルと同時期に添加して、エステル交換反応させる場合に使用可能である。共重合せしめるカチオン可染性モノマーがフリーのジカルボン酸成分の場合は、直接エステル化反応前、反応終了後、エステル交換反応終了後のいずれかの段階で添加することが好ましい。次いでこの反応生成物を重縮合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることによって目的とするカチオン可染性ポリエステルが製造される。また、一般にカチオン可染性ポリエステルを製造する際は、ポリエステル製造工程において副生してくるジエチレングリコール量を抑制する為に少量のアルカリ金属塩、アルカリ土類金属塩が添加されるが、本発明の場合は、ポリエステル重合工程での増粘効果を抑制する為に、水酸化テトラアルキルホスホニウム、水酸化テトラアルキルアンモニウム、トリアルキルアミン等を使用するカチオン可染性モノマーに対して1〜20モル%程度をカチオン可染性モノマーと同時期に反応系(反応器)内に添加することが好ましい。   As a method for producing a cationic dyeable polyester in the present invention, a conventionally known polyester production method is used. That is, first, terephthalic acid and ethylene glycol are directly esterified, or a lower alkyl ester of a terephthalic acid component such as dimethyl terephthalate (hereinafter sometimes referred to as DMT) is transesterified with ethylene glycol to produce a dicarboxylic acid. A glycol ester of an acid and / or a low polymer thereof is produced. The cationic dyeable monomer to be copolymerized can be used in the case where a lower alkyl ester of a dicarboxylic acid component is used and added at the same time as the lower alkyl ester of terephthalic acid to cause a transesterification reaction. When the cationic dyeable monomer to be copolymerized is a free dicarboxylic acid component, it is preferably added at any stage before the esterification reaction, after the completion of the reaction, or after the completion of the transesterification reaction. Then, the reaction product is heated under reduced pressure in the presence of a polycondensation catalyst and subjected to a polycondensation reaction until a predetermined degree of polymerization is obtained, whereby a desired cationic dyeable polyester is produced. In general, when producing a cationic dyeable polyester, a small amount of alkali metal salt or alkaline earth metal salt is added to suppress the amount of diethylene glycol by-produced in the polyester production process. In the case, in order to suppress the thickening effect in the polyester polymerization step, about 1 to 20 mol% with respect to the cationic dyeable monomer using tetraalkylphosphonium hydroxide, tetraalkylammonium hydroxide, trialkylamine or the like. Is preferably added to the reaction system (reactor) at the same time as the cationic dyeable monomer.

本発明のカチオン可染性ポリエステルを製造する工程において用いる重縮合触媒は、チタン化合物及び/又はアルミニウム化合物を含むことが好ましい。ここで、チタン化合物としては特に限定されず、ポリエステルの重縮合触媒として一般的なチタン化合物、例えば、酢酸チタンやテトラ−n−ブトキシチタンなどが挙げられる。チタン化合物としてより好ましいのは、下記一般式(II)で表わされるチタン化合物、又は下記一般式(II)で表わされるチタン化合物と下記一般式(III)で表わされる芳香族多価カルボン酸若しくはその無水物とを反応させた生成物を用いることである。   The polycondensation catalyst used in the step of producing the cationic dyeable polyester of the present invention preferably contains a titanium compound and / or an aluminum compound. Here, it does not specifically limit as a titanium compound, A titanium compound common as a polycondensation catalyst of polyester, for example, titanium acetate, tetra-n-butoxy titanium, etc. are mentioned. More preferred as the titanium compound is a titanium compound represented by the following general formula (II), a titanium compound represented by the following general formula (II) and an aromatic polyvalent carboxylic acid represented by the following general formula (III) or The product obtained by reacting with an anhydride is used.

Figure 2006176628
[上記式中、R、R、R及びRはそれぞれ互いに独立に、炭素数1〜10のアルキル基又はフェニル基を示し、pは1〜4の整数を示し、かつpが2、3又は4の場合、2個、3個又は4個のR及びRは、互いに異なっていてもよい。]
Figure 2006176628
[In the above formula, R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 10 carbon atoms or a phenyl group, p represents an integer of 1 to 4, and p is 2 In the case of 3 or 4, 2, 3 or 4 R 2 and R 3 may be different from each other. ]

Figure 2006176628
[上記式中、qは2〜4の整数を表わす。]
Figure 2006176628
[In the above formula, q represents an integer of 2 to 4. ]

一方、アルミニウム化合物としても特に限定はないが、触媒活性の点で有機アルミニウム化合物であることが好ましく、中でもアルミニウムアセチルアセトネートなどが安定で取扱いが容易な点において優れているので好ましい。また、これらチタン化合物とアルミニウム化合物は単独で用いても、両者を併用して用いても、又はそれぞれ2種以上を併用しても良いが、チタン化合物を単独で用いるのが特に好ましい。なかでも最も好ましいのが上記一般式(II)で表わされる化合物、又は上記一般式(II)で表わされる化合物と上記一般式(III)で表わされる芳香族多価カルボン酸若しくはその無水物とを反応させた生成物を単独で用いることである。   On the other hand, the aluminum compound is not particularly limited, but is preferably an organoaluminum compound from the viewpoint of catalytic activity. Among them, aluminum acetylacetonate is preferable because it is stable and easy to handle. Moreover, these titanium compounds and aluminum compounds may be used alone, in combination or in combination of two or more, but it is particularly preferable to use the titanium compound alone. Of these, the compound represented by the above general formula (II) or the compound represented by the above general formula (II) and the aromatic polyvalent carboxylic acid represented by the above general formula (III) or an anhydride thereof is most preferable. The reacted product is used alone.

一般式(II)で表わされるチタン化合物の中でテトラアルコキサイドチタン及び/又はテトラフェノキサイドチタンとしては、R〜Rが炭素数1〜10のアルキル基又はフェニル基であれば特に限定されないが、テトライソプロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン又はテトラフェノキシチタンなどが好ましく用いられる。また、かかるチタン化合物と反応させる一般式(III)で表される芳香族多価カルボン酸又はその無水物としては、テレフタル酸、イソフタル酸、フタル酸、トリメリット酸、ヘミメリット酸若しくはピロメリット酸又はこれらの無水物が好ましく用いられる。上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の全部又は一部を溶解し、これにチタン化合物を滴下し、0〜200℃の温度で30分以上反応させれば良い。また必要に応じてチタン化合物滴下後、残りの芳香族多価カルボン酸又はその無水物を加えればよい。 Among the titanium compounds represented by the general formula (II), tetraalkoxide titanium and / or tetraphenoxide titanium are particularly limited as long as R 1 to R 4 are alkyl groups or phenyl groups having 1 to 10 carbon atoms. Although not, tetraisopropoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetraethoxy titanium, tetraphenoxy titanium, or the like is preferably used. In addition, the aromatic polyvalent carboxylic acid represented by the general formula (III) to be reacted with the titanium compound or the anhydride thereof includes terephthalic acid, isophthalic acid, phthalic acid, trimellitic acid, hemimellitic acid, or pyromellitic acid. Or these anhydrides are used preferably. When the titanium compound and the aromatic polyvalent carboxylic acid or anhydride thereof are reacted, all or part of the aromatic polyvalent carboxylic acid or anhydride thereof is dissolved in a solvent, and the titanium compound is dropped into this. What is necessary is just to make it react for 30 minutes or more at the temperature of 0-200 degreeC. Moreover, what is necessary is just to add the remaining aromatic polyhydric carboxylic acid or its anhydride after dripping a titanium compound as needed.

