JP4157733B2 - Production method of fats and oils - Google Patents

Production method of fats and oils Download PDF

Info

Publication number
JP4157733B2
JP4157733B2 JP2002205199A JP2002205199A JP4157733B2 JP 4157733 B2 JP4157733 B2 JP 4157733B2 JP 2002205199 A JP2002205199 A JP 2002205199A JP 2002205199 A JP2002205199 A JP 2002205199A JP 4157733 B2 JP4157733 B2 JP 4157733B2
Authority
JP
Japan
Prior art keywords
fatty acid
oils
melting point
fats
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002205199A
Other languages
Japanese (ja)
Other versions
JP2004043702A (en
Inventor
実 加瀬
栄造 丸山
稔 石橋
啓二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002205199A priority Critical patent/JP4157733B2/en
Publication of JP2004043702A publication Critical patent/JP2004043702A/en
Application granted granted Critical
Publication of JP4157733B2 publication Critical patent/JP4157733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Edible Oils And Fats (AREA)
  • Fats And Perfumes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脂肪酸、部分グリセリド及びこれらの混合物から選ばれる油脂類混合物から高融点油脂類と低融点油脂類とを自然分別法により効率良く分離する方法に関する。
【0002】
【従来の技術】
脂肪酸、モノグリセリド及びジグリセリドは、通常、動植物由来の天然の油脂から製造され、食品の中間原料や、その他各種の工業製品の添加剤、中間原料として広く利用されている。かかる脂肪酸類は、一般に、菜種油、大豆油、ヒマワリ油、パーム油等の植物油や牛脂等の動物油を高圧法や酵素分解法により加水分解することにより製造されている。また、かかるモノグリセリド及びジグリセリドは、大豆油、菜種油等の油脂とグリセリンとのエステル交換反応、又は、加水分解して得られた、かかる油脂由来の脂肪酸とグリセリンとのエステル化反応等の方法、及び分子蒸留や脱臭等の精製処理により製造されている。
【0003】
ところが、上記のように製造された脂肪酸、モノグリセリド及びジグリセリドは、そのままの脂肪酸組成では産業上の素原料として必ずしも好適なものではない。すなわち、利用の目的によって、不飽和脂肪酸を主とする低融点部と飽和脂肪酸を主とする高融点部に分別することが必要となる。
【0004】
そこで、所望の脂肪酸組成の脂肪酸や部分グリセリド類を得るために、融点の調整が必要となる。一般に、これらの油脂類の分別には、溶剤分別法、湿潤剤分別法が採用されているが、これらの方法は分離効率(収率)は高いものの、設備投資、溶剤や湿潤剤水溶液の回収等のランニングコストがかかるという問題を有している。これに対し、溶剤を使用しない自然分別法(無溶剤法)は、安価な分別法であり、問題点とされていた濾過速度の低下等についても、ポリグリセリン脂肪酸エステル等の乳化剤を使用することにより解決が図られている(特開平11−106782号)。
【0005】
【発明が解決しようとする課題】
しかしながら、ポリグリセリン脂肪酸エステルを用いる自然分別法によっても、撹拌所要動力の強弱によっては十分に大きな結晶が析出せず濾過効率が低くなることが明らかとなった。
従って、本発明の目的は、撹拌所要動力をコントロールすることにより濾過効率、品質、収率の向上した、ポリグリセリン脂肪酸エステルを用いた脂肪酸や部分グリセリド類の自然分別法を提供することにある。
【0006】
【課題を解決するための手段】
そこで、本発明者は、ポリグリセリン脂肪酸エステル添加後の冷却時の撹拌条件について種々検討したところ、撹拌速度が速すぎても遅すぎても濾過効率の良好な結晶は生成せず、ある一定の動力範囲で撹拌し、かつ当該動力を冷却の途中から低下させた場合に、原料脂肪酸や部分グリセリド類中の高融点部の結晶が大きく成長し、微細結晶の生成を抑制し、濾過効率が顕著に向上することから、高融点部と低融点部が効率良く分別できることを見出した。
【0007】
すなわち、本発明は、脂肪酸、部分グリセリド及びこれらの混合物から選ばれる油脂類にポリグリセリン脂肪酸エステルを添加混合し、冷却することにより結晶を析出させ、低融点油脂類と高融点油脂類を分別する方法であって、冷却時の撹拌を、撹拌所要動力0.005〜4kW/m3の範囲内で、当該動力を冷却の途中から低下させて行う低融点油脂類と高融点油脂類の製造法を提供するものである。
【0008】
【発明の実施の形態】
本発明に用いられる原料油脂類としては、脂肪酸、モノグリセリド、ジグリセリド及びそれらの混合物が挙げられる。脂肪酸としては、菜種油、大豆油、ヒマワリ油、パーム油等の植物油や牛脂等の動物油を、水蒸気分解法により加水分解すること、又はリパーゼを触媒とする加水分解等することにより製造されるものが挙げられる。また、脂肪酸としては、脂肪酸の量が50質量%以上、特に85質量%以上であるような部分グリセリド混合物も用いられる。モノグリセリドやジグリセリドとしては、菜種油、大豆油、ヒマワリ油、パーム油等の植物油、魚油、動物油等の飽和脂肪酸及び不飽和脂肪酸を構成脂肪酸とする油脂の加水分解又は脂肪酸とグリセリンのエステル化によって得られるものが挙げられる。また、これらの油脂類としては、脂肪酸組成中のパルミチン酸、ステアリン酸等の飽和脂肪酸(C12〜C22)の比率が、5〜60質量%、特に8〜50質量%のものが好ましい。例えば大豆油、ヒマワリ油、パーム油等の植物油由来、牛脂等の動物油由来の脂肪酸、部分グリセリドを用いることができる。ここにいう分別対象としての部分グリセリドは、ジグリセリドを50質量%以上、又はモノグリセリドを50質量%以上含有するもの、若しくは両者の合計を50質量%含有するものを言う。
【0009】
本発明で用いられるポリグリセリン脂肪酸エステルの由来は限定されず、天然物由来のポリグリセリンと脂肪酸とのエステル化反応により得られたもの、及びグリシドール、エピクロルヒドリン等を重合して得られる合成系ポリグリセリンと脂肪酸とのエステル化反応により得られたもののいずれでもよい。ポリグリセリン脂肪酸エステルにおけるポリグリセリンの平均重合度は、濾過容易な結晶状態を得る点から5以上、特に8〜30が好ましい。また、ポリグリセリンと反応させる脂肪酸は、濾過容易な結晶状態を得る点から、炭素数10〜22、特に炭素数12〜18の飽和又は不飽和の脂肪酸から構成されることが好ましい。当該脂肪酸は、単一脂肪酸で構成されてもよいが、混合脂肪酸で構成されている場合が特に濾過容易な結晶状態が得られる点から好ましい。ポリグリセリンと脂肪酸とのエステル化反応は、これらの混合物に水酸化ナトリウム等のアルカリ触媒を添加し、窒素等の不活性ガス気流下、200〜260℃で直接エステル化させる方法、酵素を使用する方法等のいずれの方法によってもよい。
【0010】
上記ポリグリセリン脂肪酸エステルは、2種以上を併用してもよく、またその添加量は、原料油脂類に対して0.001〜5質量%、特に0.05〜1質量%程度が好ましい。
【0011】
本発明では、上記の如く、原料油脂類に添加剤としてポリグリセリン脂肪酸エステルを添加混合して、冷却して結晶を析出させ、液体部と結晶部とを分別することにより、効率よく高融点油脂類と低融点油脂類を分別する。なお、ここで液体部が低融点油脂類であり、結晶部が高融点油脂類である。当該ポリグリセリン脂肪酸エステルは、原料油脂類に完全に溶解できるように、ポリグリセリン脂肪酸エステルの透明融点より10℃以上高い温度で混合溶解することが好ましい。冷却は経済性と濾過条件を有利にする1〜30時間、好ましくは3〜20時間かけて行うのが好ましい。
【0012】
本発明者の知見によれば、脂肪酸、部分グリセリド又はこれらの混合物を処理する場合、冷却時の撹拌条件が析出する結晶の濾過性に極めて重要であり、撹拌所要動力0.005〜4kW/m3の範囲であって、当該動力を冷却途中から低下させると濾過性の良好な結晶が効率良く成長し、微細結晶の生成を抑制する。当該動力が0.005kW/m3未満では撹拌が不十分であるため効率的でない。また、当該動力が4kW/m3を超えると、撹拌翼や結晶どうしの衝突による二次核化がおこり、結晶は微細化し、濾過性は低下する。なお、好ましい当該動力は0.007〜4kW/m3である。
ここで撹拌所要動力とは、攪拌の強さを表す指標であり、改訂五版 化学工学便覧(丸善株式会社 発刊)P.888、896に示す永田らの計算式を用いて計算した値をいう。
【0013】
また、本発明では当該動力を冷却途中から低下させる必要がある。かくすることにより、析出した結晶が撹拌翼や結晶どうしの衝突による二次核化が防止でき、微細結晶の生成を抑制し濾過性の良好な大きな結晶が得られる。
平均結晶粒径は、100μm以上、特に200μm以上とすることが好ましい。ここで冷却途中は、結晶の析出開始時期及び/又は析出した結晶が成長する時期とするのが好ましい。より具体的には、結晶析出の直前、又は直後に、一定温度で保持しているとき等に当該動力を低下させるのが好ましい。また、間欠的に攪拌を行う場合は攪拌所要動力としては時間平均の値を用いる。なお、好ましくは分別原料の脂肪酸濃度が85質量%以上の場合、撹拌所要動力は0.5〜4kW/m3から0.04〜1kW/m3に低下させる。また、脂肪酸濃度が85質量%未満の場合、撹拌所要動力は0.5〜1.5kW/m3から0.007〜0.3kW/m3に低下させる。
【0014】
生成した結晶の分離法としては、濾過方式、遠心分離方式、沈降分離方式等が適用でき、回分式処理でも連続式処理でもよい。
【0015】
【実施例】
以下の実施例において、グリセリド組成、脂肪酸組成、飽和脂肪酸比率は、ガスクロマトグラフィーにより測定した。また、部分グリセリド分別油の飽和脂肪酸は加水分解後の値である。脂肪酸の透明融点は、基準油脂分析法(2.2.4.1-1996)により測定した。
【0016】
〔原料脂肪酸の調製〕
表1に示す油脂を常法により加水分解し、原料脂肪酸を調製した。使用した脂肪酸の脂肪酸組成、飽和脂肪酸比率(質量%)、脂肪酸濃度を表1に示す。
【0017】
【表1】

Figure 0004157733
【0018】
〔脂肪酸の分別〕
得られた脂肪酸に表2に示すポリグリセリン脂肪酸エステル(デカグリセリンエステル)0.2質量%対原料脂肪酸を加え、80℃で均一に溶解する。次いで、3℃/hで冷却しつつ、表3に示す条件で攪拌した。次いで、ナイロン製濾布NY1260NLK(三菱化工機(株))(濾過面積39cm2)を用い0.03MPaで加圧濾過して液体部(不飽和脂肪酸)と固体部(結晶部;飽和脂肪酸)に分別した。500mLの濾液を得るために必要な濾過時間、液体部の融点、液体部収率及び液体部と固体部の脂肪酸組成(C12〜C22飽和脂肪酸の比率)を測定した結果を表4に示す。
【0019】
【表2】
Figure 0004157733
【0020】
【表3】
Figure 0004157733
【0021】
【表4】
Figure 0004157733
【0022】
〔原料部分グリセリドの調製〕
表5に示す油脂を常法により加水分解し、1,3位選択性固定化リパーゼ(「Lipozyme RM IM」ノボエンザイム社製)を用いて50℃、400Paの条件下でエステル化反応を行った。得られた反応生成物を、分子蒸留処理、精製処理を行い原料部分グリセリドを得た。原料部分グリセリドのグリセリド組成、脂肪酸組成、飽和脂肪酸比率(質量%)を表5に示す。
【0023】
【表5】
Figure 0004157733
【0024】
〔部分グリセリドの分別〕
得られた部分グリセリドに表2に示すポリグリセリン脂肪酸エステル(デカグリセリンエステル)0.2質量%対原料部分グリセリドを加え、40℃で均一に溶解する。次いで、2℃/hで冷却しつつ、表6に示す条件で攪拌した。次いで、ナイロン製濾布NY1260NLK(三菱化工機(株))(濾過面積39cm2)を用い0.03MPaで加圧濾過して液体部(低融点部分グリセリド)と固体部(結晶部;高融点部分グリセリド)に分別した。濾液収率、500mLの濾液を得るために必要な濾過時間、液体部の融点、収率及び液体部と固体部の脂肪酸組成(C12〜C22飽和脂肪酸の比率)を測定した結果を表7に示す。
【0025】
【表6】
Figure 0004157733
【0026】
【表7】
Figure 0004157733
【0027】
表3及び4と表6及び7から明らかなように、冷却時の撹拌所要動力を0.005〜4kW/m3の範囲内とし、かつ冷却途中で当該動力を低下させた場合は、飽和脂肪酸又は飽和脂肪酸含有部分グリセリドの結晶が大きく成長し微細結晶の生成を抑制するため短時間にかつ高収率で低融点油脂類と高融点油脂類が自然分別できることがわかる。これに対し、前記動力が0.005kW/m3未満の場合、4kW/m3を超える場合、及び動力を変化させなかった場合には、濾過効率が低下する。
【0028】
【発明の効果】
本発明によれば、脂肪酸又は部分グリセリド中の高融点部と低融点部とを、容易にかつ効率良く自然分別することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently separating high melting point fats and low melting point fats and oils from a fatty oil mixture selected from fatty acids, partial glycerides and mixtures thereof by a natural fractionation method.
[0002]
[Prior art]
Fatty acids, monoglycerides and diglycerides are usually produced from natural fats and oils derived from animals and plants, and are widely used as intermediate materials for foods, additives for various industrial products, and intermediate materials. Such fatty acids are generally produced by hydrolyzing vegetable oils such as rapeseed oil, soybean oil, sunflower oil and palm oil, and animal oils such as beef tallow by a high pressure method or an enzymatic decomposition method. In addition, such monoglyceride and diglyceride are a method such as ester exchange reaction between fats and oils such as soybean oil and rapeseed oil and glycerin, or esterification reaction between fatty acids derived from fats and oils and glycerin obtained by hydrolysis, and Manufactured by purification processes such as molecular distillation and deodorization.
[0003]
However, the fatty acids, monoglycerides and diglycerides produced as described above are not necessarily suitable as industrial raw materials with the same fatty acid composition. That is, depending on the purpose of use, it is necessary to separate into a low melting point portion mainly composed of unsaturated fatty acids and a high melting point portion mainly composed of saturated fatty acids.
[0004]
Therefore, in order to obtain fatty acids and partial glycerides having a desired fatty acid composition, it is necessary to adjust the melting point. Generally, solvent fractionation and wetting agent fractionation methods are used for the separation of these oils and fats, but these methods have high separation efficiency (yield), but capital investment, recovery of solvent and wetting agent aqueous solutions. There is a problem that the running cost is high. On the other hand, the natural separation method (solvent-free method) without using a solvent is an inexpensive separation method, and an emulsifier such as polyglycerin fatty acid ester should be used for a decrease in filtration speed, which has been regarded as a problem. (See JP-A-11-106782).
[0005]
[Problems to be solved by the invention]
However, even by a natural fractionation method using a polyglycerin fatty acid ester, it has been clarified that sufficiently large crystals do not precipitate and the filtration efficiency is lowered depending on the power required for stirring.
Accordingly, an object of the present invention is to provide a natural fractionation method for fatty acids and partial glycerides using polyglycerin fatty acid esters, which has improved filtration efficiency, quality and yield by controlling the power required for stirring.
[0006]
[Means for Solving the Problems]
Therefore, the present inventor conducted various studies on the stirring conditions at the time of cooling after the addition of the polyglycerol fatty acid ester, and crystals having good filtration efficiency were not produced even if the stirring speed was too fast or too slow. When stirring is performed in the power range and the power is lowered from the middle of cooling, crystals of the high melting point portion in the raw fatty acid and partial glycerides grow large, suppress the formation of fine crystals, and the filtration efficiency is remarkable. It was found that the high melting point portion and the low melting point portion can be efficiently separated.
[0007]
That is, in the present invention, polyglycerin fatty acid ester is added to and mixed with fats and oils selected from fatty acids, partial glycerides, and mixtures thereof, and cooled to precipitate crystals, thereby separating low melting point oils and high melting point fats and oils. A method for producing low melting point fats and high melting point fats and oils in which stirring during cooling is performed by reducing the power from the middle of cooling within the range of required stirring power of 0.005 to 4 kW / m 3. Is to provide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the raw material fats and oils used in the present invention include fatty acids, monoglycerides, diglycerides and mixtures thereof. Examples of fatty acids include those produced by hydrolyzing vegetable oils such as rapeseed oil, soybean oil, sunflower oil, and palm oil, and animal oils such as beef tallow by a steam decomposition method or hydrolysis using a lipase as a catalyst. Can be mentioned. As the fatty acid, a partial glyceride mixture in which the amount of the fatty acid is 50% by mass or more, particularly 85% by mass or more is also used. Monoglycerides and diglycerides can be obtained by hydrolysis of oils and fats, or esterification of fatty acids and glycerin, which are composed of saturated fatty acids and unsaturated fatty acids such as rapeseed oil, soybean oil, sunflower oil and palm oil, fish oil and animal oil. Things. Moreover, as these fats and oils, the ratio of saturated fatty acids (C12-C22) such as palmitic acid and stearic acid in the fatty acid composition is preferably 5 to 60% by mass, particularly 8 to 50% by mass. For example, fatty acids derived from vegetable oils such as soybean oil, sunflower oil, palm oil, and animal oils such as beef tallow, and partial glycerides can be used. The partial glyceride as the fractionation target here refers to a diglyceride containing 50% by mass or more, a monoglyceride containing 50% by mass or more, or a total of both containing 50% by mass.
[0009]
The origin of the polyglycerin fatty acid ester used in the present invention is not limited, and the synthetic polyglycerin obtained by polymerizing glycidol, epichlorohydrin, etc. obtained by esterification reaction of a polyglycerin derived from a natural product and a fatty acid. Any of those obtained by an esterification reaction between a fatty acid and a fatty acid may be used. The average degree of polymerization of polyglycerin in the polyglycerin fatty acid ester is preferably 5 or more, particularly preferably 8 to 30 from the viewpoint of obtaining a crystalline state that can be easily filtered. Moreover, it is preferable that the fatty acid made to react with polyglycerin is comprised from a saturated or unsaturated fatty acid having 10 to 22 carbon atoms, particularly 12 to 18 carbon atoms, from the viewpoint of obtaining a crystalline state that can be easily filtered. Although the said fatty acid may be comprised with a single fatty acid, the case where it comprises with a mixed fatty acid is preferable from the point from which the crystalline state which is especially easy to filter is obtained. In the esterification reaction of polyglycerin and fatty acid, an alkali catalyst such as sodium hydroxide is added to these mixtures, and esterification is performed directly at 200 to 260 ° C. under an inert gas stream such as nitrogen, and an enzyme is used. Any method such as a method may be used.
[0010]
Two or more of the above polyglycerin fatty acid esters may be used in combination, and the amount added is preferably 0.001 to 5% by mass, particularly about 0.05 to 1% by mass, based on the raw material fats and oils.
[0011]
In the present invention, as described above, polyglycerin fatty acid ester as an additive is added to and mixed with raw material fats and oils, cooled to precipitate crystals, and the liquid part and the crystal part are separated to efficiently separate the high melting point fats and oils. And low melting point oils and fats. Here, the liquid part is a low melting point oil and fat, and the crystal part is a high melting point oil and fat. The polyglycerin fatty acid ester is preferably mixed and dissolved at a temperature higher by 10 ° C. or more than the transparent melting point of the polyglycerin fatty acid ester so that the polyglycerin fatty acid ester can be completely dissolved in the raw oils and fats. Cooling is preferably performed over 1 to 30 hours, preferably 3 to 20 hours, which is advantageous in terms of economy and filtration conditions.
[0012]
According to the inventor's knowledge, when processing fatty acids, partial glycerides or mixtures thereof, the stirring conditions during cooling are extremely important for the filterability of the precipitated crystals, and the power required for stirring is 0.005 to 4 kW / m. When the power is reduced from the middle of cooling in the range of 3, the crystal with good filterability grows efficiently and the formation of fine crystals is suppressed. If the power is less than 0.005 kW / m 3 , the stirring is insufficient, which is not efficient. On the other hand, when the power exceeds 4 kW / m 3 , secondary nucleation occurs due to collision between the stirring blades and the crystals, the crystal becomes finer, and the filterability decreases. The preferable power is 0.007 to 4 kW / m 3 .
Here, the power required for stirring is an index representing the strength of stirring, and is a value calculated using the calculation formula of Nagata et al. Shown in Rev. 5th edition, Chemical Engineering Handbook (published by Maruzen Co., Ltd.) P.888, 896. .
[0013]
In the present invention, it is necessary to reduce the power from the middle of cooling. By doing so, the precipitated crystals can prevent secondary nucleation due to the impingement between the stirring blades and the crystals, and the formation of fine crystals can be suppressed and large crystals with good filterability can be obtained.
The average crystal grain size is preferably 100 μm or more, particularly 200 μm or more. Here, during cooling, it is preferable to set the time for starting the precipitation of crystals and / or the time for growing the precipitated crystals. More specifically, it is preferable to reduce the power when holding at a constant temperature immediately before or after crystal precipitation. When stirring is intermittently performed, a time average value is used as the power required for stirring. Preferably, when the fatty acid concentration of the fractionation raw material is 85% by mass or more, the power required for stirring is decreased from 0.5 to 4 kW / m 3 to 0.04 to 1 kW / m 3 . When the fatty acid concentration is less than 85% by mass, the power required for stirring is decreased from 0.5 to 1.5 kW / m 3 to 0.007 to 0.3 kW / m 3 .
[0014]
As a method for separating the produced crystal, a filtration method, a centrifugal separation method, a sedimentation separation method, or the like can be applied, and batch processing or continuous processing may be used.
[0015]
【Example】
In the following examples, the glyceride composition, the fatty acid composition, and the saturated fatty acid ratio were measured by gas chromatography. Moreover, the saturated fatty acid of the fractionated glyceride oil is the value after hydrolysis. The transparent melting point of the fatty acid was measured by the standard fat analysis method (2.2.4.1-1996).
[0016]
[Preparation of raw fatty acids]
The fats and oils shown in Table 1 were hydrolyzed by a conventional method to prepare raw fatty acids. Table 1 shows the fatty acid composition, saturated fatty acid ratio (% by mass), and fatty acid concentration of the fatty acid used.
[0017]
[Table 1]
Figure 0004157733
[0018]
[Fatty acid fractionation]
To the obtained fatty acid, 0.2% by mass of polyglycerin fatty acid ester (decaglycerin ester) shown in Table 2 with respect to the starting fatty acid is added and dissolved uniformly at 80 ° C. Subsequently, it stirred on the conditions shown in Table 3, cooling at 3 degrees C / h. Next, using nylon filter cloth NY1260NLK (Mitsubishi Kako Co., Ltd.) (filtration area 39 cm 2 ), pressure filtration is performed at 0.03 MPa to obtain a liquid part (unsaturated fatty acid) and a solid part (crystal part; saturated fatty acid). Sorted. Table 4 shows the results of measuring the filtration time, the melting point of the liquid part, the liquid part yield, and the fatty acid composition of the liquid part and the solid part (ratio of C12 to C22 saturated fatty acid) necessary to obtain 500 mL of filtrate.
[0019]
[Table 2]
Figure 0004157733
[0020]
[Table 3]
Figure 0004157733
[0021]
[Table 4]
Figure 0004157733
[0022]
(Preparation of raw material partial glyceride)
The fats and oils shown in Table 5 were hydrolyzed by a conventional method, and an esterification reaction was performed under conditions of 50 ° C. and 400 Pa using 1,3-position selective immobilized lipase (“Lipozyme RM IM” manufactured by Novoenzyme). . The obtained reaction product was subjected to molecular distillation treatment and purification treatment to obtain a raw material partial glyceride. Table 5 shows the glyceride composition, fatty acid composition, and saturated fatty acid ratio (mass%) of the raw material partial glyceride.
[0023]
[Table 5]
Figure 0004157733
[0024]
[Fractionation of partial glycerides]
To the obtained partial glyceride, 0.2% by mass of polyglycerin fatty acid ester (decaglycerin ester) shown in Table 2 and raw material partial glyceride are added and dissolved uniformly at 40 ° C. Subsequently, it stirred on the conditions shown in Table 6, cooling at 2 degrees C / h. Next, it was filtered under pressure using nylon filter cloth NY1260NLK (Mitsubishi Kako Co., Ltd.) (filtration area 39 cm 2 ) at 0.03 MPa, and the liquid part (low melting point glyceride) and solid part (crystal part; high melting point part) Glycerides). Table 7 shows the results of measuring the filtrate yield, the filtration time necessary to obtain a 500 mL filtrate, the melting point of the liquid part, the yield, and the fatty acid composition of the liquid part and the solid part (ratio of C12 to C22 saturated fatty acids). .
[0025]
[Table 6]
Figure 0004157733
[0026]
[Table 7]
Figure 0004157733
[0027]
As is apparent from Tables 3 and 4 and Tables 6 and 7, when the power required for stirring during cooling is in the range of 0.005 to 4 kW / m 3 and the power is reduced during cooling, saturated fatty acids Alternatively, it can be seen that low melting point oils and high melting point fats and oils can be naturally separated in a short time and in a high yield because crystals of saturated fatty acid-containing partial glycerides grow large and suppress the formation of fine crystals. In contrast, if the power is less than 0.005kW / m 3, if it exceeds 4 kW / m 3, and in the case did not change the power, the filtration efficiency is lowered.
[0028]
【The invention's effect】
According to the present invention, a high melting point portion and a low melting point portion in a fatty acid or partial glyceride can be naturally separated easily and efficiently.

Claims (1)

脂肪酸、部分グリセリド及びこれらの混合物から選ばれる油脂類にポリグリセリン脂肪酸エステルを添加混合し、冷却することにより結晶を析出させ、低融点油脂類と高融点油脂類を分別する方法であって、冷却時の撹拌を、撹拌所要動力(Pvと略す)0.005〜4kW/m3の範囲内で、当該動力を冷却の途中、結晶の析出開始時期から当初の1/5〜1/60の範囲に低下させて行う低融点油脂類と高融点油脂類の製造法。Polyglycerin fatty acid ester is added to and mixed with oils and fats selected from fatty acids, partial glycerides and mixtures thereof, and cooled to precipitate crystals, thereby separating low melting point oils and high melting point fats and oils. The stirring at the time is within the range of 0.005 to 4 kW / m 3 of the power required for stirring (abbreviated as Pv), and during the cooling of the power, the initial range of 1/5 to 1/60 from the start of crystal precipitation A process for producing low melting point fats and high melting point fats and oils by lowering to a low temperature.
JP2002205199A 2002-07-15 2002-07-15 Production method of fats and oils Expired - Fee Related JP4157733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205199A JP4157733B2 (en) 2002-07-15 2002-07-15 Production method of fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205199A JP4157733B2 (en) 2002-07-15 2002-07-15 Production method of fats and oils

Publications (2)

Publication Number Publication Date
JP2004043702A JP2004043702A (en) 2004-02-12
JP4157733B2 true JP4157733B2 (en) 2008-10-01

Family

ID=31710567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205199A Expired - Fee Related JP4157733B2 (en) 2002-07-15 2002-07-15 Production method of fats and oils

Country Status (1)

Country Link
JP (1) JP4157733B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411505B2 (en) * 2006-10-31 2014-02-12 阪本薬品工業株式会社 Oil / fat separation modifier
JP5680317B2 (en) * 2010-03-19 2015-03-04 阪本薬品工業株式会社 Oil / fat separation modifier
KR101858293B1 (en) 2011-05-20 2018-05-15 카오카부시키가이샤 Oil or fat compositions containing diglycerides
JP5816075B2 (en) 2011-12-28 2015-11-17 花王株式会社 Method for producing oil and fat composition

Also Published As

Publication number Publication date
JP2004043702A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
RU2422498C2 (en) Method of producing dioleoyl palmitoyl glyceride
JP3550017B2 (en) Water-in-oil type emulsified fat composition
US5952518A (en) Method for reducing saturated fatty acids from fatty acid compositions
WO2008053838A1 (en) Fractional modifier for fat
JP3718113B2 (en) Solid-liquid fractionation method for oil and fat composition
JP4157733B2 (en) Production method of fats and oils
JP3384967B2 (en) Method for reducing saturated fatty acids from fatty acids
JP4157734B2 (en) Production method of fatty acids
JP3839791B2 (en) Fatty acid production method
CN113337551B (en) Preparation method of structural triglyceride
KR102520377B1 (en) Method for preparing triglyceride with high purity by using short path distillation or wet fractionation
JP4231388B2 (en) Method for producing fatty acid
JP4261978B2 (en) Production method of fatty acids
JP2004018646A (en) Method for producing fatty acid
JP7065581B2 (en) Method for producing fatty acids
JP4091351B2 (en) Method for producing fatty acid
CN113621660B (en) Preparation method of structural lipid for regulating lipid composition of infant formula milk powder
JP3927104B2 (en) Fatty acid production method
JP2003138289A (en) Method for decreasing saturated fatty acid present in fatty acids
JP2006176608A (en) Method for producing fatty acids

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4157733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees