JP2006175400A - Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it - Google Patents
Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it Download PDFInfo
- Publication number
- JP2006175400A JP2006175400A JP2004373329A JP2004373329A JP2006175400A JP 2006175400 A JP2006175400 A JP 2006175400A JP 2004373329 A JP2004373329 A JP 2004373329A JP 2004373329 A JP2004373329 A JP 2004373329A JP 2006175400 A JP2006175400 A JP 2006175400A
- Authority
- JP
- Japan
- Prior art keywords
- phosphate ion
- water
- tank
- phosphate
- treatment tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Biological Wastes In General (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
本発明は、戸建住宅、集合住宅、コンビニエンスストア、小規模事業場等から排出される排水または汚水(以降、これらを単に排水と略す)に含まれているリン酸イオンを除去するリン酸イオン固体化剤、リン酸イオン固体化装置及びそれを備える浄化槽に関する。 The present invention relates to phosphate ions for removing phosphate ions contained in drainage or sewage (hereinafter simply referred to as wastewater) discharged from detached houses, apartment houses, convenience stores, small business establishments, etc. The present invention relates to a solidifying agent, a phosphate ion solidifying device, and a septic tank including the same.
上記の施設等から排出される排水に含まれているリン酸イオンを除去することを目的にした場合、鉄、アルミニウム、カルシウム等の多価金属のイオンを排水中に供給し、これとリン酸イオンとを反応させることにより固体化(または粒子化)して沈殿、浮上又はろ過等によって除去する、反応凝集法が多く用いられている。そして、多価金属イオンを排水中に供給する方法としては、例えば、鉄、アルミニウム等の金属材を液中に対峙させて懸垂し、この金属材に電圧をかけて電流を流し、陽極からこれら多価金属イオンを溶解させる電解法がある(特許文献1参照)。 When the purpose is to remove phosphate ions contained in the wastewater discharged from the above facilities, etc., supply ions of polyvalent metals such as iron, aluminum, calcium, etc. into the wastewater, and this and phosphate A reactive agglomeration method is often used in which solidification (or particleization) is caused by reacting with ions and then removed by precipitation, flotation or filtration. As a method for supplying polyvalent metal ions into the wastewater, for example, a metal material such as iron or aluminum is suspended in a liquid, and a voltage is applied to the metal material to pass an electric current. There is an electrolysis method in which polyvalent metal ions are dissolved (see Patent Document 1).
また、多価金属イオンを排水中に供給する別の方法としては、塩化第二鉄、ポリ硫酸第二鉄、ポリ塩化アルミニウム等の水溶液状の凝集剤を注入ポンプにより供給する凝集剤添加法がある(特許文献2参照)。更には,イオン交換樹脂、ハイドロタルサイト様粘土鉱物によるイオン交換法、酸化ジルコニウム等による吸着法等もある。
前記した電解法は、電解装置、制御装置等の備えが必須であり、また電極材の消耗に伴い新品との定期的交換が必要とされている。また、凝集剤添加法は、凝集剤注入装置(ポンプ)、制御装置、凝集剤貯留タンク等の備えが必須であり、また凝集剤の減少に伴い定期的補充が必要とされている。そして、前記した装置は総じて高価なものであるため、小規模の排水処理装置や浄化槽へ組み込むとなるとその負担が大きいものになってしまう。一方、イオン交換法や吸着法は、それぞれの交換能力や吸着能力が飽和に達する前に、新品との交換または再生を必要としている。そして、小規模の排水処理装置や浄化槽が設置されている場所でのイオン交換材や吸着材の再生は、実際上難しく、再生センター等に持ち込む必要がある等、維持管理面からもその制約が大きい。 In the electrolysis method described above, it is essential to provide an electrolyzer, a control device, and the like, and it is necessary to periodically replace it with a new one as the electrode material is consumed. In addition, the coagulant addition method requires provision of a coagulant injection device (pump), a control device, a coagulant storage tank, and the like, and periodic replenishment is required as the coagulant decreases. And since the above-mentioned apparatus is generally expensive, when it is incorporated into a small-scale waste water treatment apparatus or septic tank, the burden becomes large. On the other hand, the ion exchange method and the adsorption method require replacement or regeneration with a new one before the respective exchange capacity and adsorption capacity reach saturation. And, it is practically difficult to regenerate ion exchange materials and adsorbents in places where small-scale wastewater treatment equipment and septic tanks are installed. large.
本発明は、維持管理に対しても負担が少なく、そして、リン酸イオン含有排水を処理する小規模の浄化槽等へ容易に備えることのできる、リン酸イオン固体化剤、リン酸イオン固体化装置及びそれを備える浄化槽を提供することを目的とする。 The present invention is a phosphate ion solidifying agent and a phosphate ion solidifying device that are less burdensome for maintenance and can be easily provided in a small-scale septic tank or the like for treating phosphate ion-containing wastewater. And it aims at providing a septic tank provided with it.
本発明は、次のものに関する。
1. 多価金属イオンが親水性ゲルに包括固定されているリン酸イオン固体化剤。
2. 多価金属イオンが親水性ゲルのカルボキシル基とイオン結合している項1記載のリン酸イオン固体化剤。
3. 項1または項2記載のリン酸イオン固体化剤を備えているリン酸イオン固体化装置。
4. リン酸イオン固体化剤を充填したカラムを設け、このカラムにリン酸イオン含有被処理水を通過させるようにした項3記載のリン酸イオン固体化装置。
5. リン酸イオン固体化剤を収納した通水性容器を浸漬槽に浸漬し、この浸漬槽にリン酸イオン含有被処理水を通過させるようにした項3記載のリン酸イオン固体化装置。
6. 項3乃至項5のいずれかに記載のリン酸イオン固体化装置を備える浄化槽。
なお、ここでいうゲルとは固体と液体の2つの成分からできている分散系であって、その分散系粒子は系全体として非流動性の半固体となっている。ゲルの基本構造を支持する固体部分は、多くの場合、三次元的構造を有する架橋したポリマーからなっている。
さらに、上記したゲルの三次元的構造を有するポリマー骨格の隙間には、自由水域が存在する。この自由水域に所定の物質をポリマー骨格で囲い込む形態、または、皮膜で形成されるカプセル(マイクロカプセル)内に所定の物質を包み込む形態を包括固定ということにする。
The present invention relates to the following.
1. A phosphate ion solidifying agent in which polyvalent metal ions are entrapped and immobilized in a hydrophilic gel.
2.
3.
4).
5.
6).
In addition, the gel here is a dispersion system made of two components, a solid and a liquid, and the dispersion system particles are a non-flowable semi-solid as a whole system. The solid portion that supports the basic structure of the gel often consists of a crosslinked polymer having a three-dimensional structure.
Furthermore, free water areas exist in the gaps of the polymer skeleton having the three-dimensional structure of the gel. A form in which the predetermined substance is enclosed in the free water region with a polymer skeleton, or a form in which the predetermined substance is enclosed in a capsule (microcapsule) formed of a film is referred to as comprehensive fixing.
本発明のリン酸イオン固体化剤を、リン酸イオンの存在する被処理水とを接触させると、親水性ゲルに包括固定されている多価金属イオンとリン酸イオンとが反応して不溶性又は難溶性のリン酸の多価金属塩が被処理水中に析出するため、容易に被処理水からリン酸イオンを除去することができる。従って、このとき、電解装置、凝集剤注入装置等の重装備がなくてもよい。また、イオン交換剤や吸着剤のように再生も不要である。また、親水性ゲルには、包括固定する多価金属イオンを多量に保持させることができるので、より多くのリン酸イオンを除去することができる。
また、本発明のリン酸イオン固体化装置によれば、カラム又は浸漬槽にリン酸イオン固体化剤を充填又は収納させるだけの簡単な構造にすることができる。また、リン酸イオン固体化剤は維持管理時に消失分を補充するだけでよいので、再生操作が不要であり、維持管理への負担も少ない。
更に、本発明の浄化槽には、リン酸イオン固体化装置を容易に備えることができるとともに、BOD、窒素に加えてリンも除去できるので、高度な処理水を得ることができる。
When the phosphate ion solidifying agent of the present invention is brought into contact with the water to be treated in which phosphate ions are present, the polyvalent metal ions comprehensively immobilized on the hydrophilic gel react with phosphate ions to become insoluble or Since the hardly soluble polyvalent metal salt of phosphoric acid precipitates in the water to be treated, phosphate ions can be easily removed from the water to be treated. Therefore, at this time, there is no need for heavy equipment such as an electrolytic device and a flocculant injection device. Further, regeneration is not necessary like an ion exchange agent or an adsorbent. Further, since a large amount of polyvalent metal ions to be comprehensively immobilized can be retained in the hydrophilic gel, more phosphate ions can be removed.
Moreover, according to the phosphate ion solidification apparatus of this invention, it can be set as the simple structure which only makes a column or a dipping tank fill or accommodate a phosphate ion solidification agent. In addition, since the phosphate ion solidifying agent only needs to be replenished with disappearance at the time of maintenance, a regeneration operation is unnecessary and the burden on maintenance is small.
Furthermore, the septic tank of the present invention can be easily equipped with a phosphate ion solidifying device, and since phosphorus can be removed in addition to BOD and nitrogen, highly treated water can be obtained.
以下、本発明のリン酸イオン固体化剤について説明する。
本発明に係るリン酸イオン固体化剤の原料となる親水性ゲル剤は、多価金属イオンを包括固定できるものであればよく、例えば、親水性でカルボキシル基を有しており、そのカルボキル基と結合しているナトリウムや水素が、多価金属塩の水溶液と混合すると多価金属と置換してゲル化するものであればよく、さらに具体的には、アルギン酸、セルロース、ペクチン等の高分子多糖類でカルボキシル基が結合しているもの(カルボキシル基を導入して変性させたものを含む)であり、例えば、アルギン酸ソーダ、ソディウムカルボキシメチルセルロース(Na−CMCと略す)、メトキシペクチン等、さらにはポリアクリル酸ソーダなどの形態で使用され、特に好ましくはアルギン酸ソーダ、Na−CMCが使用される。これらの親水性ゲル剤は0.01〜30%の水溶液、好ましくは0.1〜20%の水溶液または親水性溶媒液で用いられる。なお、前記のゲル剤にカラギーナン、寒天、セルロース等の高分子多糖類、カゼイン、ゼラチン等の蛋白質性高分子を補助剤として添加してもよい。
Hereinafter, the phosphate ion solidifying agent of the present invention will be described.
The hydrophilic gel agent used as the raw material of the phosphate ion solidifying agent according to the present invention is only required to be capable of comprehensively fixing polyvalent metal ions. For example, the hydrophilic gel agent is hydrophilic and has a carboxyl group, and has a carboxy group. As long as sodium or hydrogen bonded to a polyvalent metal salt is mixed with an aqueous solution of a polyvalent metal salt, the polyvalent metal may be substituted and gelled. More specifically, polymers such as alginic acid, cellulose, and pectin are used. Polysaccharides with carboxyl groups bonded (including those modified by introducing carboxyl groups), such as sodium alginate, sodium carboxymethyl cellulose (abbreviated as Na-CMC), methoxy pectin, etc. It is used in a form such as sodium polyacrylate, and particularly preferably sodium alginate and Na-CMC are used. These hydrophilic gels are used in 0.01 to 30% aqueous solution, preferably 0.1 to 20% aqueous solution or hydrophilic solvent solution. In addition, you may add proteinaceous polymers, such as high molecular polysaccharides, such as carrageenan, agar, and cellulose, casein, and gelatin, to the said gel agent.
上記の多価金属には、アルミニウム、カルシウム、鉄、バリウム、マンガン、マグネシウム、亜鉛等があり、好ましくは、アルミニウム、カルシウム、鉄が用いられる。これらは、リン酸固体化剤の製造に際し、多価金属の硫酸塩等の水溶性塩の形態で用いることが好ましく、好ましくは0.01〜50重量%、より好ましくは0.1〜50重量%の水溶液として用いられる。 Examples of the polyvalent metal include aluminum, calcium, iron, barium, manganese, magnesium, and zinc. Preferably, aluminum, calcium, and iron are used. These are preferably used in the form of a water-soluble salt such as a sulfate of a polyvalent metal in the production of a phosphoric acid solidifying agent, preferably 0.01 to 50% by weight, more preferably 0.1 to 50% by weight. % Aqueous solution.
前記リン酸イオン固体化剤は、種々の形状に成形して用いることができる。例えば、撹拌している多価金属塩水溶液にゲル剤水溶液を細口から滴下すると粒状にゲル化させることができ、また、細口から切れ間なく連続で供給すると紐状にゲル化させることができる。また、多価金属塩水溶液とゲル剤水溶液とを混合すると溶液全体をゲル化させることもできるので、ブロック状、板状、シート状にすることもできる。また、織布、不織布等にゲル剤水溶液を含浸、又は保持させ、このものを多価金属塩水溶液に浸漬すれば、織布、不織布等を芯材にした板状、シート状のものもできる。したがって、リン酸イオン固体化剤としては、種々の形状に成形したり、または成形したゲルを切断したりして用いることができる。 The phosphate ion solidifying agent can be used in various shapes. For example, when a gel agent aqueous solution is dropped from a narrow mouth into an agitated polyvalent metal salt aqueous solution, it can be gelled in a granular form, and can be gelled in a string form when continuously fed from the narrow mouth without any breaks. Further, when the polyvalent metal salt aqueous solution and the gel agent aqueous solution are mixed, the entire solution can be gelled, and therefore, it can be formed into a block shape, a plate shape, or a sheet shape. In addition, by impregnating or holding an aqueous gel agent solution in a woven fabric, non-woven fabric, etc., and immersing this in an aqueous solution of a polyvalent metal salt, a plate or sheet having a woven fabric, non-woven fabric, etc. as a core material can be obtained. . Therefore, as the phosphate ion solidifying agent, it can be used in various shapes or by cutting the formed gel.
リン酸イオン固体化剤の親水性ゲルに付加される多価金属量は、カルボキシル基末端のナトリウム、又は水素との置換量でほぼ決定されるが、置換量以上に多価金属イオンを保持させることもできる。親水性ゲルの三次元的構造を有するポリマー骨格(マトリクス)の隙間には自由水域が存在するが、この自由水域に多価金属イオンをマトリクスで囲い込むように、またはマイクロカプセルのように、いわゆる包括固定化をすればよい。包括固定化は、前記したゲル剤水溶液と別に準備した多価金属塩水溶液とを混合した後、速やかに多価金属塩水溶液に滴下すればよい。または前記したように多価金属塩水溶液とゲル剤水溶液とを混合させ、溶液全体をゲル化させてもよい。さらには、細口をニ重管にして、その内管から多価金属塩水溶液を、その外管からゲル剤水溶液を注入し、撹拌している多価金属塩水溶液に滴下すればマイクロカプセル状にゲル化させることもできる。このように多価金属イオンを包括固定化させることにより、リン酸イオン固体化剤に多量の多価金属を付加させることができ、これによって多量のリン酸イオンを除去することができる。 The amount of polyvalent metal added to the hydrophilic gel of the phosphate ion solidifying agent is almost determined by the amount of substitution with sodium or hydrogen at the carboxyl group terminal, but retains the polyvalent metal ion more than the amount of substitution. You can also There is a free water area in the gap of the polymer skeleton (matrix) having the three-dimensional structure of the hydrophilic gel, so that a polyvalent metal ion is enclosed in the free water area with a matrix, or like a microcapsule. What is necessary is just to carry out comprehensive fixation. In general immobilization, the gel solution and the polyvalent metal salt aqueous solution prepared separately may be mixed and then rapidly dropped into the polyvalent metal salt aqueous solution. Alternatively, as described above, the aqueous solution of the polyvalent metal salt and the aqueous gel agent solution may be mixed to gel the entire solution. Furthermore, if the narrow mouth is made into a double tube, a polyvalent metal salt aqueous solution is injected from the inner tube, a gel agent aqueous solution is injected from the outer tube, and dropped into the stirred polyvalent metal salt aqueous solution to form a microcapsule. It can also be gelled. In this way, by entrapping and immobilizing polyvalent metal ions, a large amount of polyvalent metal can be added to the phosphate ion solidifying agent, whereby a large amount of phosphate ions can be removed.
次に本発明のリン酸イオン固体化装置について説明する。前記した親水性ゲルからなるリン酸イオン固体化剤を種々の形状に成形して、このものを容器に充填、浸漬又は懸垂させて、リン酸イオン含有排水とを接触させる装置である。ここでリン酸イオンの固体化は、次のようなメカニズムで行われると考えている。
親水性ゲルに包括固定されている多価金属イオンは、排水中のリン酸イオンと接触すると、これと反応して不溶性又は難溶性の多価金属塩となり、ゲルマトリクスから被処理水又は処理水中で固体化する。この不溶性又は難溶性の多価金属塩は、コロイド粒子、マイクロ粒子、又は排水中に存在するSS(懸濁粒子)に付着するなどで凝集して、さらに大きく固体化し、より大きな塊となる。そこで、この固体化した粒子を沈殿、浮上又はろ過等の手段によって固液分離すれば、排水中からリン酸イオンを除去することができる。また、これに加えて多価金属イオンがゲルに包括固定されている場合は、ゲル内外の多価金属イオンに濃度差があるため、ゲル内からゲル外へ向かって多価金属イオンが拡散していくことから、これによって多量のリン酸イオンの固体化、すなわちリン酸イオンの除去できる。
Next, the phosphate ion solidifying device of the present invention will be described. This is an apparatus for forming a phosphate ion solidifying agent composed of the above-mentioned hydrophilic gel into various shapes, filling the container into a container, immersing or suspending it, and bringing it into contact with phosphate ion-containing waste water. Here, solidification of phosphate ions is considered to be performed by the following mechanism.
When the polyvalent metal ions that are comprehensively immobilized on the hydrophilic gel come into contact with phosphate ions in the wastewater, the polyvalent metal ions react with the phosphate ions to become insoluble or hardly soluble polyvalent metal salts. To solidify. The insoluble or hardly soluble polyvalent metal salt aggregates by adhering to colloidal particles, microparticles, or SS (suspended particles) present in the waste water, and is further solidified into a larger mass. Therefore, phosphate ions can be removed from the waste water by solid-liquid separation of the solidified particles by means such as precipitation, flotation or filtration. In addition to this, when polyvalent metal ions are included and immobilized in the gel, the polyvalent metal ions diffuse from the inside of the gel to the outside of the gel because there is a difference in concentration between the inside and outside of the gel. Therefore, a large amount of phosphate ions can be solidified, that is, phosphate ions can be removed.
一方、カルボキシル基末端に付加している多価金属が排水中のナトリウムまたは水素と置換されると、この部分のゲル材は排水中に徐々に溶解していくことになる。したがって、リン酸イオン固体化剤は、排水中のリン酸イオン濃度にほぼ比例して消失していくので、実際の運用においては、適宜リン酸イオン固体化剤を補充していけばよいことになる。従来のイオン交換剤や吸着剤は再生が必要とされるのに対して、本リン酸イオン固体化剤は再生が不要である。このことは、リン除去のための維持管理に対する制約や負担を極めて軽減することができる。 On the other hand, when the polyvalent metal added to the carboxyl group terminal is replaced with sodium or hydrogen in the wastewater, the gel material in this portion is gradually dissolved in the wastewater. Therefore, the phosphate ion solidifying agent disappears in proportion to the phosphate ion concentration in the waste water. Therefore, in actual operation, it is sufficient to replenish the phosphate ion solidifying agent as appropriate. Become. Conventional ion exchangers and adsorbents need to be regenerated, whereas the phosphate ion solidifying agent does not need to be regenerated. This can greatly reduce the restrictions and burden on maintenance for removing phosphorus.
図1は、リン酸イオン含有排水のリン酸イオン固体化装置の一実施例であり、その概略断面図を示す。リン酸イオン固体化装置1は、粒状のリン酸イオン固体化剤2を充填したカラム3で構成され、このカラム3にリン酸イオン含有排水を通過させるものである。カラム3には被処理水(リン酸イオン含有排水)の流入口4があり、また、流入口4の反対側の一画には、充填層を通過した被処理水の移流口5を配置させ、移流口5の上部に流出口6を設けている。リン酸イオン固体化剤2の充填層の上部および下部には、リン酸イオン固体化剤2は通さないが被処理水を通す通水性部材7を設けている。なお、上部の通水性部材7は取り除くこともできるし、また、移流口5の下部にメッシュなどのフィルターを設ける場合には、下部の通水性部材7を除いてもよい。リン酸イオン固体化装置1は、下部の通水性部材7の下方に散気部材8を設け、外部のブロワ(図示省略)から連続又は間欠で空気を送り、バブリングすることが好ましい。被処理水にはSSが存在することも多く、リン酸イオン固体化剤2のSSの補足による通水抵抗の増加を防止するためでもある。なお、通水抵抗の増加を生じないという場合には、除いてもよい。また、図1では、カラム3の被処理水の流れ方向を下向流としているが、これを上向流にすることもできる。
FIG. 1 shows an embodiment of a phosphate ion solidifying device for phosphate ion-containing wastewater, and a schematic sectional view thereof is shown. The phosphate
ここで、処理機能等について説明する。リン酸イオンを含んだ被処理水は流入口4から入り、リン酸イオン固体化剤2の充填層を下降する。この際にリン酸イオン固体化剤2とリン酸イオンとが反応して、不溶性又は難溶性のリン酸塩を形成して被処理水側に遊離する。カラム3を通過した被処理水はリン酸塩を伴って移流口5を通り、流出口6から排出する。この後、沈殿槽、浮上槽又はろ過槽等に導いて(図示省略)、固体化したリン酸塩を分離すればよい。
Here, processing functions and the like will be described. The water to be treated containing phosphate ions enters from the
図2は、リン酸イオン含有排水のリン酸イオン固体化装置の他の例であり、その概略断面図を示す。リン酸イオン固体化装置1は、シート状のリン酸イオン固体化剤2を通水性容器9に入れ、これを懸垂した浸漬槽10で構成され、この浸漬槽10にリン酸イオン含有排水を通過させるものである。浸漬槽10には被処理水(リン酸イオン含有排水)の流入口4があり、また、流入口4の反対側の一画には、浸漬槽10を通過した被処理水の移流口5を配置させ、移流口5の上部に流出口6を設けている。図2では、リン酸イオン固体化剤2を入れた通水性容器9を3枚懸垂しているが、その数は、適宜決定すればよい。また、通水性容器9の下方に散気部材8を設け、外部のブロワ(図示省略)から連続又は間欠で空気を送り、バブリングすることが好ましい。被処理水とリン酸イオン固体化剤2との界面での物質拡散を促進させるためである。なお、図2では、浸漬槽10の被処理水の流れ方向を下向流としているが、これを上向流にすることもできる。上記の通水性容器とは、水が通過できる穴を有する容器、網状の容器等がある。
FIG. 2 is another example of a phosphate ion solidifying device for phosphate ion-containing wastewater, and shows a schematic cross-sectional view thereof. The phosphate
処理機能等については、前記した図1の場合と同様であるので、説明を省略する。 The processing functions and the like are the same as those in the case of FIG.
次に、リン酸イオン固体化装置を備える浄化槽について説明する。
浄化槽15は、上流側から第一の嫌気処理槽17、第二の嫌気処理槽18、好気処理槽19、濾過槽20、消毒槽26を配置している。リン酸イオン固体化装置1は、第二の嫌気処理槽18の上方に配置させ、ブロワ33からの空気をバブリングさせる散気部材8を設けている。好気処理槽19と濾過槽20との間には移流管21があり、移流管21には、好気処理槽19で処理された被処理水を循環パイプ45へ経由させて第一の嫌気処理槽17に返送させる循環ポンプ35を設けている。そして、第二の嫌気処理槽18の上方に位置する循環パイプ45の途中にリン酸イオン固体化装置1を接続させている。したがって、好気処理槽19で処理され移流管21に流入した被処理水の一部は、循環ポンプ35により上方に位置する循環パイプ45へ揚水される(循環水と略す)。循環パイプ45を流下した循環水は、リン酸イオン固体化装置1に入り、ここでリン酸イオンがリン酸塩になって、その後、循環パイプ45を流下して第一の嫌気処理槽17の流入バッフル40に入る。
Next, a septic tank provided with a phosphate ion solidifying device will be described.
In the
循環水にて移流されるリン酸塩(不溶性又は難溶性)は、第一の嫌気処理槽17において、濾床28の汚泥等に付着、あるいは粒子同士の凝集により沈降したりして、蓄積される。このような作用は第二の嫌気処理槽18でも行われる。これによって、排水からリン酸イオンを除去することができる。なお、第一の嫌気処理槽17、第二の嫌気処理槽18に蓄積したリン酸塩(不溶性又は難溶性)は、浄化槽の汚泥等を定期的に抜き取る作業を行う際に、いっしょに引き抜かれる。また、図4では、リン酸イオン固体化装置1を第二の嫌気処理槽18の上部に設けているが、第一の嫌気処理槽17の上部、好気処理槽19の上部等に配置させることもできる。また、リン酸イオン固体化装置1は、第一の嫌気処理槽17、第二の嫌気処理槽18又は好気処理槽19に配置する場合、リン酸イオン固体化剤の補充という観点からマンホール16の下方位置に配置させることが好ましい。なお、リン酸イオン固体化装置1は平面視で略四角形を示しているが、円形、楕円形等であってもよい。
Phosphate (insoluble or sparingly soluble) transferred in the circulating water is accumulated in the first
ここで、浄化槽15を更に詳しく説明すると、嫌気処理槽は、第一の嫌気処理槽17と第二の嫌気処理槽18とで構成され、第一の嫌気処理槽17には、流入口24が設けられている。また、流入口24の下方には、上部及び下部が開口する箱状の流入バッフル40が設けられ、流入口24と反対側の仕切り壁には移流管27(若しくは移流口)が設けられている。第一の嫌気処理槽17は、流入する汚水中の沈降しやすい固形物を沈殿分離させ、これを槽底部で濃縮貯留させる。このとき、槽底部に貯留する汚泥の一部は嫌気的生物反応によってスカムとなり、浮上して槽上部にて貯留する。また、濾床28では、嫌気的生物反応を進行させる。
Here, the
第二の嫌気処理槽18は、第一の嫌気処理槽17と同様な処理機能を持たせ、スカム化による槽上部での汚泥貯留、濾床29での有機物分解、及び、槽底部に沈殿した汚泥の貯留を行う。好気処理槽19側の仕切り壁には、移流管31が設けられ、この移流管31内には移送ポンプ32が取り付けられている。以上の嫌気処理槽(第一の嫌気処理槽17、第二の嫌気処理槽18)にて、有機物の分解に伴い被処理水に含まれる窒素分の多くはアンモニア態窒素に転換される。尚、濾床28及び濾床29は、必ずしも必要なものでなく、取り除くこともできる。
The second
第一の嫌気処理槽17及び第二の嫌気処理槽18のそれぞれの上部には、流入する汚水の変動を緩和させ次槽へ移流させるために、液水準が最高水位(H.W.L)及び最低水位(L.W.L)の間で変動可能な流量調整部30を設けている。この場合、第一の嫌気処理槽17と第二の嫌気処理槽18との水位は、汚水の流入量が移送ポンプ32の送液量よりも多いか少ないかによってL.W.LとH.W.Lとの間を変動する。浄化槽15は、流量調整部30を設けることにより、汚水の流入量が平均化され、嫌気処理槽(第一の嫌気処理槽17、第二の嫌気処理槽18)、好気処理槽19、濾過槽20等の、各槽のそれぞれの機能は良好に発揮される。尚、移送ポンプ32は、本実施例ではブロワ33から送気される空気を用いるエアリフトポンプであるが、密閉容器に空気を圧送させる間欠定量ポンプ、電動による水中ポンプ等を用いることもできる。
In each upper part of the first
好気処理槽19は、曝気するための散気管34を底部に配置し、ブロワ33から送気される空気を噴出させる。また、好気処理槽19は、微生物付着材(担体、微生物担体、接触材、接触濾材ともいう)を充填した床を形成している。ここで、微生物付着材を充填した床は、微生物付着材が噴出する空気によって液と共に流動する流動床、液のみが動く固定床、又は、流動床と固定床の両方を組み込んだものであってもよい。好気処理槽19は曝気を行い、(微生物が付着している)微生物付着材と液とが十分に混ざるようにし、あるいは、微生物付着材と液とが積極的に接触するようにし、これによって有機物を酸化・分解し、アンモニア態窒素が硝化し、リン分はリン酸イオンになる。
In the
微生物付着材の形状は、板状、網板状、ヘチマ状、多孔質状、筒状、棒状、骨格球状、紐状、更には粒状、不定形な塊状、立方体状、繊維塊状等の種々の形状に加工したものを用いることができる。流動床には、これら微生物付着材のうち、比較的小さく流動しやすい形状のものが好ましく用いられ、また、固定床には、付着する微生物や粒子等によって閉塞しにくく固定しやすい形状のものが好ましく用いられる。微生物付着材の材質は、塩化ビニリデン、ポリビニルフォルマール、ポリウレタン、メラミン樹脂等の合成樹脂製加工物、セラミックス、珪砂等の無機製加工物、アンスラサイト等の化石加工物、活性炭等で比重が約1又は1以上のもの、また、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン等で、比重が約1又は1以下のもののいずれも用いることができる。 The shape of the microorganism-adhering material can be various, such as plate-like, net-plate-like, loofah-like, porous, cylindrical, rod-like, skeletal spherical, string-like, and granular, irregular lump, cube, fiber lump, etc. What was processed into the shape can be used. Of these microorganism-adhering materials, those having a shape that is relatively small and easy to flow are preferably used for the fluidized bed, and those having a shape that is difficult to block and fix by the adhering microorganisms or particles are used for the fixed bed. Preferably used. The material of the microbial adhesion material is made of synthetic resin such as vinylidene chloride, polyvinyl formal, polyurethane and melamine resin, inorganic processed material such as ceramics and silica sand, fossil processed material such as anthracite, activated carbon, etc. Any one having one or more, a polyolefin resin such as polyethylene and polypropylene, polystyrene, and the like having a specific gravity of about 1 or 1 or less can be used.
好気処理槽19内の一画には、移流管21(若しくは移流口)及び濾過槽20が配置されている。移流管21は、底部付近に好気処理槽19の微生物付着材を流出させないようにメッシュ、スリット等の形状からなる開口部を設け、また上部も開口させ、水位となる部位に濾過槽20への移流口を設けている。移流管21には、好気処理槽19にて処理した好気処理水の一部を、第一の嫌気処理槽17へと戻す循環ポンプ35を立設している。循環ポンプ35と第一の嫌気処理槽17とは、循環パイプ45、リン酸イオン固体化装置1および循環パイプ45で接続させている。循環パイプ45を設けるのは、リン酸イオンの除去の他に、循環ポンプ35で好気処理水を返送させることにより、好気処理槽19内に浮遊しているSS又は沈殿しやすいSSを引抜くことができることや、硝酸態窒素がある場合には第一の嫌気処理槽17、第二の嫌気処理槽18にて生物的作用によって脱窒素できるからである。循環ポンプ35からの処理水の返送は、連続であっても間欠であってもよい。尚、循環ポンプ35は、本実施例ではブロワ33から送気するエアリフトポンプを示したが、密閉容器に空気を圧送させる間欠定量ポンプや電動ポンプ等を用いることもできる。
In one section in the
濾過槽20は、移流してくる好気処理水に存在または残留するSS(浮遊物質)を捕捉するための濾材を充填した濾層を有し、その濾層の下方又は下部には、濾層を洗浄するための散気管36を配置している。また、濾過槽20の底部には、洗浄時に洗浄排水を引き抜くためのエアリフトポンプ37も配置されている。本実施例では、通常時の水流れ方向は下向流としているが、上向流とすることもできる。尚、濾過槽20では、好気処理槽19から持ち越される溶存酸素の存在により、好気的生物処理も進行する。散気管36及びエアリフトポンプ37には、ブロワ33からの空気が送気される。散気管36及びエアリフトポンプ37は、空気源を別のブロワとしてもよい。また、エアリフトポンプ37の代わりに電動ポンプを用いてもよい。
The
濾過槽20内の移流管38(若しくは移流口)の後流には、消毒槽26があり、この消毒槽26には放流口23を臨ませて設けている。
There is a
次に浄化槽の運転方法を説明する。
(通常時運転)
流入汚水は、図4中の実線矢印で示すとおり、流入口24から第一の嫌気処理槽17に入り、そこで固液分離及び嫌気的生物処理が行われる。ここを通過した移流液は、第二の嫌気処理槽18に入り、さらに固液分離及び嫌気的生物処理が進む。また、流量調整部30において、第一の嫌気処理槽17及び第二の嫌気処理槽18へ流入する汚水量の変動を吸収・緩和しながら、汚水を移送ポンプ32で次の好気処理槽19へ定量的に移送する。
Next, a method for operating the septic tank will be described.
(Normal operation)
The inflowing sewage enters the first
好気処理槽19に流入する水は、散気管34から吐出される空気及び微生物付着材によって、好気的生物分解を受ける。分解された汚水中の有機物の一部は、微生物に転換されつつ微生物付着材に付着し、一部は液中に浮遊してSSとして存在する。好気処理槽19からの好気処理水は、移流管21の下部の開口部から流入して移流管21に入る。ここでの好気処理水は、一部が循環ポンプ35によって連続又は間欠的に循環パイプ45を介してリン酸イオン固体化装置1に入る。リン酸イオン固体化装置1において、リン酸イオンがリン酸塩になり、循環水とともに第一の嫌気処理槽17に返送される。残り分の好気処理水は移流管21の上部の移流口から濾過槽20へ入る。
The water flowing into the
濾過槽20では、移流水(好気処理水)中のSSが捕捉除去されるとともに、生物的処理も進む。有機物及びSSが除去された移流水は、移流管38から消毒槽26を経て放流口23から処理済み水として放流される。ここで、運転を長時間続けると、濾過槽20は濾層中にSSが蓄積して通水抵抗が高まり所定の通水量が得られなくなったり、又はSS捕捉能力が低下してSSがリーク(流出)する。そこで、このような状態になる前に濾過槽20の洗浄を行う。
In the
(濾過槽の洗浄運転)
濾過槽20の水位が所定水位まで上昇するか、又はタイマー設定した所定時刻が来ると洗浄運転を開始させる。ここで、タイマー設定の場合、洗浄運転は汚水の流入の少ない時間帯、例えば、一般家庭では14時頃〜16時頃、1時頃〜5時頃、10頃〜11時頃に設定するとよい。この時間帯では、通常、流量調整部30の水位が最低水位付近にあるため、濾過槽20の洗浄排水を受け入れられる状態にあるからである。洗浄にあたっては、先ず、散気管36から空気を吐出させ、濾過槽20における濾材を撹乱させSSを剥離させる。このとき、エアリフトポンプ37を稼動させて、洗浄排水を濾過槽20の底部から引き抜き、循環パイプ45を介して第一の嫌気処理槽17に移送させる。この際、好ましくは、洗浄排水の全量を引き抜く。なお、洗浄排水は循環パイプ45とは別の配管で戻してもよい。濾過槽20の洗浄は、所定時間後に散気管36からの空気吐出及びエアリフトポンプ37を停止させることで終了する。以上の洗浄運転は、一日に1回または複数回を行う。
(Filter tank washing operation)
When the water level of the
親水性ゲル剤には、アルギン酸ソーダおよびNa−CMCを用い、また、ゲル化剤にはポリ硫酸第二鉄水溶液を用いて、粒状ゲル化を試験した。なお、アルギン酸ソーダ(SIGMA CHEMICAL.CO、低粘度タイプ)およびNa−CMC(ダイセル化学工業(株)、#1330)は、それぞれ4質量%の水溶液および1.5質量%の水溶液に調整した。ポリ硫酸第二鉄水溶液(日鉄鉱業(株)、ポリ鉄)は、原液を2倍に希釈(3価鉄として5.5質量%)して用いた。
ビーカに入れたポリ硫酸第二鉄水溶液をマグネティックスターラで撹拌しながら、これに口径2mmのスポイトを用いて、アルギン酸ソーダ水溶液およびNa−CMC水溶液をそれぞれのビーカに滴下した結果、直径約3mmの鉄−アルギン酸の球状ゲル、直径約2mmの鉄−CMCの球状ゲルを得た。
ゲル中の鉄イオンの量を次のようにして測定した。まず、蒸留水にゲルを入れて破砕した後、硫酸を加えて酸性にして3時間放置し、濾紙をもちいて濾過した。濾液をデジタル簡易水質計(株式会社共立化学研究所製L−8800型)を用いて濾液中の全鉄イオン量を測定した。この結果、親水性ゲル剤としてアルギン酸ソーダを用いた場合は上記のゲル1g当たり鉄シオンは約30mgであった。また、親水性ゲル剤としてNa−CMCを用いた場合は上記のゲル1g当たり鉄シオンは約40mgであった。
Granular gelation was tested using sodium alginate and Na-CMC as the hydrophilic gel, and an aqueous polyferric sulfate solution as the gelling agent. In addition, sodium alginate (SIGMA CHEMICAL.CO , low viscosity type) and Na-CMC (Daicel Chemical Industries, Ltd., # 1330) were adjusted to 4 mass% aqueous solution and 1.5 mass% aqueous solution, respectively. An aqueous polyferric sulfate solution (Nittetsu Mining Co., Ltd., polyiron) was used after diluting the stock solution twice (5.5% by mass as trivalent iron).
While stirring the aqueous ferric sulfate solution in a beaker with a magnetic stirrer, using a dropper with a 2 mm aperture, a sodium alginate aqueous solution and an Na-CMC aqueous solution were dropped into each beaker. As a result, an iron with a diameter of about 3 mm was obtained. A spherical gel of alginic acid, a spherical gel of iron-CMC having a diameter of about 2 mm was obtained.
The amount of iron ions in the gel was measured as follows. First, the gel was put into distilled water and crushed, and then acidified with sulfuric acid, left for 3 hours, and filtered using filter paper. The total amount of iron ions in the filtrate was measured using a digital simple water quality meter (L-8800 type, manufactured by Kyoritsu Chemical Laboratory Co., Ltd.). As a result, when sodium alginate was used as the hydrophilic gel, iron cation was about 30 mg per 1 g of the gel. In addition, when Na-CMC was used as the hydrophilic gel, iron cation was about 40 mg per 1 g of the gel.
親水性ゲル剤には、アルギン酸ソーダ、および鉄イオンの包括固定に硫酸第一鉄を用い、また、ゲル化剤にはポリ硫酸第二鉄水溶液を用いて、粒状ゲル化を試験した。アルギン酸ソーダを2.6質量%の水溶液に調整し、また、硫酸第一鉄を1.0質量%の水溶液に調整し、この両者を合せてよく混合した。これを実施例1と同様にしてポリ硫酸第二鉄水溶液に滴下したした結果、鉄イオンを包括固定した直径約3mmの鉄−アルギン酸の球状ゲルを得た。 Granular gelation was tested using sodium alginate as the hydrophilic gel, and ferrous sulfate as the entrapping immobilization of iron ions, and an aqueous polyferric sulfate solution as the gelling agent. Sodium alginate was adjusted to a 2.6% by mass aqueous solution, and ferrous sulfate was adjusted to a 1.0% by mass aqueous solution. As a result of dropwise addition to a ferric sulfate aqueous solution in the same manner as in Example 1, a spherical gel of iron-alginic acid having a diameter of about 3 mm and including iron ions was fixed.
実施例1で作製したリン酸イオン固体化剤(親水性ゲル、直径約3mmの鉄−アルギン酸の球状ゲル)をカラムに充填して、連続運転によるリン酸イオンの除去試験を行った。試験条件は次のとおりである。カラムの内径31mm、リン酸イオン固体化剤の充填高さ200mm、LV(線速度)0.62m/h、SV(空塔速度)3−hとした。リン酸イオン含有排水には、模擬水としてリン酸一水素ニカリウム水溶液(リン酸態中のリンとして4.3mg/L)を用い、これをローラポンプにてカラムへ連続供給した。試験結果を図5に示す。なお、カラムからの通過水は、リン酸塩の固体化によってやや白濁した。経過時間ごとの通過水中のリン濃度は、0.45μmのろ紙でろ過を行い、このろ液を測定した。図5のX軸は、リン酸イオン固体化剤の充填容量に対する処理水量との比(QV)をとっている。処理水のリン濃度は、QV16時点においても1mg/L以下を達成している。これらの結果から、親水性ゲルはリン酸イオン固体化剤(リン除去剤)としてその性能を有していることが確認できた。 The phosphate ion solidifying agent (hydrophilic gel, iron-alginate spherical gel having a diameter of about 3 mm) prepared in Example 1 was packed in a column, and a phosphate ion removal test was performed by continuous operation. The test conditions are as follows. The inner diameter of the column was 31 mm, the packing height of the phosphate ion solidifying agent was 200 mm, LV (linear velocity) was 0.62 m / h, and SV (superficial velocity) was 3 -h . For the phosphate ion-containing wastewater, an aqueous solution of dipotassium hydrogen phosphate (4.3 mg / L as phosphorus in the phosphate state) was used as simulated water, and this was continuously supplied to the column by a roller pump. The test results are shown in FIG. The passing water from the column became slightly cloudy due to the solidification of the phosphate. The phosphorus concentration in the passing water for each elapsed time was filtered with 0.45 μm filter paper, and the filtrate was measured. The X axis in FIG. 5 represents the ratio (QV) of the amount of treated water to the filling capacity of the phosphate ion solidifying agent. The phosphorus concentration of treated water has reached 1 mg / L or less even at the time of QV16. From these results, it was confirmed that the hydrophilic gel has the performance as a phosphate ion solidifying agent (phosphorus removing agent).
1…リン酸イオン固体化装置
2…リン酸イオン固体化剤
3…カラム
4…流入口
5…移流口
6…流出口
7…通水性部材
8…散気部材
9…通水性容器
10…浸漬槽
15…浄化槽
16…マンホール
17…第一の嫌気処理槽
18…第二の嫌気処理槽
19…好気処理槽
20…濾過槽
21…移流管
23…放流口
24…流入口
26…消毒槽
27…移流管
28…濾床
29…濾床
30…流量調整部、
31…移流管
32…移送ポンプ
33…ブロワ
34…散気管
35…循環ポンプ
36…散気管
37…エアリフトポンプ
38…移流管
40…流入バッフル
45…循環パイプ
DESCRIPTION OF
31 ...
Claims (6)
A septic tank provided with the phosphate ion solidification device according to any one of claims 3 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004373329A JP2006175400A (en) | 2004-12-24 | 2004-12-24 | Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004373329A JP2006175400A (en) | 2004-12-24 | 2004-12-24 | Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006175400A true JP2006175400A (en) | 2006-07-06 |
Family
ID=36729999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004373329A Pending JP2006175400A (en) | 2004-12-24 | 2004-12-24 | Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006175400A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008055324A (en) * | 2006-08-31 | 2008-03-13 | Hitachi Housetec Co Ltd | Sewage cleaning tank |
JP2008068248A (en) * | 2006-08-17 | 2008-03-27 | Hitachi Housetec Co Ltd | Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus |
JP2008142683A (en) * | 2006-12-13 | 2008-06-26 | National Institute Of Advanced Industrial & Technology | Water treatment method |
JP2009136746A (en) * | 2007-12-05 | 2009-06-25 | Gunma Industry Support Organization | Phosphate ion-adsorptive composition and method for preparing the same, and method for removing phosphate ion |
JP2011167689A (en) * | 2006-08-17 | 2011-09-01 | Housetec Inc | Solid phosphorus removing agent and waste-water purifying tank equipped with the same |
CN102633336A (en) * | 2012-04-24 | 2012-08-15 | 浙江大学 | Preparation method of precipitator for dephosphorization with ferric salt |
CN104556322A (en) * | 2013-10-18 | 2015-04-29 | 乔占印 | Rare-earth polymeric aluminum zinc chloride and reparation method thereof |
EP3325125A4 (en) * | 2015-07-17 | 2018-05-30 | DA Innovation | Method and apparatus for water treatment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06210282A (en) * | 1993-01-20 | 1994-08-02 | Ebara Infilco Co Ltd | Phosphorus removing material, its manufacture and treatment of phosphorus containing water |
JPH078945A (en) * | 1993-06-29 | 1995-01-13 | Ebara Infilco Co Ltd | Material and method for removing simultaneously phosphorus and ammonia in water |
JPH07313970A (en) * | 1994-05-27 | 1995-12-05 | Ebara Res Co Ltd | Method for simultaneously removing ammonia and phosphorus from water |
JPH0871545A (en) * | 1994-09-06 | 1996-03-19 | Ebara Res Co Ltd | Removal of phosphorus and cod-component in sewage |
JPH0889950A (en) * | 1994-09-20 | 1996-04-09 | Dam Suigenchi Kankyo Seibi Center | Material for removing phosphorus in water |
JP2000237763A (en) * | 1999-02-19 | 2000-09-05 | Japan Science & Technology Corp | Removing method of phosphoric acid contained in waste water |
JP2001029963A (en) * | 1999-07-26 | 2001-02-06 | Sekisui Chem Co Ltd | Apparatus for removing phosphate ions in wastewater and purification tank equipped therewith |
JP2001300549A (en) * | 2000-04-26 | 2001-10-30 | Sekisui Chem Co Ltd | Dephosphorizing method |
JP2001300552A (en) * | 2000-04-19 | 2001-10-30 | Sekisui Chem Co Ltd | Dephosphorizing material and dephosphorizing method |
-
2004
- 2004-12-24 JP JP2004373329A patent/JP2006175400A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06210282A (en) * | 1993-01-20 | 1994-08-02 | Ebara Infilco Co Ltd | Phosphorus removing material, its manufacture and treatment of phosphorus containing water |
JPH078945A (en) * | 1993-06-29 | 1995-01-13 | Ebara Infilco Co Ltd | Material and method for removing simultaneously phosphorus and ammonia in water |
JPH07313970A (en) * | 1994-05-27 | 1995-12-05 | Ebara Res Co Ltd | Method for simultaneously removing ammonia and phosphorus from water |
JPH0871545A (en) * | 1994-09-06 | 1996-03-19 | Ebara Res Co Ltd | Removal of phosphorus and cod-component in sewage |
JPH0889950A (en) * | 1994-09-20 | 1996-04-09 | Dam Suigenchi Kankyo Seibi Center | Material for removing phosphorus in water |
JP2000237763A (en) * | 1999-02-19 | 2000-09-05 | Japan Science & Technology Corp | Removing method of phosphoric acid contained in waste water |
JP2001029963A (en) * | 1999-07-26 | 2001-02-06 | Sekisui Chem Co Ltd | Apparatus for removing phosphate ions in wastewater and purification tank equipped therewith |
JP2001300552A (en) * | 2000-04-19 | 2001-10-30 | Sekisui Chem Co Ltd | Dephosphorizing material and dephosphorizing method |
JP2001300549A (en) * | 2000-04-26 | 2001-10-30 | Sekisui Chem Co Ltd | Dephosphorizing method |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008068248A (en) * | 2006-08-17 | 2008-03-27 | Hitachi Housetec Co Ltd | Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus |
JP2011167689A (en) * | 2006-08-17 | 2011-09-01 | Housetec Inc | Solid phosphorus removing agent and waste-water purifying tank equipped with the same |
JP2008055324A (en) * | 2006-08-31 | 2008-03-13 | Hitachi Housetec Co Ltd | Sewage cleaning tank |
JP2008142683A (en) * | 2006-12-13 | 2008-06-26 | National Institute Of Advanced Industrial & Technology | Water treatment method |
JP2009136746A (en) * | 2007-12-05 | 2009-06-25 | Gunma Industry Support Organization | Phosphate ion-adsorptive composition and method for preparing the same, and method for removing phosphate ion |
CN102633336A (en) * | 2012-04-24 | 2012-08-15 | 浙江大学 | Preparation method of precipitator for dephosphorization with ferric salt |
CN104556322A (en) * | 2013-10-18 | 2015-04-29 | 乔占印 | Rare-earth polymeric aluminum zinc chloride and reparation method thereof |
EP3325125A4 (en) * | 2015-07-17 | 2018-05-30 | DA Innovation | Method and apparatus for water treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207933226U (en) | A kind of industrial wastewater treatment system | |
RU2529018C2 (en) | Method of deactivating liquid effluent, containing one or more radioactive chemical elements, by processing in fluidised bed | |
JP4186523B2 (en) | Waste water purification device and waste water purification system | |
US20140097136A1 (en) | Composite microorganism reactor, and apparatus and method for water treatment using the same | |
JP3434438B2 (en) | Wastewater treatment method and wastewater treatment device | |
JP4713201B2 (en) | Phosphorus remover supply device and small-scale wastewater septic tank equipped with the same | |
JP2006175400A (en) | Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it | |
CN203922907U (en) | The external dephosphorization algae removal of a kind of landscape water body purifying processing device | |
JP4071364B2 (en) | Pretreatment device for reverse osmosis membrane separator | |
JPS6242677B2 (en) | ||
KR101037888B1 (en) | Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor | |
JPH0416237B2 (en) | ||
US20190010066A1 (en) | Decentralized wastewater treatment system for removing phosphorous | |
JP5079285B2 (en) | Wastewater septic tank | |
Shimamura et al. | Use of a seeder reactor to manage crystal growth in the fluidized bed reactor for phosphorus recovery | |
JP2001179273A (en) | Sludge storage tank and septic tank having the sludge storage tank | |
JP2005342588A (en) | Anaerobic treatment method and anaerobic treatment system | |
JP2006181431A (en) | Phosphorus removing agent feeding device and small-scale septic tank equipped with it | |
KR20110093285A (en) | Exclusion equipment nitrogen and phosphorus in aeration tank using sulfur charge membrane bioreactor | |
JPH11147088A (en) | Dephosphorization of waste water | |
CN208008602U (en) | Version wastewater treatment equipment is rushed in a kind of alkaline development of lithographic plate | |
JP4022815B2 (en) | Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber | |
JP4013123B2 (en) | Operating method of aerobic treatment tank, aerobic treatment tank and sewage septic tank | |
RU2351549C2 (en) | Denitrification flotating plant | |
CN112723585B (en) | Hypophosphite treatment reactor for realizing iodine recycling, and facility and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071126 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100304 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100309 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100629 |