本発明のカチオン可染性ポリエステルは上述した通り、チタン化合物及び/又はアルミニウム化合物を重縮合触媒として用いられていることが好ましいが、更に耐熱性や色相を改善すべく、リン化合物を安定剤として併用することが好ましい。該リン化合物としては特に制限はないが、好ましくはリン酸、亜リン酸、ホスホン酸若しくはホスフィン酸又はこれらのアルキル、アリールエステル、ホスホノアセテート系化合物が特に好ましい。該リン化合物のカチオン可染性ポリエステル中への添加方法は、エステル交換反応又はエステル化反応が実質的に終了した後であればいつでもよいが、通常はエステル化反応、若しくはエステル交換反応が終了した後すぐに添加し、その後重縮合反応せしめることが好ましい。   As described above, the cationic dyeable polyester of the present invention preferably uses a titanium compound and / or an aluminum compound as a polycondensation catalyst. However, in order to further improve heat resistance and hue, a phosphorus compound is used as a stabilizer. It is preferable to use together. Although there is no restriction | limiting in particular as this phosphorus compound, Preferably phosphoric acid, phosphorous acid, phosphonic acid, or phosphinic acid or these alkyl, aryl ester, and a phosphono acetate type compound are especially preferable. The phosphorus compound may be added to the cationic dyeable polyester at any time after the transesterification or esterification reaction is substantially completed, but usually the esterification reaction or transesterification reaction is completed. It is preferable to add immediately afterward and to carry out polycondensation reaction thereafter.

さらに本発明のカチオン可染性ポリエステルの製造方法は上述した共重合ポリエステル製造工程の任意の段階で有機系整色剤を添加することによって製造されることが好ましい。なかでも有機系整色剤が共重合ポリエステル製造工程における重縮合反応工程が終了するまでの任意の段階で添加されることが更に好ましい。特にエステル化反応もしくはエステル交換反応が終了した後に有機系整色剤を添加することが最も好ましい。   Furthermore, it is preferable that the manufacturing method of the cationic dyeable polyester of this invention is manufactured by adding an organic color adjusting agent in the arbitrary steps of the copolyester manufacturing process mentioned above. In particular, it is more preferable that the organic color adjusting agent is added at any stage until the polycondensation reaction step in the copolymerized polyester production step is completed. In particular, it is most preferable to add the organic color adjusting agent after completion of the esterification reaction or transesterification reaction.

本発明のカチオン可染性ポリエステルの製造方法においては、有機系整色剤として青色系整色用色素と紫色系整色用色素を質量比90:10〜40:60の範囲で併用すること、又は青色系整色用色素と赤色系又は橙色系整色用色素を質量比98:2〜80:20の範囲で併用することが好ましい。ここで青色系整色用色素とは、一般に市販されている整色用色素の中で「Blue」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が580〜620nm程度にあるものを示す。同様に紫色系整色用色素とは市販されている整色用色素の中で「Violet」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が560〜580nm程度にあるものを示す。赤色系整色用色素とは市販されている整色用色素の中で「Red」と表記されているものであって、具体的には溶液中の可視光吸収スペクトルにおける最大吸収波長が480〜520nm程度にあるものである。橙色系系整色用色素とは市販されている整色用色素の中で「Orange」と表記されているものである。   In the method for producing the cationic dyeable polyester of the present invention, a blue color matching dye and a purple color changing dye are used in combination in a mass ratio of 90:10 to 40:60 as an organic color adjusting agent. Alternatively, it is preferable to use a blue color adjusting dye and a red or orange color adjusting dye in a mass ratio of 98: 2 to 80:20. Here, the blue color-modifying dye is generally indicated as “Blue” among commercially available color-adjusting dyes, and specifically, the maximum absorption in the visible light absorption spectrum in the solution. The wavelength is about 580 to 620 nm. Similarly, the purple color-modifying dye is the one described as “Violet” among commercially available color-adjusting dyes. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is The thing in about 560-580 nm is shown. The red color-modifying dyes are those listed as “Red” among commercially available color-adjusting dyes. Specifically, the maximum absorption wavelength in the visible light absorption spectrum in the solution is 480 to 480. It is about 520 nm. The orange-based color-adjusting colorant is the one described as “Orange” among commercially available color-adjusting colorants.

これらの整色用色素としては油溶染料が特に好ましく、具体的な例としては、青色系整色用色素には、C.I.Solvent Blue 11、C.I.Solvent Blue 25、C.I.Solvent Blue 35、C.I.Solvent Blue 36、C.I.Solvent Blue 45 (Telasol Blue RLS)、C.I.Solvent Blue 55、C.I.Solvent Blue 63、C.I.Solvent Blue 78、C.I.Solvent Blue 83、C.I.Solvent Blue 87、C.I.Solvent Blue 94等が挙げられる。紫色系整色用色素には、C.I.Solvent Violet 8、C.I.Solvent Violet 13、C.I.Solvent Violet 14、C.I.Solvent Violet 21、C.I.Solvent Violet 27、C.I.Solvent Violet 28、C.I.Solvent Violet 36等が挙げられる。赤色系整色用色素には、C.I.Solvent Red 24、C.I.Solvent Red 25、C.I.Solvent Red 27、C.I.Solvent Red 30、C.I.Solvent Red 49、C.I.Solvent Red 52、C.I.Solvent Red 100、C.I.Solvent Red 109、C.I.Solvent Red 111、C.I.Solvent Red 121、C.I.Solvent Red 135、C.I.Solvent Red 168、C.I.Solvent Red 179等が例示される。橙色系整色用色素には、C.I.Solvent Orange 60等が挙げられる。   As these color adjusting dyes, oil-soluble dyes are particularly preferable. As specific examples, blue color adjusting dyes include C.I. I. Solvent Blue 11, C.I. I. Solvent Blue 25, C.I. I. Solvent Blue 35, C.I. I. Solvent Blue 36, C.I. I. Solvent Blue 45 (Telasol Blue RLS), C.I. I. Solvent Blue 55, C.I. I. Solvent Blue 63, C.I. I. Solvent Blue 78, C.I. I. Solvent Blue 83, C.I. I. Solvent Blue 87, C.I. I. Solvent Blue 94 and the like. Examples of purple color adjusting pigments include C.I. I. Solvent Violet 8, C.I. I. Solvent Violet 13, C.I. I. Solvent Violet 14, C.I. I. Solvent Violet 21, C.I. I. Solvent Violet 27, C.I. I. Solvent Violet 28, C.I. I. Solvent Violet 36 etc. are mentioned. Examples of red color adjusting pigments include C.I. I. Solvent Red 24, C.I. I. Solvent Red 25, C.I. I. Solvent Red 27, C.I. I. Solvent Red 30, C.I. I. Solvent Red 49, C.I. I. Solvent Red 52, C.I. I. Solvent Red 100, C.I. I. Solvent Red 109, C.I. I. Solvent Red 111, C.I. I. Solvent Red 121, C.I. I. Solvent Red 135, C.I. I. Solvent Red 168, C.I. I. Solvent Red 179 etc. are illustrated. Examples of the orange color adjusting dye include C.I. I. Solvent Orange 60 etc. are mentioned.

ここで青色系整色用色素と紫色系整色用色素を併用する場合、質量比90:10より青色系整色用色素の質量比が大きい場合は、得られるカチオン可染性ポリエステルのカラーa値が小さくなって緑色を呈し、40:60より青色整色用色素の質量比が小さい場合は、カラーa値が大きくなって赤色を呈してくる為好ましくない。同様に青色系整色用色素と赤色系又は橙色系整色用色素を併用する場合、質量比98:2より青色系整色用色素の質量比が大きい場合は、得られるカチオン可染性ポリエステルのカラーa値が小さくなって緑色を呈し、80:20より青色整色用色素の質量比が小さい場合は、カラーa値が大きくなって赤色を呈してくる為好ましくない。該整色用色素は、青色系整色用色素と紫色系整色用色素を質量比80:20〜50:50の範囲で併用すること、あるいは青色系整色用色素と赤色系又は橙色系整色用色素を質量比95:5〜90:10の範囲で併用することが更に好ましい。 Here, when the blue color adjusting dye and the purple color adjusting dye are used in combination, when the mass ratio of the blue color adjusting dye is larger than 90:10, the color a of the resulting cationic dyeable polyester is a. * If the value is small and green, and the mass ratio of the blue color adjusting dye is smaller than 40:60, the color a * value becomes large and red is not preferable. Similarly, in the case where a blue color adjusting dye and a red or orange color adjusting dye are used in combination, when the mass ratio of the blue color adjusting dye is larger than 98: 2, the resulting cationic dyeable polyester exhibit green colors a * value becomes small, 80: If the mass ratio of the blue integer color dye than 20 is small, undesirably coming exhibiting red color a * value becomes large. The color adjusting dye is a combination of a blue color adjusting dye and a purple color adjusting dye in a mass ratio of 80:20 to 50:50, or a blue color adjusting dye and a red or orange color. It is more preferable to use the color adjusting dye in a mass ratio of 95: 5 to 90:10.

さらに本発明の高強力カチオン可染性ポリエステル繊維を製造する時の製造方法としては特に限定はなく、従来公知の溶融紡糸方法が用いられる。例えば乾燥したカチオン可染性ポリエステルを270℃〜300℃の範囲で溶融紡糸して製造することが好ましく、溶融紡糸の引き取り速度は400〜5000m/分で紡糸することが好ましい。紡糸速度がこの範囲にあると、得られる繊維の強度も十分なものであると共に、安定して巻き取りを行うこともできる。更に本発明の高強力カチオン可染性ポリエステル繊維はその引張強度が3.5cN/dtex以上であることが好ましい。そのためには上述した方法にて巻き取られた未延伸糸を更に延伸工程にて1.2倍〜6.0倍程度の範囲で延伸することが好ましい。この延伸は未延伸ポリエステル繊維を一旦巻き取ってから行ってもよく、一旦巻き取ることなく連続的に行ってもよい。また紡糸時に使用する口金の形状についても特に制限は無く、円形、異形、中実、中空などのいずれも採用することが出来、他のポリエステル成分と組み合わせて芯鞘型、サイドバイサイド型、海島型などの複合繊維の1成分としても使用することができる。   Further, the production method for producing the high-strength cationic dyeable polyester fiber of the present invention is not particularly limited, and a conventionally known melt spinning method is used. For example, the dried cationic dyeable polyester is preferably produced by melt spinning in the range of 270 ° C. to 300 ° C., and the take-up speed of the melt spinning is preferably 400 to 5000 m / min. When the spinning speed is in this range, the strength of the obtained fiber is sufficient, and the winding can be stably performed. Furthermore, the high strength cationic dyeable polyester fiber of the present invention preferably has a tensile strength of 3.5 cN / dtex or more. For that purpose, the undrawn yarn wound by the above-described method is preferably drawn in the range of about 1.2 to 6.0 times in the drawing step. This stretching may be performed after winding the unstretched polyester fiber once, or may be performed continuously without winding. The shape of the die used for spinning is not particularly limited, and any of circular, irregular, solid, hollow, etc. can be adopted, and core-sheath type, side-by-side type, sea-island type, etc. in combination with other polyester components It can also be used as one component of these composite fibers.

本発明をさらに下記実施例により具体的に説明するが、本発明の範囲はこれら実施例により限定されるものではない。尚、固有粘度、色相、チタン含有量及び紡糸口金に発生する付着物の層等については、下記記載の方法により測定した。
(ア)固有粘度:
共重合ポリエステルチップを100℃、60分間でオルトクロロフェノールに溶解した希薄溶液を、35℃でウベローデ粘度計を用いて測定した値から求めた。
(イ)ジエチレングリコール含有量:
ヒドラジンヒドラート(抱水ヒドラジン)を用いて共重合ポリエステルチップを分解し、この分解生成物中のジエチレングリコールの含有量をガスクロマトグラフィ−(ヒューレットパッカード社製(HP6850型))を用いて測定した。
(ウ)色相(L値、a値、b値):
ポリエステルチップを285℃、真空下で10分間溶融し、これをアルミニウム板上で厚さ3.0±1.0mmのプレートに成形後ただちに氷水中で急冷し、該プレートを140℃、2時間乾燥結晶化処理を行った。その後、色差計調整用の白色標準プレート上に置き、プレート表面のハンターL及びbを、ミノルタ株式会社製ハンター型色差計(CR−200型)を用いて測定した。Lは明度を示し、その数値が大きいほど明度が高いことを示し、bはその値が大きいほど黄着色の度合いが大きいことを示す。また他の詳細な操作はJIS Z−8729に準じて行った。
(エ)真比重5.0以上の金属成分定性分析:
ポリエステルチップサンプルを硫酸アンモニウム、硫酸、硝酸、過塩素酸とともに混合して約300℃で9時間湿式分解後、蒸留水で希釈し、理学電機工業株式会社製ICP発光分析装置(JY170 ULTRACE)を用いて定性分析し、真比重5.0以上の金属元素の有無を確認した。1質量ppm以上の存在が確認された金属元素について、その元素含有量を示した。
(オ)チタン、アルミニウム、アンチモン、マンガン、リン、硫黄、カルシウム含有量:
ポリエステルチップ中のアルミニウム元素量、アンチモン元素量、マンガン元素量、リン元素量、硫黄元素量は粒状のポリエステルサンプルをスチール板上で加熱溶融した後、圧縮プレス機で平坦面を有する試験成形体を作成し、蛍光X線装置(理学電機工業株式会社製 ZSX100e型)を用いて求めた。カチオン可染性ポリエステル中のポリエステルに可溶性のチタン元素量については、カチオン可染性ポリエステル中サンプルをオルトクロロフェノールに溶解した後、0.5規定塩酸で抽出操作を行った。この抽出液について日立製作所製Z−8100型原子吸光光度計を用いて定量を行った。ここで0.5規定塩酸抽出後の抽出液中に酸化チタンの分散が確認された場合は遠心分離機で酸化チタン粒子を沈降させた。次に傾斜法により上澄み液のみを回収して、同様の操作を行った。これらの操作によりカチオン可染性ポリエステル中に酸化チタンを含有していてもポリエステルに可溶性のチタン元素の定量が可能となる。また、本発明に使用するカチオン可染性モノマーの共重合量は本分析法における硫黄元素量を定量して共重合量を算出した。
The present invention will be further described in the following examples, but the scope of the present invention is not limited by these examples. The intrinsic viscosity, hue, titanium content, and the layer of deposits generated on the spinneret were measured by the methods described below.
(A) Intrinsic viscosity:
A dilute solution obtained by dissolving a copolymerized polyester chip in orthochlorophenol at 100 ° C. for 60 minutes was determined from a value measured at 35 ° C. using an Ubbelohde viscometer.
(A) Diethylene glycol content:
The copolymer polyester chip was decomposed using hydrazine hydrate (hydrated hydrazine), and the content of diethylene glycol in the decomposition product was measured using gas chromatography (manufactured by Hewlett-Packard (HP 6850)).
(C) Hue (L * value, a * value, b * value):
The polyester chip was melted at 285 ° C. under vacuum for 10 minutes, molded into an aluminum plate with a thickness of 3.0 ± 1.0 mm, immediately quenched in ice water, and the plate was dried at 140 ° C. for 2 hours. Crystallization was performed. Then, it placed on the white standard plate for color difference adjustment, and measured Hunter L * and b * of the plate surface using Minolta Co., Ltd. Hunter type color difference meter (CR-200 type). L * indicates lightness, and the larger the value, the higher the lightness, and b * the greater the value, the greater the degree of yellowing. Other detailed operations were performed according to JIS Z-8729.
(D) Metal component qualitative analysis with true specific gravity of 5.0 or more
A polyester chip sample is mixed with ammonium sulfate, sulfuric acid, nitric acid, and perchloric acid, wet-decomposed at about 300 ° C. for 9 hours, diluted with distilled water, and then used with an ICP emission analyzer (JY170 ULTRACE) manufactured by Rigaku Corporation. Qualitative analysis was performed to confirm the presence or absence of a metal element having a true specific gravity of 5.0 or more. About the metal element by which presence of 1 mass ppm or more was confirmed, the element content was shown.
(E) Titanium, aluminum, antimony, manganese, phosphorus, sulfur, calcium content:
The amount of aluminum element, antimony element, manganese element, phosphorus element, and sulfur element in the polyester chip is obtained by heating and melting a granular polyester sample on a steel plate, and then using a compression press to form a test molded body having a flat surface. It produced and calculated | required using the fluorescent X ray apparatus (Rigaku Denki Kogyo Co., Ltd. ZSX100e type | mold). Regarding the amount of titanium element soluble in the polyester in the cationic dyeable polyester, the sample in the cationic dyeable polyester was dissolved in orthochlorophenol and then extracted with 0.5 N hydrochloric acid. The extract was quantified using a Hitachi Z-8100 atomic absorption spectrophotometer. Here, when dispersion of titanium oxide was confirmed in the extract after extraction with 0.5 N hydrochloric acid, titanium oxide particles were precipitated using a centrifuge. Next, only the supernatant was recovered by the gradient method, and the same operation was performed. By these operations, even if titanium oxide is contained in the cationic dyeable polyester, it is possible to determine the titanium element soluble in the polyester. Further, the copolymerization amount of the cationic dyeable monomer used in the present invention was calculated by quantifying the amount of sulfur element in this analysis method.

(カ)紡糸口金に発生する付着物の層(口金異物堆積高さ):
カチオン可染性ポリエステルをチップとなし、これを290℃で溶融し、孔径0.15mmφ、孔数12個の紡糸口金から吐出し、600m/分で2日間紡糸し、口金の吐出口外縁に発生する付着物の層の高さを測定した。この付着物層の高さが大きいほど吐出されたポリエステルの溶融物のフィラメント状流にベンディングが発生しやすく、このポリエステルの成形性は低くなる。すなわち、紡糸口金に発生する付着物層の高さは、当該ポリエステルの成形性の指標である。
(キ)繊維の引張強度・伸度:
JIS L1070記載の方法に準拠して測定を行った。
(ク)有機系整色剤の質量減少開始温度:
理学電機工業株式会社製TAS−200熱天秤を用いてJIS K7120に従い、窒素雰囲気下中昇温速度10℃/分で測定した。
(ケ)カチオン可染性評価
繊維を布帛に形成した試験片を市販のカチオン染料CATHILON BLUE CD−FRLH0.2g/L、CD−FBLH0.2g/L(それぞれ保土谷化学製)、硫酸ナトリウム3g/L、酢酸0.3g/Lの染色液中にて130℃で1時間、浴比1:50で染色を行い、次式により染着率を求めた。染着率は次式より求めた。
染着率=(OD0−OD1)/OD0
OD0;染色前の染液の576nmの吸光度
OD1;染色後の染液の576nmの吸光度
本発明では、染着率95%以上のものを可染性良好と判断した。
(F) Layer of deposits generated on the spinneret (the height of the foreign matter deposit):
Cationic dyeable polyester is made into chips, melted at 290 ° C, discharged from a spinneret with a hole diameter of 0.15 mmφ and 12 holes, spun at 600 m / min for 2 days, and generated at the outer edge of the discharge outlet of the base The height of the deposit layer was measured. As the height of the adhered layer increases, bending tends to occur in the filament-like flow of the discharged polyester melt, and the moldability of the polyester decreases. That is, the height of the deposit layer generated in the spinneret is an index of the moldability of the polyester.
(G) Tensile strength and elongation of fiber:
Measurement was performed in accordance with the method described in JIS L1070.
(H) Mass reduction start temperature of organic color adjusting agent:
Using a TAS-200 thermobalance manufactured by Rigaku Denki Kogyo Co., Ltd., the temperature was measured in a nitrogen atmosphere at a heating rate of 10 ° C./min according to JIS K7120.
(I) Cation dyeability evaluation A test piece in which a fiber was formed on a fabric was prepared by using commercially available cationic dyes CATHILON BLUE CD-FRLH 0.2 g / L, CD-FBLH 0.2 g / L (each manufactured by Hodogaya Chemical), sodium sulfate 3 g / L was dyed in a dyeing solution of 0.3 g / L of acetic acid at 130 ° C. for 1 hour at a bath ratio of 1:50, and the dyeing rate was determined by the following formula. The dyeing rate was obtained from the following formula.
Dyeing rate = (OD0−OD1) / OD0
OD0: Absorbance at 576 nm of the dye solution before dyeing OD1: Absorbance at 576 nm of the dye solution after dyeing In the present invention, a dye having a dyeing rate of 95% or more was judged to have good dyeability.

[参考例1]チタン触媒Aの合成
無水トリメリット酸のエチレングリコール溶液(0.2質量%)にテトラ−n−ブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応せしめた。その後常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させた。析出物をろ紙によって濾過し、100℃で2時間乾燥せしめ、目的の化合物を得た。これをチタン触媒Aとする。
[Reference Example 1] Synthesis of Titanium Catalyst A Tetra-n-butoxytitanium is added to an ethylene glycol solution (0.2% by mass) of trimellitic anhydride in an amount of ½ mol with respect to trimellitic anhydride, and under normal pressure in air. And kept at 80 ° C. for 60 minutes. Thereafter, it was cooled to room temperature, and the produced catalyst was recrystallized with 10 times the amount of acetone. The precipitate was filtered through filter paper and dried at 100 ° C. for 2 hours to obtain the target compound. This is designated as titanium catalyst A.

[参考例2]有機系整色剤(整色用色素)の可視光吸収スペクトル測定、有機系整色剤調製
表1に示す整色用色素を室温で濃度20mg/Lのクロロホルム溶液とし、光路長1cmの石英セルに充填し、対照セルにはクロロホルムのみを充填して、日立分光光度計U−3010型を用いて、380〜780nmの可視光領域での可視光吸収スペクトルを測定した。整色用色素2種を混合する場合は合計で濃度20mg/Lとなるようにした。最大吸収波長とその波長における吸光度に対する、400、500、600及び700nmの各波長での吸光度の割合を測定した。更に粉末の整色用色素の熱質量減少開始温度を測定した。結果を表1に示す。尚、実施例、比較例でこれら有機系整色剤をポリエステル製造工程で添加する場合は、100℃の温度で、原料として用いるグリコール溶液に対し、濃度0.1質量%となるように溶解又は分散させて調製した。
[Reference Example 2] Visible light absorption spectrum measurement of organic color adjusting agent (color adjusting dye), organic color adjusting agent preparation The color adjusting dye shown in Table 1 was made into a chloroform solution with a concentration of 20 mg / L at room temperature, and the optical path A quartz cell having a length of 1 cm was filled, and the control cell was filled only with chloroform, and a visible light absorption spectrum in a visible light region of 380 to 780 nm was measured using a Hitachi spectrophotometer U-3010 type. In the case of mixing the two color adjusting dyes, the total concentration was 20 mg / L. The ratio of the absorbance at each wavelength of 400, 500, 600, and 700 nm to the maximum absorption wavelength and the absorbance at that wavelength was measured. Further, the thermal mass decrease start temperature of the powder color adjusting dye was measured. The results are shown in Table 1. In addition, when adding these organic color adjusting agents in the polyester production process in Examples and Comparative Examples, the solution is dissolved or dissolved at a temperature of 100 ° C. with respect to a glycol solution used as a raw material at a concentration of 0.1% by mass. Prepared by dispersing.

Figure 2006176628
Figure 2006176628

[実施例1]
・ポリエステルチップの製造
テレフタル酸ジメチル100質量部とエチレングリコール70質量部の混合物に、参考例1で調製したチタン触媒A 0.016部を加圧反応が可能なSUS製容器に仕込んだ。0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.023質量部を添加し、エステル交換反応を終了させた。
その後反応生成物に表1に示す有機系整色剤Aの0.1質量%エチレングリコール溶液0.5部と5−スルホイソフタル酸テトラブトキシホスホネート3.97質量部と水酸化テトラエチルアンモニウム0.036質量部とトリエチルアミン0.001質量部を添加して重合容器に移し、285℃まで昇温し、30Pa以下の高真空にて重縮合反応を行って、固有粘度0.65、ジエチレングリコール含有量が1.4質量%であるポリエステルを得た。さらに常法に従いチップ化した。結果を表2、3に示す。
・ポリエステル繊維の製造
チップを140℃、5時間乾燥後、紡糸温度285℃、巻き取り速度400m/分で333dtex/36filの原糸を作り、4.0倍に延伸して83.25dtex/36filの延伸糸を得た。結果を表4に示す。
[Example 1]
-Manufacture of polyester chip In a mixture of 100 parts by mass of dimethyl terephthalate and 70 parts by mass of ethylene glycol, 0.016 part of titanium catalyst A prepared in Reference Example 1 was charged into a SUS container capable of pressure reaction. The ester exchange reaction was performed while increasing the pressure from 140 ° C. to 240 ° C. under a pressure of 0.07 MPa, and then 0.023 parts by mass of triethylphosphonoacetate was added to complete the ester exchange reaction.
Thereafter, 0.5 parts of a 0.1% by weight ethylene glycol solution of organic colorant A shown in Table 1 in the reaction product, 3.97 parts by weight of tetrabutoxyphosphonate of 5-sulfoisophthalic acid, and 0.036 of tetraethylammonium hydroxide. Part by mass and 0.001 part by mass of triethylamine were added, transferred to a polymerization vessel, heated to 285 ° C., and subjected to a polycondensation reaction at a high vacuum of 30 Pa or less, an intrinsic viscosity of 0.65, and a diethylene glycol content of 1 A polyester of 4% by weight was obtained. Furthermore, it was made into a chip according to a conventional method. The results are shown in Tables 2 and 3.
・ Production of polyester fiber After the chip was dried at 140 ° C. for 5 hours, a raw yarn of 333 dtex / 36 fil was produced at a spinning temperature of 285 ° C. and a winding speed of 400 m / min, and was stretched 4.0 times to obtain 83.25 dtex / 36 fil. A drawn yarn was obtained. The results are shown in Table 4.

[実施例2、比較例1]
実施例1において、有機系整色剤を表2に示す種類、量に変更したこと以外は実施例1と同様に実施した。結果を表2〜4に示す。
[Example 2, Comparative Example 1]
In Example 1, it implemented similarly to Example 1 except having changed the organic type color adjusting agent into the kind and quantity which are shown in Table 2. The results are shown in Tables 2-4.

[実施例3]
テレフタル酸ジメチル100質量部とエチレングリコール70質量部との混合物に、酢酸カルシウム一水和物0.063質量部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、エステル交換反応を行った。その後、56質量%のリン酸水溶液0.045質量部を添加し、エステル交換反応を終了させた。その後反応生成物に表2に示す整色剤Aの0.1質量%エチレングリコール溶液0.5質量部、アルミニウムアセチルアセトナート0.033質量部、5−スルホイソフタル酸テトラブトキシホスホネート3.97質量部と水酸化テトラエチルアンモニウム0.036質量部とトリエチルアミン0.001質量部を添加して、撹拌装置、窒素導入口、減圧口及び蒸留装置を備えた反応容器に移し、285℃まで昇温し、30Pa以下の高真空で重縮合反応を行って、共重合ポリエステルを得た。得られたチップは実施例1と同様にして繊維を製造した。結果を表2〜4に示す。
[Example 3]
A mixture of 100 parts by mass of dimethyl terephthalate and 70 parts by mass of ethylene glycol was charged with 0.063 parts by mass of calcium acetate monohydrate in a reactor equipped with a stirrer, a rectifying column and a methanol distillation condenser, and 140 ° C. The ester exchange reaction was carried out while distilling out the methanol produced as a result of the reaction while gradually raising the temperature to 240 ° C. Then, 0.045 mass part of 56 mass% phosphoric acid aqueous solution was added, and the transesterification reaction was terminated. Thereafter, 0.5 parts by mass of 0.1% by weight ethylene glycol solution of color adjusting agent A shown in Table 2 in the reaction product, 0.033 parts by mass of aluminum acetylacetonate, 3.97 parts by mass of 5-butysophthalic acid tetrabutoxyphosphonate. Part, 0.036 parts by mass of tetraethylammonium hydroxide and 0.001 part by mass of triethylamine, transferred to a reaction vessel equipped with a stirrer, a nitrogen inlet, a vacuum port and a distillation apparatus, and heated up to 285 ° C. A polycondensation reaction was performed at a high vacuum of 30 Pa or less to obtain a copolyester. The obtained chip produced fibers in the same manner as in Example 1. The results are shown in Tables 2-4.

[比較例2]
テレフタル酸ジメチル100質量部と5−スルホナトリウムイソフタル酸ジメチル2.3質量部エチレングリコール70質量部の混合物に、参考例1で調製したチタン触媒A0.016部と酢酸ナトリウム三水和物0.07質量部を加圧反応が可能なSUS製容器に仕込んだ。0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.023質量部を添加し、エステル交換反応を終了させた。
その後反応生成物に表1に示す整色剤Aの0.1質量%エチレングリコール溶液0.3部を添加して重合容器に移し、285℃まで昇温し、30Pa以下の高真空にて重縮合反応を行って実施例1と同じ攪拌電力に到達した時点で反応を終了して、固有粘度0.52、ジエチレングリコール含有量が1.4質量%であるポリエステルを得た。さらに常法に従いチップ化した。結果を表2、3に示す。
[Comparative Example 2]
To a mixture of 100 parts by mass of dimethyl terephthalate and 2.3 parts by mass of dimethyl 5-sulfosodium isophthalate, 70 parts by mass of ethylene glycol, 0.016 parts of titanium catalyst A prepared in Reference Example 1 and 0.07 of sodium acetate trihydrate were added. The mass part was charged into a SUS container capable of pressure reaction. The ester exchange reaction was performed while increasing the pressure from 140 ° C. to 240 ° C. under a pressure of 0.07 MPa, and then 0.023 parts by mass of triethylphosphonoacetate was added to complete the ester exchange reaction.
Thereafter, 0.3 part of a 0.1% by weight ethylene glycol solution of the color adjusting agent A shown in Table 1 was added to the reaction product, transferred to a polymerization vessel, heated to 285 ° C., and heated under a high vacuum of 30 Pa or less. When the same stirring power as in Example 1 was reached after the condensation reaction, the reaction was terminated to obtain a polyester having an intrinsic viscosity of 0.52 and a diethylene glycol content of 1.4% by mass. Furthermore, it was made into a chip according to a conventional method. The results are shown in Tables 2 and 3.

[比較例3]
テレフタル酸ジメチル100質量部とエチレングリコール70質量部との混合物に、酢酸マンガン四水和物0.025質量部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、140℃から240℃まで徐々に昇温しつつ、反応の結果生成するメタノールを系外に留出させながら、エステル交換反応を行った。その後、56質量%のリン酸水溶液0.032質量部を添加し、エステル交換反応を終了させた。次いで、得られた反応生成物を撹拌装置、窒素導入口、減圧口、蒸留装置を備えた反応容器に移し、三酸化二アンチモン0.045質量部、5−スルホイソフタル酸テトラブトキシホスホネート3.97質量部と水酸化テトラエチルアンモニウム0.036質量部とトリエチルアミン0.001質量部を添加して285℃まで昇温し、30Pa以下の高真空で重縮合反応を行って、共重合ポリエステルを得た。得られたチップは実施例1と同様にして繊維を製造した。結果を表2〜4に示す。
[Comparative Example 3]
To a mixture of 100 parts by mass of dimethyl terephthalate and 70 parts by mass of ethylene glycol, 0.025 parts by mass of manganese acetate tetrahydrate was charged into a reactor equipped with a stirrer, a rectifying column and a methanol distillation condenser, and 140 ° C. The ester exchange reaction was carried out while distilling out the methanol produced as a result of the reaction while gradually raising the temperature to 240 ° C. Thereafter, 0.032 parts by mass of a 56% by mass phosphoric acid aqueous solution was added to complete the transesterification reaction. Subsequently, the obtained reaction product was transferred to a reaction vessel equipped with a stirrer, a nitrogen inlet, a vacuum port, and a distillation device, 0.045 parts by mass of antimony trioxide, 3.97-sulfoisophthalic acid tetrabutoxyphosphonate. Mass parts, 0.036 parts by mass of tetraethylammonium hydroxide and 0.001 parts by mass of triethylamine were added, the temperature was raised to 285 ° C., and a polycondensation reaction was performed at a high vacuum of 30 Pa or less to obtain a copolyester. The obtained chip produced fibers in the same manner as in Example 1. The results are shown in Tables 2-4.

Figure 2006176628
Figure 2006176628

Figure 2006176628
Figure 2006176628

Figure 2006176628
Figure 2006176628

本発明によればカチオン可染性ポリエステルの優れた特性を保持しながら、SbやGe触媒を使用しないポリエステルの欠点であった色相の悪化を解消することができる。また、口金への付着物の発生量が非常に少なく、優れた成形性を有するカチオン可染性ポリエステルを提供することが出来る。   According to the present invention, while maintaining the excellent properties of the cationic dyeable polyester, it is possible to eliminate the deterioration of the hue, which was a defect of the polyester not using Sb or Ge catalyst. In addition, it is possible to provide a cationic dyeable polyester having a very small amount of deposits on the die and having excellent moldability.

Claims (8)

真比重5.0以上の金属元素の含有量が0〜10質量ppm以下であり、エチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、エチレンナフタレート、トリメチレンナフタレート及びテトラメチレンナフタレートよりなる群から選ばれる少なくとも1種類の繰り返し単位が全繰返し単位中80モル%以上99.7モル%未満の共重合ポリエステルであって、共重合成分として下記一般式(I)で表される化合物を0.3モル%以上20モル%未満共重合されているカチオン可染性ポリエステル。
Figure 2006176628
[上記式中、Rは水素又は炭素数1〜10のアルキル基を表し、Xは4級ホスホニウム塩、又は4級アンモニウム塩を表す。]
The content of the metal element having a true specific gravity of 5.0 or more is 0 to 10 ppm by mass or less, and includes a group consisting of ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, ethylene naphthalate, trimethylene naphthalate and tetramethylene naphthalate. At least one type of repeating unit selected is a copolyester having 80 mol% or more and less than 99.7 mol% in all repeating units, and 0.3% of the compound represented by the following general formula (I) is used as a copolymerization component. A cationic dyeable polyester copolymerized in an amount of not less than mol% and less than 20 mol%.
Figure 2006176628
[In the above formula, R represents hydrogen or an alkyl group having 1 to 10 carbon atoms, and X represents a quaternary phosphonium salt or a quaternary ammonium salt. ]
共重合ポリエステルの固有粘度が0.55以上1.0以下の範囲である請求項1記載のカチオン可染性ポリエステル。   The cationic dyeable polyester according to claim 1, wherein the intrinsic viscosity of the copolyester is in the range of 0.55 to 1.0. 共重合ポリエステルが有機系整色剤を0.1〜10質量ppm含有し、その有機系整色剤が、濃度20mg/L、光路長1cmでのクロロホルム溶液において測定された380〜780nm領域の可視光吸収スペクトルでの最大吸収波長が540〜600nmの範囲にあり、且つ最大吸収波長での吸光度に対する下記各波長での吸光度の割合が下記式(1)〜(4)のすべてを満たす 請求項1〜2いずれか1項記載のカチオン可染性ポリエステル。
0.00≦A400/Amax≦0.20 (1)
0.10≦A500/Amax≦0.70 (2)
0.55≦A600/Amax≦1.00 (3)
0.00≦A700/Amax≦0.05 (4)
[上記数式中、A400、A500、A600及びA700はそれぞれ波長400nm、500nm、600nm及び700nmでの可視光吸収スペクトルにおける吸光度を、Amaxは最大吸収波長での可視光吸収スペクトルにおける吸光度を表す。]
The copolyester contains 0.1 to 10 ppm by mass of an organic color adjuster, and the organic color adjuster is visible in a 380 to 780 nm region measured in a chloroform solution at a concentration of 20 mg / L and an optical path length of 1 cm. The maximum absorption wavelength in the light absorption spectrum is in the range of 540 to 600 nm, and the ratio of the absorbance at each wavelength below to the absorbance at the maximum absorption wavelength satisfies all of the following formulas (1) to (4). The cationic dyeable polyester according to any one of -2.
0.00 ≦ A 400 / A max ≦ 0.20 (1)
0.10 ≦ A 500 / A max ≦ 0.70 (2)
0.55 ≦ A 600 / A max ≦ 1.00 (3)
0.00 ≦ A 700 / A max ≦ 0.05 (4)
[In the above formula, A 400 , A 500 , A 600 and A 700 are the absorbance in the visible light absorption spectrum at wavelengths of 400 nm, 500 nm, 600 nm and 700 nm, respectively, and A max is the absorbance in the visible light absorption spectrum at the maximum absorption wavelength. Represents. ]
有機系整色剤が、窒素雰囲気下中、昇温速度10℃/分の条件で熱天秤にて測定したときの質量減少開始温度が250℃以上である整色用色素から選ばれる請求項3記載のカチオン可染性ポリエステル。   The organic color adjusting agent is selected from color adjusting dyes having a mass decrease starting temperature of 250 ° C or higher when measured with a thermobalance in a nitrogen atmosphere under a temperature rising rate of 10 ° C / min. The cationic dyeable polyester described. ポリエステルを製造する工程が重縮合触媒を用いる工程であって、その重縮合触媒がチタン化合物及び/又はアルミニウム化合物を含む重縮合触媒である請求項1〜4いずれか1項記載のカチオン可染性ポリエステル。   The cationic dyeing property according to any one of claims 1 to 4, wherein the step of producing the polyester is a step of using a polycondensation catalyst, and the polycondensation catalyst is a polycondensation catalyst containing a titanium compound and / or an aluminum compound. polyester. チタン化合物が、下記一般式(II)で表わされる化合物、又は下記一般式(II)で表わされる化合物と下記一般式(III)で表わされる芳香族多価カルボン酸若しくは無水物とを反応させた生成物である請求項5記載のカチオン可染性ポリエステル。
Figure 2006176628
[上記式中、R、R、R及びRはそれぞれ互いに独立に、炭素数1〜10のアルキル基又はフェニル基を示し、pは1〜4の整数を示し、かつpが2、3又は4の場合、2個、3個又は4個のR及びRは、互いに異なっていてもよい。]
Figure 2006176628
[上記式中、qは2〜4の整数を表わす。]
The titanium compound is a compound represented by the following general formula (II), or a compound represented by the following general formula (II) and an aromatic polycarboxylic acid or anhydride represented by the following general formula (III). The cationic dyeable polyester according to claim 5, which is a product.
Figure 2006176628
[In the above formula, R 1 , R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 10 carbon atoms or a phenyl group, p represents an integer of 1 to 4, and p is 2 In the case of 3 or 4, 2, 3 or 4 R 2 and R 3 may be different from each other. ]
Figure 2006176628
[In the above formula, q represents an integer of 2 to 4. ]
アルミニウム化合物が、有機アルミニウム化合物である請求項5記載のカチオン可染性ポリエステル。   The cationic dyeable polyester according to claim 5, wherein the aluminum compound is an organoaluminum compound. 請求項1〜7のいずれか1項記載のカチオン可染性ポリエステル組成物を溶融紡糸することによって得られる引張強度が3.5cN/dtex以上である高強力カチオン可染ポリエステル繊維。   A high-strength cationic dyeable polyester fiber having a tensile strength of 3.5 cN / dtex or more obtained by melt spinning the cationic dyeable polyester composition according to any one of claims 1 to 7.
JP2004370883A 2004-12-22 2004-12-22 Cationic dyeable polyester and high strength cationic dyeable polyester fiber Expired - Fee Related JP4817654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370883A JP4817654B2 (en) 2004-12-22 2004-12-22 Cationic dyeable polyester and high strength cationic dyeable polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370883A JP4817654B2 (en) 2004-12-22 2004-12-22 Cationic dyeable polyester and high strength cationic dyeable polyester fiber

Publications (2)

Publication Number Publication Date
JP2006176628A true JP2006176628A (en) 2006-07-06
JP4817654B2 JP4817654B2 (en) 2011-11-16

Family

ID=36731028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370883A Expired - Fee Related JP4817654B2 (en) 2004-12-22 2004-12-22 Cationic dyeable polyester and high strength cationic dyeable polyester fiber

Country Status (1)

Country Link
JP (1) JP4817654B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144293A (en) * 2007-12-17 2009-07-02 Teijin Fibers Ltd Method for producing cation-dyeable polyester fiber
WO2009088008A1 (en) 2008-01-08 2009-07-16 Teijin Fibers Limited Normal pressure cation dyeable polyester and fiber
JP2010070739A (en) * 2008-08-21 2010-04-02 Toray Ind Inc Method for producing easily alkali-soluble copolymer polyester, the polyester obtained by the method, and conjugate fiber
JP2010070866A (en) * 2008-09-16 2010-04-02 Teijin Fibers Ltd Normal pressure cation dyeable polyester fiber
JP2010095621A (en) * 2008-10-16 2010-04-30 Teijin Fibers Ltd Copolymerized polyester and fiber cationically dyable at ordinary pressure
JP2010180504A (en) * 2009-02-05 2010-08-19 Teijin Fibers Ltd Method for producing copolymerized polyester fiber textile, copolymerized polyester fiber textile and textile product
JP2010208273A (en) * 2009-03-12 2010-09-24 Teijin Fibers Ltd Method of manufacturing waterproof moisture-permeable copolymer polyester fiber cloth, waterproof moisture-permeable copolymer polyester fiber cloth and fiber product
JP2010280861A (en) * 2009-06-08 2010-12-16 Teijin Fibers Ltd Cation dyeable copolymerized polybutylene terephthalate
JP2011012200A (en) * 2009-07-03 2011-01-20 Toray Ind Inc Copolyester and method for producing the same
CN102558527A (en) * 2011-12-19 2012-07-11 东华大学 Method for preparing water-soluble polyester based on aluminum compound as catalyst
KR20210055380A (en) * 2019-11-07 2021-05-17 주식회사 휴비스 Cationic-dyeable polyester-based elastic resin and cationic-dyeable polyester-based elastic fiber with improved dyeing property using the same
CN115785421A (en) * 2023-02-09 2023-03-14 江苏恒力化纤股份有限公司 Method for preparing high-molecular-weight acid-dyeable polyester by solid-phase polycondensation
CN115785422A (en) * 2023-02-09 2023-03-14 江苏恒力化纤股份有限公司 Method for preparing high molecular weight acid-dyeable copolyester by liquid phase polycondensation
CN115806661A (en) * 2023-02-09 2023-03-17 江苏恒力化纤股份有限公司 Method for preparing high-molecular-weight acid-dyeable block copolyester by liquid-phase polycondensation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048970A (en) * 1999-06-04 2001-02-20 Teijin Ltd Polyalkyl naphthalate for film, the production thereof and film therefrom
WO2001044345A1 (en) * 1999-12-15 2001-06-21 Asahi Kasei Kabushiki Kaisha Modified polytrimethylene terephthalate
JP2001354759A (en) * 2000-04-12 2001-12-25 Toyobo Co Ltd Catalyst for polymerization of polyester, polyester produced by using it and process for producing polyester
JP2004204138A (en) * 2002-12-26 2004-07-22 Mitsubishi Chemicals Corp Polyethylene terephthalate resin, its manufacturing method, and bottle using the same
JP2004218161A (en) * 2003-01-16 2004-08-05 Teijin Ltd Polyester fiber for sewing thread and sewing thread made from polyester fiber
JP2004217783A (en) * 2003-01-15 2004-08-05 Teijin Ltd Polyethylene naphthalate, manufacturing process, and its molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048970A (en) * 1999-06-04 2001-02-20 Teijin Ltd Polyalkyl naphthalate for film, the production thereof and film therefrom
WO2001044345A1 (en) * 1999-12-15 2001-06-21 Asahi Kasei Kabushiki Kaisha Modified polytrimethylene terephthalate
JP2001354759A (en) * 2000-04-12 2001-12-25 Toyobo Co Ltd Catalyst for polymerization of polyester, polyester produced by using it and process for producing polyester
JP2004204138A (en) * 2002-12-26 2004-07-22 Mitsubishi Chemicals Corp Polyethylene terephthalate resin, its manufacturing method, and bottle using the same
JP2004217783A (en) * 2003-01-15 2004-08-05 Teijin Ltd Polyethylene naphthalate, manufacturing process, and its molding
JP2004218161A (en) * 2003-01-16 2004-08-05 Teijin Ltd Polyester fiber for sewing thread and sewing thread made from polyester fiber

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144293A (en) * 2007-12-17 2009-07-02 Teijin Fibers Ltd Method for producing cation-dyeable polyester fiber
JPWO2009088008A1 (en) * 2008-01-08 2011-05-26 帝人ファイバー株式会社 Normal pressure cationic dyeable polyester and fiber
WO2009088008A1 (en) 2008-01-08 2009-07-16 Teijin Fibers Limited Normal pressure cation dyeable polyester and fiber
CN102418165B (en) * 2008-01-08 2014-04-09 帝人纤维株式会社 Normal pressure cation dyeable polyester and fiber
CN101910244A (en) * 2008-01-08 2010-12-08 帝人纤维株式会社 Normal pressure cation dyeable polyester and fiber
CN101910244B (en) * 2008-01-08 2013-04-24 帝人纤维株式会社 Normal pressure cation dyeable polyester and fiber
US8297035B2 (en) 2008-01-08 2012-10-30 Teijin Fibers Limited Normal pressure cationic dyeable polyester and fiber
JP2010070739A (en) * 2008-08-21 2010-04-02 Toray Ind Inc Method for producing easily alkali-soluble copolymer polyester, the polyester obtained by the method, and conjugate fiber
JP2010070866A (en) * 2008-09-16 2010-04-02 Teijin Fibers Ltd Normal pressure cation dyeable polyester fiber
JP2010095621A (en) * 2008-10-16 2010-04-30 Teijin Fibers Ltd Copolymerized polyester and fiber cationically dyable at ordinary pressure
JP2010180504A (en) * 2009-02-05 2010-08-19 Teijin Fibers Ltd Method for producing copolymerized polyester fiber textile, copolymerized polyester fiber textile and textile product
JP2010208273A (en) * 2009-03-12 2010-09-24 Teijin Fibers Ltd Method of manufacturing waterproof moisture-permeable copolymer polyester fiber cloth, waterproof moisture-permeable copolymer polyester fiber cloth and fiber product
JP2010280861A (en) * 2009-06-08 2010-12-16 Teijin Fibers Ltd Cation dyeable copolymerized polybutylene terephthalate
JP2011012200A (en) * 2009-07-03 2011-01-20 Toray Ind Inc Copolyester and method for producing the same
CN102558527A (en) * 2011-12-19 2012-07-11 东华大学 Method for preparing water-soluble polyester based on aluminum compound as catalyst
KR20210055380A (en) * 2019-11-07 2021-05-17 주식회사 휴비스 Cationic-dyeable polyester-based elastic resin and cationic-dyeable polyester-based elastic fiber with improved dyeing property using the same
KR102410767B1 (en) 2019-11-07 2022-06-21 주식회사 휴비스 Cationic-dyeable polyester-based elastic resin and cationic-dyeable polyester-based elastic fiber with improved dyeing property using the same
CN115785421A (en) * 2023-02-09 2023-03-14 江苏恒力化纤股份有限公司 Method for preparing high-molecular-weight acid-dyeable polyester by solid-phase polycondensation
CN115785422A (en) * 2023-02-09 2023-03-14 江苏恒力化纤股份有限公司 Method for preparing high molecular weight acid-dyeable copolyester by liquid phase polycondensation
CN115806661A (en) * 2023-02-09 2023-03-17 江苏恒力化纤股份有限公司 Method for preparing high-molecular-weight acid-dyeable block copolyester by liquid-phase polycondensation method
CN115785422B (en) * 2023-02-09 2023-06-02 江苏恒力化纤股份有限公司 Method for preparing high molecular weight acidic dyeable copolyester by liquid phase polycondensation method
CN115785421B (en) * 2023-02-09 2023-06-02 江苏恒力化纤股份有限公司 Method for preparing high molecular weight acidic dyeable polyester by solid phase polycondensation method

Also Published As

Publication number Publication date
JP4817654B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP3461175B2 (en) Polyester polymerization catalyst, polyester produced using the same, and method for producing polyester
US7199212B2 (en) Polymerization catalyst for polyesters, polyesters produced with the same and process for producing polyesters
JP4817654B2 (en) Cationic dyeable polyester and high strength cationic dyeable polyester fiber
JP2003238673A (en) Method for producing polyester
JP7251260B2 (en) Cationic dyeable polyester and method for producing the same
JP4233568B2 (en) Colored polyester resin composition and molded product thereof
JP4342211B2 (en) Polyester and method for producing the same
JP4634082B2 (en) Polyester composition, production method thereof and fiber
JP2007284599A (en) Copolymer polyester composition and fiber
JP4700336B2 (en) Copolyester composition, method for producing the same, and fiber
JP4229863B2 (en) Method for producing polyester composition, polyester composition and polyester fiber
US20040116573A1 (en) Polyestrimethylene terephthalate polyester
JP2006104379A (en) Polyester composition, its preparation method and polyester molded product and hygroscopic polyester fiber made of the same
JP4673054B2 (en) Polyester composition and method for producing the same
JP2013170251A (en) Copolyester and polyester fiber
JP2013170250A (en) Copolyester composition and polyester fiber
JP5400264B2 (en) Method for producing polyester composition
JP2006176917A (en) Polyester monofilament
JP2007284598A (en) Copolymer polyester composition and fiber
JP4216508B2 (en) Polytrimethylene terephthalate polyester having improved light resistance, method for producing the same, and fiber comprising the same
JP4216493B2 (en) Polytrimethylene terephthalate polyester having improved light resistance, method for producing the same, and fiber comprising the same
JP2023001047A (en) Method for producing polyester composition
JP4649199B2 (en) Polyester composition and polyester fiber comprising the same
JP2002179893A (en) Modified polyester resin
JP2006176627A (en) Catalyst for polyester polymerization, polyester obtained using the same and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees