JP2006176608A - Method for producing fatty acids - Google Patents

Method for producing fatty acids Download PDF

Info

Publication number
JP2006176608A
JP2006176608A JP2004370317A JP2004370317A JP2006176608A JP 2006176608 A JP2006176608 A JP 2006176608A JP 2004370317 A JP2004370317 A JP 2004370317A JP 2004370317 A JP2004370317 A JP 2004370317A JP 2006176608 A JP2006176608 A JP 2006176608A
Authority
JP
Japan
Prior art keywords
fatty acids
fatty acid
filtration
filter medium
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370317A
Other languages
Japanese (ja)
Inventor
Minoru Kase
実 加瀬
Toshiteru Komatsu
利照 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004370317A priority Critical patent/JP2006176608A/en
Publication of JP2006176608A publication Critical patent/JP2006176608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a rapid filtration rate while maintaining separation efficiency in a method for producing target fatty acids by naturally fractionating the fatty acids, and filtering the product. <P>SOLUTION: The method for producing the saturated fatty acids and the unsaturated fatty acids by melting raw material fatty acids, cooling the melted fatty acids to precipitate crystals, and filtering the precipitates uses a surface filtration filter medium having an aperture corresponding to the particle diameters of accumulated 5-60 mass% from the small size side based on a volume particle size distribution of the precipitated crystals as the filter medium at the filtration operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、脂肪酸類の混合物から飽和脂肪酸と不飽和脂肪酸とを自然分別法により効率良く分離する方法に関する。   The present invention relates to a method for efficiently separating saturated fatty acids and unsaturated fatty acids from a mixture of fatty acids by natural fractionation.

脂肪酸類は、モノグリセリド、ジグリセリド等の食品の中間原料や、その他各種の工業製品の添加剤、中間原料として広く利用されている。かかる脂肪酸類は、一般に、菜種油、大豆油等の植物油や牛脂等の動物油を高圧法や酵素分解法により加水分解することにより製造されている。ところが、上記のように動植物油を単に加水分解して製造された脂肪酸類は、そのままの脂肪酸組成では産業上の素原料として必ずしも好適なものではない。すなわち、利用の目的によって、不飽和脂肪酸と飽和脂肪酸に分別することが必要となる。   Fatty acids are widely used as intermediate raw materials for foods such as monoglycerides and diglycerides, additives for various other industrial products, and intermediate raw materials. Such fatty acids are generally produced by hydrolyzing vegetable oils such as rapeseed oil and soybean oil and animal oils such as beef tallow by a high pressure method or an enzymatic decomposition method. However, the fatty acids produced by simply hydrolyzing animal and vegetable oils as described above are not necessarily suitable as industrial raw materials with the same fatty acid composition. That is, it is necessary to separate into unsaturated fatty acids and saturated fatty acids depending on the purpose of use.

そこで、所望の脂肪酸を得るために、脂肪酸組成の調整が必要となる。一般に、脂肪酸類の分別には、溶剤分別法、湿潤剤分別法が採用されているが、これらの方法は分離効率(収率)は高いものの、設備投資、溶剤や湿潤剤水溶液の回収等のランニングコストがかかるという問題を有している。これに対し、溶剤を使用しない自然分別法(無溶剤法)は、安価な分別法であり、問題点とされていた濾過速度の低下等についても、ポリグリセリン脂肪酸エステル等の乳化剤(結晶調整剤)を使用することにより改善が図られている(特許文献1参照)。   Therefore, adjustment of the fatty acid composition is necessary to obtain the desired fatty acid. In general, solvent fractionation and wetting agent fractionation methods are used for the separation of fatty acids, but these methods have high separation efficiency (yield), but are not limited to equipment investment, recovery of solvent and wetting agent aqueous solution, etc. It has the problem of running costs. On the other hand, the natural fractionation method (solvent-free method) without using a solvent is an inexpensive fractionation method, and an emulsifier (crystal adjuster) such as polyglycerin fatty acid ester is also used to reduce the filtration rate, which has been regarded as a problem. ) Is used (see Patent Document 1).

濾過工程における濾材は、濾過対象粒子を効率良く分離するために、濾過対象粒子の粒径を見極めてその孔径を決定するのが一般的である。一般に濾材を用いて固体を捕捉するという目的を達するには、濾材のもつ細孔の孔径が分離すべき固体の粒子径より小さいか、又は粒子が細孔の上に架橋して孔の大きさを狭めることが必要とされている(非特許文献1参照)。また、濾材は表面濾過濾材と内部濾過濾材に大別され、一般に表面濾過においては、分離粒子径は必然的に細孔径にほぼ等しく(非特許文献2参照)、表面濾過素材の孔径は濾過対象粒子の最低粒径よりも小さくすることが必要となるが、孔径が小さ過ぎると濾過抵抗が大きくなり濾過効率が低下する。また、内部濾過(深層濾過)においては、その孔径を濾過対象粒子の粒径よりも大きくすることが可能であるが(非特許文献2参照)、濾材内部に濾過対象粒子が蓄積することにより、濾過が進むに従い濾過効率が低下する、濾材内部に蓄積した部分が無駄になる等の問題点がある。   In order to efficiently separate the particles to be filtered, the filter medium in the filtration step generally determines the pore size by determining the particle size of the particles to be filtered. In general, in order to achieve the purpose of trapping solids using a filter medium, the pore diameter of the pores of the filter medium is smaller than the particle diameter of the solid to be separated, or the particles are cross-linked onto the pores and the size of the pores. Is required to be narrowed (see Non-Patent Document 1). Further, the filter medium is roughly classified into a surface filter medium and an internal filter medium. In general, in the surface filtration, the separated particle diameter is inevitably substantially equal to the pore diameter (see Non-Patent Document 2), and the pore diameter of the surface filter material is the object to be filtered. Although it is necessary to make it smaller than the minimum particle diameter of particle | grains, when a hole diameter is too small, filtration resistance will become large and filtration efficiency will fall. Moreover, in internal filtration (depth filtration), although it is possible to make the pore diameter larger than the particle diameter of the filtration target particles (see Non-Patent Document 2), by accumulating the filtration target particles inside the filter medium, There is a problem that the filtration efficiency decreases as the filtration proceeds, and the portion accumulated in the filter medium is wasted.

特開平11-106782号公報Japanese Patent Laid-Open No. 11-106782 化学装置の理論と計算(第2版)産業図書(株)Theory and Calculation of Chemical Equipment (2nd edition) Sangyo Tosho Co., Ltd. 石川敏ら,「確率モデルにもとづく金属不織布濾材の粒子分離機構の解析」,化学工学論文集,2004年,第30巻,第5号,p.604-Satoshi Ishikawa et al., “Analysis of Particle Separation Mechanism of Metal Nonwoven Filter Media Based on Stochastic Model”, Chemical Engineering, 2004, Vol. 30, No. 5, p.604-

このように、濾過工程は、理論上の限界点が存在するために、効率化という点においてはある程度の妥協点で行っていた。また、脂肪酸類の混合物から飽和脂肪酸と不飽和脂肪酸とを自然分別する工程で結晶調整剤を使用した技術においても、上記妥協点で低効率の条件に設定せざるを得なかった。そこで、こういった場合に、更なる濾過の効率化が達成できれば、安定生産、コスト面等でのメリットが大きい。   As described above, the filtering step has a theoretical limit, and thus has been performed with a certain degree of compromise in terms of efficiency. Moreover, even in the technique using a crystal modifier in the process of naturally separating saturated fatty acid and unsaturated fatty acid from a mixture of fatty acids, the above-mentioned compromise has to be set to low efficiency conditions. Therefore, in such a case, if further efficiency of filtration can be achieved, there are great advantages in terms of stable production and cost.

従って本発明の目的は、脂肪酸類を自然分別し、濾過することにより目的とする脂肪酸類を製造する方法において、分離効率を維持しつつ更に速い濾過速度を達成することにある。   Accordingly, an object of the present invention is to achieve a faster filtration rate while maintaining the separation efficiency in a method for producing a desired fatty acid by naturally separating and filtering the fatty acid.

本発明者は、上記課題について検討したところ、脂肪酸類の結晶を表面濾過する場合において、濾材の孔径を、濾過対象の粒径に比べて従来では採用できないレベルまで大きくした場合でも、ある特定の範囲に限っては濾過漏れを生ずることがなく、これにより、濾過効率を維持しながら濾過速度を向上させることができることを見出した。   As a result of examining the above problems, the present inventor has found that when filtering the surface of fatty acid crystals, the pore size of the filter medium is increased to a level that cannot be conventionally adopted compared to the particle size of the filtration target. It has been found that there is no filtration leakage within the range, whereby the filtration rate can be improved while maintaining the filtration efficiency.

すなわち、本発明は、原料脂肪酸類を溶融後、冷却することにより結晶を析出させ、濾過することにより飽和脂肪酸類と不飽和脂肪酸類を製造する方法であって、濾過操作における濾材として、析出する結晶の体積粒度分布に対して小さい側から累積5〜60質量%の粒径に相当する孔径を有する表面濾過濾材を使用する飽和脂肪酸類と不飽和脂肪酸類の製造方法を提供するものである。   That is, the present invention is a method for producing saturated fatty acids and unsaturated fatty acids by melting raw material fatty acids and then cooling them to cool and filtering them, and depositing them as filter media in the filtration operation The present invention provides a method for producing saturated fatty acids and unsaturated fatty acids using a surface filtration medium having a pore size corresponding to a cumulative particle size of 5 to 60% by mass with respect to the volume particle size distribution of crystals.

本発明によれば、脂肪酸類の自然分別法による飽和脂肪酸類と不飽和脂肪酸類の分別において、結晶析出後の分離効率を高く、かつ濾過速度を速くすることができ、製造工程の効率化、短縮化を図ることができる。   According to the present invention, in the separation of saturated fatty acids and unsaturated fatty acids by the natural separation method of fatty acids, the separation efficiency after crystal precipitation can be increased and the filtration rate can be increased. Shortening can be achieved.

〔定義〕
本発明において、「自然分別法」とは、処理対象の原料脂肪酸類を、分相する量の水を含まず、かつ溶剤を使用せず、必要に応じ撹拌しながら冷却し、固体成分が析出した後、固−液分離を行う方法をいう。「表面濾過」とは、濾材表面で固体粒子を補足する濾過をいう。「飽和脂肪酸比率」とは、ガスクロマトグラフィーにより測定した値をいい、「透明融点」とは、基準油脂分析試験法(2.2.4.1-1996)により測定した値をいう。
[Definition]
In the present invention, the “natural fractionation method” means that the raw fatty acids to be treated do not contain the amount of water to be phase-separated and do not use a solvent, and are cooled with stirring as necessary to precipitate solid components. After that, the solid-liquid separation is performed. “Surface filtration” refers to filtration that captures solid particles on the surface of the filter medium. “Saturated fatty acid ratio” refers to a value measured by gas chromatography, and “transparent melting point” refers to a value measured by a standard oil analysis test method (2.2.4.1-1996).

〔原料脂肪酸類〕
本発明において、飽和脂肪酸と不飽和脂肪酸の分別の対象となる原料脂肪酸類は、菜種油、大豆油等の植物油や牛脂等の動物油を、高圧法や酵素分解法により加水分解することにより製造される。本発明の方法は、原料脂肪酸類中の脂肪酸の量が50質量%以上、特に85質量%以上であるような場合により有効であり、部分グリセリドが存在していてもよい。また、この原料脂肪酸類としては、脂肪酸組成中のパルミチン酸、ステアリン酸等の飽和脂肪酸(C12〜C22)の比率が、5〜60質量%、特に8〜50質量%のものが好ましい。例えば大豆油、パーム油等の植物油由来の脂肪酸を用いることができる。
[Raw fatty acids]
In the present invention, the raw fatty acids subject to separation of saturated fatty acids and unsaturated fatty acids are produced by hydrolyzing vegetable oils such as rapeseed oil and soybean oil and animal oils such as beef tallow by a high pressure method or an enzymatic decomposition method. . The method of the present invention is more effective when the amount of fatty acid in the raw fatty acids is 50% by mass or more, particularly 85% by mass or more, and partial glycerides may be present. Further, as the raw material fatty acids, palmitic acid in fatty acid composition, the ratio of saturated fatty acids such as stearic acid (C 12 ~C 22) is 5 to 60 wt%, in particular those of the 8-50 wt% preferred. For example, fatty acids derived from vegetable oils such as soybean oil and palm oil can be used.

〔結晶調整剤〕
本発明における自然分別法は、原料脂肪酸類に対し、結晶の析出前に結晶調整剤を添加して行うことが好ましい。結晶調整剤としては、特に限定されないが、多価アルコール脂肪酸エステルが好ましく、食品添加物であるショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、有機酸モノグリセリド、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル等が挙げられ、なかでもポリグリセリン脂肪酸エステルが好ましい。本発明において特に好ましいポリグリセリン脂肪酸エステルとして、透明融点が次式(1)で示される範囲にあるものが挙げられる。
(Crystal modifier)
The natural fractionation method in the present invention is preferably performed by adding a crystal modifier to the raw fatty acids before the precipitation of crystals. The crystal modifier is not particularly limited, but is preferably a polyhydric alcohol fatty acid ester, which is a food additive, sucrose fatty acid ester, sorbitan fatty acid ester, propylene glycol fatty acid ester, organic acid monoglyceride, glycerin fatty acid ester, polyglycerin fatty acid ester Among them, polyglycerol fatty acid ester is preferable. Particularly preferred polyglycerin fatty acid esters in the present invention include those having a transparent melting point in the range represented by the following formula (1).

0.38x+13≦y≦0.54x+44 (1)                   0.38x + 13≤y≤0.54x + 44 (1)

〔x:原料脂肪酸類の脂肪酸組成中の飽和脂肪酸(C12〜C22)比率(重量%)
y:ポリグリセリン脂肪酸エステルの透明融点(℃)〕
[X: raw fatty acids fatty saturated fatty acids in the composition (C 12 -C 22) Ratio (wt%)
y: transparent melting point of polyglycerol fatty acid ester (° C.)]

より好ましい透明融点(y)の範囲は、0.38x+19≦y≦0.54x+40であり、特に好ましい範囲は、0.38x+28≦y≦0.54x+36である。また、ポリグリセリン脂肪酸エステルの透明融点(y)は、原料脂肪酸類の透明融点より高いことが好ましい。   A more preferable range of the transparent melting point (y) is 0.38x + 19 ≦ y ≦ 0.54x + 40, and a particularly preferable range is 0.38x + 28 ≦ y ≦ 0.54x + 36. The transparent melting point (y) of the polyglycerol fatty acid ester is preferably higher than the transparent melting point of the raw fatty acids.

また、ポリグリセリン脂肪酸エステルにおけるグリセリンの平均重合度は、濾過容易な結晶状態を得る点から5以上、特に8〜30が好ましい。また、ポリグリセリン脂肪酸エステルにおける脂肪酸は、ポリグリセリン脂肪酸エステルの透明融点調整の点から、炭素数10〜22、特に炭素数12〜18の飽和又は不飽和の脂肪酸から構成されることが好ましい。当該脂肪酸は、単一脂肪酸で構成されてもよいが、混合脂肪酸で構成されているものが、特に濾過容易な結晶状態を得る点から好ましい。ポリグリセリン脂肪酸エステルは市販品を用いることができ、また、ポリグリセリンと脂肪酸とのエステル化反応で合成してもよい。ポリグリセリンと脂肪酸とのエステル化反応は、これらの混合物に水酸化ナトリウム等のアルカリ触媒を添加し、窒素等の不活性ガス気流下、200〜260℃で直接エステル化させる方法、酵素を使用する方法等のいずれの方法によってもよい。   In addition, the average degree of polymerization of glycerin in the polyglycerin fatty acid ester is preferably 5 or more, particularly 8 to 30 in terms of obtaining a crystallized state that is easy to filter. The fatty acid in the polyglycerol fatty acid ester is preferably composed of a saturated or unsaturated fatty acid having 10 to 22 carbon atoms, particularly 12 to 18 carbon atoms, from the viewpoint of adjusting the transparent melting point of the polyglycerol fatty acid ester. Although the said fatty acid may be comprised with a single fatty acid, what is comprised with the mixed fatty acid is preferable from the point of obtaining the crystalline state especially easy to filter. As the polyglycerol fatty acid ester, a commercially available product can be used, or it may be synthesized by an esterification reaction between polyglycerol and a fatty acid. In the esterification reaction of polyglycerin and fatty acid, an alkali catalyst such as sodium hydroxide is added to these mixtures, and esterification is performed directly at 200 to 260 ° C. under an inert gas stream such as nitrogen, using an enzyme. Any method such as a method may be used.

結晶調整剤は2種以上を併用してもよく、またその添加量は、原料脂肪酸類に対して0.001〜5重量%、特に0.05〜1重量%程度が好ましい。   Two or more kinds of crystal modifiers may be used in combination, and the addition amount is preferably 0.001 to 5% by weight, particularly about 0.05 to 1% by weight, based on the raw fatty acids.

〔温度調整〕
結晶調整剤は、原料脂肪酸類に完全に溶解できるように、ポリグリセリン脂肪酸エステルの透明融点より高い温度で混合溶解することが好ましい。この混合溶解の後における冷却時間及び冷却温度は、原料の量、冷却能力などによって異なり、原料脂肪酸類の組成により適宜選択すればよい。例えば、大豆脂肪酸の場合、−3℃まで1〜30時間、好ましくは3〜20時間程度必要である。また菜種脂肪酸の場合、2℃まで1〜30時間、好ましくは3〜20時間である。冷却は、回分式処理でも連続式でもよい。これにより、固体部として飽和脂肪酸が、液体部として不飽和脂肪酸が、それぞれ得られる。冷却操作は、析出する結晶の平均粒径が100μm以上、特に150μm以上となるような条件で行うことが好ましい。
(Temperature adjustment)
The crystal modifier is preferably mixed and dissolved at a temperature higher than the transparent melting point of the polyglycerol fatty acid ester so that it can be completely dissolved in the raw fatty acids. The cooling time and cooling temperature after this mixing and dissolution vary depending on the amount of raw material, cooling capacity, etc., and may be appropriately selected depending on the composition of raw fatty acids. For example, in the case of soybean fatty acid, it takes 1 to 30 hours, preferably about 3 to 20 hours up to -3 ° C. In the case of rapeseed fatty acid, it is 1 to 30 hours, preferably 3 to 20 hours up to 2 ° C. The cooling may be a batch process or a continuous process. Thereby, a saturated fatty acid is obtained as a solid part, and an unsaturated fatty acid is obtained as a liquid part, respectively. The cooling operation is preferably performed under conditions such that the average grain size of the precipitated crystals is 100 μm or more, particularly 150 μm or more.

〔結晶粒径測定〕
固体部の結晶の粒径測定方法は、特に限定されるものではないが、例えば顕微鏡法が挙げられる。顕微鏡法は、粒子の大きさと個数を測定する方法であるが、大きさは、定方向径(任意の一定方向の二平行線を各粒子に外接させたときの間隔)で測定することができる(化学機械の理論と計算,第2版,亀井三郎著,p.464)。また、体積基準の粒度分布は、定方向径を代表長さとする球径粒子とみなすことで容易に計算することができ、更に粒子の比重を一定とみなすことにより質量基準の粒度分布に実質等しいものとなる。
(Crystal grain size measurement)
The method for measuring the particle size of crystals in the solid part is not particularly limited, and examples thereof include microscopy. Microscopy is a method of measuring the size and number of particles, but the size can be measured by a constant direction diameter (interval when two parallel lines in an arbitrary constant direction are circumscribed on each particle). (Theory and calculation of chemical machinery, 2nd edition, by Saburo Kamei, p.464). In addition, the volume-based particle size distribution can be easily calculated by considering it as a spherical particle having a constant direction diameter as a representative length, and is further substantially equal to the mass-based particle size distribution by regarding the specific gravity of the particle as constant. It will be a thing.

〔表面濾過濾材〕
本発明では、固-液分離の方式として、表面濾過方式を採用する。表面濾過方式の濾材としては特に限定されないが、濾布、織金網、ノッチワイヤー、パンチングメタル等が挙げられる。表面濾過濾材としては、分離効率と濾過速度の両立の点から、析出する結晶の体積粒度分布に対して小さい側から累積5〜60質量%の粒径に相当する孔径を有するものが使用され、好ましくは累積10〜50質量%、より好ましくは累積10〜40質量%の粒径に相当する孔径を有するものが使用される。また、濾材の厚さは、内部濾過抵抗を低減する点から、1.5mm以下、特に1mm以下が好ましく、また、強度の点から、0.1mm以上が好ましい。
[Surface filtration media]
In the present invention, a surface filtration method is employed as a solid-liquid separation method. Although it does not specifically limit as a filter material of a surface filtration system, A filter cloth, a woven wire mesh, a notch wire, a punching metal, etc. are mentioned. As the surface filtration media, those having a pore size corresponding to a particle size of 5 to 60% by mass cumulatively from the small side with respect to the volume particle size distribution of the precipitated crystals are used from the viewpoint of compatibility between separation efficiency and filtration rate. Preferably, those having a pore size corresponding to a particle size of 10 to 50% by mass, more preferably 10 to 40% by mass are used. The thickness of the filter medium is preferably 1.5 mm or less, particularly 1 mm or less from the viewpoint of reducing internal filtration resistance, and preferably 0.1 mm or more from the viewpoint of strength.

ここで、濾材の孔径はバブルポイント法(JIS K 3832)により求めることができる。バブルポイント法は、濾材の最大孔径を測定するのに広く使用される方法である。すなわち、密度、表面張力が既知で濾材をよく濡らす液体(水又はアルコール)をあらかじめ濾材の細孔内に吸収させておき、膜の裏側から空気圧をかけて、膜表面に気泡の発生が観察できる最小圧力(バブルポイント)を測定する。下に示す液体の表面張力(γ)とバブルポイントとの関係式から、孔径(d)を推算することができる。   Here, the pore diameter of the filter medium can be determined by the bubble point method (JIS K 3832). The bubble point method is a widely used method for measuring the maximum pore size of filter media. That is, a liquid (water or alcohol) that has a known density and surface tension and that wets the filter medium well is absorbed in the pores of the filter medium in advance, and air pressure is applied from the back side of the film to observe the generation of bubbles on the film surface. Measure the minimum pressure (bubble point). The pore diameter (d) can be estimated from the relational expression between the surface tension (γ) of the liquid and the bubble point shown below.

d=(4γcosθ)/ΔP
〔d[m]:孔径,θ:膜素材と溶媒の接触角(完全に濡れる溶媒(イソプロピルアルコール)の場合は0°),γ[N/m]:溶媒の表面張力,ΔP[Pa]:バブルポイント圧力〕
d = (4γcosθ) / ΔP
[D [m]: pore diameter, θ: contact angle between membrane material and solvent (0 ° in the case of completely wetted solvent (isopropyl alcohol)), γ [N / m]: surface tension of solvent, ΔP [Pa]: (Bubble point pressure)

一般に表面濾過方式では、分離粒子径は必然的に濾材孔径とほぼ等しく、従って、濾過時の漏れを回避するため、通常は、析出粒子の粒度分布最小径より小さな孔径が採用される。これに対し本発明では、析出粒子の体積粒度分布に対し小さい側から累積5〜60質量%相当という大きな孔径を有する濾材を使用するにもかかわらず、濾過時の漏れはなく、従って、濾過効率を維持しながら濾過速度を向上させることができる。   In general, in the surface filtration method, the separated particle size is inevitably substantially equal to the pore size of the filter medium. Therefore, in order to avoid leakage during filtration, a pore size smaller than the minimum particle size distribution size of the precipitated particles is usually employed. On the other hand, in the present invention, there is no leakage during filtration despite the use of a filter medium having a large pore size corresponding to a cumulative 5 to 60% by mass from the small side with respect to the volume particle size distribution of the precipitated particles. The filtration rate can be improved while maintaining the above.

以下の実施例において、脂肪酸組成、飽和脂肪酸比率は、ガスクロマトグラフィーにより測定し、脂肪酸の透明融点は、基準油脂分析試験法(2.2.4.1-1996)により測定し、濾材の孔径は、バブルポイント法により測定した。   In the following examples, the fatty acid composition and the saturated fatty acid ratio are measured by gas chromatography, the transparent melting point of the fatty acid is measured by the standard oil analysis test method (2.2.4.1-1996), and the pore size of the filter medium is the bubble point. Measured by the method.

〔原料脂肪酸の調製〕
表1に示す油脂を常法により加水分解し、原料脂肪酸を調製した。使用した脂肪酸の脂肪酸組成、飽和脂肪酸比率(質量%)、脂肪酸濃度を表1に示す。
[Preparation of raw fatty acids]
The fats and oils shown in Table 1 were hydrolyzed by a conventional method to prepare raw fatty acids. Table 1 shows the fatty acid composition, saturated fatty acid ratio (% by mass), and fatty acid concentration of the fatty acid used.

〔脂肪酸の分別〕
晶析槽に、表1に示す原料脂肪酸30kg及び表2に示すポリグリセリン脂肪酸エステル(デカグリセリンエステル)45gを加え、80℃で均一に溶解する。次いで、30rpmで撹拌しつつ、30℃まで1時間で冷却後、3℃/hの冷却速度で−3℃まで冷却し3時間熟成した。次いで、濾過前槽にポンプで移送した。結晶粒径分布は濾過前槽からスラリーを採取し、顕微鏡法により測定した。その結果を表3に示す。濾過前槽からスラリーを抜出し、表4に示す各種の濾布を用いて0.03MPaで加圧濾過(濾過面積39cm2)して液体部(不飽和脂肪酸)と固体部(結晶部;飽和脂肪酸)に分別した。500mLの濾液を得るために必要な濾過時間、液体部収率及び液体部と固体部の脂肪酸組成(C12〜C22飽和脂肪酸の比率)を測定した結果、及び濾液の状態を観察した結果を表4に示す。
[Fatty acid fractionation]
To the crystallization tank, 30 kg of raw fatty acid shown in Table 1 and 45 g of polyglycerin fatty acid ester (decaglycerin ester) shown in Table 2 are added and dissolved uniformly at 80 ° C. Next, the mixture was cooled to 30 ° C. for 1 hour while being stirred at 30 rpm, then cooled to −3 ° C. at a cooling rate of 3 ° C./h, and aged for 3 hours. Then, it was pumped to the tank before filtration. The crystal grain size distribution was measured by taking a slurry from a pre-filtration tank and microscopically. The results are shown in Table 3. The slurry is extracted from the pre-filtration tank, and filtered with 0.03 MPa using various filter cloths shown in Table 4 (filtration area 39 cm 2 ) to obtain a liquid part (unsaturated fatty acid) and a solid part (crystal part; saturated fatty acid). Sorted into Results of measuring filtration time, liquid part yield and fatty acid composition of liquid part and solid part (ratio of C 12 to C 22 saturated fatty acid) necessary to obtain 500 mL of filtrate, and observing the state of the filtrate Table 4 shows.

表4から明らかなように、濾別操作を、結晶の体積粒度分布に対して小さい側から累積5〜60質量%の粒径に相当する孔径の濾材を用いた場合は、濾過時間が早く、液体部品質が変わらないため短時間にかつ高収率で飽和脂肪酸と不飽和脂肪酸が自然分別できることがわかる。これに対し、結晶の体積粒度分布に対して小さい側から累積5質量%未満の粒径に相当する細孔径の濾材を用いた場合は、濾過速度が遅いため好ましくなく、累積60重量%を超える場合には、結晶の濾過漏れにより液体部の品質が低下するため好ましくない。   As is clear from Table 4, when the filtering operation was performed using a filter medium having a pore size corresponding to a particle size of 5 to 60% by mass from the small side with respect to the volume particle size distribution of the crystals, the filtration time was fast, Since the liquid part quality does not change, it can be seen that saturated fatty acids and unsaturated fatty acids can be naturally separated in a short time and in high yield. On the other hand, when a filter medium having a pore diameter corresponding to a particle size of less than 5% by mass is used from the small side with respect to the volume particle size distribution of the crystal, the filtration rate is slow, which is not preferable, and the accumulation exceeds 60% by weight. In this case, the quality of the liquid part is deteriorated due to crystal filtration leakage, which is not preferable.

Claims (3)

原料脂肪酸類を溶融後、冷却することにより結晶を析出させ、濾過することにより飽和脂肪酸類と不飽和脂肪酸類を製造する方法であって、濾過操作における濾材として、析出する結晶の体積粒度分布に対して小さい側から累積5〜60質量%の粒径に相当する孔径を有する表面濾過濾材を使用する飽和脂肪酸類と不飽和脂肪酸類の製造方法。   This is a method for producing saturated fatty acids and unsaturated fatty acids by precipitating crystals by melting the raw fatty acids and then cooling them, and filtering them to obtain a volume particle size distribution of the crystals to be precipitated as filter media in the filtration operation. On the other hand, a method for producing saturated fatty acids and unsaturated fatty acids using a surface filter medium having a pore size corresponding to a particle size of 5 to 60% by mass from the small side. 結晶の析出前に、ポリグリセリン脂肪酸エステルを添加混合するものである請求項1記載の製造方法。   2. The production method according to claim 1, wherein a polyglycerin fatty acid ester is added and mixed before the crystals are precipitated. 結晶の平均粒径が100μm以上である請求項1又は2記載の製造方法。   The method according to claim 1 or 2, wherein the average particle size of the crystals is 100 µm or more.
JP2004370317A 2004-12-22 2004-12-22 Method for producing fatty acids Pending JP2006176608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370317A JP2006176608A (en) 2004-12-22 2004-12-22 Method for producing fatty acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370317A JP2006176608A (en) 2004-12-22 2004-12-22 Method for producing fatty acids

Publications (1)

Publication Number Publication Date
JP2006176608A true JP2006176608A (en) 2006-07-06

Family

ID=36731010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370317A Pending JP2006176608A (en) 2004-12-22 2004-12-22 Method for producing fatty acids

Country Status (1)

Country Link
JP (1) JP2006176608A (en)

Similar Documents

Publication Publication Date Title
JP5929763B2 (en) Oil and fat dry separation method
AU2006244899A1 (en) Intermolecular compound of fatty acid triglyceride
CN106350217A (en) Preparation method of low-cloud-point fatty acid type diesel antiwear additive
CA2299261C (en) Method for reducing saturated fatty acids from fatty acid compositions
CN104629906B (en) A kind of crystallization in motion agent and point method for mentioning grease
JP5201858B2 (en) Method for producing fats and oils with reduced free fatty acids
JP2006176608A (en) Method for producing fatty acids
JPH11106782A (en) Method for decreasing saturated fatty acid contained in fatty acids
JP4091099B1 (en) Dry fractionation method, highly liquid palm oil and oil composition using the same
JP3839791B2 (en) Fatty acid production method
JP4157734B2 (en) Production method of fatty acids
JP4157733B2 (en) Production method of fats and oils
KR101099201B1 (en) Process
JP4242462B2 (en) Oil crystal growth inhibitor
JP3927104B2 (en) Fatty acid production method
JP2010059125A (en) Method for crystallizing citrulline
JP4654588B2 (en) Separation method of fats and oils, seed and fats and oils used therefor
JP4261978B2 (en) Production method of fatty acids
WO2018097118A1 (en) Dry-mode oil/fat separation method
JP4091351B2 (en) Method for producing fatty acid
CN113943605B (en) Winterization and fractionation method for microbial oil
JP2004018646A (en) Method for producing fatty acid
JP2019065194A (en) Manufacturing method of aliphatic acids
JP2000204389A (en) Fractionation of lard
JP2013017908A (en) Defoaming agent composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A601 Written request for extension of time

Effective date: 20090123

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090128

A521 Written amendment

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623