JP2006176546A - Phosphor and light source using phosphor - Google Patents

Phosphor and light source using phosphor Download PDF

Info

Publication number
JP2006176546A
JP2006176546A JP2004368153A JP2004368153A JP2006176546A JP 2006176546 A JP2006176546 A JP 2006176546A JP 2004368153 A JP2004368153 A JP 2004368153A JP 2004368153 A JP2004368153 A JP 2004368153A JP 2006176546 A JP2006176546 A JP 2006176546A
Authority
JP
Japan
Prior art keywords
phosphor
light
led
light emitting
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004368153A
Other languages
Japanese (ja)
Other versions
JP4798335B2 (en
Inventor
Masahiro Goto
昌大 後藤
Akira Nagatomi
晶 永富
Katayuki Sakane
堅之 坂根
Shuji Yamashita
修次 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004368153A priority Critical patent/JP4798335B2/en
Publication of JP2006176546A publication Critical patent/JP2006176546A/en
Application granted granted Critical
Publication of JP4798335B2 publication Critical patent/JP4798335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a phosphor for producing a light source hardly causing degradation of optical properties such as reduction of luminous efficiency, change of emission wavelength, etc., by passage of time in use and the light source using the phosphor. <P>SOLUTION: The phosphor has ≤10% weight change as the result of measurement with a thermobalance in the air from a room temperature to 1,000°C and is represented by composition formula MmBbOoNn:Z (M is a divalent element; B is a tetravalent element; Z is an activator). The light source is produced by combining the phosphor with the luminescence part of an LED, etc., emitting an ultraviolet light to a visible light. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、CRT、PDP、FED、ELなどのディスプレイ装置や、蛍光表示管、蛍光ランプなどの照明装置等に使用される蛍光体に関するものであり、さらには当該蛍光体を用いたLED、光源および照明ユニット等に関する。   The present invention relates to a phosphor used in a display device such as a CRT, PDP, FED, or EL, or a lighting device such as a fluorescent display tube or a fluorescent lamp, and further, an LED or a light source using the phosphor. And a lighting unit.

現在、照明装置として用いられている放電式蛍光灯、白熱電球などは、水銀などの有害な物質が含まれている、寿命が短い、といった諸問題を抱えている。ところが近年になって青色や紫外に発光するLEDが次々と開発され、そのLEDから発生する紫外〜青色の光と、紫外〜青色の波長域に励起帯を持つ蛍光体の発光とを組み合わせて白色光を調製し、その白色光を次世代の照明として利用できないかといった研究、開発が盛んに行われている。この白色LED照明は、熱の発生が少ないこと、半導体素子と蛍光体とから構成されているため、従来の白熱電球のように切れることがないこと、水銀などの有害な物質が不要であることといった利点があり、理想的な照明装置である。   At present, discharge fluorescent lamps and incandescent lamps used as lighting devices have various problems such as containing harmful substances such as mercury and short life. However, in recent years, LEDs that emit blue and ultraviolet light have been developed one after another, and a combination of ultraviolet to blue light generated from the LED and light emission of a phosphor having an excitation band in the ultraviolet to blue wavelength range is combined with white light. Research and development has been actively conducted to prepare light and use the white light as next-generation lighting. Since this white LED illumination is composed of a semiconductor element and a phosphor with less heat generation, it does not break like conventional incandescent bulbs, and no harmful substances such as mercury are required. It is an ideal lighting device.

ここで、上述したLEDと蛍光体とを組み合わせて白色光を得るには、一般的に2つの方式が考えられている。一つは青色発光するLEDと、当該青色発光を受けて励起され黄色発光する蛍光体とを組み合わせ、この青色発光と黄色発光との組み合わせにより白色発光を得るものである。   Here, in order to obtain white light by combining the LED and the phosphor described above, two methods are generally considered. One is a combination of an LED that emits blue light and a phosphor that receives the blue light emission and is excited to emit yellow light, and obtains white light emission by combining the blue light emission and the yellow light emission.

もう一つは、近紫外・紫外発光するLEDと、当該近紫外・紫外発光を受けて励起され赤色(R)発光する蛍光体、緑色(G)発光する蛍光体、青色(B)発光する蛍光体、他とを組み合わせ、当該RGB他の光により白色発光を得るものである。このRGB他の光により白色発光を得る方法は、RGB他の蛍光体の組み合わせや混合比などにより、白色光以外にも任意の発光色を得ることが可能であり、照明装置としての応用範囲が広い。そして、当該用途に使用される蛍光体としては、例えば(Y,Gd)(Al,Ga)12:Ce、YAG:Ce、TbAl12:Ce、CaScSi12:Ce、(Ca,Ba,Sr)SiO:Eu、BAM:Eu、BAM:Mn,Eu、SrAl:Eu、Sr(POCl:Eu、(Sr,Ca,Mg,Ba)10(POCl:Euなどの酸化物系蛍光体、ZnS:Cu,Al、CaGa:Eu、SrGa:Eu、BaGa:Eu、Ca(Al,Ga,In):Eu、Sr(Al,Ga,In):Eu、Ba(Al,Ga,In):Eu、YS:Eu、LaS:Euなどの硫化物、酸硫化物蛍光体、CaSi:Eu、SrSi:Eu、BaSi:Eu、(Ca,Sr)Si:Eu、(Sr,Ba)Si:Eu、(Ca,Ba)Si:Euなどの窒化物系、酸窒化物系の蛍光体がある。そして、これらのRGB他の蛍光体を、近紫外・紫外発光するLEDなどの発光部と組み合わせることにより、白色または所望の発色をおこなうLEDを始めとした、光源や照明装置を得ることが試みられている。 The other is an LED that emits near ultraviolet / ultraviolet light, a phosphor that emits red (R) light when excited by the near ultraviolet / ultraviolet light emission, a phosphor that emits green (G) light, and a fluorescent light that emits blue (B) light. The body and the other are combined to obtain white light emission by the other light of RGB. This method of obtaining white light emission by RGB other light can obtain any light emission color other than white light depending on the combination and mixing ratio of RGB other phosphors, and has an application range as a lighting device. wide. Then, as the phosphors used in the applications such (Y, Gd) 3 (Al , Ga) 5 O 12: Ce, YAG: Ce, Tb 3 Al 5 O 12: Ce, Ca 3 Sc 2 Si 3 O 12 : Ce, (Ca, Ba, Sr) 2 SiO 4 : Eu, BAM: Eu, BAM: Mn, Eu, SrAl 2 O 4 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (Sr, Ca , Mg, Ba) 10 (PO 4 ) 6 Cl 2 : Eu and other oxide-based phosphors, ZnS: Cu, Al, CaGa 2 S 4 : Eu, SrGa 2 S 4 : Eu, BaGa 2 S 4 : Eu, Ca (Al, Ga, In) 2 S 4 : Eu, Sr (Al, Ga, In) 2 S 4 : Eu, Ba (Al, Ga, In) 2 S 4 : Eu, Y 2 O 2 S: Eu, La 2 O 2 S: Sulfides such as Eu, acid sulfide Fluoride phosphor, CaSi 2 O 2 N 2 : Eu, SrSi 2 O 2 N 2 : Eu, BaSi 2 O 2 N 2 : Eu, (Ca, Sr) Si 2 O 2 N 2 : Eu, (Sr, Ba) There are nitride-based and oxynitride-based phosphors such as Si 2 O 2 N 2 : Eu and (Ca, Ba) Si 2 O 2 N 2 : Eu. Then, by combining these RGB and other phosphors with a light emitting part such as an LED that emits near ultraviolet light or ultraviolet light, it is attempted to obtain a light source or an illuminating device such as a white or desired LED. ing.

しかし、青色LEDと黄色蛍光体(YAG:Ce)の組み合わせによる白色LED照明については、可視光領域の長波長側の発光が不足してしまうため、若干青みを帯びた白色の発光となってしまい、電球のようなやや赤みを帯びた白色発光を得ることができない。
また、近紫外・紫外LEDとRGB他の蛍光体との組み合わせによる白色LED照明では、3色の蛍光体のうち赤色蛍光体が他の蛍光体に比べ長波長側の励起効率が悪く、発光効率が低いために、赤色蛍光体のみ混合割合を多くせざるを得ず、輝度を向上させる蛍光体が不足し高輝度の白色が得られない。更に、当該蛍光体の発光スペクトルがシャープであるため得られる光の演色性が悪いといった問題がある。
そのため最近では、長波長側に良好な励起を持ち、半値幅の広い発光ピークが得られるオキシ窒化物ガラス蛍光体(例えば、特許文献1参照)や、サイアロンを母体とする蛍光体(例えば、特許文献2、3参照)、シリコンナイトライド系などの窒素を含有した蛍光体(例えば、特許文献4、5参照)が報告されている。そして、当該窒素を含有した蛍光体は、酸化物系蛍光体などに比べ共有結合の割合が多くなるため、波長400nm以上の光においても良好な励起帯を持つといった特徴があり、白色LED用蛍光体として注目を集めている。
However, white LED illumination using a combination of a blue LED and a yellow phosphor (YAG: Ce) results in insufficient light emission on the long wavelength side in the visible light region, resulting in light emission that is slightly bluish white. Can not get a slightly reddish white light like a light bulb.
In addition, in white LED illumination using a combination of near-ultraviolet / ultraviolet LEDs and RGB and other phosphors, the red phosphor of the three color phosphors has lower excitation efficiency on the longer wavelength side than other phosphors, and the luminous efficiency Therefore, it is necessary to increase the mixing ratio of only the red phosphor, and the phosphor for improving the luminance is insufficient, so that a high luminance white color cannot be obtained. Furthermore, since the emission spectrum of the phosphor is sharp, there is a problem that the color rendering property of the obtained light is poor.
Therefore, recently, an oxynitride glass phosphor that has good excitation on the long wavelength side and a broad emission half-width emission peak (see, for example, Patent Document 1), and a phosphor based on sialon (for example, a patent) References 2 and 3) and phosphors containing nitrogen such as silicon nitride (for example, see Patent References 4 and 5) have been reported. The phosphor containing nitrogen has a characteristic of having a good excitation band even in light having a wavelength of 400 nm or more because the ratio of the covalent bond is larger than that of the oxide phosphor and the like. Has attracted attention as a body.

特開2001-214162号公報Japanese Patent Laid-Open No. 2001-214162 特開2003-336059号公報JP2003-336059 特開2003-124527号公報Japanese Patent Laid-Open No. 2003-124527 特表2003-515655号公報Special table 2003-515655 特開2003-277746号公報JP 2003-277746 A

しかしながら、上記白色LEDを始めとする発光部と蛍光体とを組み合わせた光源は、上述した白熱電球よりは長寿命であるものの、使用時間の経過と伴に、発光効率の低下、発光波長の変化等の光学特性劣化を起こす。
本発明は、このような光学特性劣化を起こし難い蛍光体、および当該蛍光体を用いた光源を提供することを目的とする。
However, although the light source that combines the light emitting unit including the white LED and the phosphor has a longer life than the incandescent bulb described above, the light emission efficiency decreases and the light emission wavelength changes with the passage of time of use. Cause deterioration of optical characteristics.
An object of this invention is to provide the fluorescent substance which does not raise | generate such an optical characteristic deterioration easily, and the light source using the said fluorescent substance.

本発明者らは、上述した、照射光を発光する発光部と蛍光体とを組み合わせた光源における光学特性の劣化は、用いられている当該蛍光体が、当該発光部からのエネルギーの大きな光を受けることにより構造が劣化すること、さらには、当該発光部から発生する熱を受け続けることにより酸化等の化学変化を引き起こすこと、が大きな要因であることに想到した。特に、光源としての白色LEDに関しては、今後とも、さらなる高輝度化が要求され続けているため、発光部に流される電流の増大により発光部からの発熱が増大するため、この問題はさらに重要さを増している。
当該解明結果に基づき、本発明者らは、高温下における酸化等に対して耐久性を発揮する蛍光体を発光部と組み合わせれば、長時間使用されても、発光効率の低下、発光波長の変化等の光学特性劣化を起こし難いLEDを始めとする光源を得ることができることに想到した。
The inventors of the present invention have described the deterioration of the optical characteristics in the light source that combines the light emitting unit that emits the irradiation light and the phosphor, and the phosphor used has a large energy from the light emitting unit. It has been conceived that the main factors are that the structure is deteriorated by receiving, and that chemical changes such as oxidation are caused by continuing to receive heat generated from the light emitting portion. In particular, white LEDs as light sources continue to be required to have higher brightness in the future, and this problem is even more important because the heat generated from the light emitting part increases due to an increase in the current flowing through the light emitting part. Is increasing.
Based on the elucidated results, the present inventors combined a light emitting part with a phosphor that exhibits durability against oxidation at high temperatures, etc. It has been conceived that a light source such as an LED which hardly causes deterioration of optical characteristics such as changes can be obtained.

即ち、上述の課題を解決するための第1の構成は、
組成式MmBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は付活剤である。)で表記される蛍光体であって、
大気中での室温から1000℃までの熱天秤測定において、重量の変化が10%以下であることを特徴とする蛍光体である。
That is, the first configuration for solving the above-described problem is:
Composition formula MmBbOoNn: Z (where M element is one or more elements having a valence of II, B element is one or more elements having a valence of IV, O is oxygen, N is nitrogen and Z element is an activator.)
In the thermobalance measurement from room temperature to 1000 ° C. in the atmosphere, the phosphor has a change in weight of 10% or less.

第2の構成は、
M元素は、Mg、Ca、Sr、Ba、Znから選択される1種以上の元素であり、
B元素は、Si、Geから選択される1種以上の元素であり、
Z元素は、Eu、Mn、Ceから選択される1種以上の元素であることを特徴とする第1の構成に記載の蛍光体である。
The second configuration is
M element is one or more elements selected from Mg, Ca, Sr, Ba, Zn,
The B element is one or more elements selected from Si and Ge,
The Z element is the phosphor according to the first configuration, which is one or more elements selected from Eu, Mn, and Ce.

第3の構成は、
前記蛍光体の組成式MmBbOoNn:Zにおいて、m=a+p、b=3、o=a+q、n=4+rとしたときに、aの範囲は0<a≦10であり、pの範囲は−a/2<p<a/2であり、qの範囲は−a/2<q<2aであり、rの範囲は−2<r<2であることを特徴とする第1または第2の構成に記載の蛍光体である。
The third configuration is
In the composition formula MmBbOoNn: Z of the phosphor, when m = a + p, b = 3, o = a + q, n = 4 + r, the range of a is 0 <a ≦ 10, and the range of p is −a / In the first or second configuration, 2 <p <a / 2, the range of q is −a / 2 <q <2a, and the range of r is −2 <r <2. It is a fluorescent substance of description.

第4の構成は、
前記M元素はSrであり、前記B元素はSiであり、前記Z元素はEuであることを特徴とする第1から第3のいずれかの構成に記載の蛍光体である。
The fourth configuration is
The phosphor according to any one of the first to third aspects, wherein the M element is Sr, the B element is Si, and the Z element is Eu.

第5の構成は、
第1から第4のいずれかの構成に記載の蛍光体と、紫外〜可視領域のいずれかの光を発する発光部とを有し、前記紫外〜可視領域の光の一部を励起源として、前記蛍光体を発光させることを特徴とする光源である。
The fifth configuration is
The phosphor according to any one of the first to fourth configurations and a light emitting unit that emits light in the ultraviolet to visible region, and using a part of the light in the ultraviolet to visible region as an excitation source, A light source characterized in that the phosphor emits light.

第6の構成は、
前記発光部が発光ダイオードであることを特徴とする第5の構成に記載の光源である。
The sixth configuration is
The light source according to the fifth aspect, wherein the light emitting unit is a light emitting diode.

第1から第4のいずれかの構成に係る蛍光体は、エネルギー量の大きな光や熱に対して耐性を有しており、これらの光や熱を受けても光学特性の劣化を起こし難い。   The phosphor according to any one of the first to fourth configurations is resistant to light and heat with a large amount of energy, and even when receiving such light and heat, optical characteristics are hardly deteriorated.

第5または第6の構成に係る光源は、長時間使用されても光学特性の劣化を起こし難い長寿命の光源である。   The light source according to the fifth or sixth configuration is a long-life light source that hardly deteriorates optical characteristics even when used for a long time.

本発明の実施例1、2に係る蛍光体と、比較例1に係る公知の蛍光体とを、例としながら、本発明の実施の形態について説明する。   The embodiment of the present invention will be described using the phosphors according to Examples 1 and 2 of the present invention and the known phosphor according to Comparative Example 1 as examples.

(実施例1)
本発明に係る蛍光体の例として、組成式MmBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は付活剤である。)で表記される蛍光体を準備した。当該実施例1に係る蛍光体について説明するが、本実施例は、M元素としてSr、B元素としてSi、Z元素としてEuを用いた場合であり、2.75SrO・Si:Euの化学式を有する蛍光体である。
(Example 1)
As an example of the phosphor according to the present invention, composition formula MmBbOoNn: Z (where M element is one or more elements having a valence of II, and B element is one or more of elements having an valence of IV) A phosphor represented by the following formula: element, O is oxygen, N is nitrogen, and Z element is an activator. The phosphor according to Example 1 will be described. In this example, Sr is used as the M element, Si is used as the B element, Eu is used as the Z element, and 2.75SrO.Si 3 N 4 : Eu is used. A phosphor having a chemical formula.

まず図1、2を参照しながら、実施例1に係る蛍光体の熱天秤測定(以下、TG測定と記載する場合がある)と、その結果について説明する。図1は、縦軸に温度と重量の変化率とを採り、横軸に時間を採り、雰囲気として大気下において、時間(分)毎の試料の温度(℃)を一点鎖線で、同じく時間(分)毎における試料の重量の変化率(%)を実線でプロットしたグラフである。一方、図2は、雰囲気を窒素ガスとした以外は、図1にて説明したものと同様条件下でTG測定をおこなったときのグラフである。
図1に示すように、試料温度は、室温から1000℃まで100分間で昇温し、さらに60分間1000℃を保持した。試料温度が前述のように昇温、保持されたとき、大気下における試料の重量変化率は、600℃までは殆ど変化せず、その後、徐々に上昇し1000℃到達時で+5%、60分間保持後で+6%と、試料の重量変化率が+6%以下であることが判明した。一方、図2に示すように、窒素ガス雰囲気下において図1と同様の昇温と保持とを受けた蛍光体は、昇温、保持の際とも重量変化率は1%以下であることが判明した。以上のことより、実施例1に係る蛍光体は、800℃以上で若干酸化を受けるものの、酸化に強い耐性を有していることを示している。また、1000℃迄において窒化は殆ど起きていないと考えられる。
First, referring to FIGS. 1 and 2, a thermobalance measurement of a phosphor according to Example 1 (hereinafter sometimes referred to as TG measurement) and the results will be described. FIG. 1 shows temperature and weight change rate on the vertical axis, time on the horizontal axis, and the temperature (° C.) of the sample for each hour (minute) in the atmosphere as an atmosphere in a dash-dot line. It is the graph which plotted the change rate (%) of the weight of the sample for every minute) with a solid line. On the other hand, FIG. 2 is a graph when TG measurement is performed under the same conditions as those described in FIG. 1 except that the atmosphere is nitrogen gas.
As shown in FIG. 1, the sample temperature was raised from room temperature to 1000 ° C. over 100 minutes and maintained at 1000 ° C. for 60 minutes. When the sample temperature was raised and maintained as described above, the weight change rate of the sample in the atmosphere hardly changed until 600 ° C., and then gradually increased to + 5% when reaching 1000 ° C. for 60 minutes. It was found that the weight change rate of the sample was + 6% or less after holding and + 6% or less. On the other hand, as shown in FIG. 2, it was found that the phosphor that received the same temperature rise and hold as in FIG. 1 in a nitrogen gas atmosphere had a weight change rate of 1% or less both during the temperature rise and hold. did. From the above, it is shown that the phosphor according to Example 1 has a strong resistance to oxidation although it is slightly oxidized at 800 ° C. or higher. Further, it is considered that nitriding hardly occurs up to 1000 ° C.

以上のことから、当該実施例1に係る2.75SrO・Si:Euの化学式を有する蛍光体は、加熱下での酸化による化学構造変化に耐久性があることが判明した。このことから、当該蛍光体を設置した白色LED他の光源内において、当該蛍光体は、発光部からの紫外光等の光を受けながら同時に熱も受けつつも化学構造の変化を起こすことなく、所定の蛍光を発光し続けるので、光学特性劣化を起こし難い白色LEDを始めとした光源を得ることができた。 From the above, it has been found that the phosphor having the chemical formula of 2.75SrO.Si 3 N 4 : Eu according to Example 1 has durability against changes in the chemical structure due to oxidation under heating. From this, in the white light source other than the white LED in which the phosphor is installed, the phosphor does not change its chemical structure while receiving heat simultaneously while receiving light such as ultraviolet light from the light emitting part, Since it continues to emit predetermined fluorescence, it was possible to obtain a light source such as a white LED that hardly deteriorates optical characteristics.

(実施例2)
実施例1と同様に、組成式MmBbOoNn:Zで表記される蛍光体として1.25CaO・Si:Euの化学式を有する蛍光体を準備した。
(Example 2)
As in Example 1, a phosphor having a chemical formula of 1.25CaO.Si 3 N 4 : Eu was prepared as a phosphor represented by the composition formula MmBbOoNn: Z.

まず図3、4を参照しながら、実施例2に係る蛍光体のTG測定結果について説明する。図3の縦軸・横軸は、図1と同様のグラフであり、図4の縦軸・横軸は、は図2と同様のグラフである。
試料温度は、実施例1と同様である。試料温度が前述のように昇温、保持されたとき、大気下における試料の重量変化率は、800℃までは殆ど変化せず、その後、徐々に上昇し1000℃到達時で+2%、60分間保持後で+6%以下と、試料の重量変化率が6%以下であることが判明した。一方、図4に示すように、窒素ガス雰囲気下において図3と同様の昇温と保持とを受けた蛍光体は、1000℃への昇温、保持の際とも重量変化率は1%以下であることが判明した。以上のことより、当該実施例2に係る蛍光体は、800℃以上で若干酸化を受けるものの、酸化に強い耐性を有していることを示している。また、窒化は殆ど起きていないと考えられる。
First, the TG measurement result of the phosphor according to Example 2 will be described with reference to FIGS. The vertical and horizontal axes in FIG. 3 are the same graphs as in FIG. 1, and the vertical and horizontal axes in FIG. 4 are the same graphs as in FIG.
The sample temperature is the same as in Example 1. When the sample temperature was raised and maintained as described above, the weight change rate of the sample in the atmosphere hardly changed up to 800 ° C, and then gradually increased to + 2% when reaching 1000 ° C for 60 minutes. It was found that the weight change rate of the sample was 6% or less and + 6% or less after holding. On the other hand, as shown in FIG. 4, a phosphor that has been heated and held in the same manner as in FIG. 3 in a nitrogen gas atmosphere has a weight change rate of 1% or less both when heated to 1000 ° C. and held. It turned out to be. From the above, it is shown that the phosphor according to Example 2 has a strong resistance to oxidation although it is slightly oxidized at 800 ° C. or higher. Moreover, it is considered that nitriding hardly occurs.

以上のことから、当該実施例2に係る1.25CaO・Si:Euの化学式を有する蛍光体は、加熱下での酸化による化学構造変化に耐久性があることが判明した。このことから、当該蛍光体を設置した白色LED他の光源内において、当該蛍光体は、発光部からの紫外光等の光を受けながら同時に熱も受けつつも化学構造の変化を起こすことなく、所定の蛍光を発光し続けるので、光学特性劣化を起こし難い白色LEDを始めとした光源を得ることができた。 From the above, it has been found that the phosphor having the chemical formula of 1.25CaO.Si 3 N 4 : Eu according to Example 2 has durability against changes in chemical structure due to oxidation under heating. From this, in the white light source other than the white LED in which the phosphor is installed, the phosphor does not change its chemical structure while receiving heat simultaneously while receiving light such as ultraviolet light from the light emitting part, Since it continues to emit predetermined fluorescence, it was possible to obtain a light source such as a white LED that hardly deteriorates optical characteristics.

(比較例1)
比較例1に係る、化学式CaSi:Euと表記される公知の蛍光体について説明する。
(Comparative Example 1)
A known phosphor represented by the chemical formula Ca 2 Si 5 N 8 : Eu according to Comparative Example 1 will be described.

まず図5、6を参照しながら、比較例1に係る蛍光体のTG測定結果について説明する。図5の縦軸・横軸は、図1と同様のグラフであり、図6の縦軸・横軸は、図2と同様のグラフである。
図5に示すように、試料の昇温は実施例1と同様におこなったところ、大気下における試料の重量変化率は、800℃までは殆ど変化しなかったが、その後、大きく上昇し1000℃到達時で+5%、60分間保持後で+12%と試料の重量変化率が12%であることが判明した。一方、図6に示すように、窒素ガス雰囲気下において図5と同様の昇温と保持とを受けた蛍光体は、昇温、保持の際とも重量変化率は2%程度であることが判明した。以上のことより、比較例1に係る蛍光体は酸化に対して耐性を有しておらず800〜1000℃以上で酸化を受けることが判明した。一方、わずかではあるが窒化を受けることも判明した。
First, the TG measurement result of the phosphor according to Comparative Example 1 will be described with reference to FIGS. The vertical and horizontal axes in FIG. 5 are the same graphs as in FIG. 1, and the vertical and horizontal axes in FIG. 6 are the same graphs as in FIG.
As shown in FIG. 5, when the temperature of the sample was raised in the same manner as in Example 1, the weight change rate of the sample in the atmosphere hardly changed up to 800 ° C., but then increased greatly to 1000 ° C. It was found that the weight change rate of the sample was 12%, + 5% at the time of arrival and + 12% after holding for 60 minutes. On the other hand, as shown in FIG. 6, it was found that the phosphor that received the same temperature rise and hold as in FIG. 5 in the nitrogen gas atmosphere had a weight change rate of about 2% both during the temperature rise and hold. did. From the above, it has been found that the phosphor according to Comparative Example 1 has no resistance to oxidation and is oxidized at 800 to 1000 ° C. or higher. On the other hand, it was also found that nitriding occurred slightly.

以上のことから、当該比較例1に係るCaSi:Euの化学式を有する蛍光体は、加熱下において酸化による化学構造変化を受けることが判明した。このことから、当該蛍光体を設置した白色LED他の光源内において、当該蛍光体は、発光部からの紫外光等の光を受けながら同時に熱も受けることで化学構造の変化を起こし、所定の蛍光を発光し続けることが困難で、光学特性劣化を起こし易い光源になると考えられる。 From the above, it was found that the phosphor having the chemical formula of Ca 2 Si 5 N 8 : Eu according to Comparative Example 1 undergoes a chemical structure change due to oxidation under heating. From this, in the white LED and other light sources where the phosphor is installed, the phosphor undergoes a change in chemical structure by receiving heat simultaneously while receiving light such as ultraviolet light from the light emitting part, It is difficult to continue to emit fluorescence, and it is considered that the light source is likely to cause deterioration of optical characteristics.

(本発明に係る蛍光体の加熱下での酸化に対する耐久性と、当該蛍光体の化学構造の検討)
本発明の実施例1、2に係る蛍光体は、室温より1000℃までのTG測定において、重量の変化が10%以下であったのに対し、比較例1に係る公知の蛍光体CaSi:Euは、室温より1000℃までのTG測定において、重量の変化が10%以上であった。
これは、本発明の実施例1、2に係る蛍光体が、組成式MmBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は付活剤である。)で表記される蛍光体であり、既に母体構造内に酸素を有するため、それ以上の酸化に対して耐久性を発揮するものと考えられる。
これに対し、比較例1に係る蛍光体は母体構造内に酸素を有さず、酸化に対する耐久性が劣るのではないかと考えられる。
(Examination of durability of the phosphor according to the present invention against oxidation under heating and chemical structure of the phosphor)
In the phosphors according to Examples 1 and 2 of the present invention, the change in weight was 10% or less in the TG measurement from room temperature to 1000 ° C., whereas the known phosphor Ca 2 Si according to Comparative Example 1 5 N 8 : Eu showed a change in weight of 10% or more in the TG measurement from room temperature to 1000 ° C.
This is because the phosphors according to Examples 1 and 2 of the present invention have a composition formula MmBbOoNn: Z (where M element is one or more elements having a valence of II, and B element is a valence of IV. 1 or more elements that take a number, O is oxygen, N is nitrogen, and Z element is an activator), and already has oxygen in the matrix structure Therefore, it is considered that it exhibits durability against further oxidation.
On the other hand, it is considered that the phosphor according to Comparative Example 1 does not have oxygen in the host structure and is inferior in durability against oxidation.

(本発明に係る蛍光体の構造)
ここで、本発明に係る蛍光体の構造について、さらに説明する。
本発明に係る蛍光体は、上述したように、一般式MmBbOoNn:Zと表記される母体構造を有する蛍光体である。そして、前記蛍光体中においてII価の価数をとるM元素が、Mg、Ca、Sr、Ba、Znから選択される1種以上の元素であり、IV価の価数をとるB元素が、Si、Geから選択される1種以上の元素であり、m=a+p、b=3、o=a+q、n=4+rとしたとき、aが0<a≦10の範囲さらに好ましくは0<a≦6の範囲にあり、pが−a/2<p<a/2であり、qが−a/2<q<2aであり、rが−2<r<2であるとき、高い発光率を有する蛍光体となった。
また、付活剤となるZ元素が、Eu、Mn、Ceから選択される少なくとも1つ以上の元素であると当該蛍光体の発光効率がさらに高まり、さらに好ましい構成である。
さらに、M元素がSrであり、B元素がSiであり、Z元素がEuであると、原料入手が容易な上、極めて発光効率が良い白色発光ユニット用の橙色系の蛍光体が得られ、好ましい構成である。
(Structure of phosphor according to the present invention)
Here, the structure of the phosphor according to the present invention will be further described.
As described above, the phosphor according to the present invention is a phosphor having a host structure represented by the general formula MmBbOoNn: Z. The M element having a valence of II in the phosphor is one or more elements selected from Mg, Ca, Sr, Ba, and Zn, and the B element having a valence of IV is It is one or more elements selected from Si and Ge. When m = a + p, b = 3, o = a + q, n = 4 + r, a is in the range of 0 <a ≦ 10, more preferably 0 <a ≦ When p is −a / 2 <p <a / 2, q is −a / 2 <q <2a, and r is −2 <r <2, It became the fluorescent substance which has.
Further, when the Z element serving as the activator is at least one element selected from Eu, Mn, and Ce, the luminous efficiency of the phosphor is further increased, which is a more preferable configuration.
Furthermore, when the M element is Sr, the B element is Si, and the Z element is Eu, an orange-based phosphor for a white light emitting unit having a very high emission efficiency can be obtained as well as obtaining a raw material is easy. This is a preferred configuration.

本発明に係る蛍光体において、Z元素の添加量は、対応するM元素1モルに対して0.0001モル以上、0.5モル以下の範囲にあることが好ましい。Z元素の添加量が当該範囲にあると、付活剤の含有量の過剰なことに起因する濃度消光による発光効率低下を回避でき、他方、付活剤の含有量が過小なことに起因する発光寄与原子の過小による発光効率の低下も回避できる。添加する付活元素Zの種類により、Z元素の添加の最適量は若干異なるが、さらに好ましくは0.0005モル以上、0.1モル以下の範囲内であると高い発光効率を得られた。   In the phosphor according to the present invention, the addition amount of the Z element is preferably in the range of 0.0001 mol or more and 0.5 mol or less with respect to 1 mol of the corresponding M element. When the addition amount of the Z element is in the range, it is possible to avoid a decrease in light emission efficiency due to concentration quenching due to an excessive content of the activator, and on the other hand, due to an excessive content of the activator. It is also possible to avoid a decrease in light emission efficiency due to the excessive emission contributing atoms. Depending on the kind of the activation element Z to be added, the optimum amount of addition of the Z element is slightly different, but more preferably high luminous efficiency is obtained when it is in the range of 0.0005 mol or more and 0.1 mol or less.

そして、本発明に係る蛍光体は、波長300〜550nmの広い範囲の光を受けて発光するため、紫外〜緑色にて発光する発光部と組み合わせることにより、可視光または白色の高効率な光源を製造することが出来る。   Since the phosphor according to the present invention emits light in a wide range of wavelengths of 300 to 550 nm, it can be combined with a light emitting unit that emits light in the ultraviolet to green, so that a highly efficient light source of visible light or white can be obtained. Can be manufactured.

(本発明に係る蛍光体の製造方法)
本発明に係る蛍光体の製造方法について、M元素がSr、B元素がSi、Z元素がEuである蛍光体の製造を例として説明する。
M元素であるSrの原料としては、Srの酸化物、炭酸塩、水酸化物、窒化物などを用いることが出来る。Siの原料としてはSiやSiOを好個に用いることが出来る。窒素の原料としてはSiやM元素の窒化物(例えば、Srの窒化物)を好個に用いることが出来る。Z元素であるEuの原料としてはEuを好個に用いることが出来る。各原料は、各々、市販の原料で良いが、純度は高い方が好ましいことから、2N以上さらに好ましくは3N以上のものを準備する。
(Method for producing phosphor according to the present invention)
The phosphor manufacturing method according to the present invention will be described with reference to an example of manufacturing a phosphor in which the M element is Sr, the B element is Si, and the Z element is Eu.
As a raw material for Sr, which is an element M, an oxide, carbonate, hydroxide, nitride, or the like of Sr can be used. As the Si raw material, Si 3 N 4 or SiO 2 can be preferably used. As the nitrogen source, Si 3 N 4 or a nitride of M element (for example, a nitride of Sr) can be preferably used. Eu 2 O 3 can be used favorably as a raw material for Eu, which is a Z element. Each raw material may be a commercially available raw material, but since a higher purity is preferable, 2N or more, more preferably 3N or more is prepared.

M元素の原料として、SrO[3N]、SrCO[3N]、Sr(OH)[3N]等の化合物を準備すればよい。Z元素としては、Eu[3N]を準備すればよい。SiおよびN原料としてSi[3N]を準備すればよい。
これらの原料配合において、実施例1であれば、モル比がSrCO:Si:Eu=2.70875:1:0.020625となるように各原料を秤量する。
As a raw material of the element M, SrO [3N], SrCO 3 [3N], may be prepared compounds such as Sr (OH) 2 [3N] . The element Z may be prepared Eu 2 O 3 [3N]. As Si and N material Si 3 N 4 may be prepared [3N].
In these raw material blends, in Example 1, each raw material is weighed so that the molar ratio is SrCO 3 : Si 3 N 4 : Eu 2 O 3 = 2.77085: 1: 0.020625.

秤量された原料の混合は、乳鉢等を用いる通常の混合方法で良い。当該混合は大気中で行っても良いが、原料としてSrOやSr(OH)を使用する場合は、大気中の水分や二酸化炭素と反応して形態変化を引き起こす可能性があり、また、原料のSiが大気中の酸素により酸化する可能性があるため、水分を除去した不活性雰囲気下でおこなうことが好ましい。例えば、不活性雰囲気下のグローブボックス内での操作が便宜である。 The mixing of the weighed raw materials may be a normal mixing method using a mortar or the like. The mixing may be performed in the air, but when SrO or Sr (OH) 2 is used as a raw material, it may react with moisture or carbon dioxide in the air to cause a shape change. Since Si 3 N 4 may be oxidized by oxygen in the atmosphere, it is preferable to carry out in an inert atmosphere from which moisture has been removed. For example, operation in a glove box under an inert atmosphere is convenient.

混合が完了した原料を、窒素等の不活性雰囲気中にて1400℃まで15℃/minの昇温速度で昇温し、1400℃で1時間保持・焼成した後、さらに1600℃まで15℃/minの昇温速度で昇温し、1600℃で2時間保持・焼成する。焼成が完了した後、1600℃から200℃まで1時間で冷却し、さらに室温まで冷却する。冷却が完了した後、当該焼成物を、乳鉢、ボールミル等の粉砕手段を用いて所定(好ましくは0.1μm〜20μm)の平均粒径となるように粉砕し、M元素がSrである蛍光体を得た。製造された蛍光体について組成分析を実施した結果、実施例1ではSr2.70Si4.15:Eu0.04であった。 The mixed raw material is heated to 1400 ° C. at a rate of 15 ° C./min in an inert atmosphere such as nitrogen, held and fired at 1400 ° C. for 1 hour, and then further heated to 1600 ° C. at 15 ° C. / The temperature is increased at a temperature increase rate of min, and held and fired at 1600 ° C. for 2 hours. After the firing is completed, it is cooled from 1600 ° C. to 200 ° C. in 1 hour, and further cooled to room temperature. After the cooling is completed, the fired product is pulverized to a predetermined (preferably 0.1 μm to 20 μm) average particle size using a pulverizing means such as a mortar and a ball mill, and the phosphor whose M element is Sr Got. As a result of conducting composition analysis about the manufactured phosphor, in Example 1, it was Sr 2.70 Si 3 O 4.15 N 3 : Eu 0.04 .

尚、a、p、q、rの値は、M元素の原料であるMの酸化物、炭酸塩、水酸化物、窒化物に含まれる酸素・窒素の量、Siの原料であるSi、SiOに含まれる酸素・窒素の量により制御できるので、製造目的である蛍光体の母体構造を念頭に置きながら各原料の配合を検討することで、所定の母体構造を有する蛍光体を製造することができる。 The values of a, p, q, and r are the amounts of oxygen and nitrogen contained in oxides, carbonates, hydroxides and nitrides of M, which are raw materials of element M, and Si 3 N, which is the raw material of Si. 4. Since it can be controlled by the amount of oxygen and nitrogen contained in SiO 2 , a phosphor having a predetermined matrix structure can be obtained by examining the blending of each raw material while keeping in mind the matrix structure of the phosphor, which is the production purpose. Can be manufactured.

上述したように、製造された蛍光体は、LED等の適宜な発光部と組み合わされて用いられる。そこで、当該蛍光体は、塗布または充填等の操作が容易な粉末形状であることが好ましい。ここで、実施例1に係る蛍光体は、母体構造の骨格となる構成部分に酸化作用を受け易いアルミニウムを含まず、且つ、酸素を含んでいるため耐酸化性に優れているので、雰囲気を不活性雰囲気等に制御することなく大気中でも容易に所定の粒径まで粉砕できる。ここで発光効率の観点からは、当該蛍光体の平均粒径が20μm以下であることが好ましく、平均粒径が0.1μm以上であれば公知の粉砕方法で容易に粉砕可能である。   As described above, the manufactured phosphor is used in combination with an appropriate light emitting unit such as an LED. Therefore, the phosphor is preferably in the form of a powder that can be easily applied or filled. Here, since the phosphor according to Example 1 does not contain aluminum that is easily oxidized in the constituent parts that are the skeleton of the host structure and contains oxygen, it has excellent oxidation resistance. It can be easily pulverized to a predetermined particle size in the air without controlling to an inert atmosphere. Here, from the viewpoint of luminous efficiency, the phosphor preferably has an average particle diameter of 20 μm or less, and can be easily pulverized by a known pulverization method if the average particle diameter is 0.1 μm or more.

(本発明に係る蛍光体の光源への適用方法)
粉末状となった本発明に係る蛍光体を用いて、演色性に優れた白色発光を始めとする多様な発光をおこなうLEDを始めとした光源を製造することができる。
ここで、当該光源の発光部として、例えば、Gaを含む材料から構成される青色発光するLED発光素子、または青色を発光する放電灯等が適用できる。そして、本発明に係る蛍光体を上記LED発光素子と組み合わせた場合には、各種の照明ユニットやディスプレイ装置を製造することができる。また、本発明に係る蛍光体を上記放電灯と組み合わせた場合には、各種蛍光灯や照明ユニット、ディスプレイ装置を製造することができる。
(Method of applying phosphor according to the present invention to a light source)
By using the phosphor according to the present invention in a powder form, it is possible to manufacture a light source such as an LED that emits various kinds of light including white light having excellent color rendering properties.
Here, as the light emitting portion of the light source, for example, an LED light emitting element that emits blue light made of a material containing Ga, a discharge lamp that emits blue light, or the like can be applied. And when the fluorescent substance based on this invention is combined with the said LED light emitting element, various illumination units and a display apparatus can be manufactured. In addition, when the phosphor according to the present invention is combined with the discharge lamp, various fluorescent lamps, illumination units, and display devices can be manufactured.

本発明に係る蛍光体と発光部との組み合わせの方法は、公知の方法で行っても良いが、発光部にLEDを用いた発光装置の場合には、下記のようにして発光装置を作製することができる。
以下、図面を参照しながら、発光部にGaを含む材料から構成される青色発光するLED発光素子を用いた発光装置について説明する。
図7(A)〜(C)は、砲弾型LED発光装置の模式的な断面図であり、図8(A)〜(E)は、反射型LED発光装置の模式的な断面図である。尚、各図面において、相当する部分については同様の符号を付し、説明を省略する場合がある。
The method of combining the phosphor and the light emitting unit according to the present invention may be performed by a known method, but in the case of a light emitting device using an LED for the light emitting unit, the light emitting device is manufactured as follows. be able to.
Hereinafter, a light-emitting device using an LED light-emitting element that emits blue light that is made of a material containing Ga in a light-emitting portion will be described with reference to the drawings.
7A to 7C are schematic cross-sectional views of the bullet-type LED light-emitting device, and FIGS. 8A to 8E are schematic cross-sectional views of the reflective LED light-emitting device. In addition, in each drawing, the same code | symbol is attached | subjected about the corresponding part and description may be abbreviate | omitted.

まず、図7(A)を用いて、発光部にLEDを用い、本発明に係る蛍光体と組み合わせた発光装置の1例について説明する。
砲弾型LED発光装置においては、リードフレーム3の先端に設けられたカップ状の容器5内に、LED発光素子2が設置される。当該実施の形態では、本発明に係る蛍光体または当該蛍光体をシリコンやエポキシ等の透光性のある樹脂に分散させた混合物(以下、蛍光体1と記載する。)を、カップ状の容器5内の全てに充填してLED発光素子2を埋め込み、この蛍光体1がリードフレーム3の一部及びカップ状の容器5とともに、透光性の樹脂4にてモールドされている。
First, with reference to FIG. 7A, an example of a light-emitting device that uses an LED for a light-emitting portion and is combined with a phosphor according to the present invention will be described.
In the bullet-type LED light emitting device, the LED light emitting element 2 is installed in a cup-shaped container 5 provided at the tip of the lead frame 3. In this embodiment, the phosphor according to the present invention or a mixture in which the phosphor is dispersed in a light-transmitting resin such as silicon or epoxy (hereinafter referred to as phosphor 1) is used as a cup-shaped container. The LED 1 is filled with the LED light emitting element 2 and the phosphor 1 is molded together with a part of the lead frame 3 and the cup-shaped container 5 with a translucent resin 4.

次に、図7(B)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体1をシリコンやエポキシ等の透光性のある樹脂に分散させた混合物を、カップ状の容器5上およびLED発光素子2上面に塗布したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, a mixture in which the phosphor 1 is dispersed in a translucent resin such as silicon or epoxy is applied on the cup-shaped container 5 and the upper surface of the LED light emitting element 2.

次に、図7(C)を用いて、更に異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体1をLED発光素子2の上部に設置したものである。
Next, another example of a light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor 1 is installed on the LED light emitting element 2.

以上、図7(A)〜(C)を用いて説明した砲弾型LED発光装置では、LED発光素子2からは光が上方向に放出されるが、光の放出方向が下方向でも同様の方法で発光装置の作成は可能である。例えば、LED発光素子の光の放出方向に反射面、反射板を設け、当該素子から放出される光を反射面に反射させて外部に発光させるものが反射型LED発光装置である。そこで図8(A)〜(E)を用い、反射型LED発光装置に本発明に係る蛍光体を適用した発光装置の例について説明する。   As described above, in the bullet-type LED light emitting device described with reference to FIGS. 7A to 7C, light is emitted upward from the LED light emitting element 2, but the same method is used even when the light emission direction is downward. It is possible to create a light emitting device. For example, a reflection type LED light emitting device is provided that includes a reflecting surface and a reflecting plate in the light emitting direction of an LED light emitting element, and reflects light emitted from the element to the reflecting surface to emit light to the outside. Accordingly, an example of a light emitting device in which the phosphor according to the present invention is applied to a reflective LED light emitting device will be described with reference to FIGS.

まず、図8(A)を用いて、発光部にLEDを用い、本発明に係る蛍光体と組み合わせた発光装置の1例について説明する。
反射型LED発光装置においては、片方のリードフレーム3の先端にLED発光素子2が設置され、このLED発光素子からの発光は、下方に向かい反射板8により反射されて上方より放出される。当該実施の形態では、蛍光体1を反射面8上に塗布するものである。尚、反射板8が形成する凹部内には、LED発光素子2を保護するため透明モールド材9が充填される場合もある。
First, with reference to FIG. 8A, an example of a light-emitting device using an LED as a light-emitting portion and combined with a phosphor according to the present invention will be described.
In the reflective LED light-emitting device, the LED light-emitting element 2 is installed at the tip of one lead frame 3, and light emitted from the LED light-emitting element is reflected downward by the reflecting plate 8 and emitted from above. In this embodiment, the phosphor 1 is applied on the reflecting surface 8. The concave portion formed by the reflecting plate 8 may be filled with a transparent mold material 9 to protect the LED light emitting element 2.

次に、図8(B)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体1をLED発光素子2の下部に設置したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor 1 is installed below the LED light emitting element 2.

次に、図8(C)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体1を、反射板8が形成する凹部内に充填したものである。
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor 1 is filled in a recess formed by the reflector 8.

次に、図8(D)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体1を、LED発光素子2を保護するための前記透明モールド材9の上部に塗布したものである。
次に、図8(E)を用いて、異なる発光装置の1例について説明する。
当該実施の形態では、蛍光体1を、LED発光素子2の表面に塗布したものである。
Next, an example of a different light-emitting device is described with reference to FIG.
In this embodiment, the phosphor 1 is applied on the transparent mold material 9 for protecting the LED light emitting element 2.
Next, an example of a different light-emitting device will be described with reference to FIG.
In this embodiment, the phosphor 1 is applied to the surface of the LED light emitting element 2.

砲弾型LED発光装置と反射型LED発光装置とは、用途に応じて使い分ければよいが、反射型LED発光装置には、薄くできる、光の発光面積を大きくできる、光の利用効率を高められる等のメリットがある。   The bullet-type LED light-emitting device and the reflection-type LED light-emitting device may be properly used depending on the application, but the reflection-type LED light-emitting device can be made thin, the light emission area can be increased, and the light utilization efficiency can be increased. There are merits such as.

実施例1に係る蛍光体の大気中でのTG測定結果を示すグラフである。6 is a graph showing a TG measurement result of the phosphor according to Example 1 in the atmosphere. 実施例1に係る蛍光体の窒素雰囲気中でのTG測定結果を示すグラフである。4 is a graph showing a TG measurement result of a phosphor according to Example 1 in a nitrogen atmosphere. 実施例2に係る蛍光体の大気中でのTG測定結果を示すグラフである。It is a graph which shows the TG measurement result in the air | atmosphere of the fluorescent substance which concerns on Example 2. FIG. 実施例2に係る蛍光体の窒素雰囲気中でのTG測定結果を示すグラフである。It is a graph which shows the TG measurement result in the nitrogen atmosphere of the fluorescent substance concerning Example 2. 比較例1に係る蛍光体の大気中でのTG測定結果を示すグラフである。It is a graph which shows the TG measurement result in the air | atmosphere of the fluorescent substance which concerns on the comparative example 1. 比較例1に係る蛍光体の窒素雰囲気中でのTG測定結果を示すグラフである。It is a graph which shows the TG measurement result in the nitrogen atmosphere of the fluorescent substance concerning the comparative example 1. 本発明に係る砲弾型LED発光装置を示す断面図である。It is sectional drawing which shows the bullet-type LED light-emitting device based on this invention. 本発明に係る反射型LED発光装置を示す断面図である。It is sectional drawing which shows the reflection type LED light-emitting device based on this invention.

符号の説明Explanation of symbols

1.蛍光体混合物
2.LED発光素子
3.リードフレーム
4.樹脂
5.カップ状の容器
8.反射板
9.透明モールド材
1. 1. Phosphor mixture 2. LED light emitting element 3. Lead frame Resin 5. 7. Cup-shaped container Reflector 9. Transparent mold material

Claims (6)

組成式MmBbOoNn:Z(但し、M元素はII価の価数をとる1種以上の元素であり、B元素はIV価の価数をとる1種以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は付活剤である。)で表記される蛍光体であって、
大気中での室温から1000℃までの熱天秤測定において、重量の変化が10%以下であることを特徴とする蛍光体。
Composition formula MmBbOoNn: Z (where M element is one or more elements having a valence of II, B element is one or more elements having a valence of IV, O is oxygen, N is nitrogen and Z element is an activator.)
A phosphor having a change in weight of 10% or less in thermobalance measurement from room temperature to 1000 ° C. in the air.
M元素は、Mg、Ca、Sr、Ba、Znから選択される1種以上の元素であり、
B元素は、Si、Geから選択される1種以上の元素であり、
Z元素は、Eu、Mn、Ceから選択される1種以上の元素であることを特徴とする請求項1に記載の蛍光体。
M element is one or more elements selected from Mg, Ca, Sr, Ba, Zn,
The B element is one or more elements selected from Si and Ge,
The phosphor according to claim 1, wherein the Z element is one or more elements selected from Eu, Mn, and Ce.
前記蛍光体の組成式MmBbOoNn:Zにおいて、m=a+p、b=3、o=a+q、n=4+rとしたときに、aの範囲は0<a≦10であり、pの範囲は−a/2<p<a/2であり、qの範囲は−a/2<q<2aであり、rの範囲は−2<r<2であることを特徴とする請求項1または2に記載の蛍光体。   In the composition formula MmBbOoNn: Z of the phosphor, when m = a + p, b = 3, o = a + q, n = 4 + r, the range of a is 0 <a ≦ 10, and the range of p is −a / The range of q is 2 <p <a / 2, the range of q is −a / 2 <q <2a, and the range of r is −2 <r <2. Phosphor. 前記M元素はSrであり、前記B元素はSiであり、前記Z元素はEuであることを特徴とする請求項1から3のいずれかに記載の蛍光体。   The phosphor according to any one of claims 1 to 3, wherein the M element is Sr, the B element is Si, and the Z element is Eu. 請求項1から4のいずれかに記載の蛍光体と、紫外〜可視領域のいずれかの光を発する発光部とを有し、前記紫外〜可視領域の光の一部を励起源として、前記蛍光体を発光させることを特徴とする光源。   5. The phosphor according to claim 1, and a light emitting unit that emits light in any of the ultraviolet to visible regions, wherein the fluorescence is generated using a part of the light in the ultraviolet to visible region as an excitation source. A light source characterized by causing the body to emit light. 前記発光部が発光ダイオードであることを特徴とする請求項5に記載の光源。   The light source according to claim 5, wherein the light emitting unit is a light emitting diode.
JP2004368153A 2004-12-20 2004-12-20 Phosphor and light source using phosphor Expired - Fee Related JP4798335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004368153A JP4798335B2 (en) 2004-12-20 2004-12-20 Phosphor and light source using phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368153A JP4798335B2 (en) 2004-12-20 2004-12-20 Phosphor and light source using phosphor

Publications (2)

Publication Number Publication Date
JP2006176546A true JP2006176546A (en) 2006-07-06
JP4798335B2 JP4798335B2 (en) 2011-10-19

Family

ID=36730951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368153A Expired - Fee Related JP4798335B2 (en) 2004-12-20 2004-12-20 Phosphor and light source using phosphor

Country Status (1)

Country Link
JP (1) JP4798335B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
WO2008020541A1 (en) * 2006-08-14 2008-02-21 Fujikura Ltd. Light emitting device and illumination device
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP2009001760A (en) * 2007-06-25 2009-01-08 Nec Lighting Ltd Green light-emitting oxynitride phosphor, method of manufacturing the same and light emitting device using the same
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
JP2013256675A (en) * 2013-10-02 2013-12-26 Nec Lighting Ltd Green emission oxynitride phosphor
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
US10020428B2 (en) 2013-10-02 2018-07-10 Glbtech Co., Ltd. White light emitting device having high color rendering
CN114621765A (en) * 2022-03-31 2022-06-14 陕西师范大学 Ce3+Nitrogen oxide doped single-matrix white fluorescent powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2004161806A (en) * 2002-11-08 2004-06-10 Nichia Chem Ind Ltd Phosphor and light-emitting device
JP2005530917A (en) * 2002-09-24 2005-10-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent material, for example for LED
WO2006033418A1 (en) * 2004-09-22 2006-03-30 National Institute For Materials Science Phosphor, process for producing the same and luminescence apparatus
JP2006124673A (en) * 2004-09-29 2006-05-18 Showa Denko Kk Oxynitride-based fluorophor and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206481A (en) * 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh Illumination unit having at least one led as light source
JP2005530917A (en) * 2002-09-24 2005-10-13 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Luminescent material, for example for LED
JP2004161806A (en) * 2002-11-08 2004-06-10 Nichia Chem Ind Ltd Phosphor and light-emitting device
WO2006033418A1 (en) * 2004-09-22 2006-03-30 National Institute For Materials Science Phosphor, process for producing the same and luminescence apparatus
JP2006124673A (en) * 2004-09-29 2006-05-18 Showa Denko Kk Oxynitride-based fluorophor and method for producing the same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319195B2 (en) 2003-11-28 2008-01-15 Dowa Electronics Materials Co., Ltd. Composite conductor, superconductive apparatus system, and composite conductor manufacturing method
US7252788B2 (en) 2004-02-27 2007-08-07 Dowa Mining Co., Ltd. Phosphor, light source and LED
US7291289B2 (en) 2004-05-14 2007-11-06 Dowa Electronics Materials Co., Ltd. Phosphor and production method of the same and light source and LED using the phosphor
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
US7273568B2 (en) 2004-06-25 2007-09-25 Dowa Mining Co., Ltd. Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
USRE44996E1 (en) * 2004-06-25 2014-07-08 Nichia Corporation Phosphor and production method of the same, method of shifting emission wavelength of phosphor, and light source and LED
US8441180B2 (en) 2004-07-09 2013-05-14 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7884539B2 (en) 2004-07-09 2011-02-08 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US8066910B2 (en) 2004-07-28 2011-11-29 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
USRE44162E1 (en) * 2004-08-02 2013-04-23 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
USRE45502E1 (en) 2004-08-20 2015-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7476335B2 (en) 2004-08-20 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US8308981B2 (en) 2004-08-27 2012-11-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7803286B2 (en) 2004-08-27 2010-09-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7345418B2 (en) 2004-08-27 2008-03-18 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
JPWO2008020541A1 (en) * 2006-08-14 2010-01-07 株式会社フジクラ LIGHT EMITTING DEVICE AND LIGHTING DEVICE
CN101501874B (en) * 2006-08-14 2012-04-04 株式会社藤仓 Light emitting device and illumination device
US8053970B2 (en) 2006-08-14 2011-11-08 Fujikura Ltd. Light emitting device and illumination device
EP2056366A4 (en) * 2006-08-14 2011-05-25 Fujikura Ltd Light emitting device and illumination device
EP2056366A1 (en) * 2006-08-14 2009-05-06 Fujikura, Ltd. Light emitting device and illumination device
WO2008020541A1 (en) * 2006-08-14 2008-02-21 Fujikura Ltd. Light emitting device and illumination device
JP2009001760A (en) * 2007-06-25 2009-01-08 Nec Lighting Ltd Green light-emitting oxynitride phosphor, method of manufacturing the same and light emitting device using the same
JP2013256675A (en) * 2013-10-02 2013-12-26 Nec Lighting Ltd Green emission oxynitride phosphor
US10020428B2 (en) 2013-10-02 2018-07-10 Glbtech Co., Ltd. White light emitting device having high color rendering
CN114621765A (en) * 2022-03-31 2022-06-14 陕西师范大学 Ce3+Nitrogen oxide doped single-matrix white fluorescent powder
CN114621765B (en) * 2022-03-31 2023-11-14 陕西师范大学 Ce (cerium) 3+ Nitrogen oxide doped single-matrix white light fluorescent powder

Also Published As

Publication number Publication date
JP4798335B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4798335B2 (en) Phosphor and light source using phosphor
JP4543250B2 (en) Phosphor mixture and light emitting device
JP4524468B2 (en) Phosphor, method for producing the same, light source using the phosphor, and LED
JP5941243B2 (en) Light emitting device, vehicle lamp using the same, and headlamp
JP4511885B2 (en) Phosphor, LED and light source
JP4207489B2 (en) α-sialon phosphor
JP4543253B2 (en) Phosphor mixture and light emitting device
JP5145934B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
JP4892193B2 (en) Phosphor mixture and light emitting device
JP5511820B2 (en) Alpha-sialon phosphor
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
JP2005048105A (en) Phosphor composition and light emitting equipment using the same
JP2006213910A (en) Oxynitride phosphor and light-emitting device
JP2005336450A (en) Phosphor composition, method for producing the same and light-emitting device using the same phosphor composition
JP2008505477A (en) Illumination system including a radiation source and a fluorescent material
JP4988180B2 (en) Oxynitride phosphor and method for producing the same
JP2005139449A (en) Red phosphor, method for producing the same, red led element given by utilizing the same, white led element, and active light-emitting-type liquid crystal display element
JP2008189700A (en) Nitride-based fluorescent material, oxynitride-based fluorescent material and light-emitting device produced by using the same
JP2010270196A (en) Phosphor, method for manufacturing phosphor, phosphor-containing composition, light-emitting device, lighting apparatus, image display, and fluorescent paint
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
KR100802873B1 (en) Orange-emitting phosphor
JP4309242B2 (en) Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode
KR100846483B1 (en) Ba-sr-ca containing compound and white light emitting device including the same
JP5194395B2 (en) Oxynitride phosphor and light-emitting device using the same
JP5683625B2 (en) Light emitting device, vehicle lamp using the same, and headlamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4798335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees