JP2005048105A - Phosphor composition and light emitting equipment using the same - Google Patents

Phosphor composition and light emitting equipment using the same Download PDF

Info

Publication number
JP2005048105A
JP2005048105A JP2003283037A JP2003283037A JP2005048105A JP 2005048105 A JP2005048105 A JP 2005048105A JP 2003283037 A JP2003283037 A JP 2003283037A JP 2003283037 A JP2003283037 A JP 2003283037A JP 2005048105 A JP2005048105 A JP 2005048105A
Authority
JP
Japan
Prior art keywords
light
phosphor composition
phosphor
composition
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003283037A
Other languages
Japanese (ja)
Inventor
Shozo Oshio
祥三 大塩
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2003283037A priority Critical patent/JP2005048105A/en
Publication of JP2005048105A publication Critical patent/JP2005048105A/en
Application status is Withdrawn legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies
    • Y02B20/16Gas discharge lamps, e.g. fluorescent lamps, high intensity discharge lamps [HID] or molecular radiators
    • Y02B20/18Low pressure and fluorescent lamps
    • Y02B20/181Fluorescent powders

Abstract

PROBLEM TO BE SOLVED: To provide a phosphor composition which is excitable by a near ultraviolet-blue light, can be produced easily, emits a strong light, and emits a warm color light, especially a red color light, and to provide light emitting equipment using the phosphor composition.
SOLUTION: The phosphor composition contains as a main component a composition comprised of a crystalline material represented by the composition formula: a((1-x-y)MO-xEuO-yCe2O3)-bSi3N4-cAlN, (wherein M is at least one of Mg, Ca, Sr and Ba, 0.3≤a/(a+b)≤0.9, 0.2≤a/(a+c)≤0.8, 0.3≤c/(b+c)≤0.9, 0≤x≤0.2, 0≤y≤0.2 and 0.002≤x+y≤0.2), and the light emitting equipment uses an above-mentioned phosphor composition 2 and a light emitting element 1 as a light source, and the phosphor composition 2 and the light emitting element 1 are so combined as the phosphor composition 2 covers over the light emitting element 1.
COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、各種発光装置などに応用可能な新しい蛍光体組成物、とりわけ赤色蛍光体組成物と、その蛍光体組成物を用いて構成した発光装置に関する。 The present invention, various light emitting device new phosphor compositions that can be applied to such, especially a red phosphor composition, a light emitting apparatus constituted by using the phosphor composition.

従来から、近紫外〜可視光(特に青色光)で励起され、黄〜赤色系の発光を放つ窒化物蛍光体または酸窒化物蛍光体として、例えば、Ca−Al−Si−O−N系オキシ窒化物ガラスを母体材料とした酸窒化物蛍光体(例えば、特許文献1参照)、アルファサイアロンを母体材料とした酸窒化物蛍光体(例えば、特許文献2、特許文献3参照)、ニトリドシリケートを母体材料とした窒化物蛍光体(例えば、特許文献4、特許文献5参照)などが知られ、これらの蛍光体を用いた発光装置が知られている。 Conventionally, when excited by near-ultraviolet to visible light (especially blue light), as the nitride phosphor or oxynitride phosphor emits luminescence of yellow to red, for example, Ca-Al-Si-O-N-based oxy oxynitride nitrides glass was a base material phosphor (e.g., see Patent Document 1), oxynitride was an alpha-sialon as a base material phosphor (e.g., Patent Document 2, Patent Document 3), nitridosilicates the nitride phosphor having a host material (e.g., Patent Document 4, Patent Document 5 reference) are known, such as, light emitting devices using these phosphors are known.

上記Ca−Al−Si−O−N系オキシ窒化物ガラスを母体材料とした酸窒化物蛍光体は、結晶性を有しないガラス状態にある蛍光体であり、発光中心として、例えばEu 2+イオンを付活した蛍光体は、波長200〜600nmの紫外〜橙色光で励起され、波長580〜680nmに発光ピークを有する黄色〜赤色の蛍光を放つことが知られている。 The Ca-Al-Si-O- N -based oxynitride glass oxynitride as a host material phosphor is a phosphor which is in a glassy state having no crystallinity, as a luminescent center, for example, Eu 2+ ions luminescent material activated by is excited by ultraviolet to orange light having a wavelength of 200 to 600 nm, are known to fluoresce yellow to red in the wavelength 580~680Nm.

また、上記アルファサイアロンを母体材料とした酸窒化物蛍光体は、結晶質の、例えば粉末状の蛍光体であり、発光中心として、例えばEu 2+イオンを付活した蛍光体は、少なくとも波長250〜450nmの紫外〜青色光で励起され、波長540〜620nmに発光ピークを有する黄色〜橙色の蛍光を放つことが知られている。 Further, the alpha-sialon the matrix material and the oxynitride phosphor is crystalline, for example, powdered phosphor, as a luminescent center, for example, Eu 2+ ions activated by the phosphor, at least the wavelength 250 is excited by ultraviolet to blue light of 450nm, it is known to fluoresce yellow to orange in the wavelength 540~620Nm.

なお、上記アルファサイアロンを母体材料とした酸窒化物蛍光体の組成は、M p/2 Si 12-pq Al p+qq16-q :Eu 2+ (但し、MはCa元素単独、またはSr元素またはMg元素の少なくとも一つと組み合わせたCa元素、q、pはそれぞれ、0≦q≦2.5、0.5≦p≦3を満足する数値)で表される。 The composition of the alpha-sialon the oxynitride as a host material phosphor, M p / 2 Si 12- pq Al p + q O q N 16-q: Eu 2+ ( where, M is Ca element alone, or Ca elements in combination with at least one of Sr element or Mg element, q, p are each represented by a numerical value satisfying 0 ≦ q ≦ 2.5,0.5 ≦ p ≦ 3).

また、上記ニトリドシリケートを母体材料とした窒化物蛍光体は、M x Si yz :Eu 2+ (但し、MはCa、Sr、Baから選ばれる少なくとも一つの元素であり、かつ、x、y、zは、z=2/3x+4/3yを満足する数値)の一般式で表される結晶質の蛍光体であり、例えば、Sr 2 Si 58 :Eu 2+蛍光体である。 Further, the nitride phosphor in which the above nitridosilicates a base material is, M x Si y N z: Eu 2+ ( where, M is at least one element selected Ca, Sr, and Ba, and, x , y, z is, z = 2 / 3x + 4 / 3y are crystalline phosphor represented by the general formula numbers satisfying), for example, Sr 2 Si 5 N 8: is a Eu 2+ phosphor. 発光中心として、Eu 2+イオンを付活した上記ニトリドシリケートを母体材料とした窒化物蛍光体は、少なくとも波長250〜550nmの紫外〜緑色光で励起され、波長600〜680nmに発光ピークを有する赤色系の蛍光を放つことが知られている。 As a luminescent center, nitrides the nitridosilicate was activated by Eu 2+ ions as a host material phosphor is excited by ultraviolet to green light of at least a wavelength 250 to 550 nm, in the wavelength 600~680nm it is known that emit fluorescence of red system. また、発光中心として、Ce 3+イオンを付活したニトリドシリケート蛍光体は、少なくとも波長370〜440nmの近紫外〜青色光で励起され、波長545〜555nmに発光ピークを有する黄緑〜黄色系の蛍光を放つことが知られている。 Further, as a luminescent center, nitridosilicate luminescent material activated by Ce 3+ ions are excited by near-ultraviolet to blue light of at least wavelength 370~440Nm, yellow-green-yellow having an emission peak at a wavelength 545~555nm it is known that emit fluorescence.

なお、近紫外〜可視光で励起され赤色系の発光を放つ、上記窒化物蛍光体および上記酸窒化物蛍光体以外の蛍光体としては、CaS:Eu 2+やSrS:Eu 2+などのアルカリ土類金属硫化物蛍光体が知られている(例えば、特許文献6参照。)。 Note that emits luminescence of red is excited by near-ultraviolet to visible light, the phosphor other than the nitride phosphor and the oxynitride phosphor, CaS: Eu 2+ and SrS: alkali such Eu 2+ earth metal sulfide phosphor is known (e.g., see Patent Document 6.).

発光装置としては、例えば青色発光ダイオード(LED)と少なくとも上記蛍光体(蛍光体組成物)とを組み合わせた白色発光素子(以下、白色LEDという。)や、この白色LEDを用いて構成した表示装置や照明装置が知られている。 As the light-emitting device, for example, blue light emitting diodes (LED) and at least the phosphor (phosphor composition) white light-emitting device combining a (hereinafter. Referred white LED) or a display apparatus constituted by using the white LED and lighting devices are known.
特開2001−214162号公報 JP 2001-214162 JP 特開2002−363554号公報 JP 2002-363554 JP 特開2003−124527号公報 JP 2003-124527 JP 特開2002−322474号公報 JP 2002-322474 JP 特表2003−515655号公報 JP-T 2003-515655 JP 特開2002−60747号公報 JP 2002-60747 JP

しかし、上記した従来の蛍光体は、各々、以下の課題を抱えていた。 However, conventional phosphors described above, respectively, had the following problems.

上記Ca−Al−Si−O−N系オキシ窒化物ガラスを母体材料とした酸窒化物蛍光体は、結晶質の粉末ではなく、ガラス状態にある非晶質の蛍光体であるため、発光強度が弱く、また約1700℃の高温で加熱溶融して製造することに起因して、各種発光装置用として適する良好な粒度分布を有する粉末状蛍光体を、高い歩留りで得ることが困難であった。 Since the Ca-Al-Si-O-N-based oxynitride glass matrix material and the oxynitride phosphor is not a crystalline powder, a phosphor amorphous in the glassy state, the emission intensity weak, also due to be manufactured by heating and melting at a high temperature of about 1700 ° C., a powdered fluorescent material having a good particle size distribution suitable for the various light-emitting device, it is difficult to obtain a high yield .

また、上記アルファサイアロンを母体材料とした酸窒化物蛍光体では、発光ピーク波長が600nmを越える高効率赤色発光を得るのが困難であり、特に、620nmを超える深い赤色発光を得ることができなかった。 Further, in the above alpha-SiAlON the oxynitride as a host material phosphor, it is difficult emission peak wavelength to obtain high efficiency red light emission exceeding 600 nm, in particular, could not be obtained a deep red emission exceeding 620nm It was.

さらに、上記ニトリドシリケートを母体材料とした窒化物蛍光体では、高純度材料の入手や製造が困難なアルカリ土類金属の窒化物を蛍光体原料として用いて製造するため、高純度の蛍光体が製造し難しく、このため安価な蛍光体を得ることが困難であった。 Further, the nitride phosphor in which the above nitridosilicates a base material, for availability and production of high-purity material is produced using a hard alkaline earth metal nitride as a phosphor raw material, high-purity phosphor there difficult to manufacture, and thus is possible to obtain an inexpensive phosphor is difficult.

また、上記アルカリ土類金属硫化物蛍光体では、化学的に不安定であり、大気中の水分や酸素と反応して変質しやすいため、発光性能が経時変化するなど、性能面での信頼性に欠ける課題があった。 Further, in the above alkaline earth metal sulfide phosphor is chemically unstable, and is easily altered by reaction with moisture and oxygen in the air, the light emitting performance such as aging, reliability in performance there is a problem that lacks.

また、上記した課題を蛍光体が抱えるために、これらの蛍光体を用いて構成した発光装置にあっては、各々、発光強度が弱い課題や、例えば照明用途などで求められる、赤色成分の発光強度が弱い課題や、発光装置が高価にならざるを得ない課題、また、発光性能が経時劣化する課題などがあった。 Moreover, the problems described above for the phosphor faced, in the light emitting apparatus constituted by using these phosphors, respectively, emission intensity and weak problems, for example, obtained by lighting applications, the light emitting of the red component strength and low challenge, the challenge emitting device inevitably expensive, also emission performance had such problem that deterioration with time.

本発明は、このような課題を解決するためになされたものであり、製造が容易で、発光強度が強く、化学的に安定で、かつ、深い赤色光を放つ蛍光体組成物、特に、上記白色LED用として適する、近紫外〜青色光で励起可能な蛍光体組成物を提供することを目的とする。 The present invention has been made to solve the above problems, is easy to manufacture, light emission intensity is strong, chemically stable, and phosphor composition emitting a deep red light, in particular, the suitable as a white LED, and an object thereof is to provide a excitable phosphor composition in the near-ultraviolet to blue light. また、本発明は、赤色発光成分の発光強度が強く、発光性能面での信頼性も良好で、比較的安価に製造し得る上記発光装置を提供することも目的としている。 Further, the present invention has a strong emission intensity of the red emission component, the reliability of the light emitting performance surface is good, and also aims to provide a light emitting device capable of relatively low cost.

本発明は、a((1−x−y)MO・xEuO・yCe 23 ))・bSi 34・cAlNの組成式で表される組成物を主体として含む蛍光体組成物であって、 The present invention relates to a phosphor composition comprising mainly of a ((1-x-y ) MO · xEuO · yCe 2 O 3)) · bSi 3 N represented by the composition by the composition formula of 4 · CALN ,
前記蛍光体組成物が、結晶質からなり、 The phosphor composition is comprised of crystalline
前記組成式中のMが、Mg、Ca、Sr、およびBaから選ばれる少なくとも一つのアルカリ土類金属元素であり、 M in the composition formula, Mg, Ca, Sr, and at least one alkaline earth metal selected from Ba,
前記組成式中のa、b、c、x、yがそれぞれ、 a in the formula, b, c, x, y, respectively,
0.3≦a/(a+b)≦0.9、 0.3 ≦ a / (a ​​+ b) ≦ 0.9,
0.2≦a/(a+c)≦0.8、 0.2 ≦ a / (a ​​+ c) ≦ 0.8,
0.3≦c/(b+c)≦0.9、 0.3 ≦ c / (b + c) ≦ 0.9,
0≦x≦0.2、 0 ≦ x ≦ 0.2,
0≦y≦0.2、 0 ≦ y ≦ 0.2,
0.002≦x+y≦0.2、 0.002 ≦ x + y ≦ 0.2,
の関係を満たすことを特徴とする蛍光体組成物を提供する。 Providing a phosphor composition characterized by satisfying the relationship.

本発明の蛍光体組成物は、上記構成を有し、製造が容易で、発光強度が強く、化学的に安定で、かつ、深い赤色光を放つ蛍光体組成物、特に、上記白色LED用として適する、近紫外〜青色光で励起可能な蛍光体組成物を提供できる。 Phosphor composition of the present invention has the above configuration, easy to manufacture, light emission intensity is strong, chemically stable, and phosphor composition emitting a deep red light, in particular, as for the white LED suitable, it can provide a phosphor composition capable excited by near-ultraviolet to blue light.

また、本発明の発光装置は、上記構成を有し、赤色発光成分の発光強度が強く、発光性能面での信頼性も良好で、比較的安価に製造し得る発光装置を提供できる。 The light-emitting device of the present invention has the above configuration, strong emission intensity of the red emission component, the reliability of the light emitting performance surface is good, and can provide a light emitting device capable of relatively low cost.

本発明の蛍光体組成物の一例は、a((1−x−y)MO・xEuO・yCe 23 ))・bSi 34・cAlNの組成式で表される組成物を主体として含む蛍光体組成物であって、上記蛍光体組成物が結晶質からなり、上記組成式中のMが、Mg、Ca、Sr、およびBaから選ばれる少なくとも一つのアルカリ土類金属元素であり、上記組成式中のa、b、c、x、yがそれぞれ、0.3≦a/(a+b)≦0.9、0.2≦a/(a+c)≦0.8、0.3≦c/(b+c)≦0.9、0≦x≦0.2、0≦y≦0.2、0.002≦x+y≦0.2の関係を満たす蛍光体組成物である。 An example of the phosphor composition of the present invention comprises a ((1-x-y ) MO · xEuO · yCe 2 O 3)) · bSi 3 N 4 · cAlN composition represented by composition formula as a main component a phosphor composition, the phosphor composition is a crystalline, M in the above composition formula, Mg, Ca, at least one alkaline earth metal element selected from Sr, and Ba, the a in formula, b, c, x, y, respectively, 0.3 ≦ a / (a ​​+ b) ≦ 0.9,0.2 ≦ a / (a ​​+ c) ≦ 0.8,0.3 ≦ c / a (b + c) ≦ 0.9,0 ≦ x ≦ 0.2,0 phosphor composition satisfies the relationship ≦ y ≦ 0.2,0.002 ≦ x + y ≦ 0.2.

ここで、主体として含むとは、上記組成式で表される組成物を90モル%以上含むことをいい、95モル%以上含むことが好ましい。 Here, to include mainly refers to comprising a composition represented by the composition formula 90 mol% or more, preferably it contains more than 95 mol%. また、結晶質とは、X線回折により分析した結果、回折ピークが認められることをいう。 Further, the crystalline was analyzed by X-ray diffraction, it means that the diffraction peak is observed.

このように組成を構成すると、aMO・bSi 34・cAlNの組成を有する無機化合物が蛍光体母体となり、イオンの価数が二価のユーロピウムイオン(Eu 2+ )、または、イオンの価数が三価のセリウムイオン(Ce 3+ )のうち、少なくとも一方が、上記蛍光体母体中に含まれるようになる。 According to this structure the composition, the inorganic compound becomes a phosphor matrix having a composition of aMO · bSi 3 N 4 · cAlN , the valence of ions divalent europium ion (Eu 2+), or valence of the ion There among the trivalent cerium ions (Ce 3+), at least one of, so contained in the phosphor matrix. Eu 2+イオンやCe 3+イオンは、蛍光体母体中で発光中心として機能し得るイオンであるので、この結果、上記組成物は、少なくともEu 2+イオン、または、Ce 3+イオンの固有の電子エネルギー遷移に基づく発光を放つ蛍光体組成物になる。 Eu 2+ ions and Ce 3+ ions, since an ion capable of functioning as a luminescent center in the phosphor matrix, the result, the composition, at least Eu 2+ ions, or specific of Ce 3+ ions comprising the phosphor composition that emits luminescence based on electron energy transition. なお、Ce 3+イオンを含む蛍光体組成物にあっては、電荷補償(charge conpensate)を目的として、例えば、アルカリ金属イオンなど、価数が一価のイオンを、蛍光体組成物中にさらに含めるとよい。 Incidentally, Ce 3+ In the phosphor composition containing ion, for the purpose of charge compensation (charge conpensate), for example, an alkali metal ion, an ion of valency monovalent, further in the phosphor composition it may include. また、この場合、アルカリ金属イオンの含有量を、Ce 3+イオンの含有量の半数〜倍数にするのが、理想に近い電荷補償を実現する目的で好ましく、理論的には同数にする。 In this case, the content of the alkali metal ions, to the half-multiple of the content of Ce 3+ ions, preferably for the purpose of realizing the charge compensation near ideal, theoretically to the same number.

また、このように組成を構成すると、蛍光体組成物が、入手が容易なセラミックス原料、すなわち、アルカリ土類金属酸化物(MO)を生成し得るアルカリ土類金属塩などのアルカリ土類金属化合物、窒化珪素(Si 34 )、窒化アルミニウム(AlN)を用いて製造できるようになるので、比較的安価に製造できる蛍光体組成物になる。 Further, when configuring the composition in this manner, the phosphor composition is readily available ceramic raw material, i.e., alkaline earth metals such as alkaline earth metal salts capable of generating alkaline earth metal oxides (MO) metal compound , silicon nitride (Si 3 N 4), since it becomes possible to manufacture using aluminum nitride (AlN), becomes a phosphor composition that is relatively inexpensive to manufacture.

本実施形態の蛍光体組成物の好ましい形態としては、実質的にCeを含まない蛍光体組成物とする。 Preferred forms of the phosphor composition of the present embodiment, the substantially phosphor compositions without Ce. すなわち、発光中心をEu 2+イオンとした蛍光体組成物とする。 That is, the phosphor composition of the luminescent center was Eu 2+ ions. ここで、実質的にCeを含まないとは、アルカリ土類金属元素(前記M)に対して、Ceを0.01原子%以上含まないことをいう。 Herein, the substantially free of Ce, an alkali earth metal element (the M), means that it does not contain a Ce 0.01 atomic percent or more. また、より好ましい形態では、実質的にCeを含まず、Mの主体、すなわち、Mの80原子%以上をSrとした蛍光体組成物とする。 Further, in a more preferred embodiment, substantially free of Ce, mainly of M, namely, a phosphor composition was Sr more than 80 atomic% of M. このようにすると、蛍光体組成物が、白色LED用として好ましい、黄〜橙〜赤色系(以下、温色系という。)の発光を放つものとなり得る。 In this way, the phosphor composition is preferred as a white LED, yellow to orange to red light (hereinafter, referred to. Temperature color system) can be assumed to emit luminescence.

本実施形態の蛍光体組成物のさらに好ましい形態では、実質的にCeを含まず、Mの主体をSrとした蛍光体組成物において、前述の組成式中のa、b、cの数値をそれぞれ、0.45≦a/(a+b)≦0.85、0.3≦a/(a+c)≦0.8、0.3≦c/(b+c)≦0.85を満足する数値、より好ましくは、0.6≦a/(a+b)≦0.85、0.4≦a/(a+c)≦0.6、0.6≦c/(b+c)≦0.85を満足する数値にする。 In a further preferred embodiment of the phosphor composition of the present embodiment, substantially free of Ce, the phosphor composition of the principal was Sr of M, a in the above-mentioned composition formula, b, c numbers respectively , numbers satisfying 0.45 ≦ a / (a ​​+ b) ≦ 0.85,0.3 ≦ a / (a ​​+ c) ≦ 0.8,0.3 ≦ c / (b + c) ≦ 0.85, more preferably is a number that satisfies 0.6 ≦ a / (a ​​+ b) ≦ 0.85,0.4 ≦ a / (a ​​+ c) ≦ 0.6,0.6 ≦ c / (b + c) ≦ 0.85. なお、a=2、b=1、c=2、または、a=3、b=1、c=3、または、a=4、b=1、c=4を満足する数値にすることもできる。 It is also possible to a = 2, b = 1, c = 2, or, a = 3, b = 1, c = 3, or, a = 4, b = 1, c = 4 numbers satisfying . このようにすると、蛍光体組成物が、白色LED用として好ましい、温色系の発光、特に赤色発光を放つものとなる。 In this way, the phosphor composition is preferred as a white LED, emitting warm color system, and especially those which emit red emission.

本実施形態の蛍光体組成物は、560nmを超え660nm以下の波長領域に発光ピークを有する温色系の光を放つ結晶質の蛍光体組成物、または、600nmを超え660nm以下、特に、620nmを超え660nm以下の波長領域に発光ピークを有する赤色系の光を放つ結晶質の蛍光体組成物とすることもできる。 Phosphor composition of the present embodiment, the phosphor composition of the crystalline that emits light of Yutakairo system having an emission peak in 660nm or less in a wavelength region exceeding the 560 nm, or, 660nm exceed 600nm or less, in particular, a 620nm may be a phosphor composition of crystalline emitting red light having an emission peak in a wavelength region 660nm exceeded. このような温色系の発光を放つ蛍光体組成物を得るには、前述の組成式中のx、yを、少なくともx>yを満足するようにし、少なくともEu 2+イオンの含有量がCe 3+イオンの含有量よりも多くなるようにする。 To obtain such Yutakairo phosphor composition that emits luminescence, x in the above composition formula, a y, so as to satisfy at least x> y, the content of at least Eu 2+ ions Ce 3+ to be larger than the content of ions. 上記蛍光体母体中では、温色系の発光はEu 2+イオンの電子遷移によって、もたらされるので、y/(x+y)の数値は小さければ小さいほど、温色系光を多く放つ蛍光体組成物になる。 The fluorescence material in maternal by electron transition temperature color system of emission Eu 2+ ions, so results, y / as (x + y) value of the smaller the phosphor composition emitting more warm color based light become. したがって、温色系光を放つ蛍光体組成物を得るためには、上記y/(x+y)の数値は、少なくとも0≦y/(x+y)<0.2を満足するようにするとよいが、好ましくは、0≦y/(x+y)<0.1にし、より好ましくは、0≦y/(x+y)<0.03にする。 Therefore, in order to obtain a phosphor composition emitting warm color based light, the numerical values ​​of the y / (x + y) is preferable to be satisfied at least 0 ≦ y / (x + y) <0.2, preferably is to 0 ≦ y / (x + y) <0.1, more preferably, to 0 ≦ y / (x + y) <0.03. なお、上記理由で、y/(x+y)=0にするのもよい。 Incidentally, the above reasons may for the y / (x + y) = 0.

なお、Ce 3+イオンとEu 2+イオンを共付活した上記蛍光体組成物では、Ce 3+イオンからEu 2+イオンへのエネルギー伝達が生じるため、励起光の蛍光体組成物への吸収効率や励起効率を、ある程度の範囲内でコントロールできるという利点を有する。 In the above phosphor composition coactivated the Ce 3+ ions and Eu 2+ ions, absorption from Ce 3+ ions for energy transfer to Eu 2+ ions occurs, the phosphor composition of the excitation light the efficiency and excitation efficiency, has the advantage that it can be controlled within a certain range.

また、本発明の発光装置の一例は、上記本実施形態の蛍光体組成物を発光源として用いて構成するが、好ましくは、360nm以上420nm未満の波長領域に発光ピークを有する近紫外光、または、420nm以上500nm以下の波長領域に発光ピークを有する青色光を放つ発光素子と、本実施形態の蛍光体組成物とを組み合わせてなる構造とする。 Further, an example of a light-emitting device of the present invention is constituted by using the phosphor composition of the present embodiment as a light-emitting source, but preferably, near-ultraviolet light in the wavelength region of less than 360nm or 420 nm, or and a light emitting element that emits blue light having an emission peak in 500nm or less in a wavelength region above 420 nm, a structure comprising a combination of a phosphor composition of the present embodiment. さらに、好ましくは、本実施形態の蛍光体組成物と、さらに発光素子とを発光源として用い、上記蛍光体組成物が上記発光素子を覆うように、上記蛍光体組成物と上記発光素子とを組み合わせて構成する。 Further, preferably, the phosphor composition of the present embodiment, further using a light-emitting element as a light emitting source, as the phosphor composition covers the light emitting element, and the phosphor composition and the light emitting element in combination make up.

なお、上記構造を有する本実施形態の発光装置においては、上記発光素子が放つ近紫外光または青色光によって、本実施形態の蛍光体組成物を直接励起する構造とすることもできる。 Note that, in the light-emitting device of the present embodiment having the above structure, the near-ultraviolet light or blue light the light emitting element emits may have a structure to excite the phosphor composition of the present embodiment directly. 一方、上記構造とは異なって、上記発光素子が放つ近紫外光または青色光によって励起され、上記発光素子が放つ光の発光ピークよりも長波長側に発光ピークを有し、かつ、本実施形態の蛍光体組成物が放つ蛍光の発光ピークよりも短波長側に発光ピークを有する蛍光を放つ第1の蛍光体組成物を、上記発光素子によって励起し、上記第1の蛍光体組成物が放つ蛍光によって、間接的に本実施形態の蛍光体組成物を励起する構造とすることもできる。 On the other hand, unlike the above structure, the light emitting device is excited by near-ultraviolet light or blue light emitted by, than the emission peak of the light the light emitting element emits has an emission peak to the long wavelength side, and, the present embodiment a first phosphor composition than the emission peak of the fluorescent phosphor composition emits emits fluorescence having an emission peak in the short wavelength side, and excited by the light emitting element, the first phosphor composition emits by fluorescence, it can be indirectly structure to excite the phosphor composition of the present embodiment.

また、発光素子により本実施形態の蛍光体組成物を、直接または間接的に励起する上記構造の発光装置において、以下の組み合わせによって得られる装置構造にすると、需要の多い白色LEDを得ることが可能になるので好ましい。 Also, the phosphor composition of the present embodiment by the light emitting element, the light emitting device directly or indirectly excited to the structure, when the device structure obtained by the following combinations can be obtained more white LED demand since it becomes preferred.

(1)近紫外光を放つ発光素子と、420nm以上500nm以下の波長領域に発光ピークを有する青色光を放つ青色蛍光体と、500nmを超え550nm以下の波長領域に発光ピークを有する緑色光を放つ緑色蛍光体と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (1) emits a light emitting element that emits near ultraviolet light, and blue phosphor that emits blue light having an emission peak in 500nm or less in a wavelength region above 420 nm, green light having an emission peak in a wavelength region 550nm exceed 500nm green fluorescence and body, comprising a combination of a red phosphor composition of the present embodiment emits red light having an emission peak in 660nm or less in a wavelength region exceeding the 600nm structure.

(2)近紫外光を放つ発光素子と、420nm以上500nm以下の波長領域に発光ピークを有する青色光を放つ青色蛍光体と、500nmを超え560nm以下の波長領域に発光ピークを有する緑色光を放つ緑色蛍光体と、560nmを超え600nm以下の波長領域に発光ピークを有する黄色光を放つ黄色蛍光体と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (2) emits a light emitting element that emits near ultraviolet light, and blue phosphor that emits blue light having an emission peak in 500nm or less in a wavelength region above 420 nm, green light having an emission peak in a wavelength region 560nm exceed 500nm a green phosphor, a red phosphor of the present embodiment emits a yellow phosphor that emits yellow light having an emission peak in a wavelength region 600nm exceeded 560 nm, red light having an emission peak in 660nm or less in a wavelength region exceeding the 600nm structure comprising a combination of body composition.

(3)近紫外光を放つ発光素子と、420nm以上500nm以下の波長領域に発光ピークを有する青色光を放つ青色蛍光体と、560nmを超え600nm以下の波長領域に発光ピークを有する黄色光を放つ黄色蛍光体と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (3) emits a light emitting element that emits near ultraviolet light, and blue phosphor that emits blue light having an emission peak in 500nm or less in a wavelength region above 420 nm, yellow light having an emission peak in a wavelength region 600nm exceed 560nm structure formed by combining yellow fluorescence and body, a red phosphor composition of the present embodiment emits red light having an emission peak in 660nm or less in a wavelength region exceeding the 600 nm.

(4)青色光を放つ発光素子と、500nmを超え560nm以下の波長領域に発光ピークを有する緑色光を放つ緑色蛍光体と、560nmを超え600nm以下の波長領域に発光ピークを有する黄色光を放つ黄色蛍光体と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (4) emits a light emitting element that emits blue light, a green phosphor that emits green light having an emission peak in a wavelength region 560nm exceeded 500 nm, the yellow light having an emission peak in a wavelength region 600nm exceed 560nm structure formed by combining yellow fluorescence and body, a red phosphor composition of the present embodiment emits red light having an emission peak in 660nm or less in a wavelength region exceeding the 600 nm.

(5)青色光を放つ発光素子と、560nmを超え600nm以下の波長領域に発光ピークを有する黄色光を放つ黄色蛍光体と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (5) emits a light emitting element that emits blue light, a yellow phosphor that emits yellow light having an emission peak in a wavelength region 600nm exceeded 560 nm, red light having an emission peak in 660nm or less in a wavelength region exceeding the 600nm structure formed by combining a red phosphor composition of the present embodiment.

(6)青色光を放つ発光素子と、500nmを超え560nm以下の波長領域に発光ピークを有する緑色光を放つ緑色蛍光体と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (6) emits a light emitting element that emits blue light, a green phosphor that emits green light having an emission peak in a wavelength region 560nm exceeded 500 nm, red light having an emission peak in a wavelength region 660nm exceed 600nm structure formed by combining a red phosphor composition of the present embodiment.

(7)485nmを超え510nm以下の波長領域に発光ピークを有する青緑色光を放つ発光素子と、600nmを超え660nm以下の波長領域に発光ピークを有する赤色光を放つ本実施形態の赤色蛍光体組成物とを組み合わせてなる構造。 (7) a light-emitting element that emits blue-green light having an emission peak in a wavelength region 510nm exceeded 485 nm, the red phosphor composition of the present embodiment emits red light having an emission peak 600nm to 660nm or less in a wavelength region exceeding the structure comprising a combination of things.

なお、発光装置から強い発光出力を得る目的で、本実施形態の発光装置においては、上記発光素子を、発光ダイオード、半導体レーザーダイオード、無機または有機エレクトロルミネッセンス素子の中のいずれかにすることが好ましく、より好ましくは、窒化ガリウム系の化合物半導体を発光層とし、近紫外または青色光を放つ発光素子、あるいは、Eu 2+イオンまたはCe 2+イオンを付活したチオアルミネート蛍光体(BaAl 24 :Eu 2+ 、(Ba,Mg)Al 24 :Eu 2+など)またはチオガレート蛍光体(CaGa 24 :Ce 3+など)を発光層とし、青色光を放つ発光素子とする。 For the purpose of obtaining strong emission output from the light-emitting device, the light-emitting device of the present embodiment, the light emitting device, a light emitting diode, a semiconductor laser diode, may be either in the inorganic or organic electroluminescent device preferably , more preferably, a compound semiconductor of gallium nitride form a light emitting layer, the light-emitting element emits near-ultraviolet or blue light, or thioaluminate luminescent material activated by Eu 2+ ions or Ce 2+ ions (BaAl 2 S 4: Eu 2+, (Ba, Mg) Al 2 S 4: the Ce 3+, etc.) as a light-emitting layer, the light-emitting element that emits blue light: Eu 2+, etc.) or thiogallate phosphor (CaGa 2 S 4.

なお、上記発光装置としては、白色LED、白色LEDを用いて構成した各種表示装置(例えば、LED情報表示端末、LED交通信号灯、自動車用のLEDランプ(ストップランプ、方向指示灯、前照灯など)、白色LEDを用いて構成した各種照明装置(LED屋内外照明灯、車内LED灯、LED非常灯、LED光源)、白色LEDを用いない各種表示装置(電子管、無機エレクトロルミネッセンスパネル、プラズマディスプレイパネルなど)、白色LEDを用いない各種照明装置(蛍光灯など)などが挙げられる。 As the above-mentioned light emitting device, white LED, various display devices constituted by using the white LED (e.g., LED information display terminals, LED traffic lights, LED lamps (stop lamp for a motor vehicle, direction indicators, headlights, etc. ), various illumination devices (LED indoor-outdoor illumination lamp constituted by using a white LED, car LED lights, LED emergency lights, LED light source), various display devices (electron tube without using a white LED, an inorganic electroluminescence panel, a plasma display panel etc.), and various lighting devices (a fluorescent lamp without using a white LED) and the like.

以下、本発明の実施の形態をさらに詳細に説明する。 Hereinafter, further detailed description of the embodiments of the present invention.

(実施形態1) (Embodiment 1)
本実施形態の蛍光体組成物は前述のとおり、a((1−x−y)MO・xEuO・yCe 23 ))・bSi 34・cAlNの組成式で表される組成物を主体として含む蛍光体組成物であって、上記蛍光体組成物が結晶質からなり、上記組成式中のMが、Mg、Ca、Sr、およびBaから選ばれる少なくとも一つのアルカリ土類金属元素であり、上記組成式中のa、b、c、x、yがそれぞれ、0.3≦a/(a+b)≦0.9、0.2≦a/(a+c)≦0.8、0.3≦c/(b+c)≦0.9、0≦x≦0.2、0≦y≦0.2、0.002≦x+y≦0.2の関係を満たす蛍光体組成物である。 Phosphor composition of the present embodiment as described above, mainly a ((1-x-y ) MO · xEuO · yCe 2 O 3)) · bSi 3 N 4 · represented by composition formula of cAlN a phosphor composition containing, as, the phosphor composition is a crystalline, M in the above composition formula, Mg, Ca, Sr, and is at least one alkaline earth metal element selected from Ba , a in the above formula, b, c, x, y, respectively, 0.3 ≦ a / (a ​​+ b) ≦ 0.9,0.2 ≦ a / (a ​​+ c) ≦ 0.8,0.3 ≦ it is a c / (b + c) ≦ 0.9,0 ≦ x ≦ 0.2,0 phosphor composition satisfies the relationship ≦ y ≦ 0.2,0.002 ≦ x + y ≦ 0.2.

上記組成は、a、b、cの各々が、1≦a≦4、0.5≦b≦2、1≦c≦4を満足する組成に相当する。 The above composition, a, b, each of c corresponds to a composition that satisfies 1 ≦ a ≦ 4,0.5 ≦ b ≦ 2,1 ≦ c ≦ 4.

このような蛍光体組成物を形成すると、紫外〜青緑光で励起され、青、緑、黄、橙、赤の光を放ち得る蛍光体組成物を提供することになる。 When forming such a phosphor composition is excited by ultraviolet to blue green light, blue, green, yellow, orange, it will provide a phosphor composition that can emit red light.

本実施形態の蛍光体組成物において、発光強度の面、および、温色系の発光を放つという面で好ましい組成は、実質的にCeを含まず、Mの主体をSrとした組成である。 In the phosphor composition of the present embodiment, the surface of the emission intensity and,, are preferred composition in terms emits luminescence warm color system, substantially free of Ce, a composition of the subject of M was Sr. なお、Mの全てをSrとした組成も本実施形態に含まれる。 Even compositions all M was Sr included in the present embodiment.

このような組成物を形成すると、紫外〜青緑光、特に青色光で励起され、560nmを超え660nm以下の波長領域に発光ピークを有する温色系の発光、特に600nmを超え660nm以下の波長領域に発光ピークを有する赤色系の発光を放つ蛍光体組成物を提供できるようになる。 When forming such compositions, ultraviolet to blue-green light, in particular excited by blue light, emission of Yutakairo system having an emission peak in 660nm or less in a wavelength region exceeding the 560 nm, in particular 660nm or less in the wavelength region beyond the 600nm it becomes possible to provide the phosphor composition that emits luminescence of red having an emission peak.

本実施形態の蛍光体組成物は、例えば、表1に示すような化合物の中で、実在する化合物を蛍光体母体とし、Eu 2+イオンまたはCe 3+イオンの少なくとも一つを発光中心とする蛍光体組成物であり、好ましくは、Eu 2+イオンを発光中心の主体とする蛍光体組成物である。 Phosphor composition of the present embodiment, for example, among the compounds shown in Table 1, the actual compound used as the fluorescent substance matrix, and luminescent center of at least one of Eu 2+ ions or Ce 3+ ions a phosphor composition, preferably a phosphor composition for a Eu 2+ ions mainly of the light emitting center. すなわち、本実施形態の蛍光体組成物は、表1に示す化学式で表される化合物などから選ばれる少なくとも一つの、実在する化合物を蛍光体母体とし、Eu 2+イオンまたはCe 3+イオンの少なくとも一つを発光中心とする蛍光体組成物である。 That is, the phosphor composition of the present embodiment, at least one selected from such compounds represented by the chemical formula shown in Table 1, the actual compound used as the fluorescent substance matrix, at least the Eu 2+ ion or Ce 3+ ions a phosphor composition which an emission center one.

なお、本実施形態の蛍光体組成物は、本質的には、アルカリ土類金属酸化物(MO)を生成し得るアルカリ土類金属化合物と、窒化珪素(Si 34 )と、窒化アルミニウム(AlN)とを、上記a、b、cの数値範囲内になる割合で混合した混合原料を焼成して形成し得る結晶質の化合物を蛍光体母体とし、Eu 2+イオンまたはCe 3+イオンの少なくとも一つを発光中心として含む蛍光体組成物である。 Incidentally, the phosphor composition of the present embodiment is essentially the alkaline earth metal compound capable of generating an alkaline earth metal oxide (MO), a silicon nitride (Si 3 N 4), aluminum nitride ( the AlN) and, above a, b, a compound of crystalline capable of forming by sintering a mixed raw material obtained by mixing in a ratio comprised within the numerical range of c and phosphor host, the Eu 2+ ion or Ce 3+ ions a phosphor composition comprising at least one as a luminescent center.

本実施形態の蛍光体組成物は、ガラス状態にある非晶質の蛍光体組成物ではなく、少なくともX線回折法による構造解析で、結晶質の物質であることが明確に認められることを特徴とする蛍光体組成物である。 Phosphor composition of the present embodiment, characterized in that instead of the amorphous phosphor composition in the glass state, the structural analysis by at least X-ray diffractometry, is clearly observed that the crystalline is substance a phosphor composition to.

また、本実施形態の蛍光体組成物は、組成の面で、従来のアルファサイアロンを母体材料とした酸窒化物蛍光体とは異なる蛍光体組成物であり、従来のアルファサイアロンを母体材料とした蛍光体を除く酸窒化物蛍光体組成物である。 The phosphor composition of the present embodiment, in terms of composition, the conventional alpha-SiAlON a phosphor composition different from the oxynitride phosphor was a base material, and the conventional alpha-sialon as a matrix material a oxynitride phosphor composition excluding the phosphor. 特に、CaやMgを実質的に含有せず、SrまたはBaなどのイオン半径の大きなアルカリ土類金属元素を上記Mの主体とする蛍光体組成物がより好ましく、アルファサイアロンを母体材料とした従来の酸窒化物蛍光体とは、組成の面で大きく異なる酸窒化物蛍光体組成物である。 In particular, substantially free of Ca and Mg, more preferably phosphor composition mainly of the M large alkaline earth metal element ion radius, such as Sr, or Ba, conventionally in which the alpha-sialon as a matrix material the oxynitride phosphor is significantly different oxynitride phosphor composition in terms of composition.

さらに、本実施形態の蛍光体組成物は、ニトリドシリケートを母体材料とする蛍光体のような、実質的に窒化物の蛍光体とは異なる蛍光体組成物であり、多量の酸素を含有する組成を有する酸窒化物蛍光体組成物であり、酸素を主成分として含むことを特徴とする酸窒化物蛍光体組成物である。 Furthermore, the phosphor composition of the present embodiment, such as a phosphor for a nitridosilicates a base material, a phosphor composition different from the phosphors substantially nitride containing a large amount of oxygen the composition is a oxynitride phosphor composition having a oxynitride phosphor composition characterized in that it comprises oxygen as the main component. なお、このような酸窒化物蛍光体組成物は、化学的に安定な蛍光体である。 Note that such an oxynitride phosphor composition, is chemically stable phosphors.

本実施形態の蛍光体組成物は、例えば、以下のような製造方法で製造できる。 Phosphor composition of the present embodiment, for example, can be produced by the following production method.

先ず、蛍光体組成物原料として、アルカリ土類金属酸化物(MO)を生成可能なアルカリ土類金属塩、酸化ユーロピウム、酸化セリウム、窒化珪素、窒化アルミニウムを準備する。 First, as a phosphor composition material, an alkaline earth metal oxide (MO) can generate an alkaline earth metal salt, europium oxide, cerium oxide, silicon nitride, to prepare the aluminum nitride. なお、これらの原料は、セラミックス原料として多用されているものであり、入手は極めて容易である。 Incidentally, these materials are those which are frequently used as a ceramic raw material, obtained is extremely easy. 次に、前述の数値範囲内の所望のモル割合(a:b:c:x:y)となるように、これら蛍光体組成物原料を秤量し、混合して混合原料を得る。 The desired molar ratio of the numerical range mentioned above such that (a: b: c:: x y), were weighed these phosphor composition material, to obtain a mixed raw material by mixing. 次に、上記混合原料を、真空雰囲気、中性雰囲気(不活性ガス中、窒素ガス中など)、還元雰囲気(CO中、窒素水素混合ガス中など)のいずれかの雰囲気中で焼成する。 Next, the mixed raw material, a vacuum atmosphere, a neutral atmosphere (inert gas, nitrogen gas, etc.), fired in any atmosphere of a reducing atmosphere (in CO, nitrogen hydrogen mixed gas, etc.). なお、Eu 2+イオンを多く生成する目的で、好ましい雰囲気は、還元雰囲気である。 For the purpose of creating a lot of Eu 2+ ions, preferred atmosphere is a reducing atmosphere. 焼成温度は、例えば1400℃以上1800℃以下であり、焼成時間としては、例えば、30分以上100時間以下である。 Firing temperature is, for example, 1400 ° C. or higher 1800 ° C. or less, as the firing time is, for example, less than 100 hours and 30 minutes. 焼成は異なる雰囲気中や同じ雰囲気中で数回に分けて行ってもよい。 The firing may be divided into several times in in a different atmosphere and the same atmosphere. このような焼成によって得られる焼成物が蛍光体組成物となる。 Fired product obtained by such firing becomes a phosphor composition.

なお、本実施形態の蛍光体組成物の製造方法は、上記製造方法に限定されるものではない。 The manufacturing method of the phosphor composition of the present embodiment is not limited to the above-mentioned production method. 上記で説明した固相反応だけでなく、例えば気相反応、液相反応などを利用した製造方法によっても製造可能である。 Not only solid-phase reaction described above, for example, gas phase reactions, it is also possible manufactured by the method utilizing such a liquid phase reaction. また、固相反応による製造では、上記で説明した蛍光体組成物原料だけでなく、例えば、アルカリ土類金属窒化物、ユーロピウムやセリウムの窒化物、酸化珪素、酸窒化珪素、酸化アルミニウム、酸窒化アルミニウム、Si−Al−O−N化合物(サイアロン)などを用いることも可能である。 In the production by solid phase reaction, not only the phosphor composition material described above, for example, alkaline earth metal nitride, nitride europium and cerium oxide, silicon oxynitride, aluminum oxide, oxynitride aluminum, Si-Al-O-N compound (siAlON) can be used and the like.

なお、Si 34やAlNなどの窒化物は、アルカリ土類金属の窒化物ほどではないものの、純度の高いものを得ることが困難なものである。 Incidentally, nitrides such as Si 3 N 4 or AlN, although not as much as a nitride of alkaline-earth metals, but it is difficult to obtain a high purity. 上記Si 34やAlNは大気中では大抵の場合、その一部が酸化してSiO 2やAl 23の成分を含み、その純度を幾分下げている。 The Si 3 N 4 or AlN in most cases in the atmosphere, including the components of SiO 2 and Al 2 O 3 partially oxidized, and reduce its purity somewhat. こうした理由で、本実施形態の蛍光体組成物は、その主体が上記組成を有する結晶質の蛍光体組成物であればよく、上記組成式において、Si 34やAlNの一部が幾分酸化され、SiO 2やAl 23に変質した組成の蛍光体組成物も含むものとしている。 For this reason, the phosphor composition of the present embodiment may be a phosphor composition of crystalline that principal has the above composition, in the above composition formula, some the Si 3 N 4 or AlN somewhat It is oxidized, and shall include phosphor compositions having the compositions were transformed into SiO 2 and Al 2 O 3.

なお、本実施形態の蛍光体組成物の性状については、結晶質の蛍光体組成物であれば特に限定されるものではない。 Note that the properties of the phosphor composition of the present embodiment is not limited in particular as long as the phosphor composition of the crystalline. 単結晶バルクであっても、セラミックス成形体であっても、粉末であっても構わないが、発光装置への応用に用いる目的では、粉末にすることが好ましく、より好ましくは、中心粒径が0.5μm以上30μm以下、さらに好ましくは、中心粒径が1μm以上20μm以下の粉末にする。 Be a single crystal bulk, even ceramic molded body, but may be a powder, the purpose of using the application to the light emitting device, preferably in powder, more preferably, the median particle size 0.5μm or 30μm or less, more preferably, median particle size is in the 20μm following powder or 1 [mu] m.

このようにして製造し得る本実施形態の蛍光体組成物は、少なくとも250nm以上510nm以下の紫外〜近紫外〜青色〜青緑の光によって励起可能であり、青色、緑色、黄緑色、黄色、橙色、または赤色の発光を放つ蛍光体組成物となる。 Phosphor composition of the present embodiment is capable of producing this way, it can be excited by light of at least 250nm or 510nm in the ultraviolet to near-ultraviolet to blue to blue-green, blue, green, yellow-green, yellow, orange or the phosphor composition emitting red light. また、610nm以上650nm以下の波長領域に発光ピークを有する赤色系光を放射する蛍光体組成物も得ることができる。 It can also be obtained phosphor composition that emits red light having an emission peak in 650nm or less in the wavelength region above 610 nm. なお、上記赤色系光を放射する蛍光体組成物の励起スペクトルおよび発光スペクトルの形状は、従来のニトリドシリケートを母体材料とするEu 2+付活蛍光体と比較的似通ったものである。 The shape of the excitation spectrum and emission spectrum of the phosphor composition that emits the red light, the conventional nitridosilicates is obtained relatively similar with Eu 2+ -activated phosphor as a matrix material.

また、本実施形態の上記赤色系光を放射する蛍光体組成物は少なくとも、Cu−Kα線を用いる、常温常圧下でのX線回折法による回折パターン評価で、回折角(2θ)の27〜37°付近に、アルカリ土類金属酸化物や窒化珪素や窒化アルミニウムなどの蛍光体組成物原料の回折ピークとは異なる、複数の強い回折ピークが認められる結晶質の蛍光体組成物である。 The phosphor composition that emits the red light in this embodiment at least, using a Cu-K [alpha ray, the diffraction pattern evaluation by X-ray diffraction method under normal temperature and normal pressure, 27 to the diffraction angle (2 [Theta]) around 37 °, different from the diffraction peak of the phosphor composition material such as an alkaline earth metal oxide or silicon nitride or aluminum nitride, a phosphor composition of a plurality of strong diffraction peaks are observed crystalline.

(実施形態2) (Embodiment 2)
以下、本実施形態の発光装置を、図面を用いて説明する。 Hereinafter, the light emitting device of the present embodiment will be described with reference to the drawings. 本実施形態の発光装置は、上記実施形態1の蛍光体組成物を発光源として用いて構成したものであれば、特に限定されるものではない。 The light emitting device of the present embodiment, as long as it is constituted by using the phosphor composition of Embodiment 1 as a light emitting source, and is not particularly limited. また、好ましい形態では、実施形態1の蛍光体組成物と、さらに発光素子とを発光源として用い、上記蛍光体組成物が上記発光素子を覆うように、上記蛍光体組成物と上記発光素子とを組み合わせて構成する。 Further, in a preferred embodiment, the phosphor composition of Embodiment 1, further using a light-emitting element as a light emitting source, as the phosphor composition covers the light emitting element, and the phosphor composition and the light emitting element a combination of make up.

図1、図2、図3は、実施形態1の蛍光体組成物と発光素子とを組み合わせた発光装置の代表的な実施形態である半導体発光素子の断面図である。 1, 2, 3 is a cross-sectional view of a semiconductor light emitting device according to a typical embodiment of the light-emitting device combining a phosphor composition of Embodiment 1 and the light emitting element.

図1は、サブマウント素子4の上に、少なくとも一つの発光素子1を導通搭載するとともに、少なくとも実施形態1の蛍光体組成物2を内在し、蛍光体層3を兼ねる母材(例えば、透明樹脂や低融点ガラスなど)のパッケージによって発光素子1を封止した構造の半導体発光素子を示す。 1, on a submount element 4, together with the conductive mounting least one light-emitting element 1, inherent phosphor composition 2 of at least the first embodiment, the base material also serving as a phosphor layer 3 (e.g., transparent the light-emitting element 1 by the resin and the package of the low melting point glass, etc.) of a semiconductor light-emitting device of the sealed structure. 図2は、リードフレーム5のマウント・リードに設けたカップ6に、少なくとも一つの発光素子1を導通搭載するとともに、カップ6内に、少なくとも実施形態1の蛍光体組成物2を内在した母材で形成した蛍光体層3を設け、全体を、例えば樹脂などの封止材7で封止した構造の半導体発光素子を示す。 2, the cup 6 provided on the mount lead of a lead frame 5, together with the conductive mounting least one light-emitting element 1, in the cup 6, preform inherent phosphor composition 2 of at least embodiments 1 in the phosphor layer 3 formed provided, the whole, for example, a semiconductor light-emitting device of the sealed structure with a sealing material 7 such as a resin. 図3は、筐体8内に、少なくとも一つの発光素子1を配置するとともに、筐体8内に少なくとも実施形態1の蛍光体組成物2を内在した母材で形成した蛍光体層3を設けた構造のチップタイプの半導体発光素子を示す。 Figure 3 is provided in the housing 8, as well as arranged at least one light-emitting element 1, a phosphor layer 3 formed in the preform inherent least the phosphor composition 2 of Embodiment 1 in the housing 8 a semiconductor light-emitting device chip type structure.

図1〜図3において、発光素子1は電気エネルギーを光に換える光電変換素子であり、具体的には、発光ダイオード、レーザーダイオード、面発光レーザーダイオード、無機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子などが該当する。 1 to 3, the light emitting element 1 is a photoelectric conversion element changing the electrical energy into light, specifically, light emitting diodes, laser diodes, surface-emitting laser diode, an inorganic electroluminescence device, an organic electroluminescence element applicable. 特に、半導体発光素子の高出力化の面からは、発光ダイオードまたは面発光レーザーダイオードが好ましい。 In particular, from the viewpoint of higher output of the semiconductor light-emitting diode or a surface emitting laser diode is preferable. 発光素子1が放つ光の波長については、基本的には特に限定されるものではなく、実施形態1の蛍光体組成物を励起し得る波長範囲内(例えば、250〜550nm)であれば良い。 The wavelength of the light emitting element 1 emits, basically there is no particular limitation to may be within the wavelength range capable of exciting the phosphor composition of Embodiment 1 (e.g., 250 to 550 nm). しかし、実施形態1の蛍光体組成物が高効率励起され、白色系発光を放つ高発光性能の半導体発光素子を製造し得るためには、340nmを超え500nm以下、好ましくは、350nmを超え420nm以下、または、420nmを超え500nm以下、より好ましくは360nmを超え410nm以下、または、440nmを超え480nm以下の波長範囲、すなわち、近紫外または青色の波長領域に発光ピークを有する発光素子1にする。 However, the phosphor composition of Embodiment 1 is a high efficiency excitation, in order to be able to manufacture a semiconductor light-emitting device with high emission efficiency that emits white light emission, 500 nm exceed 340nm or less, preferably, 420 nm or less than the 350nm or, 500 nm exceeded 420nm or less, and more preferably less 410nm exceeded 360 nm, or, a wavelength range of 480nm exceeded 440 nm, that is, the light emitting device 1 having the emission peak in the near-ultraviolet or blue wavelength range.

また、図1〜図3において、蛍光体層3は、少なくとも実施形態1の蛍光体組成物2を含む蛍光体層であり、例えば、透明樹脂(エポキシ樹脂やシリコン樹脂など)や低融点ガラスなどの透明母材に少なくとも実施形態1の蛍光体組成物2を分散させて構成する。 Further, in FIGS. 1 to 3, the phosphor layer 3 is a phosphor layer including the phosphor composition 2 of at least the first embodiment, for example, a transparent resin (such as epoxy resin and silicone resin) and a low melting point glass, etc. constitute by dispersing phosphor composition 2 of at least the first embodiment in the transparent base material. 蛍光体組成物2の透明母材中における含有量は、例えば、上記透明樹脂の場合では、5〜80重量%が好ましく、10〜60重量%がより好ましい。 The content in the phosphor composition 2 of the transparent base material, for example, in the case of the transparent resin, 5 to 80 wt%, and more preferably from 10 to 60 wt%. 蛍光体層3中に内在する実施形態1の蛍光体組成物2は、駆動によって上記発光素子1が放つ光の一部または全部を吸収して、黄〜深赤色の光に変換する光変換材料であるので、発光素子1によって蛍光体組成物2が励起され、半導体発光素子が少なくとも蛍光体組成物2が放つ発光成分を含む光を放つようになる。 Phosphor composition 2 of Embodiment 1 inherent in the phosphor layer 3 absorbs a part or all of the light emitted by the light emitting element 1 by the drive, the light conversion material that converts to yellow to deep red light since it is, the phosphor composition 2 is excited by the light emitting element 1, the semiconductor light-emitting device comes to emit light that includes a light emitting component which at least the phosphor composition 2 is shoot.

したがって、先に説明した、例えば、以下のような組み合わせ構造の発光装置にすると、発光素子1が放つ光と蛍光体層3が放つ光との混色などによって、白色系光が得られ、需要の多い白色系光を放つ半導体発光素子になる。 Thus, previously described, for example, when the light-emitting device of the combined structure as described below, such as by mixing the light emitted by the light and the phosphor layer 3 in the light-emitting element 1 is emitting, white light is obtained, the demand It becomes a semiconductor light emitting device that emits more white light.

(1)近紫外光を放つ発光素子と、青色蛍光体と、緑色蛍光体と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (1) a light-emitting element that emits near ultraviolet light, formed by combining a blue phosphor, a green phosphor, a red phosphor composition of Embodiment 1 structure.

(2)近紫外光を放つ発光素子と、青色蛍光体と、緑色蛍光体と、黄色蛍光体と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (2) a light-emitting element that emits near ultraviolet light, formed by combining a blue phosphor, a green phosphor, a yellow phosphor, a red phosphor composition of Embodiment 1 structure.

(3)近紫外光を放つ発光素子と、青色蛍光体と、黄色蛍光体と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (3) a light-emitting element that emits near ultraviolet light, formed by combining a blue phosphor, a yellow phosphor, a red phosphor composition of Embodiment 1 structure.

(4)青色光を放つ発光素子と、緑色蛍光体と、黄色蛍光体と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (4) a light-emitting element that emits blue light, a green phosphor, formed by combining a yellow phosphor, a red phosphor composition of Embodiment 1 structure.

(5)青色光を放つ発光素子と、黄色蛍光体と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (5) a light emitting element that emits blue light, formed by combining a yellow phosphor, a red phosphor composition of Embodiment 1 structure.

(6)青色光を放つ発光素子と、緑色蛍光体と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (6) a light-emitting element that emits blue light, a green phosphor, comprising a combination of a red phosphor composition of Embodiment 1 structure.

(7)青緑色光を放つ発光素子と、実施形態1の赤色蛍光体組成物とを組み合わせてなる構造。 (7) a light-emitting element that emits blue-green light, comprising a combination of a red phosphor composition of Embodiment 1 structure.

なお、実施形態1の蛍光体組成物は、黄色発光も放ち得るので、上記黄色蛍光体を実施形態1の黄色蛍光体組成物とすることもできる。 Incidentally, the phosphor composition of Embodiment 1, since the yellow light may also emit, it is also possible to make the yellow phosphor and the yellow phosphor composition of Embodiment 1. また、この際には、赤色蛍光体組成物を、実施形態1の蛍光体組成物以外の赤色蛍光体としてもよい。 Further, in this case, the red phosphor composition may be a red phosphor other than the phosphor composition of Embodiment 1. さらに、青色光を放つ発光素子と、実施形態1の黄色蛍光体組成物とを組み合わせてなる構造にしても、白色光を得ることが可能である。 Furthermore, a light-emitting element that emits blue light, even if the structure formed by combining a yellow phosphor composition of Embodiment 1, it is possible to obtain white light.

なお、実施形態1の蛍光体組成物以外の、上記青色蛍光体、上記緑色蛍光体、上記黄色蛍光体、上記赤色蛍光体としては、例えば、(Ba,Sr)MgAl 1017 :Eu 2+青色蛍光体、(Sr,Ca,Ba,Mg) 10 (PO 46 Cl 2 :Eu 2+青色蛍光体、(Ba,Sr) 2 SiO 4 :Eu 2+緑色蛍光体、BaMgAl 1017 :Eu 2+ ,Mn 2+緑色蛍光体、Y 2 SiO 5 :Ce 3+ ,Tb 3+緑色蛍光体、(Y,Gd) 3 Al 512 :Ce 3+黄色蛍光体、Y 3 Al 512 :Ce 3+ ,Pr 3+黄色蛍光体、(Sr,Ba) 2 SiO 4 :Eu 2+黄色蛍光体、CaGa 24 :Eu 2+黄色蛍光体、CaS:Eu 2+赤色蛍光体、SrS:Eu 2+赤色蛍光体、La 22 S:Eu 3+赤色蛍光体等が使用できる。 Incidentally, other than the phosphor composition of Embodiment 1, the blue phosphor, the green phosphor, the yellow phosphor, as the red phosphor, for example, (Ba, Sr) MgAl 10 O 17: Eu 2+ blue phosphor, (Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 2: Eu 2+ blue phosphor, (Ba, Sr) 2 SiO 4: Eu 2+ green phosphor, BaMgAl 10 O 17: eu 2+, Mn 2+ green phosphor, Y 2 SiO 5: Ce 3+ , Tb 3+ green phosphor, (Y, Gd) 3 Al 5 O 12: Ce 3+ yellow phosphor, Y 3 Al 5 O 12: Ce 3+, Pr 3+ yellow phosphor, (Sr, Ba) 2 SiO 4: Eu 2+ yellow phosphor, CaGa 2 S 4: Eu 2+ yellow phosphor, CaS: Eu 2+ red phosphor, SrS: Eu 2+ red phosphor, La 2 O 2 S: Eu 3+ red phosphor or the like can be used.

本実施形態における半導体発光素子は、近紫外〜青色光で励起可能であり、製造が容易で、発光強度が強く、化学的に安定で、かつ、赤色発光成分の多い実施形態1の蛍光体組成物を用いて構成しているので、従来の発光装置よりも、赤色発光成分の発光強度が強く、信頼性に優れ、安価に製造可能な発光装置になる。 The semiconductor light-emitting element of this embodiment can be excited by near-ultraviolet to blue light, easy to manufacture, light emission intensity is strong, chemically stable, and phosphor composition of more embodiments 1 of the red emission component since this structure is constructed using things, than conventional light emitting device, the emission intensity of the red emission component is strong and superior in reliability, it becomes inexpensive to manufacture light emitting devices.

(実施形態3) (Embodiment 3)
図4および図5は本発明の発光装置の一例としての照明・表示装置の構成を示す概略図である。 4 and 5 are schematic views showing a configuration of a lighting and display device as an example of a light-emitting device of the present invention. 図4には、先に説明した実施形態1の蛍光体組成物と発光素子とを組み合わせた発光装置の一例である半導体発光素子9を、少なくとも一つ用いて構成した照明・表示装置を示す。 FIG. 4, the semiconductor light-emitting element 9, which is an example of a light-emitting device combining a phosphor composition of Embodiment 1 described above and the light-emitting element, showing the lighting and display apparatus constituted by using at least one. 図5は、少なくとも一つの発光素子1と、少なくとも実施形態1の蛍光体組成物2を含む蛍光体層3を組み合わせてなる照明・表示装置を示す。 Figure 5 shows the at least one light-emitting element 1, the lighting and display device comprising a combination of a phosphor layer 3 containing the phosphor composition 2 of at least the first embodiment. 発光素子1および蛍光体層3については、先に説明した実施形態2の半導体発光素子の場合と同様のものを使用できる。 The light-emitting element 1 and the phosphor layer 3, can be used the same as the case of the semiconductor light emitting element of Embodiment 2 described above. また、このような構成の照明・表示装置の作用や効果などについても、実施形態2の半導体発光素子の場合と同様である。 As for such actions and effects of the illumination and display of such a configuration is also similar to that of the semiconductor light emitting element of Embodiment 2. なお、図4、図5において、10は出力光を示す。 Incidentally, FIG. 4, 5, 10 denotes an output light.

図6〜図11は、上記図4および図5で概略を示した、本実施形態の照明・表示装置を組み込んだ照明装置の具体例を示す図である。 6 to 11, outlined in FIG. 4 and FIG. 5 is a diagram showing a specific example of incorporating the lighting device lighting and display device of the present embodiment. 図6は、一体型の発光部11を有する照明モジュール12の斜視図を示す。 Figure 6 shows a perspective view of a lighting module 12 having a light emitting portion 11 of the integral. 図7は、複数の発光部11を有する照明モジュール12の斜視図を示す。 Figure 7 shows a perspective view of a lighting module 12 having a plurality of light emitting portions 11. 図8は、発光部11を有し、スイッチ13によってON−OFF制御や光量制御可能な卓上スタンド型の照明装置の斜視図である。 Figure 8 includes a light emitting unit 11 is a perspective view of the ON-OFF control and light amount control can table lamp lighting device by the switch 13. 図9は、ねじ込み式の口金14と、反射板15と、複数の発光部11を有する照明モジュール12を用いて構成した光源としての照明装置の側面図(a)と底面図(b)である。 Figure 9 is a spinneret 14 of screw-in, a reflecting plate 15, there side view of the illumination device as a light source constituted by using the lighting module 12 having a plurality of light emitting portions 11 (a) and in bottom view (b) . 図10は、発光部11を備えた平板型の画像表示装置の斜視図である。 Figure 10 is a perspective view of a flat panel display device provided with a light emitting unit 11. 図11は、発光部11を備えたセグメント式の数字表示装置の斜視図である。 Figure 11 is a perspective view of a segmented numerical display device having a light emitting portion 11.

本実施形態における照明・表示装置は、製造が容易で、発光強度が強く、化学的に安定で、かつ、赤色発光成分の多い実施形態1の蛍光体組成物、または、赤色発光成分の発光強度が強く、信頼性に優れ、安価に製造可能な実施形態2の半導体発光素子を用いて構成しているので、従来の照明・表示装置よりも、赤色発光成分の発光強度が強く、信頼性に優れ、安価に製造可能な照明・表示装置になる。 Lighting and display device in this embodiment is easy to manufacture, light emission intensity is strong, chemically stable, and, more phosphor composition of Embodiment 1 of the red emission component, or the emission intensity of the red emission component strong, high reliability, since this structure is constructed using the semiconductor light-emitting device manufactured at low cost possible embodiment 2, than conventional lighting and signaling devices, strong emission intensity of the red emission component, the reliability excellent, it becomes inexpensive to manufacture lighting and signaling devices.

(実施形態4) (Embodiment 4)
図12は、実施形態1の蛍光体組成物を用いた発光装置の一例である蛍光ランプの端部の一部破断図である。 Figure 12 is a partially cutaway view of an end portion of the fluorescent lamp is an example of a light-emitting device using the phosphor composition of Embodiment 1. 図12において、ガラス管16はステム17により両端を封止されており、内部には、ネオン、アルゴン、クリプトン等の希ガスと水銀が封入されている。 12, the glass tube 16 is sealed at both ends by the stem 17, inside, neon, argon, rare gas and mercury krypton is sealed. ガラス管16の内面には実施形態1の蛍光体組成物18が塗布されている。 On the inner surface of the glass tube 16 is the phosphor composition 18 of Embodiment 1 is applied. ステム17には2本のリード線19によってフィラメント電極20が取りつけられている。 Filament electrode 20 is attached by two leads 19 to the stem 17. ガラス管16の両端には電極端子21を備えた口金22が接着され、電極端子21とリード線19とが接続されている。 At both ends of the glass tube 16 is mouthpiece 22 having electrode terminals 21 are bonded, and the electrode terminal 21 and the lead wire 19 is connected.

本実施形態の蛍光ランプは、その形状、サイズ、ワット数、および蛍光ランプが放つ光の光色、演色性などについては特に限定されるものではない。 Fluorescent lamp of this embodiment, the shape, size, wattage, and the fluorescent lamps emit light in the light color, there is no particular limitation on such color rendering. 形状については、本実施形態の直管に限らず、例えば、丸形、二重環形、ツイン形、コンパクト形、U字形、電球形などがあり、液晶バックライト用の細管なども含まれる。 The shape is not limited to the straight tube of the present embodiment, for example, round, double annular, twin type, compact, U-shaped, include bulb type, it is also included, such as tubules for a liquid crystal backlight. サイズについては、例えば4形〜110形などがある。 The size, for example, and the like 4 form 110 form. ワット数については、例えば、数ワット〜百数十ワットなどから、用途に応じて適宜選択すればよい。 The wattage, for example, from such a few watts to a hundred watts, may be appropriately selected depending on the application. 光色については、例えば、昼光色、昼白色、白色、温白色、電球色、パルック色などがある。 For light colors, for example, daylight color, daylight white, white, warm white, incandescent lamp color, and the like Palook color.

本実施形態における蛍光ランプは、製造が容易で、発光強度が強く、かつ、赤色発光成分の多い実施形態1の蛍光体組成物を用いて構成しているので、従来の蛍光ランプよりも、赤色発光成分の発光強度が強く、安価に製造可能な蛍光ランプになる。 Fluorescent lamp in the present embodiment is easy to manufacture, light emission intensity is strong, and, since this structure is constructed using large phosphor composition of Embodiment 1 of the red emission component, than conventional fluorescent lamps, red emission intensity of the light emitting component is strong, less expensive to manufacture fluorescent lamps.

(実施形態5) (Embodiment 5)
図13は、実施形態1の蛍光体組成物を用いた発光装置の一例である、二重絶縁構造薄膜エレクトロルミネッセンス(EL)パネルの断面図である。 Figure 13 is an example of a light-emitting device using the phosphor composition of Embodiment 1 is a cross-sectional view of a dual insulation structure thin film electroluminescent (EL) panel. 図13において、背面基板23は薄膜ELパネルを保持する基板であり、金属、ガラス、セラミックスなどで形成されている。 13, the rear substrate 23 is a substrate for holding the thin film EL panel, metal, glass, and is formed like ceramics. 下部電極24は、厚膜誘電体25/薄膜蛍光体26/薄膜誘電体27の積層構造に100〜300V程度の交流電圧を印加するための電極であり、例えば、印刷技術などの手法によって形成された、金属電極やIn−Sn−O透明電極などである。 The lower electrode 24 is an electrode for applying an AC voltage of about 100~300V the laminated structure of the thick film dielectric 25 / thin film phosphor 26 / thin film dielectric 27, for example, it is formed by a method such as printing technology and, a metal electrode or an in-Sn-O transparent electrode, and the like. 厚膜誘電体25は、薄膜蛍光体26の製膜基板として機能するとともに、上記交流電圧印加時に、薄膜蛍光体26中を流れる電荷量を制限するためのものであり、例えば、厚さ10μm〜数cmの、BaTiO 3などのセラミックス材で形成されている。 Thick film dielectric 25 functions as film substrate of the thin film phosphor 26, when the AC voltage application is intended to limit the amount of charge flowing through the thin film phosphor 26, for example, a thickness of 10μm~ few cm, and is formed of a ceramic material such as BaTiO 3. また、薄膜蛍光体26は、蛍光体層中を電荷が流れることによって高輝度の蛍光を発するエレクトロルミネッセンス材料からなり、例えば、電子ビーム蒸着法やスパッタ法などの薄膜化技術によって製膜した、チオアルミネート蛍光体(青色発光BaAl 24 :Eu 2+ 、青色発光(Ba,Mg)Al 24 :Eu 2+など)やチオガレート蛍光体(青色発光CaGa 24 :Ce 3+など)などである。 The thin-film phosphor 26 is made of an electroluminescent material that emits fluorescence of a high intensity by flowing charges a phosphor layer, for example, was formed into a film by a thin film technique such as electron beam evaporation or sputtering, thio aluminate phosphor (blue emitting BaAl 2 S 4: Eu 2+, blue light-emitting (Ba, Mg) Al 2 S 4: Eu 2+ , etc.) or a thiogallate phosphor (blue light-emitting CaGa 2 S 4: Ce 3+, etc.) and the like. 薄膜誘電体27は、薄膜蛍光体26中を流れる電荷量を制限するとともに、薄膜蛍光体26が大気中の水蒸気などと反応して劣化することを防ぐためのものであり、例えば、化学気相堆積法やスパッタ法などの薄膜化技術によって製膜した、酸化シリコン、酸化アルミニウムなどの透光性誘電体である。 Thin-film dielectric 27 serves to limit the amount of charge flowing through the thin film phosphor 26 is for preventing the thin film phosphor 26 is deteriorated by the reaction such as water vapor in the atmosphere, for example, chemical vapor It was formed into a film by a thin film technique such as deposition or sputtering, silicon oxide, a translucent dielectric such as aluminum oxide. また、上部電極28は、下部電極24と対をなし、厚膜誘電体25/薄膜蛍光体26/薄膜誘電体27の積層構造に100〜300V程度の交流電圧を印加するための電極であり、例えば、真空蒸着法やスパッタ法などの製膜技術によって、薄膜誘電体27の上面に形成された、In−Sn−Oなどからなる透明電極である。 The upper electrode 28 is paired with the lower electrode 24 is an electrode for applying an AC voltage of about 100~300V the laminated structure of the thick film dielectric 25 / thin film phosphor 26 / thin film dielectric 27, for example, the film technique such as vacuum deposition or sputtering, formed on the upper surface of the thin film dielectric 27, a transparent electrode made of in-Sn-O. 光波長変換層29は、薄膜蛍光体26が放ち、薄膜誘電体27および上部電極28を通過した光(例えば青色光)を、例えば緑色光や黄色光や赤色光に波長変換するためのものである。 Optical wavelength conversion layer 29, the thin film phosphor 26 emits, for the purpose of converting the wavelength of light passing through the thin film dielectric 27 and the upper electrode 28 (e.g., blue light), for example green light, yellow light and red light is there. なお、光波長変換層29は複数の種類を設けることもできる。 The light wavelength converting layer 29 may also be provided with a plurality of types. 表面ガラス30は、このようにして構成した二重絶縁構造薄膜ELパネルを、保護するためのものである。 Surface glass 30, the way two were constructed double insulation structure thin film EL panel, it is used to protect.

上記薄膜ELパネルの下部電極24と上部電極28の間に、100〜300V程度の交流電圧を印加すると、厚膜誘電体25/薄膜蛍光体26/薄膜誘電体27の積層構造に100〜300V程度の電圧が加わり、薄膜蛍光体26中に電荷が流れて、薄膜蛍光体26が発光する。 Between the lower electrode 24 and upper electrode 28 of the thin film EL panel, applying an AC voltage of about 100-300 V, 100-300 V about the layered structure of the thick film dielectric 25 / thin film phosphor 26 / thin film dielectric 27 joined by a voltage, and the charge in the thin film phosphor 26 flows, a thin film phosphor 26 emits light. この発光は、透光性を有する薄膜誘電体27および上部電極28を通して、光波長変換層29を励起して波長変換された光となる。 This emission, through the thin film dielectric 27 and the upper electrode 28 having a light transmitting property, a wavelength-converted light by exciting the light wavelength converting layer 29. この波長変換された光は、表面ガラス30を通過して、パネル外へと放射され、パネル外から観察されることとなる。 The wavelength converted light passes through the surface glass 30, is emitted to the panel outside, so that the observed from outside the panel.

実施形態1の蛍光体組成物を用いた発光装置の実施形態では、少なくとも一つの光波長変換層29を、実施形態1の蛍光体組成物、特に赤色光を放つ蛍光体組成物を用いて構成する。 Configuration In an embodiment of the light emitting device using the phosphor composition of Embodiment 1, at least one optical wavelength conversion layer 29, the phosphor composition of Embodiment 1, by using the phosphor composition, in particular emits red light to. また、好ましい形態では、薄膜蛍光体26を青色光を放つ薄膜青色蛍光体とし、光波長変換層29を、青色励起緑色発光材料(例えば、SrGa 24 :Eu 2+蛍光体)などで構成した緑色光への波長変換層31と、赤色光への波長変換層として機能する、赤色光を放つ実施形態1の蛍光体組成物を有する波長変換層32で構成し、さらに、図13に示すように、薄膜青色蛍光体が放つ青色光の一部が、光波長変換層29を励起することなく、パネル外へと放射されるようにする。 Further, in a preferred embodiment, the thin film phosphor 26 and the thin film blue phosphor emitting blue light, an optical wavelength conversion layer 29, blue excitation green light-emitting material (e.g., SrGa 2 S 4: Eu 2+ phosphor) constituted by a a wavelength conversion layer 31 of the green light, and functions as a wavelength conversion layer to the red light, composed of a wavelength converting layer 32 having the phosphor composition of embodiment 1 emitting red light, further, shown in FIG. 13 as such, a portion of the blue light film blue phosphor emitting, without exciting the light wavelength converting layer 29, to be radiated into the panel out. さらに、電極構成を、マトリックス駆動が可能な格子状とする。 Furthermore, the electrode configuration, a matrix drive capable lattice.

このようにして、発光装置が、薄膜蛍光体26が放つ青色光33と、光波長変換層29(31)によって波長変換された緑色光34と、光波長変換層29(32)によって波長変換された赤色光35とを放つようにすると、発光装置が、光の三原色である青、緑、赤の発光を放つようになる。 Thus, the light emitting device, a blue light 33 on which the thin film phosphor 26 is emitting a green light 34 whose wavelength is converted by the light wavelength converting layer 29 (31), is wavelength-converted by the light wavelength converting layer 29 (32) and when to emit a red light 35, the light emitting device, blue three primary colors of light, green, will give off light emission of red. さらに、青、緑、赤の発光を放つ各画素の点灯を個別制御できるようになるので、フルカラー表示可能な表示装置を提供できるようになる。 Moreover, blue, green, since the lighting of each pixel emits light emission of red becomes possible individually controlled, it is possible to provide a full color display can display.

実施形態1の蛍光体組成物を用いた発光装置の好ましい実施形態では、光波長変換層29の一部に、製造が容易かつ化学的にも安定で、青色光で励起され、色純度の良い赤色光を放つ、実施形態1の赤色蛍光体組成物を用いて構成するので、良好な赤色発光特性を示す赤色画素を有し、信頼性の高い上記発光装置を提供可能となる。 In a preferred embodiment of a light-emitting device using the phosphor composition of Embodiment 1, a portion of the light wavelength conversion layer 29, is easy to manufacture and chemically and stable, which is excited by blue light, good color purity emits red light, so configured using a red phosphor composition of embodiment 1, has a red pixel exhibiting good red emission characteristics, it is possible to provide a highly reliable light emitting device.

(実施例1) (Example 1)
以下、本発明の酸窒化物蛍光体組成物の実施例として、主体となる組成が、2(0.98SrO・0.02EuO)・Si 34・2AlNである、結晶質の蛍光体組成物を具体例に上げ、その製造方法と特性について説明する。 Hereinafter, as an embodiment of the oxynitride phosphor composition of the present invention, the composition comprising a principal, 2 a (0.98SrO · 0.02EuO) · Si 3 N 4 · 2AlN, the phosphor composition of crystalline raised to specific examples thereof will be explained a manufacturing method and characteristics.

(蛍光体組成物の製造) (Production of phosphor composition)
先ず、本実施例の蛍光体組成物の製造方法を説明する。 First, the manufacturing method of the phosphor composition of the present embodiment.

蛍光体組成物の原料として、表2に示すように以下の組成と配合重量の化合物粉末を用いた。 As raw material for the phosphor composition, the following compounds were used powder formulation weight and composition as shown in Table 2. 純度はいずれも99モル%以上のものを用いた。 Purity both with more than 99 mole%.

炭酸ストロンチウム(SrCO 3 ):14.47g(純度:99.99モル%) Strontium carbonate (SrCO 3): 14.47 g (purity: 99.99 mole%)
酸化ユーロピウム(Eu 23 ):0.35g(純度:99.99モル%) Europium oxide (Eu 2 O 3): 0.35g ( purity: 99.99 mole%)
窒化珪素(Si 34 ):7.41g(純度:99モル%以上) Silicon nitride (Si 3 N 4): 7.41g ( purity: 99 mol% or higher)
窒化アルミニウム(AlN):4.10g(純度:99.9モル%) Aluminum nitride (AlN): 4.10 g (purity: 99.9 mol%)
なお、本実施例では、上記原料同士の反応性を高めるためのフラックスは用いなかったが、フラックスを用いてもよい。 In this embodiment, the flux to increase the reactivity of the raw material between is not used, may be used flux.

上記原料を所定の乾式混合法を用いて十分混合した後、この原料の混合物粉末を雰囲気炉内に配置し、800℃の窒素中で5時間仮焼成した。 After the raw material was sufficiently mixed using a predetermined dry mixing method, the mixture powder of raw materials was placed in an atmosphere furnace, and 5 hours calcined in 800 ° C. in nitrogen. 仮焼成後の組成物を軽く混合して、焼成原料とした。 Were mixed gently composition after calcination, it was fired material.

上記焼成原料を焼成容器に仕込み、雰囲気炉を用いて、以下の焼成条件で本焼成した。 G of the calcined material to the firing container, with the atmosphere furnace was the sintering under the following sintering conditions.

焼成温度:1400℃ Firing temperature: 1400 ℃
焼成雰囲気:96体積%窒素と4体積%水素の混合ガスの還元雰囲気 焼成時間:2時間 上記製造方法によって得られた焼成物を、解砕/分級などの所定の後処理を施して、粉末状の蛍光体組成物を得た。 Firing atmosphere: 96 vol% nitrogen and 4 vol% mixed gas of reducing atmosphere firing time of the hydrogen: The obtained fired product by 2 hours the manufacturing method, performs predetermined post-processing, such as crushing / classification, powder to obtain a phosphor composition. 得られた蛍光体組成物は、表3に示すように、(Sr 0.98 Eu 0.022 Si 3 Al 226の組成式で表され、前述の実施形態1で示したの組成式では、(2(0.98SrO・0.02EuO)・Si 34・2AlN)で表され、a=2、b=1、c=2、x=0.02、y=0の組成物である。 The obtained phosphor composition, as shown in Table 3, (Sr 0.98 Eu 0.02) expressed by a composition formula of 2 Si 3 Al 2 O 2 N 6, in the composition formula shown in the aforementioned first embodiment , is represented by (2 (0.98SrO · 0.02EuO) · Si 3 N 4 · 2AlN), a = 2, b = 1, c = 2, x = 0.02, the composition of y = 0 .

(特性評価) (Characterization)
次に、上記製造方法によって製造した本実施例の上記蛍光体組成物の特性を説明する。 Next, the characteristics of the phosphor composition of the present embodiment manufactured by the above manufacturing method.

得られた蛍光体組成物は、640nm付近に発光ピークを有する赤色系発光を放つ赤色蛍光体組成物であった。 The obtained phosphor composition was red phosphor composition emitting red emission having an emission peak around 640 nm. また、この赤色系発光は、少なくとも250〜500nmの波長範囲内の単色光によるいずれの励起条件下でも認められ、上記蛍光体組成物の励起スペクトルが上記広い波長範囲内に渡っていることを示した。 Also, the red emission is observed at any of these excitation conditions with monochromatic light in the wavelength range of at least 250 to 500 nm, it indicates that the excitation spectrum of the phosphor composition is over in the wide wavelength range It was.

表4に、本実施例の蛍光体組成物の発光色、発光ピーク波長、254nm/365nm/470nmの紫外光/近紫外光/青色光励起下での発光確認の有無を示す。 Table 4, light emission color of the phosphor composition of the present embodiment, the emission peak wavelength, the presence or absence of light emission confirmed at 254 nm / 365 nm / 470 nm of ultraviolet light / near ultraviolet light / blue light excitation under shown. 表4では、発光が有ったものを○、発光が無かったものを×で表示してある。 In Table 4, ○ what emission there, are displayed in × what emission was not.

なお、上記励起条件下では、励起光の主波長を変えても、発光スペクトル形状の変化はほとんど認められなかった。 In the above excitation conditions, even by changing the dominant wavelength of the excitation light, change in the emission spectrum shape was hardly observed. 参考のために、本実施例の蛍光体組成物の発光スペクトル(励起波長:460nm)と励起スペクトルを、図14および図15に各々示した。 For reference, the emission spectrum (excitation wavelength: 460 nm) of the phosphor composition of this Example with the excitation spectrum, shown respectively in FIGS. 14 and 15.

なお、図14において、36は460nmにピークを有する励起光の分光分布、37は本実施例の蛍光体組成物の発光スペクトルである。 In FIG. 14, 36 is the spectral distribution of the excitation light having a peak at 460 nm, 37 is the emission spectrum of the phosphor composition of the present embodiment.

また、本実施例の蛍光体組成物をX線回折により分析したところ、X線回折パターンは、上記で作製した蛍光体組成物が結晶質であることを示し、上記パターンには、蛍光体組成物原料として用いた、SrCO 3 、Eu 23 、Si 34 、AlNのいずれにも該当しない複数の回折ピークが認められた。 Further, when the phosphor composition of this example was analyzed by X-ray diffraction, X-ray diffraction pattern showed that the phosphor composition prepared above is crystalline, the above-mentioned pattern, phosphor composition It was used as the object material, SrCO 3, Eu 2 O 3 , Si 3 N 4, a plurality of diffraction peaks that do not correspond to any of AlN was observed. また、上記X線回折パターンは、このようなSrCO 3 、Eu 23 、Si 34 、AlNのいずれにも該当しない回折ピークを主体にして構成されるものであった。 Further, the X-ray diffraction pattern was composed by such SrCO 3, Eu 2 O 3, Si 3 N 4, a diffraction peak does not correspond to any of the AlN mainly.

なお、組成との類推から、このX線回折パターンは、上記本焼成によって形成し得た蛍光体母体を構成する化合物によるものと思われ、上記本焼成によって、例えば、Sr 2 Al 2 Si 326など、前述の表1に示されるような酸窒化物が形成し得たことなどが示唆されるものである。 Incidentally, by analogy with the composition, the X-ray diffraction pattern is likely due to compound constituting the phosphor matrix obtained formed by the main calcination, by the main calcination, for example, Sr 2 Al 2 Si 3 O such as 2 N 6, in which like is suggested that oxynitride as shown in Table 1 above were obtained form. すなわち、Sr 2 Al 2 Si 326など、表1に示されるような酸窒化物を蛍光体母体とし、Eu 2+イオンを発光中心とするSr 2 Al 2 Si 326 :Eu 2+蛍光体、または、これに類する酸窒化物蛍光体の形成を示唆するものである。 That, Sr 2 Al such as 2 Si 3 O 2 N 6, an oxynitride as shown in Table 1 as the phosphor host, Sr is an emission center Eu 2+ ions 2 Al 2 Si 3 O 2 N 6: eu 2+ phosphor, or, suggesting the formation of oxynitride phosphor similar thereto.

(実施例2〜25) (Example 2-25)
次に、蛍光体組成物の原料の組成と配合重量をそれぞれ表2に示すように変更した以外は、実施例1と同様にして、実施例2〜25の蛍光体組成物をそれぞれ製造した。 Then, except for changing the composition and compounding weight of the feed of the phosphor composition as shown in Tables 2, in the same manner as in Example 1 to produce the phosphor composition of Example 2 to 25, respectively. なお、原料としては、塩基性炭酸マグネシウム(MgCO 3・Mg(OH) 2・H 2 O)、炭酸カルシウム(CaCO 3 )、炭酸ストロンチウム(SrCO 3 )、炭酸バリウム(BaCO 3 )、窒化珪素(Si 34 )、窒化アルミニウム(AlN)、酸化ユーロピウム(Eu 23 )、酸化セリウム(CeO 2 )から選んで用いた。 As the raw material, basic magnesium carbonate (MgCO 3 · Mg (OH) 2 · H 2 O), calcium carbonate (CaCO 3), strontium carbonate (SrCO 3), barium carbonate (BaCO 3), silicon nitride (Si 3 N 4), aluminum nitride (AlN), europium oxide (Eu 2 O 3), was used to choose from cerium oxide (CeO 2).

また、表3には、実施例2〜25で得られた蛍光体組成物の組成式と、実施形態1の組成式におけるa、b、c、x、yのそれぞれの数値を示した。 Further, Table 3 shows the composition formula of the obtained phosphor composition in Example 2 to 25, a in the formula of the embodiment 1, b, c, x, the value of each digit of y.

さらに、表4には、実施例2〜25で得られた蛍光体組成物の発光色、発光ピーク波長、254nm/365nm/470nmの紫外光/近紫外光/青色光励起下での発光確認の有無を示した。 Further, Table 4, light emission color of the phosphor composition obtained in Example 2 to 25, the emission peak wavelength, 254 nm / 365 nm / 470 nm in the presence or absence of light emission confirmed in the ultraviolet light / near ultraviolet light / blue light excitation under showed that.

なお、実施例2〜25の蛍光体組成物は、実施例1と同様にいずれもガラス状態の組成物ではなく、結晶質の蛍光体組成物であった。 Incidentally, the phosphor composition of Example 2 to 25, both in the same manner as in Example 1 instead of the composition of the glassy state was phosphor composition of the crystalline.

表2〜表4からわかるように、結晶質の蛍光体組成物であって、その主体となる組成が、a((1−x−y)MO・xEuO・yCe 23 ))・bSi 34・cAlNであることを特徴とする本実施例の蛍光体組成物は、紫外〜青色系の光で励起され、青〜緑〜黄〜橙〜赤の発光を放つことが確認できた。 Table 2 As can be seen from Table 4, the phosphor composition of the crystalline, the composition comprising its principal, a ((1-x- y) MO · xEuO · yCe 2 O 3)) · bSi 3 phosphor composition of the present embodiment, which is a N 4 · CALN is excited by ultraviolet to blue light, it was confirmed that emits luminescence of blue to green-yellow to orange-red.

また、温色系の発光は、少なくともEu 2+イオンを発光中心として含み、MをSrとし、かつ、a、b、cを、各々、0.45≦a/(a+b)≦0.85、0.3≦a/(a+c)≦0.8、0.3≦c/(b+c)≦0.85を満足する数値となるよう限定した組成の蛍光体組成物において認められた。 Further, the light emission of the warm color system, comprising a luminescent center at least Eu 2+ ions, the M and Sr, and, a, b, and c, respectively, 0.45 ≦ a / (a + b) ≦ 0.85, was observed in 0.3 ≦ a / (a ​​+ c) ≦ 0.8,0.3 ≦ c / (b + c) ≦ 0.85 phosphor composition having the composition restricted to be a numerical value satisfying.

また、赤色系の発光は、少なくともEu 2+イオンを発光中心として含み、MをSrとし、かつ、a、b、cを、各々、0.6≦a/(a+b)≦0.85、0.4≦a/(a+c)≦0.6、0.6≦c/(b+c)≦0.85を満足する数値となるよう限定した組成の蛍光体組成物において認められた。 Further, red light-emitting comprises as a luminescent center at least Eu 2+ ions, the M and Sr, and, a, b, and c, respectively, 0.6 ≦ a / (a + b) ≦ 0.85,0 was observed in .4 ≦ a / (a ​​+ c) ≦ 0.6,0.6 ≦ c / (b + c) ≦ 0.85 phosphor composition having the composition restricted to be a numerical value satisfying.

参考のために、図16には、本実施例のEu 2+イオンを発光中心とするSrO−Si 34 −AlN系の蛍光体組成物の組成範囲を三元組成図中に示した。 For reference, in FIG. 16, it indicated composition range of SrO-Si 3 N 4 -AlN phosphor composition of an emission center Eu 2+ ions in this embodiment the in ternary diagram. 図中、星印、丸印、三角印、四角印は、各々、赤色発光、黄色または橙色発光、緑色発光、青色発光を観察した組成を示している。 In the figure, asterisk, circle, triangle, square marks, respectively, red emission, yellow or orange light emission, green emission, shows the composition was observed blue light emission.

図16からわかるように、a、b、cが、0.45≦a/(a+b)≦0.85、0.3≦a/(a+c)≦0.8、0.3≦c/(b+c)≦0.85を満足する数値となるよう限定した組成の蛍光体組成物において、温色系の発光が認められ、さらに、0.6≦a/(a+b)≦0.85、0.4≦a/(a+c)≦0.6、0.6≦c/(b+c)≦0.85を満足する数値となるよう限定した組成の蛍光体組成物において、赤色系の発光が認められた。 As can be seen from FIG. 16, a, b, c is, 0.45 ≦ a / (a ​​+ b) ≦ 0.85,0.3 ≦ a / (a ​​+ c) ≦ 0.8,0.3 ≦ c / (b + c ) in ≦ 0.85 phosphor composition having the composition restricted to be a numerical value satisfying, the emission of hot color system observed, furthermore, 0.6 ≦ a / (a ​​+ b) ≦ 0.85,0.4 in ≦ a / (a ​​+ c) ≦ 0.6,0.6 ≦ c / (b + c) ≦ 0.85 phosphor composition having the composition restricted to be a numerical value satisfying, red emission was observed.

以上説明したように本発明は、組成を特定して酸窒化物の蛍光体組成物を構成するので、近紫外〜青色光で励起可能な新規蛍光体組成物、特に温色系発光や赤色系発光を放つ新規蛍光体組成物を提供できる。 The present invention described above, since constituting the phosphor composition of identifying and oxynitride composition, novel phosphor composition capable excited by near-ultraviolet to blue light, particularly Yutakairo-emitting and red emission can provide a novel phosphor composition that emits. また、本発明によれば、入手が容易な化合物を蛍光体組成物原料として用いることができるので、製造が容易な上記温色系発光、特に赤色系発光を放つ新規蛍光体組成物を提供できる。 Further, according to the present invention, it is possible to use a readily available compound as a phosphor composition material, production easy the Yutakairo based light emitting can provide a novel phosphor composition, in particular emits red light emitting .

また、本発明は、近紫外〜青色光で励起可能で、化学的に安定な新規蛍光体組成物、特に赤色系発光を放つ新規蛍光体組成物を用いて発光装置を構成するので、赤色発光成分の発光強度が強く、信頼性に優れ、比較的安価に製造し得る発光装置も提供できる。 The present invention also can be excited by near-ultraviolet to blue light, chemically stable novel phosphor composition, since forming the light emitting device using a novel phosphor composition, in particular emits red light emitting a red light emitting strong emission intensity of the component, is excellent in reliability, it can be provided relatively inexpensively be manufactured light-emitting device.

本発明の実施形態における半導体発光素子の断面図である。 It is a cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. 本発明の他の実施形態における半導体発光素子の断面図である。 It is a cross-sectional view of a semiconductor light emitting device according to another embodiment of the present invention. 本発明のさらに他の実施形態における半導体発光素子の断面図である。 It is a cross-sectional view of a semiconductor light emitting element in still another embodiment of the present invention. 本発明の実施形態における照明・表示装置の構成を示す概略図である。 It is a schematic diagram showing a configuration of a lighting and display apparatus according to an embodiment of the present invention. 本発明の他の実施形態における照明・表示装置の構成を示す概略図である。 It is a schematic diagram showing a configuration of a lighting and display device according to another embodiment of the present invention. 本発明の実施形態における照明モジュールの斜視図である。 It is a perspective view of a lighting module according to an embodiment of the present invention. 本発明の他の実施形態における照明モジュールの斜視図である。 It is a perspective view of a lighting module according to another embodiment of the present invention. 本発明の実施形態における照明装置の斜視図である。 It is a perspective view of a lighting device in the embodiment of the present invention. 本発明の他の実施形態における照明装置の側面図(a)と底面図(b)である。 Side view of a lighting device according to another embodiment of the present invention and (a) is a bottom view (b). 本発明の実施形態における画像表示装置の斜視図である。 1 is a perspective view of an image display apparatus according to an embodiment of the present invention. 本発明の実施形態における数字表示装置の斜視図である。 It is a perspective view of a digital display device according to an embodiment of the present invention. 本発明の実施形態における蛍光ランプの端部の一部破断図である。 It is a partially cutaway view of an end portion of the fluorescent lamp in the embodiment of the present invention. 本発明の実施形態におけるELパネルの断面図である。 It is a cross-sectional view of an EL panel in the embodiment of the present invention. 本発明の実施例における蛍光体組成物の発光スペクトルを示した図である。 Is a diagram showing an emission spectrum of a phosphor composition in embodiments of the present invention. 本発明の実施例における蛍光体組成物の励起スペクトルを示した図である。 Is a graph showing the excitation spectrum of the phosphor composition in embodiments of the present invention. 本発明の実施例における蛍光体組成物の組成範囲を示す三元組成図である。 It is a ternary composition diagram showing the composition range of the phosphor composition in embodiments of the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

1 発光素子 2 蛍光体組成物 3 蛍光体層 4 サブマウント素子 5 リードフレーム 6 カップ 7 封止材 8 筐体 9 半導体発光素子10 出力光11 発光部12 照明モジュール13 スイッチ14 口金15 反射板16 ガラス管17 ステム18 蛍光体組成物19 リード線20 フィラメント電極21 電極端子22 口金23 背面基板24 下部電極25 厚膜誘電体26 薄膜蛍光体27 薄膜誘電体28 上部電極29 光波長変換層30 表面ガラス31 緑色光への波長変換層32 実施形態1の蛍光体組成物を有する波長変換層33 青色光34 緑色光35 赤色光36 励起光の分光分布37 実施例1の蛍光体組成物の発光スペクトル 1-emitting element 2 phosphor composition 3 phosphor layer 4 submount 5 lead frame 6 cups 7 sealant 8 housing 9 semiconductor light emitting element 10 outputs light 11 emitting unit 12 lighting module 13 switches 14 mouthpiece 15 reflector 16 Glass tube 17 the stem 18 phosphor composition 19 lead 20 filament electrode 21 electrode terminals 22 mouthpiece 23 back substrate 24 lower electrode 25 thick film dielectric 26 thin film phosphor 27 thin film dielectric 28 upper electrode 29 optical wavelength conversion layer 30 surface glass 31 emission spectrum of the phosphor composition of the phosphor composition of the spectral distribution 37 example 1 of the wavelength conversion layer 33 blue 34 green light 35 red light 36 excitation light having a wavelength converting layer 32 according to the first embodiment of the green light

Claims (9)

  1. a((1−x−y)MO・xEuO・yCe 23 ))・bSi 34・cAlNの組成式で表される組成物を主体として含む蛍光体組成物であって、 A phosphor composition comprising mainly of a ((1-x-y ) MO · xEuO · yCe 2 O 3)) · bSi 3 N 4 · cAlN composition represented by composition formula,
    前記蛍光体組成物が、結晶質からなり、 The phosphor composition is comprised of crystalline
    前記組成式中のMが、Mg、Ca、Sr、およびBaから選ばれる少なくとも一つのアルカリ土類金属元素であり、 M in the composition formula, Mg, Ca, Sr, and at least one alkaline earth metal selected from Ba,
    前記組成式中のa、b、c、x、yがそれぞれ、 a in the formula, b, c, x, y, respectively,
    0.3≦a/(a+b)≦0.9、 0.3 ≦ a / (a ​​+ b) ≦ 0.9,
    0.2≦a/(a+c)≦0.8、 0.2 ≦ a / (a ​​+ c) ≦ 0.8,
    0.3≦c/(b+c)≦0.9、 0.3 ≦ c / (b + c) ≦ 0.9,
    0≦x≦0.2、 0 ≦ x ≦ 0.2,
    0≦y≦0.2、 0 ≦ y ≦ 0.2,
    0.002≦x+y≦0.2、 0.002 ≦ x + y ≦ 0.2,
    の関係を満たすことを特徴とする蛍光体組成物。 Phosphor composition characterized by satisfying the relationship.
  2. 実質的にCeを含まない請求項1に記載の蛍光体組成物。 Phosphor composition according to claim 1 which is substantially free of Ce.
  3. Mの主体が、Srである請求項2に記載の蛍光体組成物。 Subject of M is, the phosphor composition of claim 2 is Sr.
  4. 前記組成式中のa、b、cがそれぞれ、 a in the formula, b, c, respectively,
    0.45≦a/(a+b)≦0.85、 0.45 ≦ a / (a ​​+ b) ≦ 0.85,
    0.3≦a/(a+c)≦0.8、 0.3 ≦ a / (a ​​+ c) ≦ 0.8,
    0.3≦c/(b+c)≦0.85、 0.3 ≦ c / (b + c) ≦ 0.85,
    の関係を満たす請求項3に記載の蛍光体組成物。 Phosphor composition according to claim 3 which satisfies the relation.
  5. 前記組成式中のa、b、cがそれぞれ、 a in the formula, b, c, respectively,
    0.6≦a/(a+b)≦0.85、 0.6 ≦ a / (a ​​+ b) ≦ 0.85,
    0.4≦a/(a+c)≦0.6、 0.4 ≦ a / (a ​​+ c) ≦ 0.6,
    0.6≦c/(b+c)≦0.85、 0.6 ≦ c / (b + c) ≦ 0.85,
    の関係を満たす請求項3に記載の蛍光体組成物。 Phosphor composition according to claim 3 which satisfies the relation.
  6. 560nmを超え660nm以下の波長領域に発光ピークを有する請求項4に記載の蛍光体組成物。 Phosphor composition according to claim 4 having an emission peak in a wavelength region 660nm exceeded 560 nm.
  7. 600nmを超え660nm以下の波長領域に発光ピークを有する請求項5に記載の蛍光体組成物。 Phosphor composition according to claim 5 having an emission peak in a wavelength region 660nm exceeded 600 nm.
  8. 請求項1〜7のいずれかに記載の蛍光体組成物を発光源として用いて構成したことを特徴とする発光装置。 Emitting apparatus characterized by being configured with a phosphor composition as claimed as a light emitting source to any of claims 1-7.
  9. 前記蛍光体組成物と、さらに発光素子とを発光源として用い、前記蛍光体組成物が前記発光素子を覆うように、前記蛍光体組成物と前記発光素子とを組み合わせた請求項8に記載の発光装置。 The used and the phosphor composition, and a further light-emitting element as a light emitting source, wherein as the phosphor composition covers the light emitting element, according to claim 8 in combination with said phosphor composition and the light emitting element the light-emitting device.

JP2003283037A 2003-07-30 2003-07-30 Phosphor composition and light emitting equipment using the same Withdrawn JP2005048105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283037A JP2005048105A (en) 2003-07-30 2003-07-30 Phosphor composition and light emitting equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283037A JP2005048105A (en) 2003-07-30 2003-07-30 Phosphor composition and light emitting equipment using the same

Publications (1)

Publication Number Publication Date
JP2005048105A true JP2005048105A (en) 2005-02-24

Family

ID=34268048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283037A Withdrawn JP2005048105A (en) 2003-07-30 2003-07-30 Phosphor composition and light emitting equipment using the same

Country Status (1)

Country Link
JP (1) JP2005048105A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003961A1 (en) * 2004-06-30 2006-01-12 National Institute For Materials Science Fluorescent substance and light-emitting equipment
JP2006057018A (en) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd Fluorescent material, method for producing the same and light source produced by using the fluorescent material
WO2006094139A2 (en) * 2005-03-01 2006-09-08 Gelcore, Llc Oxynitride phosphors for use in lighting applications having improved color quality
WO2006093298A1 (en) * 2005-03-04 2006-09-08 Dowa Electronics Materials Co., Ltd. Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
JP2006252951A (en) * 2005-03-10 2006-09-21 Toyoda Gosei Co Ltd Planar light emitting device
JP2006265437A (en) * 2005-03-25 2006-10-05 Univ Nagoya Zinc oxide-based light-emitting material and method for producing the same
WO2006106883A1 (en) * 2005-03-31 2006-10-12 Dowa Electronics Materials Co., Ltd. Fluorescent substance, fluorescent substance sheet and process for producing the same, and luminescent device using said fluorescent substance
JP2006307090A (en) * 2005-04-28 2006-11-09 Dowa Mining Co Ltd Phosphor, method for producing the same and light emitting device using the phosphor
WO2006117984A1 (en) * 2005-04-27 2006-11-09 Nichia Corporation Nitride phosphor and light-emitting device using same
WO2006126567A1 (en) * 2005-05-24 2006-11-30 Mitsubishi Chemical Corporation Phosphor and use thereof
JP2006335832A (en) * 2005-05-31 2006-12-14 Toshiba Corp Phosphor and light emitting device
WO2007029821A1 (en) * 2005-09-08 2007-03-15 Matsushita Electric Industrial Co., Ltd. Apparatus for counting the number of microorganisms
WO2007037059A1 (en) * 2005-09-27 2007-04-05 Dowa Electronics Co., Ltd. Fluorescent substance, process for producing the same, and light emitting device using said fluorescent substance
JP2007097583A (en) * 2005-09-09 2007-04-19 Matsushita Electric Ind Co Ltd Microorganisms-counting apparatus
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
WO2007099862A1 (en) * 2006-02-24 2007-09-07 National Institute For Materials Science Phosphor, method for producing same, and light-emitting device
JP2008038143A (en) * 2006-07-11 2008-02-21 Ngk Insulators Ltd Blue light emitting aluminum nitride material and its manufacturing method
JP2008218485A (en) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
JP2009512178A (en) * 2005-11-04 2009-03-19 パナソニック株式会社 Light emitting module and a display device and a lighting apparatus using the same
JP2009530837A (en) * 2006-03-20 2009-08-27 テヘニース ウニフェルシテイト アイントホーフェン Device and method of manufacturing the converter for converting electromagnetic radiation energy into electrical energy
USRE41234E1 (en) * 2000-08-28 2010-04-20 Toyoda Gosei Co., Ltd. Light-emitting unit having specific fluorescent material
JP2010129906A (en) * 2008-11-28 2010-06-10 National Institute For Materials Science Illumination device for display device and display device
JP2010525097A (en) * 2007-04-20 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Emissive material with a white light emitting light source and enhanced color stability
JP2011003546A (en) * 2005-03-31 2011-01-06 Seoul Semiconductor Co Ltd Backlight panel
JP2011040779A (en) * 2010-10-12 2011-02-24 Nichia Corp Light emitting device, phosphor for light emitting element, and method of manufacturing the same
WO2011024296A1 (en) * 2009-08-28 2011-03-03 株式会社 東芝 Process for producing fluorescent substance and fluorescent substance produced thereby
WO2011028033A2 (en) * 2009-09-02 2011-03-10 엘지이노텍주식회사 Phosphor, preparation method of phosphor, and white light emitting device
JP2011082529A (en) * 2006-03-10 2011-04-21 Toshiba Corp Light-emitting device
WO2011107215A1 (en) 2010-03-01 2011-09-09 Merck Patent Gmbh Electro-optical switching element and electro-optical display
JP2011256340A (en) * 2010-06-11 2011-12-22 Mitsubishi Chemicals Corp Phosphor, phosphor-containing composition using the phosphor, light emitting device, image display device and lighting device
KR101103999B1 (en) * 2009-07-16 2012-01-06 엘지이노텍 주식회사 Oxynitride-based phosphors, manufacturing method thereof and light emitting apparatus
KR101114190B1 (en) * 2009-09-02 2012-02-22 엘지이노텍 주식회사 Oxynitride-based phosphors, manufacturing method thereof and light emitting apparatus
KR101163902B1 (en) * 2010-08-10 2012-07-09 엘지이노텍 주식회사 Light emitting device
JP2012142293A (en) * 2012-02-20 2012-07-26 Koito Mfg Co Ltd Vehicular marker lamp
JP2013104040A (en) * 2011-11-16 2013-05-30 Toshiba Corp Fluorescent substance, light-emitting device, manufacturing method of fluorescent substance
JP5212691B2 (en) * 2005-06-06 2013-06-19 独立行政法人物質・材料研究機構 Method of producing an inorganic crystal
JP2013127054A (en) * 2011-11-15 2013-06-27 National Institute For Materials Science Phosphor, production method thereof, illumination device and image display device
CN103361057A (en) * 2012-04-02 2013-10-23 康普材料科技股份有限公司 Fluorescent material, Fluorescent material composition containing the same, and light emitting device manufactured by the same
WO2013156112A1 (en) 2012-04-20 2013-10-24 Merck Patent Gmbh Electro-optical switching element and electro-optical display
WO2013180216A1 (en) * 2012-05-31 2013-12-05 独立行政法人物質・材料研究機構 Phosphor, method for manufacturing same, light emitting device, and image display device
US8608980B2 (en) 2007-09-03 2013-12-17 National Institute For Materials Science Phosphor, method for producing the same and light-emitting device using the same
CN103484110A (en) * 2013-09-06 2014-01-01 北京科技大学 Red silicon-aluminum oxynitride fluorescent material and preparation method thereof
CN104073254A (en) * 2013-06-24 2014-10-01 北京有色金属研究总院 Fluorescent powder and light-emitting device comprising same
US8879024B2 (en) 2008-09-10 2014-11-04 Merck Patent Gmbh Liquid crystal display with a fluorescent backlight emitting polarised light
JP2015000965A (en) * 2013-06-18 2015-01-05 独立行政法人物質・材料研究機構 Phosphor, method for manufacturing the same, light emitting device, image display device, pigment, and ultraviolet absorber
US9708531B2 (en) 2009-02-26 2017-07-18 Nichia Corporation Fluorescent substance, method of manufacturing the fluorescent substance, and light emitting device using the fluorescent substance
WO2018021201A1 (en) * 2016-07-26 2018-02-01 デクセリアルズ株式会社 Red phosphor and production method therefor, and white light source, illumination device, and display device using same
WO2018096135A1 (en) 2016-11-28 2018-05-31 Merck Patent Gmbh Composition comprising a nanosized light emitting material
US10214689B2 (en) 2016-12-15 2019-02-26 National Institute For Materials Science Fluorescent material and light emitting device

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41234E1 (en) * 2000-08-28 2010-04-20 Toyoda Gosei Co., Ltd. Light-emitting unit having specific fluorescent material
WO2006003961A1 (en) * 2004-06-30 2006-01-12 National Institute For Materials Science Fluorescent substance and light-emitting equipment
JP2006057018A (en) * 2004-08-20 2006-03-02 Dowa Mining Co Ltd Fluorescent material, method for producing the same and light source produced by using the fluorescent material
JP4524470B2 (en) * 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 Phosphor and a method of manufacturing and a light source using the phosphor,
US8372309B2 (en) 2005-02-25 2013-02-12 Mitsubishi Chemical Corporation Phosphor and manufacturing method therefore, and light emission device using the phosphor
WO2006094139A2 (en) * 2005-03-01 2006-09-08 Gelcore, Llc Oxynitride phosphors for use in lighting applications having improved color quality
WO2006094139A3 (en) * 2005-03-01 2007-02-22 Elena Alexandrovna Bachniak Oxynitride phosphors for use in lighting applications having improved color quality
US7439668B2 (en) 2005-03-01 2008-10-21 Lumination Llc Oxynitride phosphors for use in lighting applications having improved color quality
JP2012092350A (en) * 2005-03-04 2012-05-17 Mitsubishi Chemicals Corp Phosphor, method for producing the same, and light emission device using the phosphor
US7887718B2 (en) 2005-03-04 2011-02-15 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light emission device using the phosphor
WO2006093298A1 (en) * 2005-03-04 2006-09-08 Dowa Electronics Materials Co., Ltd. Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
JP5145934B2 (en) * 2005-03-04 2013-02-20 三菱化学株式会社 Phosphor and manufacturing method thereof, as well as the light emitting device using the phosphor
CN102827603A (en) * 2005-03-04 2012-12-19 三菱化学株式会社 Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
JP2006252951A (en) * 2005-03-10 2006-09-21 Toyoda Gosei Co Ltd Planar light emitting device
JP4645240B2 (en) * 2005-03-10 2011-03-09 豊田合成株式会社 Planar light emitting device
JP2006265437A (en) * 2005-03-25 2006-10-05 Univ Nagoya Zinc oxide-based light-emitting material and method for producing the same
US8048338B2 (en) 2005-03-31 2011-11-01 Dowa Electronics Materials Co., Ltd. Phosphor, phosphor sheet, and manufacturing method therefore, and light emission device using the phosphor
WO2006106883A1 (en) * 2005-03-31 2006-10-12 Dowa Electronics Materials Co., Ltd. Fluorescent substance, fluorescent substance sheet and process for producing the same, and luminescent device using said fluorescent substance
JP2011003546A (en) * 2005-03-31 2011-01-06 Seoul Semiconductor Co Ltd Backlight panel
WO2006117984A1 (en) * 2005-04-27 2006-11-09 Nichia Corporation Nitride phosphor and light-emitting device using same
JP2006307090A (en) * 2005-04-28 2006-11-09 Dowa Mining Co Ltd Phosphor, method for producing the same and light emitting device using the phosphor
KR101324004B1 (en) 2005-05-24 2013-10-31 독립행정법인 물질·재료연구기구 Phosphor and use thereof
WO2006126567A1 (en) * 2005-05-24 2006-11-30 Mitsubishi Chemical Corporation Phosphor and use thereof
US8206611B2 (en) 2005-05-24 2012-06-26 Mitsubishi Chemical Corporation Phosphor and use thereof
US8703019B2 (en) 2005-05-24 2014-04-22 Mitsubishi Chemical Corporation Phosphor and use thereof
JP2006335832A (en) * 2005-05-31 2006-12-14 Toshiba Corp Phosphor and light emitting device
US7638934B2 (en) 2005-05-31 2009-12-29 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device
JP5212691B2 (en) * 2005-06-06 2013-06-19 独立行政法人物質・材料研究機構 Method of producing an inorganic crystal
WO2007029821A1 (en) * 2005-09-08 2007-03-15 Matsushita Electric Industrial Co., Ltd. Apparatus for counting the number of microorganisms
JP2007097583A (en) * 2005-09-09 2007-04-19 Matsushita Electric Ind Co Ltd Microorganisms-counting apparatus
US8475682B2 (en) 2005-09-27 2013-07-02 Mitsubishi Chemical Corporation Phosphor and manufacturing method therefore, and light emission device using the phosphor
KR101264580B1 (en) 2005-09-27 2013-05-14 미쓰비시 가가꾸 가부시키가이샤 Phosphor and a method of manufacturing the same, and light emitting device using the phosphor
KR101331392B1 (en) 2005-09-27 2013-11-20 미쓰비시 가가꾸 가부시키가이샤 Fluorescent substance, process for producing the same, and light emitting device using said fluorescent substance
US8062549B2 (en) 2005-09-27 2011-11-22 Mitsubishi Chemical Corporation Phosphor and manufacturing method therefore, and light emission device using the phosphor
CN102816565A (en) * 2005-09-27 2012-12-12 三菱化学株式会社 Phosphor and manufacturing method therefore, and light emission device using the phosphor
JP2012193390A (en) * 2005-09-27 2012-10-11 Mitsubishi Chemicals Corp Phosphor, process for producing the same, and light emission device using the phosphor
JP5245411B2 (en) * 2005-09-27 2013-07-24 三菱化学株式会社 Phosphor and a manufacturing method thereof, and a light emitting device using the fluorescent body
WO2007037059A1 (en) * 2005-09-27 2007-04-05 Dowa Electronics Co., Ltd. Fluorescent substance, process for producing the same, and light emitting device using said fluorescent substance
TWI404792B (en) * 2005-09-27 2013-08-11 Mitsubishi Chem Corp
JP2009512178A (en) * 2005-11-04 2009-03-19 パナソニック株式会社 Light emitting module and a display device and a lighting apparatus using the same
US8147715B2 (en) 2005-12-08 2012-04-03 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
EP2463354A1 (en) * 2005-12-08 2012-06-13 National Institute for Materials Science Phosphor, Process for producing the same, and luminescent device
WO2007099862A1 (en) * 2006-02-24 2007-09-07 National Institute For Materials Science Phosphor, method for producing same, and light-emitting device
US8057704B2 (en) 2006-02-24 2011-11-15 National Institute For Materials Science Phosphor, method for producing same, and light-emitting device
JP2011082529A (en) * 2006-03-10 2011-04-21 Toshiba Corp Light-emitting device
JP2012070014A (en) * 2006-03-10 2012-04-05 Toshiba Corp Light emitting device
US8450923B2 (en) 2006-03-10 2013-05-28 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
JP2012109592A (en) * 2006-03-10 2012-06-07 Toshiba Corp Light-emitting device
US8491817B2 (en) 2006-03-10 2013-07-23 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8482192B2 (en) 2006-03-10 2013-07-09 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8475680B2 (en) 2006-03-10 2013-07-02 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
JP2009530837A (en) * 2006-03-20 2009-08-27 テヘニース ウニフェルシテイト アイントホーフェン Device and method of manufacturing the converter for converting electromagnetic radiation energy into electrical energy
JP2008038143A (en) * 2006-07-11 2008-02-21 Ngk Insulators Ltd Blue light emitting aluminum nitride material and its manufacturing method
JP2008218485A (en) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp Light emitting device
JP2010525097A (en) * 2007-04-20 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Emissive material with a white light emitting light source and enhanced color stability
US9564559B2 (en) 2007-04-20 2017-02-07 Koninklijke Philips N.V. White emitting light source and luminescent material
US8608980B2 (en) 2007-09-03 2013-12-17 National Institute For Materials Science Phosphor, method for producing the same and light-emitting device using the same
US8879024B2 (en) 2008-09-10 2014-11-04 Merck Patent Gmbh Liquid crystal display with a fluorescent backlight emitting polarised light
CN102227826A (en) * 2008-11-28 2011-10-26 昭和电工株式会社 Illumination device for display devices and display device
JP2010129906A (en) * 2008-11-28 2010-06-10 National Institute For Materials Science Illumination device for display device and display device
KR101356367B1 (en) * 2008-11-28 2014-01-27 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 Illumination device for display devices and display device
US8550645B2 (en) 2008-11-28 2013-10-08 Showa Denko K.K. Illumination device for display device, and display device
US9708531B2 (en) 2009-02-26 2017-07-18 Nichia Corporation Fluorescent substance, method of manufacturing the fluorescent substance, and light emitting device using the fluorescent substance
KR101103999B1 (en) * 2009-07-16 2012-01-06 엘지이노텍 주식회사 Oxynitride-based phosphors, manufacturing method thereof and light emitting apparatus
US8926863B2 (en) 2009-08-28 2015-01-06 Kabushiki Kaisha Toshiba Process for producing fluorescent substance and fluorescent substance produced thereby
JP5129392B2 (en) * 2009-08-28 2013-01-30 株式会社東芝 Preparation and thereby produced phosphor of the phosphor
WO2011024296A1 (en) * 2009-08-28 2011-03-03 株式会社 東芝 Process for producing fluorescent substance and fluorescent substance produced thereby
WO2011028033A3 (en) * 2009-09-02 2011-07-21 엘지이노텍주식회사 Phosphor, preparation method of phosphor, and white light emitting device
US9909058B2 (en) 2009-09-02 2018-03-06 Lg Innotek Co., Ltd. Phosphor, phosphor manufacturing method, and white light emitting device
WO2011028033A2 (en) * 2009-09-02 2011-03-10 엘지이노텍주식회사 Phosphor, preparation method of phosphor, and white light emitting device
KR101114190B1 (en) * 2009-09-02 2012-02-22 엘지이노텍 주식회사 Oxynitride-based phosphors, manufacturing method thereof and light emitting apparatus
DE112011100732T5 (en) 2010-03-01 2013-01-24 Merck Patent Gmbh Electro-optical switching element and electro-optical display
WO2011107215A1 (en) 2010-03-01 2011-09-09 Merck Patent Gmbh Electro-optical switching element and electro-optical display
JP2011256340A (en) * 2010-06-11 2011-12-22 Mitsubishi Chemicals Corp Phosphor, phosphor-containing composition using the phosphor, light emitting device, image display device and lighting device
KR101163902B1 (en) * 2010-08-10 2012-07-09 엘지이노텍 주식회사 Light emitting device
US8653549B2 (en) 2010-08-10 2014-02-18 Lg Innotek Co., Ltd. Phosphor, phosphor manufacturing method, and white light emitting device
JP2011040779A (en) * 2010-10-12 2011-02-24 Nichia Corp Light emitting device, phosphor for light emitting element, and method of manufacturing the same
JP2013127054A (en) * 2011-11-15 2013-06-27 National Institute For Materials Science Phosphor, production method thereof, illumination device and image display device
JP2013127055A (en) * 2011-11-15 2013-06-27 National Institute For Materials Science Phosphor, production method thereof, illumination device and image display device
JP2013104040A (en) * 2011-11-16 2013-05-30 Toshiba Corp Fluorescent substance, light-emitting device, manufacturing method of fluorescent substance
JP2012142293A (en) * 2012-02-20 2012-07-26 Koito Mfg Co Ltd Vehicular marker lamp
CN103361057A (en) * 2012-04-02 2013-10-23 康普材料科技股份有限公司 Fluorescent material, Fluorescent material composition containing the same, and light emitting device manufactured by the same
WO2013156112A1 (en) 2012-04-20 2013-10-24 Merck Patent Gmbh Electro-optical switching element and electro-optical display
EP2801599A4 (en) * 2012-05-31 2015-03-18 Nat Inst For Materials Science Phosphor, method for manufacturing same, light emitting device, and image display device
CN104024375A (en) * 2012-05-31 2014-09-03 独立行政法人物质·材料研究机构 Phosphor, Method For Manufacturing Same, Light Emitting Device, And Image Display Device
WO2013180216A1 (en) * 2012-05-31 2013-12-05 独立行政法人物質・材料研究機構 Phosphor, method for manufacturing same, light emitting device, and image display device
JP2015000965A (en) * 2013-06-18 2015-01-05 独立行政法人物質・材料研究機構 Phosphor, method for manufacturing the same, light emitting device, image display device, pigment, and ultraviolet absorber
CN104073254A (en) * 2013-06-24 2014-10-01 北京有色金属研究总院 Fluorescent powder and light-emitting device comprising same
KR101779687B1 (en) * 2013-06-24 2017-09-18 제너럴 리서치 인스티튜트 포 넌페러스 메탈스 Fluorescent powder and light emitting apparatus comprising same
CN103484110A (en) * 2013-09-06 2014-01-01 北京科技大学 Red silicon-aluminum oxynitride fluorescent material and preparation method thereof
WO2018021201A1 (en) * 2016-07-26 2018-02-01 デクセリアルズ株式会社 Red phosphor and production method therefor, and white light source, illumination device, and display device using same
WO2018096135A1 (en) 2016-11-28 2018-05-31 Merck Patent Gmbh Composition comprising a nanosized light emitting material
US10214689B2 (en) 2016-12-15 2019-02-26 National Institute For Materials Science Fluorescent material and light emitting device

Similar Documents

Publication Publication Date Title
JP3993854B2 (en) The semiconductor light emitting device and a light emitting apparatus using the same
JP4159542B2 (en) The light-emitting device
US7497973B2 (en) Red line emitting phosphor materials for use in LED applications
US6982045B2 (en) Light emitting device having silicate fluorescent phosphor
US20040062699A1 (en) Inorganic oxide and phosphor
US7443094B2 (en) Phosphor and manufacturing method of the same, and light emitting device using the phosphor
EP1413619A1 (en) Luminescent material, especially for LED application
JP5105347B2 (en) Phosphor and its manufacturing method and light-emitting device
JP4457110B2 (en) The illumination system of the high efficiency of the led with improved color rendering based
US7229573B2 (en) Ce3+ and Eu2+ doped phosphors for light generation
US7432642B2 (en) Semiconductor light emitting device provided with a light conversion element using a haloborate phosphor composition
CN101288342B (en) Illumination system comprising a ceramic luminescence converter
JP3851331B2 (en) The light-emitting material for a light-emitting material, for example, led
JP4094047B2 (en) The light-emitting device
US7828993B2 (en) Phosphor and optical device using same
JP5151002B2 (en) The light-emitting device
JP5592602B2 (en) Phosphor and light emitting device using the same
JP3668770B2 (en) Oxynitride was activated by rare-earth element phosphor
US7267786B2 (en) Phosphor and light source comprising such a phosphor
EP2141215A1 (en) Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device
JP4418758B2 (en) Illumination system with a radiation source and a light emitting element
JP3985486B2 (en) The semiconductor light emitting device and a light emitting apparatus using the same
US20070018573A1 (en) Phosphor, production method thereof and light-emitting device using the phosphor
CN101171884B (en) An illumination system comprising a radiation source and a fluorescent material
JP3726131B2 (en) Sialon-based phosphor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003