JP2011167689A - Solid phosphorus removing agent and waste-water purifying tank equipped with the same - Google Patents

Solid phosphorus removing agent and waste-water purifying tank equipped with the same Download PDF

Info

Publication number
JP2011167689A
JP2011167689A JP2011083084A JP2011083084A JP2011167689A JP 2011167689 A JP2011167689 A JP 2011167689A JP 2011083084 A JP2011083084 A JP 2011083084A JP 2011083084 A JP2011083084 A JP 2011083084A JP 2011167689 A JP2011167689 A JP 2011167689A
Authority
JP
Japan
Prior art keywords
water
solid phosphorus
removing agent
phosphorus removing
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011083084A
Other languages
Japanese (ja)
Other versions
JP5154671B2 (en
Inventor
Nobuyoshi Katagai
信義 片貝
Munehiro Kondo
宗浩 近藤
Noriyuki Chikayama
憲幸 近山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKA MAINTENANCE CO Ltd
Housetec Inc
Original Assignee
NIKKA MAINTENANCE CO Ltd
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKA MAINTENANCE CO Ltd, Housetec Inc filed Critical NIKKA MAINTENANCE CO Ltd
Priority to JP2011083084A priority Critical patent/JP5154671B2/en
Publication of JP2011167689A publication Critical patent/JP2011167689A/en
Application granted granted Critical
Publication of JP5154671B2 publication Critical patent/JP5154671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid phosphorus removing agent wherein the agent is agglomerated from an iron salt or an aluminum salt (both are very water-soluble) which reacts with a phosphate ion to solidify the phosphate ion, and also controlled-releasability (low in water dissolvability) is given to the agglomerated material, and to provide a production method of the solid phosphorus removing agent, a dissolving method of the solid phosphorus removing agent in water, a dissolving apparatus for the solid phosphorus removing agent and a waste-water purifying tank equipped with the dissolving apparatus. <P>SOLUTION: The solid phosphorus removing agent contains the iron salt or the aluminum salt, a binder, and a vegetable oil as a liquid hydrophobic material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、戸建住宅、集合住宅、コンビニエンスストア等の小規模建築施設から排出されるし尿排水、生活排水、有機系排水等の合併排水(以降、これらを単に排水と略す)を処理する、特にリン分も除去する排水浄化槽に用いられる、鉄塩又はアルミニウム塩をタブレットなどの塊状物に成形してなる固形リン除去剤及びそれを備える排水浄化槽に関する。   The present invention treats combined wastewater (hereinafter simply referred to as wastewater) such as human wastewater, domestic wastewater, and organic wastewater discharged from small-scale building facilities such as detached houses, apartment houses, and convenience stores. In particular, the present invention relates to a solid phosphorus removing agent formed by molding iron salt or aluminum salt into a lump such as a tablet, and a drainage septic tank provided with the same, which is used in a septic tank that also removes phosphorus.

上記の施設等から排出される排水は、嫌気処理と好気処理の生物処理機能を主体とする排水浄化槽によって処理され、消毒した後、放流される。これら排水浄化槽は、排水中の固形物や有機物を除去して汚濁指標のBODを低減(除去)して、さらには好気処理水を嫌気処理と好気処理の系内で循環させて、窒素分を除去する。
しかし、このような処理を施してもリン分(リン酸イオン)は除去することができず、そのまま放流される。そこで、排水浄化槽では、リン酸イオンも除去することを目的に、鉄、アルミニウム、カルシウム等の多価金属イオンを排水中に供給し、多価金属イオンとリン酸イオンとを反応させることにより固体化(または粒子化)して沈殿、浮上又は濾過等の処理によって除去する反応凝集法が用いられている。
Wastewater discharged from the above facilities is treated by a wastewater septic tank mainly composed of anaerobic and aerobic biological treatment functions, disinfected, and then discharged. These wastewater septic tanks remove solids and organic matter in the wastewater to reduce (remove) the BOD of the pollution index, and circulate aerobic treated water in the anaerobic and aerobic treatment systems to generate nitrogen. Remove minutes.
However, even if such a treatment is performed, the phosphorus content (phosphate ions) cannot be removed and is released as it is. Therefore, in the drainage septic tank, for the purpose of removing phosphate ions, polyvalent metal ions such as iron, aluminum and calcium are supplied into the wastewater, and the solids are reacted by reacting the polyvalent metal ions with phosphate ions. A reaction agglomeration method is used in which the particles are formed (or formed into particles) and removed by a treatment such as precipitation, flotation or filtration.

そして、この多価金属イオンを排水中に供給する方法として、例えば、リン酸イオンと反応する多価金属塩と消毒能を有する塩素系化合物とを混合して錠剤化し、この錠剤を浄化処理の終了した処理水と接触させて、リン酸イオンの除去と処理水の消毒を行う、リン除去殺菌固形剤がある(特許文献1参照)。
さらには、多価金属塩は水溶解性に富んでいるため、これに徐放性を持たせるべく、高級脂肪酸、高級アルコール、パラフィン類等の有機化合物と鉄塩、アルミニウム塩等を混ぜて加熱溶解、冷却固化し、この塊状物を活性汚泥方式の曝気槽に添加して溶解させる、固形脱窒、脱リン促進剤がある(特許文献2参照)。
And as a method of supplying this polyvalent metal ion into wastewater, for example, a polyvalent metal salt that reacts with phosphate ions and a chlorine-based compound having a disinfecting ability are mixed to form a tablet, and this tablet is subjected to purification treatment. There exists a phosphorus removal disinfection solid agent which makes it contact with the process water which ended, and removes phosphate ion and disinfects the process water (refer to patent documents 1).
Furthermore, since polyvalent metal salts are highly soluble in water, heat them by mixing organic compounds such as higher fatty acids, higher alcohols and paraffins with iron salts, aluminum salts, etc. in order to give them sustained release properties. There are solid denitrification and dephosphorization accelerators that are dissolved and cooled and solidified, and this lump is added to an activated sludge type aeration tank and dissolved (see Patent Document 2).

特開2000−210676号公報JP 2000-210676 A 特開2001−269689号公報JP 2001-269689 A

リン除去殺菌固形剤のような例では、殺菌剤を含んでいるため、生物処理が終了した後に処理水と接触させる必要のあること、また、固形脱窒、脱リン促進剤のような例では、水に不溶性の有機化合物で多価金属塩を固めているため、反応量に見合う多価金属イオンを溶出することができず、必要量に過不足を生じることが推測される。
本発明は、上記課題を解決するとともに、リン酸イオンと反応してリン酸イオンを固体化する鉄塩又はアルミニウム塩(いずれも水溶解性大)を塊状化させ、かつこの塊状物に徐放性(水遅溶解性)を持たせてなる、固形リン除去剤及びそれを備える排水浄化槽を提供することを目的とする。
In an example such as a phosphorus removal sterilizing solid agent, since it contains a sterilizing agent, it needs to be contacted with treated water after the biological treatment is completed, and in an example such as a solid denitrification / dephosphorization accelerator, Since the polyvalent metal salt is solidified with an organic compound that is insoluble in water, it is presumed that polyvalent metal ions corresponding to the reaction amount cannot be eluted, and the required amount is excessive or insufficient.
The present invention solves the above-mentioned problems, agglomerates an iron salt or aluminum salt (both having high water solubility) that reacts with phosphate ions to solidify the phosphate ions, and gradually releases the aggregates. It aims at providing a solid phosphorus removal agent which has the property (water slow solubility), and a waste water septic tank provided with the same.

発明者らは前記した課題を解決することを目的にして検討を進める中で、鉄塩又はアルミニウム塩に天然物由来高分子物質や水溶性高分子物質を結合剤としての狙いで添加して粉砕混合し、これに植物油を入れて混練合した後、さらにタブレット様に固めると、そのものは、水に溶けにくく徐放性を示すことが分かった。これらの検討結果等を踏まえて、本発明を見出すに至った。
本発明は、前記課題を解決するために以下の構成を有する。
(1)本発明は、鉄塩又はアルミニウム塩と、結合剤と、液状疎水性物質としての植物油を含む、固形リン除去剤に関する。
(2)本発明は、項(1)に記載の植物油が精油であることを特徴とする。
(3)本発明は、項(2)に記載の精油がパイン油であることを特徴とする。
(4)本発明は、項(1)において、結合剤が、天然物由来の高分子物質若しくは誘導物質、又は、水溶性合成高分子物質であることを特徴とする。
(5)本発明は、項(1)、(2)、(3)または(4)の何れかに記載の固形リン除去剤を備えた排水浄化槽に関する。
While the inventors are proceeding with studies aimed at solving the above-mentioned problems, a natural substance-derived polymer substance or a water-soluble polymer substance is added to an iron salt or an aluminum salt for the purpose of binding and pulverized. After mixing, kneading and adding vegetable oil to this, it was found that when it was further hardened like a tablet, it itself was hardly soluble in water and exhibited sustained release properties. The present invention has been found based on these examination results and the like.
The present invention has the following configuration in order to solve the above problems.
(1) The present invention relates to a solid phosphorus removing agent comprising an iron salt or aluminum salt, a binder, and vegetable oil as a liquid hydrophobic substance.
(2) The present invention is characterized in that the vegetable oil described in item (1) is an essential oil.
(3) The present invention is characterized in that the essential oil according to item (2) is pine oil.
(4) In the item (1), the present invention is characterized in that the binder is a polymer substance or derivative substance derived from a natural product, or a water-soluble synthetic polymer substance.
(5) This invention relates to the waste water septic tank provided with the solid phosphorus removal agent in any one of term (1), (2), (3) or (4).

本発明の固形リン除去剤は、鉄塩又はアルミニウム塩および結合剤の他に、液状疎水性物質としての植物油を含ませているので、水に対する徐放性をより一層高めることができる。
また、本発明の排水浄化槽は、上記の固形リン除去剤を備えているので、BOD、窒素の他にリンも除去できるため、高度な処理水を得ることができる。
Since the solid phosphorus removing agent of the present invention contains vegetable oil as a liquid hydrophobic substance in addition to the iron salt or aluminum salt and the binder, the sustained release property to water can be further enhanced.
Moreover, since the waste water purification tank of this invention is equipped with said solid phosphorus removal agent, since it can also remove phosphorus other than BOD and nitrogen, highly treated water can be obtained.

本発明の鉄塩又はアルミニウム塩と、結合剤と、液状疎水性物質とからなる固形リン除去剤の製造方法を示す一例の工程図。The process drawing of an example which shows the manufacturing method of the solid phosphorus removal agent which consists of the iron salt or aluminum salt of this invention, binder, and a liquid hydrophobic substance. 固形リン除去剤溶解装置の一例であり、(a)は概略平面図、(b)は(a)のA−A断面図。It is an example of a solid phosphorus removal agent melt | dissolution apparatus, (a) is a schematic plan view, (b) is AA sectional drawing of (a). 別の固形リン除去剤溶解装置を示す一例であり、その断面図。It is an example which shows another solid phosphorus removal agent melt | dissolution apparatus, and the sectional drawing. 別の固形リン除去剤溶解装置を示す一例であり、(a)は固形リン除去剤を連続的に水中へ浸漬させる場合の概略平面図、(b)は(a)のB−B断面図。It is an example which shows another solid phosphorus removal agent melt | dissolution apparatus, (a) is a schematic plan view in case a solid phosphorus removal agent is continuously immersed in water, (b) is BB sectional drawing of (a). 別の固形リン除去剤溶解装置を示す一例であり、(a)は固形リン除去剤を間欠的に水中へ浸漬させる場合の概略断面図、(b)は固形リン除去剤を露出させる場合の概略断面図。It is an example which shows another solid phosphorus removal agent melt | dissolution apparatus, (a) is a schematic sectional drawing when a solid phosphorus removal agent is intermittently immersed in water, (b) is the outline when a solid phosphorus removal agent is exposed. Sectional drawing. 本発明の固形リン除去剤に水を連続的に散水する固形リン除去剤溶解装置を備える排水浄化槽を示す一例であり、(a)は概略平面図、(b)は(a)のC−C矢視面の概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is an example which shows the waste water septic tank provided with the solid phosphorus removal agent dissolution apparatus which sprinkles water continuously to the solid phosphorus removal agent of this invention, (a) is a schematic plan view, (b) is CC of (a). The schematic sectional drawing of an arrow surface. 本発明の固形リン除去剤を水中へ連続的に浸漬させる固形リン除去剤溶解装置を備える排水浄化槽を示す一例であり、その概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS It is an example which shows a waste water septic tank provided with the solid phosphorus removal agent melt | dissolution apparatus which continuously immerses the solid phosphorus removal agent of this invention in water, The schematic sectional drawing.

本発明にて述べる固形リン除去剤の特徴は、排水中のリン酸イオンと反応して不溶性又は難溶性の塩を形成する物質に対して溶解速度を遅らせる、すなわち徐放性を付与したことである。そして、その固形リン除去剤の主成分は、鉄塩又はアルミニム塩と、結合剤と、液状疎水性物質としての精油とを含む混合物質からなっている。なお、ここで液状疎水性物質とは、常温レベルで液状にある疎水性の物質を指し、天然物由来の油脂類とは植物油、これらからの精油を指している。   The feature of the solid phosphorus removing agent described in the present invention is that the dissolution rate is delayed with respect to a substance that forms an insoluble or hardly soluble salt by reacting with phosphate ions in waste water, that is, a sustained release property is imparted. is there. And the main component of the solid phosphorus removal agent consists of a mixed substance containing an iron salt or an aluminum salt, a binder, and an essential oil as a liquid hydrophobic substance. Here, the liquid hydrophobic substance refers to a hydrophobic substance that is in a liquid state at a normal temperature level, and the natural fats and oils refer to vegetable oils and essential oils derived therefrom.

前記の鉄塩又はアルミニウム塩には、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄及びそれらの水和物等の鉄塩、硫酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウムナトリウム及びそれらの水和物等のアルミニウム塩、等を挙げられるが、これらの化合物の中では好ましくは非潮解性のものである。なお、カルシウム塩、マグネシウム塩等も挙げられるが、好ましくは鉄塩又はアルミニウム塩である。
排水処理系で鉄塩を用いた場合は、リン酸イオンとから生成されるリン酸鉄および存在するコロイド粒子等が凝集してフロックを形成するが、このフロックの圧密性がよい。すなわち、蓄積される汚泥容量の増加に対する抑制効果が顕著になる。
排水処理系でアルミニウム塩を用いた場合は、リン酸イオンとから生成されるリン酸アルミニウムと存在するコロイド粒子等が凝集して、フロックを形成して蓄積されるが、還元状態の高い雰囲気でもリン酸アルミニウムが安定した状態で蓄積される。
Examples of the iron salt or aluminum salt include iron salts such as ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride and hydrates thereof, aluminum sulfate, potassium aluminum sulfate, and sodium aluminum sulfate. And aluminum salts such as hydrates thereof, and the like. Among these compounds, non-deliquescent ones are preferable. In addition, although calcium salt, magnesium salt, etc. are mentioned, Preferably they are iron salt or aluminum salt.
When an iron salt is used in a wastewater treatment system, iron phosphate generated from phosphate ions and colloidal particles that are present aggregate to form a floc, but the compactness of this floc is good. That is, the suppression effect with respect to the increase in the accumulated sludge capacity becomes remarkable.
When an aluminum salt is used in a wastewater treatment system, aluminum phosphate produced from phosphate ions and colloidal particles that exist are aggregated to form flocs that accumulate, but even in highly reduced atmospheres Aluminum phosphate accumulates in a stable state.

前記の結合剤には、天然物由来の高分子物質又は誘導物質、水溶性合成高分子物質が含まれる。そして、天然物由来の高分子物質又は誘導物質、水溶性合成高分子物質には澱粉、デキストリン、セルロース、セロビオース、キチン類、キトサン類等の多糖類、ヒドロキシ基を有する樹脂であるポリビニルアルコール系樹脂{ポリビニルアルコール(PVA)、アセトアセチル変性ポリビニルアルコール、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、シラノール変性ポリビニルアルコール、ポリビニルアセタール等}、セルロース系樹脂{メチルセルロース(MC)、エチルセルロース(EC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等}、エーテル結合を有する樹脂{ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレングリコール(PEG)、ポリビニルエーテル(PVE)等}、カルバモイル基を有する樹脂{ポリアクリルアミド(PAAM)、ポリビニルピロリドン(PVP)、ポリアクリル酸ヒドラジド等}等の水溶性樹脂が挙げられる。適用対象が排水(又は汚水)浄化槽であるため、これらの物質の中では、N原子を含まないことが好ましい。   The binder includes a natural substance-derived polymer substance or derivative substance, and a water-soluble synthetic polymer substance. Polyvinyl alcohol resin which is a polymer having a hydroxy group or a polysaccharide such as starch, dextrin, cellulose, cellobiose, chitins, chitosans, etc. {Polyvinyl alcohol (PVA), acetoacetyl-modified polyvinyl alcohol, cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, silanol-modified polyvinyl alcohol, polyvinyl acetal, etc.}, cellulose resins {methyl cellulose (MC), ethyl cellulose (EC), hydroxyethyl cellulose ( HEC), carboxymethylcellulose (CMC), hydroxypropylcellulose (HPC), hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, etc.}, Resin having ether bond {polyethylene oxide (PEO), polypropylene oxide (PPO), polyethylene glycol (PEG), polyvinyl ether (PVE), etc.}, resin having carbamoyl group {polyacrylamide (PAAM), polyvinylpyrrolidone (PVP), Water-soluble resin such as polyacrylic acid hydrazide}. Since the application target is a wastewater (or sewage) septic tank, it is preferable that N atoms are not included in these substances.

上記の結合剤は、混練合物を所定の形状に成形する際のバインダー的な作用による形状保持性、溶解速度を遅らせる徐放性等の役目も担っているものと推測している。前記結合剤は、単独又は複数種を配合してもよい。   It is presumed that the above-mentioned binder also plays a role such as shape retention by a binder-like action when the kneaded compound is formed into a predetermined shape, and sustained release for delaying the dissolution rate. The said binder may mix | blend single or multiple types.

前記の液状疎水性物質には、天然物由来の油脂類又はこれらからの精油が好ましく、次のような物質が挙げられる。アーモンド油、アマニ油、アボガド油、エゴマ油、オリーブ油、キリ油、クルミ油、ゴマ油、コメヌカ油、ダイズ油、ツバキ油、トウモロコシ油、ナタネ油、パーム油、ヒマシ油、ベニバナ油、ヤシ油、ラッカセイ油等の植物油脂、ウイキョウ油、オレンジ油、ケイヒ油、シソ油、ジャスミン油、ショウノウ油、テレピン油、パイン油、ハッカ油、ヒノキ油、ラベンダー油、レモン油等の精油(芳香油)である。液状疎水性物質は、成形物の中に水が侵入するのを防ぐ効果が期待でき、結果的に溶解速度を遅らせる徐放性の役目、また、成形時の滑沢剤としての役目も担っているものと推測している。   The liquid hydrophobic substance is preferably oils and fats derived from natural products or essential oils thereof, and examples thereof include the following substances. Almond oil, flaxseed oil, avocado oil, sesame oil, olive oil, tung oil, walnut oil, sesame oil, rice bran oil, soybean oil, camellia oil, corn oil, rapeseed oil, palm oil, castor oil, safflower oil, palm oil, peanut Essential oils (aromatic oils) such as vegetable oils such as oil, fennel oil, orange oil, cinnamon oil, perilla oil, jasmine oil, camphor oil, turpentine oil, pine oil, mint oil, cypress oil, lavender oil, lemon oil . The liquid hydrophobic material can be expected to prevent water from entering the molded product. As a result, it has a function of slow release to slow down the dissolution rate and also serves as a lubricant during molding. I guess that.

前記結合剤及び液状疎水性物質の他に、脂肪酸アルカリ金属塩、シリカ含有物質等を充填剤として添加することもできる。脂肪酸アルカリ金属塩には、カプリン酸、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸等のナトリウム塩、カリウム塩等が挙げられ、これらは成形時の滑沢剤的な役目を担っているものと推測される。また、シリカ含有物質にはフュームドシリカ、アモルファスシリカ等の微粒子状物質、珪酸ソーダ、コロイダルシリカ等の液状シリカ含有物質等が挙げられる。これらは結合剤、増量剤等としての役目を担っているものと推測される。なお、珪酸ソーダ、コロイダルシリカ等の液状物質は、アルカリ性を有するものが多く、これらは鉄塩又はアルミニム塩と混合したときに、一部、金属水酸化物を生じる場合もあるため、好ましくは微粒子状物質が好ましい。   In addition to the binder and the liquid hydrophobic substance, fatty acid alkali metal salts, silica-containing substances and the like can be added as fillers. Examples of the fatty acid alkali metal salts include sodium salts and potassium salts such as capric acid, lauric acid, palmitic acid, stearic acid, and oleic acid, and these have a role as a lubricant during molding. Guessed. Examples of the silica-containing material include particulate materials such as fumed silica and amorphous silica, and liquid silica-containing materials such as sodium silicate and colloidal silica. These are presumed to play a role as binders, extenders and the like. It should be noted that liquid substances such as sodium silicate and colloidal silica often have alkalinity, and when mixed with an iron salt or an aluminum salt, some of them may form a metal hydroxide. A particulate material is preferred.

前記した各成分は、次のような配合割合がとられる。鉄塩(水和物として)を100重量部としたときに、結合剤10〜30重量部、液状疎水性物質5〜30重量部とすることが好ましい。充填剤を添加する場合には5〜15重量部とすることが好ましい。結合剤をこの範囲で配合することによって、固形リン除去剤の徐放性や保形性を高めることができる。また、液状疎水性物質をこの範囲で配合することによって、同様に徐放性の向上や成形時の滑沢性が得られるとともに、特に圧縮成形では液状疎水性物質の圧搾を防ぐことができる。   Each of the components described above has the following blending ratio. When the iron salt (as a hydrate) is 100 parts by weight, the binder is preferably 10 to 30 parts by weight and the liquid hydrophobic substance 5 to 30 parts by weight. When adding a filler, it is preferable to set it as 5-15 weight part. By blending the binder in this range, the sustained release property and shape retention of the solid phosphorus removing agent can be enhanced. Further, by blending the liquid hydrophobic substance in this range, similarly, the sustained release can be improved and the smoothness at the time of molding can be obtained, and the compression of the liquid hydrophobic substance can be prevented particularly in compression molding.

また、アルミニウム塩(水和物として)を100重量部としたときに、結合剤3〜15重量部、液状疎水性物質3〜15重量部とすることが好ましい。充填剤を添加する場合には1〜5重量部とすることが好ましい。結合剤をこの範囲で配合することによって、固形リン除去剤の徐放性や保形性を高めることができる。また、液状疎水性物質をこの範囲で配合することによって、同様に徐放性の向上や成形時の滑沢性が得られるとともに、特に圧縮成形では液状疎水性物質の圧搾を防ぐことができる。   Further, when the aluminum salt (as a hydrate) is 100 parts by weight, the binder is preferably 3 to 15 parts by weight and the liquid hydrophobic substance 3 to 15 parts by weight. When adding a filler, it is preferable to set it as 1-5 weight part. By blending the binder in this range, the sustained release property and shape retention of the solid phosphorus removing agent can be enhanced. Further, by blending the liquid hydrophobic substance in this range, similarly, the sustained release can be improved and the smoothness at the time of molding can be obtained, and the compression of the liquid hydrophobic substance can be prevented particularly in compression molding.

次に、本発明の固形リン除去剤の製造方法について説明する。
図1は、本発明に関する鉄塩又はアルミニウム塩と、結合剤と、液状疎水性物質(又は剤)とからなる固形リン除去剤の製造方法を示す一例の工程図である。先ず、鉄塩又はアルミニウム塩(水和物も含む)の粉体と結合剤の粉体とを混合機に導入して混合する工程がとられる。この際に両方又は片方が粒状物のときは予め粉砕又は解砕して粉体にしておくことが好ましい。なお、混合機には、容器自体が固定されている固定型混合機、又は容器が回転運動する回転型混合機等を用いることができる。次にこの混合物と液状疎水性物質を混練合機に導入して混練合する工程がとられる。この際、混練合物が過剰な溶融状態にならず、ドウ(dough−パン生地)状態以上の硬さになるように液状疎水性物質を配合することが好ましい。なお、前記の固定型混合機では、多くの場合、練り合わせ機能を有しているので、前記混合物に液状疎水性物質を添加して混練合することもできる。
Next, the manufacturing method of the solid phosphorus removal agent of this invention is demonstrated.
FIG. 1 is an exemplary process chart showing a method for producing a solid phosphorus removing agent comprising an iron salt or aluminum salt, a binder, and a liquid hydrophobic substance (or agent) according to the present invention. First, an iron salt or aluminum salt powder (including a hydrate) powder and a binder powder are introduced into a mixer and mixed. At this time, when both or one of them is a granular material, it is preferable to pulverize or pulverize the powder beforehand. As the mixer, a fixed mixer in which the container itself is fixed, a rotary mixer in which the container rotates, or the like can be used. Next, a step of introducing the mixture and the liquid hydrophobic substance into a kneading machine and kneading is performed. At this time, it is preferable to blend the liquid hydrophobic substance so that the kneaded compound does not enter an excessively melted state and has a hardness equal to or higher than a dough (dough-bread dough) state. In many cases, the fixed mixer has a kneading function, so that a liquid hydrophobic substance can be added to the mixture and kneaded.

次に前記混練合物を所定の形状に成形する工程がとられる。目的の所定形状、混練合物のドウ状態等によって成形機を使い分けるが、これの成形には押出(練り出し)成形機、押出造粒機、圧縮成形機、又は打錠成形機等が用いられる。   Next, a step of forming the kneaded compound into a predetermined shape is performed. Depending on the desired shape, the dough state of the kneaded compound, etc., the molding machine is properly used. For this molding, an extrusion (kneading) molding machine, an extrusion granulator, a compression molding machine, a tableting molding machine or the like is used. .

なお、前記までは図1の基本的な工程ごとにその主な目的を述べているが、一連の複数の工程を1つ又は2つの機械で通して行うこともできる。例えば、練り出し成形では、粉体原料(鉄塩又はアルミニウム塩、結合剤)をV型ミキサー、リボンミキサーなどの混合機に供給し十分混合する。この混合物をコンティニアスニーダー、エクストルーダー等の練り機に移して、液体原料(液状疎水性物質)も導入して混練合し、混練合物を押出成形する。ついで、押出成形物をカットして得るものである。   Although the main purpose has been described for each of the basic steps in FIG. 1 so far, a series of a plurality of steps can be performed by one or two machines. For example, in kneading molding, powder raw materials (iron salt or aluminum salt, binder) are supplied to a mixer such as a V-type mixer or a ribbon mixer and sufficiently mixed. This mixture is transferred to a kneader such as a continuous kneader or an extruder, and a liquid raw material (liquid hydrophobic substance) is also introduced and kneaded, and the kneaded mixture is extruded. Subsequently, the extruded product is obtained by cutting.

次に本発明の固形リン除去剤の溶解方法について説明する。
固形リン除去剤に水を連続的又は間欠的に散水して、溶解する方法である。水の散水の仕方はパンチング板から落水するシャワーのように散水することが好ましく、また、平面視において固形リン除去剤の略全面へ散水することが好ましい。こうすることによって、固形リン除去剤の全体を安定して溶解することができる。ここで、固形リン除去剤は、前記鉄塩又はアルミニム塩と、結合剤と、液状疎水性物質との混合物質からなることが好ましい。散水する水量と固形リン除去剤の溶解する量との関係を予め把握しておけば、散水量に応じて鉄塩又はアルミニウム塩の溶解量をほぼ一定にすることができる。散水する水は、水道水又は被処理水であってもよい。例えば水道水を散水する場合は、散水することによって鉄塩又はアルミニウム塩の溶解液を予め得て、これを所定の部位の被処理水に添加すればよく、また、被処理水を散水する場合は、溶解する鉄塩又はアルミニウム塩の各イオンと存在するリン酸イオンとが反応するので、散水し通過した被処理水を所定の部位へ移送させればよい。
Next, the method for dissolving the solid phosphorus removing agent of the present invention will be described.
In this method, water is continuously or intermittently sprinkled on the solid phosphorus removing agent and dissolved. Water is preferably sprayed like a shower falling from a punching plate, and is preferably sprayed over substantially the entire surface of the solid phosphorus removing agent in plan view. By carrying out like this, the whole solid phosphorus removal agent can be melt | dissolved stably. Here, the solid phosphorus removing agent is preferably composed of a mixed material of the iron salt or aluminum salt, a binder, and a liquid hydrophobic substance. If the relationship between the amount of water sprayed and the amount of the solid phosphorus removing agent dissolved is known in advance, the amount of iron salt or aluminum salt dissolved can be made substantially constant according to the amount of water sprayed. Water to be sprinkled may be tap water or treated water. For example, when watering tap water, a solution of iron salt or aluminum salt may be obtained in advance by watering, and this may be added to the water to be treated at a predetermined site. Since each ion of the dissolved iron salt or aluminum salt reacts with the existing phosphate ions, the treated water that has been sprinkled and passed may be transferred to a predetermined site.

次に本発明の固形リン除去剤の溶解装置について説明する。
図2は本発明の固形リン除去剤溶解装置の一例を示し、(a)は概略平面図、(b)は(a)のA−A断面図である。固形リン除去剤溶解装置1は、固形リン除去剤2を支える支持部材3、支持部材3を内側で係合する収納容器4、固形リン除去剤2に向けてその上方から散水する散水部材5とから、構成されている。また、支持部材3は散水される水によって固形リン除去剤2の一部又は全部が水没しない位置で設けられている。散水部材5からは散水を連続的又は間欠的に実施し、固形リン除去剤2を一部溶解しながら通過させ、収納容器4から排出させるものである。
Next, the dissolution apparatus for the solid phosphorus removing agent of the present invention will be described.
FIG. 2 shows an example of the solid phosphorus removing agent dissolving apparatus of the present invention, where (a) is a schematic plan view and (b) is a cross-sectional view taken along line AA of (a). The solid phosphorus remover dissolving apparatus 1 includes a support member 3 that supports the solid phosphorus remover 2, a storage container 4 that engages the support member 3 inside, a water sprinkling member 5 that sprinkles toward the solid phosphorus remover 2 from above, Is made up of. Further, the support member 3 is provided at a position where part or all of the solid phosphorus removing agent 2 is not submerged by the sprinkled water. From the water sprinkling member 5, water sprinkling is carried out continuously or intermittently, the solid phosphorus removing agent 2 is allowed to pass while being partially dissolved, and is discharged from the storage container 4.

図2では、固形リン除去剤2は円柱状の形状を示しているが、これに限定されるものではない。また、固形リン除去剤2は複数個を積み重ねて又は平面的に配置してもよい。ここで、固形リン除去剤は、前記鉄塩又はアルミニム塩と、結合剤と、液状疎水性物質との混合物質からなることが好ましい。固形リン除去剤溶解装置1および散水部材5は平面視で円形を示しているが、角型であってもよい。収納容器4の底部は開放されている。散水部材5は、給水管によって支持される場合を示しているが、固形リン除去剤溶解装置1の一部に係合させて支持してもよい。また、散水部材5は固形リン除去剤溶解装置1内に収納されているが、固形リン除去剤溶解装置1の上方に配置されてもよい。また、散水部材5の水吐出部は、メッシュ板状、パンチング板状、スリット板状等、いずれの形状であってもよいが、固形リン除去剤2の略全面(平面視)に散水する形状または構造のものが好ましい。支持部材3は固形リン除去剤溶解装置1へ水平方向で全面的に張設しているが、固形リン除去剤2が落下しないように部分的に張設されてもよい。また、支持部材3はメッシュ状を示しているが、固形リン除去剤2を支持するとともに、撒かれる水が容易に通過若しくは落下する形状のものであればよい。   In FIG. 2, the solid phosphorus removing agent 2 has a cylindrical shape, but is not limited thereto. Further, a plurality of solid phosphorus removing agents 2 may be stacked or planarly arranged. Here, the solid phosphorus removing agent is preferably composed of a mixed material of the iron salt or aluminum salt, a binder, and a liquid hydrophobic substance. The solid phosphorus removing agent dissolving apparatus 1 and the water sprinkling member 5 are circular in plan view, but may be square. The bottom of the storage container 4 is open. Although the water sprinkling member 5 shows the case where it is supported by the water supply pipe, it may be supported by being engaged with a part of the solid phosphorus removing agent dissolving apparatus 1. Moreover, although the water sprinkling member 5 is accommodated in the solid phosphorus remover dissolving apparatus 1, it may be disposed above the solid phosphorus remover dissolving apparatus 1. Moreover, the water discharge part of the water sprinkling member 5 may have any shape such as a mesh plate shape, a punching plate shape, a slit plate shape, or the like, but is a shape that sprays water on substantially the entire surface (plan view) of the solid phosphorus removing agent 2. Or the structure is preferable. Although the support member 3 is stretched across the entire surface in the horizontal direction to the solid phosphorus remover dissolving apparatus 1, it may be partially stretched so that the solid phosphorus remover 2 does not fall. Moreover, although the supporting member 3 has shown the mesh shape, while supporting the solid phosphorus removal agent 2, it should just be a thing of the shape which the water to be sprinkled easily passes or falls.

図3は、別の固形リン除去剤溶解装置の一例であり、その断面図を示している。収納容器4の底部には底板を配し集水部6を設けているものである。この場合は、散水部材5から散水され固形リン除去剤2に接触してなる通過水を底部の集水部6で集め、別の部位へ移送するようにしている(図示省略)。集水部6を設けている底板は、集水部6を頂点とする逆円錐形のごとく傾斜を持たせてもよい。さらには、集水部6は底板の中央でなくてもよく、収納容器4の側壁底部にあってもよい。   FIG. 3 is an example of another solid phosphorus removing agent dissolving apparatus, and shows a cross-sectional view thereof. A bottom plate is arranged at the bottom of the storage container 4 and a water collecting part 6 is provided. In this case, the passing water sprayed from the water sprinkling member 5 and in contact with the solid phosphorus removing agent 2 is collected by the water collecting section 6 at the bottom and transferred to another part (not shown). The bottom plate provided with the water collecting portion 6 may have an inclination like an inverted conical shape having the water collecting portion 6 as a vertex. Furthermore, the water collecting part 6 may not be at the center of the bottom plate but may be at the bottom of the side wall of the storage container 4.

本発明における別の固形リン除去剤の溶解方法について説明する。固形リン除去剤を水中へ連続的又は間欠的に浸漬させて溶解する方法である。間欠的に浸漬させるとは、例えば、固形リン除去剤を容器に入れて、固形リン除去剤が浸漬するように水を供給し、所定時間の経過後、固形リン除去剤が露出するように水を排出し、所定時間の経過後、また水を供給する、これを繰り返して行うことを指している。こうすることによって、固形リン除去剤を安定して溶解することができる。また、前記固形リン除去剤の浸漬および露出は、固形リン除去剤の全体または一部でもよいが、好ましくは全体である。ここで、固形リン除去剤は、前記鉄塩又はアルミニム塩と、結合剤と、液状疎水性物質との混合物質からなることが好ましい。供給し浸漬する水量と固形リン除去剤の溶解する量との関係を予め把握しておけば、鉄塩又はアルミニウム塩の溶解量をほぼ一定にすることができる。供給する水は、水道水又は被処理水であってもよい。例えば水道水を供給する場合は、浸漬によって鉄塩又はアルミニウム塩の溶解液を予め得て、これを所定の部位の被処理水に添加すればよく、また、被処理水を供給する場合は、溶解する鉄塩又はアルミニウム塩の各イオンと存在するリン酸イオンとが反応するので、排出された被処理水を所定の部位へ移送させればよい。   The method for dissolving another solid phosphorus removing agent in the present invention will be described. This is a method of dissolving a solid phosphorus removing agent by immersing it continuously or intermittently in water. The intermittent dipping means, for example, that a solid phosphorus removing agent is put in a container, water is supplied so that the solid phosphorus removing agent is immersed, and the water is removed so that the solid phosphorus removing agent is exposed after a predetermined time. Is discharged after a predetermined time has passed and water is supplied again. By doing so, the solid phosphorus removing agent can be dissolved stably. In addition, the immersion or exposure of the solid phosphorus removing agent may be the whole or a part of the solid phosphorus removing agent, but is preferably the whole. Here, the solid phosphorus removing agent is preferably composed of a mixed material of the iron salt or aluminum salt, a binder, and a liquid hydrophobic substance. If the relationship between the amount of water supplied and immersed and the amount of the solid phosphorus removing agent dissolved is known in advance, the amount of iron salt or aluminum salt dissolved can be made substantially constant. The supplied water may be tap water or treated water. For example, when supplying tap water, a solution of iron salt or aluminum salt may be obtained in advance by dipping, and this may be added to the water to be treated at a predetermined site. Since each ion of the dissolved iron salt or aluminum salt reacts with the existing phosphate ion, the discharged water to be treated may be transferred to a predetermined site.

次に本発明における別の固形リン除去剤の溶解装置について説明する。
図4は本発明における別の固形リン除去剤溶解装置の一例であり、(a)は固形リン除去剤を連続的に水中へ浸漬させる場合の概略平面図、(b)は(a)のB−B断面図である。固形リン除去剤溶解装置1は、固形リン除去剤2を収納する収納容器4、収納容器4に水を給排水する給水部7および排水部8とから、構成されている。そして、固形リン除去剤2が連続的に水中へ浸漬するように、給水部7と排水部8とに給排水機構を設けている。すなわち、給水部7から水を供給するとともに、固形リン除去剤2が浸漬する位置に排水部8を設けている。ここで、固形リン除去剤は、前記鉄塩又はアルミニム塩と、結合剤と、液状疎水性物質との混合物質からなることが好ましい。
なお、図4に示しているように、給水時、給水部7から供給される水が、固形リン除去剤2に直接衝突しないように遮蔽版10を立設させてもよく、さらには支持部材3を横方向に張設させ、この上に固形リン除去剤2を載せ、支持部材3の下方から上方へ向かうようにさせてもよい。
Next, another solid phosphorus remover dissolving apparatus in the present invention will be described.
FIG. 4 is an example of another solid phosphorus removing agent dissolving apparatus in the present invention, (a) is a schematic plan view when the solid phosphorus removing agent is continuously immersed in water, and (b) is B in (a). It is -B sectional drawing. The solid phosphorus remover dissolving apparatus 1 is composed of a storage container 4 for storing the solid phosphorus remover 2, a water supply unit 7 for supplying and discharging water to the storage container 4, and a drainage unit 8. And the water supply / drainage mechanism is provided in the water supply part 7 and the waste_water | drain part 8 so that the solid phosphorus removal agent 2 may be immersed in water continuously. That is, while supplying water from the water supply part 7, the drainage part 8 is provided in the position where the solid phosphorus removal agent 2 is immersed. Here, the solid phosphorus removing agent is preferably composed of a mixed material of the iron salt or aluminum salt, a binder, and a liquid hydrophobic substance.
As shown in FIG. 4, when supplying water, the shielding plate 10 may be erected so that the water supplied from the water supply unit 7 does not directly collide with the solid phosphorus removing agent 2. 3 may be stretched in the lateral direction, and the solid phosphorus removing agent 2 may be placed thereon so as to be directed upward from below the support member 3.

また、図4では、固形リン除去剤2は円柱状の形状を示しているが、これに限定されるものではない。また、固形リン除去剤2は複数個を積み重ねて又は平面的に配置してもよい。固形リン除去剤溶解装置1は平面視で円形を示しているが、角型であってもよい。支持部材3は固形リン除去剤溶解装置1へ水平方向で全面的に張設しているが、固形リン除去剤2が落下しないように部分的に張設されてもよい。また、支持部材3はメッシュ状を示しているが、固形リン除去剤2を支持するとともに、水が容易に通過する形状のものであればよい。なお、収納容器4には水を撹拌する手段を講じてもよい。   Moreover, in FIG. 4, although the solid phosphorus removal agent 2 has shown the column-shaped shape, it is not limited to this. Further, a plurality of solid phosphorus removing agents 2 may be stacked or planarly arranged. The solid phosphorus removing agent dissolving apparatus 1 is circular in plan view, but may be square. Although the support member 3 is stretched across the entire surface in the horizontal direction to the solid phosphorus remover dissolving apparatus 1, it may be partially stretched so that the solid phosphorus remover 2 does not fall. Moreover, although the supporting member 3 has shown the mesh shape, while supporting the solid phosphorus removal agent 2, what is necessary is just a thing of the shape through which water passes easily. The storage container 4 may be provided with means for stirring water.

図5は、固形リン除去剤を間欠的に水中へ浸漬させる場合の固形リン除去剤溶解装置の一例を示す。
(a)は固形リン除去剤が水中へ浸漬されている状態の概略断面図、(b)は固形リン除去剤が露出されている状態の概略断面図である。給水部7と排水部8との関係において、排水部8にはサイフォン現象で水が排出できるようにサイフォン管11を設けている。すなわち、給水部7から水を供給すると、収納容器4内およびサイフォン管11内が満たされていき、固形リン除去剤2は浸漬される。さらに水位が上昇しサイフォン管11の上部に達すると一挙にサイフォンが働き、収納容器4内の水が排出される。これによって、固形リン除去剤2は露出される。これを繰り返すことにより、固形リン除去剤2は水中へ間欠的に浸漬される。なお、間欠的に浸漬させる手段としては、サイフォン管に限定されるものではなく、電磁弁等を用いることもできる。
また、図5に示しているように、給水時、給水部7から供給される水が、固形リン除去剤2に直接衝突しないように遮蔽版10を立設させてもよく、さらには支持部材3を横方向に張設させ、この上に固形リン除去剤2を載せ、支持部材3の下方から上方へ向かうようにさせてもよい。
FIG. 5 shows an example of a solid phosphorus removing agent dissolving apparatus when the solid phosphorus removing agent is intermittently immersed in water.
(A) is a schematic sectional drawing of the state in which the solid phosphorus removing agent is immersed in water, (b) is a schematic sectional view of the state in which the solid phosphorus removing agent is exposed. In the relationship between the water supply unit 7 and the drainage unit 8, the drainage unit 8 is provided with a siphon tube 11 so that water can be discharged by a siphon phenomenon. That is, when water is supplied from the water supply unit 7, the inside of the storage container 4 and the inside of the siphon tube 11 are filled, and the solid phosphorus removing agent 2 is immersed. When the water level further rises and reaches the upper part of the siphon tube 11, the siphon works at once and the water in the storage container 4 is discharged. Thereby, the solid phosphorus removing agent 2 is exposed. By repeating this, the solid phosphorus removing agent 2 is intermittently immersed in water. The means for intermittent immersion is not limited to a siphon tube, and an electromagnetic valve or the like can also be used.
Further, as shown in FIG. 5, when supplying water, the shielding plate 10 may be erected so that the water supplied from the water supply unit 7 does not directly collide with the solid phosphorus removing agent 2. 3 may be stretched in the lateral direction, and the solid phosphorus removing agent 2 may be placed thereon so as to be directed upward from below the support member 3.

図5では、固形リン除去剤2は円柱状の形状を示しているが、これに限定されるものではない。また、固形リン除去剤2は複数個を積み重ねて又は平面的に配置してもよい。固形リン除去剤溶解装置1は平面視で円形を示しているが、角型であってもよい。支持部材3は固形リン除去剤溶解装置1へ水平方向で全面的に張設しているが、固形リン除去剤2が落下しないように部分的に張設されてもよい。また、支持部材3はメッシュ状を示しているが、固形リン除去剤2を支持するとともに、水が容易に通過する形状のものであればよい。なお、収納容器4には水を撹拌する手段を講じてもよい。   In FIG. 5, the solid phosphorus removing agent 2 has a cylindrical shape, but is not limited thereto. Further, a plurality of solid phosphorus removing agents 2 may be stacked or planarly arranged. The solid phosphorus removing agent dissolving apparatus 1 is circular in plan view, but may be square. Although the support member 3 is stretched across the entire surface in the horizontal direction to the solid phosphorus remover dissolving apparatus 1, it may be partially stretched so that the solid phosphorus remover 2 does not fall. Moreover, although the supporting member 3 has shown the mesh shape, while supporting the solid phosphorus removal agent 2, what is necessary is just a thing of the shape through which water passes easily. The storage container 4 may be provided with means for stirring water.

次に、本発明の固形リン除去剤溶解装置を備える排水浄化槽について説明する。
図6は、水を連続的に散水する固形リン除去剤溶解装置を備える排水浄化槽の一例であり、(a)は概略平面図、(b)は(a)のC−C矢視面の概略断面図を示す。排水浄化槽15は、嫌気処理槽(第一の嫌気処理槽16、第二の嫌気処理槽17)、好気処理槽18を組み込んでいるものであり、その内側上部の空間には固形リン除去剤溶解装置1を備えている。なお、図6では前記嫌気処理槽および好気処理槽18等を組み込んで一体化している排水浄化槽を示しているが、嫌気処理槽および好気処理槽18等がシステムとして組み込まれているものであってもよい。
Next, a drainage septic tank equipped with the solid phosphorus removing agent dissolving apparatus of the present invention will be described.
FIG. 6: is an example of the waste water septic tank provided with the solid phosphorus removal agent melt | dissolution apparatus which sprinkles water continuously, (a) is a schematic plan view, (b) is the schematic of CC plane of (a). A cross-sectional view is shown. The waste water purification tank 15 incorporates an anaerobic treatment tank (a first anaerobic treatment tank 16 and a second anaerobic treatment tank 17) and an aerobic treatment tank 18, and a solid phosphorus removing agent in the space inside the inside thereof. A melting apparatus 1 is provided. FIG. 6 shows a waste water purification tank in which the anaerobic treatment tank and the aerobic treatment tank 18 are integrated, but the anaerobic treatment tank and the aerobic treatment tank 18 are incorporated as a system. There may be.

図6では、固形リン除去剤溶解装置1は、好気処理槽18を経た後の移流水を第一の嫌気処理槽16へ返送する循環水路21の終端に備え、散水部材5と接続させている。固形リン除去剤溶解装置1は循環水路21の経路内で第二の嫌気処理槽17の上部又は好気処理槽18の上部に備えてもよい。さらには移送ポンプ31の出口部位付近(好気処理槽18の上部)で備え、この出口と散水部材5とを接続させてもよい。固形リン除去剤2が硫酸第一鉄のように2価の場合、溶存酸素があるとか、または酸化還元電位の高い状態に付されると3価に酸化されてリン酸イオンと反応しやすいからである。なお、固形リン除去剤溶解装置1は前記した部位に設けるが、固形リン除去剤2の補充性を鑑みて排水浄化槽15のマンホール36の下方に設けることが好ましい。   In FIG. 6, the solid phosphorus removing agent dissolving apparatus 1 is provided at the end of the circulating water channel 21 that returns the advection water after passing through the aerobic treatment tank 18 to the first anaerobic treatment tank 16, and is connected to the water spray member 5. Yes. The solid phosphorus removing agent dissolving apparatus 1 may be provided in the upper part of the second anaerobic treatment tank 17 or the upper part of the aerobic treatment tank 18 in the circulation channel 21. Further, it may be provided near the outlet portion of the transfer pump 31 (upper part of the aerobic treatment tank 18), and the outlet and the water sprinkling member 5 may be connected. If the solid phosphorus removal agent 2 is divalent like ferrous sulfate, it will be oxidized to trivalent and easily react with phosphate ions if it has dissolved oxygen or is subjected to a high oxidation-reduction potential. It is. In addition, although the solid phosphorus removing agent dissolution apparatus 1 is provided in an above-described site | part, it is preferable to provide below the manhole 36 of the waste water purification tank 15 in view of the replenishment property of the solid phosphorus removing agent 2.

図6では好気処理槽18を経た後の沈殿槽19(または処理水槽)から移流水を嫌気処理槽へ返送しているが、この返送手段には返送ポンプ22を用いている。返送ポンプ22で汲み上げられた循環水は、その上部で接続される循環水路21を流下して固形リン除去剤溶解装置1の散水部材5に入る。散水部材5で散水される循環水は、固形リン除去剤2と接触して固形リン除去剤2を溶かしながら、固形リン除去剤溶解装置1の収納容器4の集水部6から第一の嫌気処理槽16の上部に設けられている流入バッフル25内に入る。   In FIG. 6, advection water is returned to the anaerobic treatment tank from the settling tank 19 (or treated water tank) after passing through the aerobic treatment tank 18, and a return pump 22 is used for this return means. The circulating water pumped up by the return pump 22 flows down the circulating water passage 21 connected at the upper part thereof and enters the water sprinkling member 5 of the solid phosphorus removing agent dissolving apparatus 1. The circulating water sprayed by the water sprinkling member 5 comes into contact with the solid phosphorus removing agent 2 and dissolves the solid phosphorus removing agent 2, while the first anaerobic state from the water collecting part 6 of the storage container 4 of the solid phosphorus removing agent dissolving apparatus 1. It enters the inflow baffle 25 provided in the upper part of the processing tank 16.

流入バッフル25内から第一の嫌気処理槽16に入った循環水は槽内水と混合されるが、循環水に含まれるリン酸イオンは溶解した鉄イオン又はアルミニウムイオンと反応して不溶性または難溶性のリン酸塩を形成する。そして、槽内水中の浮遊物質(SS)と凝集、または汚泥等に混ざり付着して分離、蓄積される。この際、循環水は第二の嫌気処理槽17に返送するようにしてもよい。なお、前記した好気処理槽18を出た後の循環水としては、沈殿槽19(または処理水槽)の槽内水を汲み上げるようにしているが、好気処理槽18の底部から汲み上げるようにしてもよい。   Circulating water that has entered the first anaerobic treatment tank 16 from the inflow baffle 25 is mixed with the in-bath water, but phosphate ions contained in the circulating water react with dissolved iron ions or aluminum ions to become insoluble or difficult. A soluble phosphate is formed. And it is separated and accumulated by adhering to suspended matter (SS) in the water in the tank and agglomerating or adhering to sludge. At this time, the circulating water may be returned to the second anaerobic treatment tank 17. As the circulating water after leaving the aerobic treatment tank 18, the water in the settling tank 19 (or the treated water tank) is pumped up, but it is drawn up from the bottom of the aerobic treatment tank 18. May be.

水を間欠的に散水する固形リン除去剤溶解装置を備える排水浄化槽の場合は、循環水路21に固形リン除去剤溶解装置に繋がらないバイパスを設け、切り替弁によって流路を切り替える、または返送ポンプ22を断続的に運転する等で、間欠散水ができる(図示省略)。   In the case of a wastewater septic tank equipped with a solid phosphorus removing agent dissolving device that intermittently sprinkles water, a bypass that does not connect to the solid phosphorus removing agent dissolving device is provided in the circulation channel 21, and the flow path is switched by a switching valve, or a return pump 22 Can be intermittently sprayed (not shown).

ここで、排水浄化槽15を更に詳しく説明すると、嫌気処理槽は、第一の嫌気処理槽16と第二の嫌気処理槽17とで構成され、第一の嫌気処理槽16には、流入口26が設けられている。また、流入口26の下方には、上部及び下部が開口する箱状の流入バッフル25が設けられ、流入口26と反対側の仕切り壁には移流管27(若しくは移流口)が設けられている。第一の嫌気処理槽16は、流入する汚水中の沈降しやすい固形物を沈殿分離させ、これを槽底部で濃縮貯留させる。このとき、槽底部に貯留する汚泥の一部は嫌気的生物反応によってスカムとなり、浮上して槽上部にて貯留される。また、濾床28では、嫌気的生物反応を進行させる。併せて、循環水路21から移流する循環水も混合され、生成したリン酸塩粒子は、汚泥やSSとともに分離、蓄積される。   Here, the waste water purification tank 15 will be described in more detail. The anaerobic treatment tank is composed of a first anaerobic treatment tank 16 and a second anaerobic treatment tank 17, and the first anaerobic treatment tank 16 has an inlet 26. Is provided. Further, a box-shaped inflow baffle 25 having upper and lower openings is provided below the inflow port 26, and an advection pipe 27 (or an advection port) is provided on the partition wall opposite to the inflow port 26. . The first anaerobic treatment tank 16 precipitates and separates solid matter that tends to settle in the inflowing sewage, and concentrates and stores it at the bottom of the tank. At this time, a part of the sludge stored at the bottom of the tank becomes scum by an anaerobic biological reaction, rises and is stored at the top of the tank. Moreover, in the filter bed 28, an anaerobic biological reaction is advanced. At the same time, the circulating water flowing from the circulating water channel 21 is also mixed, and the generated phosphate particles are separated and accumulated together with sludge and SS.

第二の嫌気処理槽17は、第一の嫌気処理槽16と同様な処理機能を持たせ、スカム化による槽上部での汚泥貯留、濾床29での嫌気的生物反応、及び、槽底部に沈殿した汚泥の貯留を行う。併せて残留するリン酸塩粒子も汚泥とともに分離、蓄積される。好気処理槽18側の仕切り壁には、移流管30が設けられ、この移流管30内には移送ポンプ31が取り付けられている。以上の嫌気処理槽(第一の嫌気処理槽16、第二の嫌気処理槽17)にて、有機物の分解に伴い被処理水に含まれる窒素分の多くはアンモニア態窒素に転換される。なお、濾床28及び濾床29は、必要でない場合もあり、その際には取り除くこともできる。   The second anaerobic treatment tank 17 has a processing function similar to that of the first anaerobic treatment tank 16, and stores sludge at the top of the tank by scumming, an anaerobic biological reaction at the filter bed 29, and the bottom of the tank. Store sedimented sludge. In addition, the remaining phosphate particles are separated and accumulated together with the sludge. An advection pipe 30 is provided on the partition wall on the aerobic treatment tank 18 side, and a transfer pump 31 is attached in the advection pipe 30. In the above anaerobic treatment tanks (first anaerobic treatment tank 16 and second anaerobic treatment tank 17), most of the nitrogen content contained in the water to be treated is converted to ammonia nitrogen as the organic matter is decomposed. Note that the filter bed 28 and the filter bed 29 may not be necessary, and can be removed in that case.

第一の嫌気処理槽16及び第二の嫌気処理槽17のそれぞれの上部には、流入する排水の変動を緩和させ次槽へ移流させるために、液水準が最高水位(H.W.L)及び最低水位(L.W.L)の間で変動可能な流量調整部32を設けている。この場合、第一の嫌気処理槽16と第二の嫌気処理槽17との水位は、排水の流入量が移送ポンプ31の送液量よりも多いか少ないかによってL.W.LとH.W.Lとの間を変動する。排水浄化槽15は、流量調整部32を設けることにより、排水の流入量が平均化され、嫌気処理槽(第一の嫌気処理槽16、第二の嫌気処理槽17)、好気処理槽18等の、各槽のそれぞれの機能は良好に発揮される。なお、移送ポンプ31は、本実施例ではブロワ24から送気される空気を用いるエアリフトポンプであるが、密閉容器に空気を圧送させる間欠定量ポンプ、電動による水中ポンプ等を用いることもできる。   In each upper part of the first anaerobic treatment tank 16 and the second anaerobic treatment tank 17, the liquid level is the highest water level (HWL) in order to reduce the fluctuation of the inflowing wastewater and transfer it to the next tank. And a flow rate adjusting unit 32 that can vary between the lowest water level (LWL). In this case, the water level in the first anaerobic treatment tank 16 and the second anaerobic treatment tank 17 depends on whether the inflow amount of the waste water is larger or smaller than the liquid feed amount of the transfer pump 31. W. L and H.H. W. It fluctuates between L. The waste water purification tank 15 is provided with a flow rate adjusting unit 32 to average the amount of inflow of waste water, and anaerobic treatment tanks (first anaerobic treatment tank 16, second anaerobic treatment tank 17), aerobic treatment tank 18 and the like. Each function of each tank is exhibited well. In this embodiment, the transfer pump 31 is an air lift pump that uses air supplied from the blower 24, but an intermittent metering pump that pumps air into a sealed container, an electric submersible pump, or the like can also be used.

好気処理槽18は、曝気するための散気管33を底部に配置し、ブロワ24から送気される空気を噴出させる。また、好気処理槽18は、微生物付着材(担体、微生物担体、接触材、接触濾材ともいう)を充填した床を形成している。ここで、微生物付着材を充填した床は、微生物付着材が噴出する空気によって液と共に流動する流動床、液のみが動く固定床、又は、流動床と固定床の両方を組み込んだものであってもよい。好気処理槽18は曝気を行い、(微生物が付着している)微生物付着材と液とが十分に混ざるようにし、あるいは、微生物付着材と液とが積極的に接触するようにし、これによって有機物を酸化・分解し、アンモニア態窒素が硝化(亜硝酸イオン、硝酸イオン)し、リン分はリン酸イオンになる。   The aerobic treatment tank 18 has an aeration tube 33 for aeration arranged at the bottom, and ejects air supplied from the blower 24. The aerobic treatment tank 18 forms a bed filled with a microorganism adhesion material (also referred to as a carrier, a microorganism carrier, a contact material, or a contact filter material). Here, the bed filled with the microorganism adhesion material is a fluidized bed that flows together with the liquid by the air ejected from the microorganism adhesion material, a fixed bed in which only the liquid moves, or a combination of both the fluidized bed and the fixed bed. Also good. The aerobic treatment tank 18 performs aeration so that the microorganism-adhering material (with microorganisms attached) and the liquid are sufficiently mixed, or the microorganism-adhering material and the liquid are in positive contact with each other. Organic matter is oxidized and decomposed, ammonia nitrogen is nitrified (nitrite ion, nitrate ion), and phosphorus content becomes phosphate ion.

微生物付着材の形状は、板状、網板状、ヘチマ状、多孔質状、筒状、棒状、骨格球状、紐状、更には粒状、不定形な塊状、立方体状、繊維塊状等の種々の形状に加工したものを用いることができる。流動床には、これら微生物付着材のうち、比較的小さく流動しやすい形状のものが好ましく用いられ、また、固定床には、付着する微生物や粒子等によって閉塞しにくく固定しやすい形状のものが好ましく用いられる。微生物付着材の材質は、塩化ビニリデン、ポリビニルフォルマール、ポリウレタン、メラミン樹脂等の合成樹脂製加工物、セラミックス、珪砂等の無機製加工物、アンスラサイト等の化石加工物、活性炭等で比重が約1又は1以上のもの、また、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン等で、比重が約1又は1以下のもののいずれも用いることができる。   The shape of the microorganism-adhering material can be various, such as plate-like, net-plate-like, loofah-like, porous, cylindrical, rod-like, skeletal spherical, string-like, and granular, irregular lump, cube, fiber lump, etc. What was processed into the shape can be used. Of these microorganism-adhering materials, those having a shape that is relatively small and easy to flow are preferably used for the fluidized bed, and those having a shape that is difficult to block and fix by the adhering microorganisms or particles are used for the fixed bed. Preferably used. The material of the microbial adhesion material is made of synthetic resin such as vinylidene chloride, polyvinyl formal, polyurethane, melamine resin, inorganic processed material such as ceramics and silica sand, fossil processed material such as anthracite, activated carbon, etc. Any one having one or more, a polyolefin resin such as polyethylene and polypropylene, polystyrene, and the like having a specific gravity of about 1 or 1 or less can be used.

好気処理槽18の底部には、開口部(移流口)34があり、沈殿槽19(又は処理水槽)と連通している。沈殿槽19には、好気処理槽18で処理された好気処理水の一部を循環水として汲み上げる返送ポンプ22を立設している。返送ポンプ22は、その上部で循環水路21に接続されている。返送ポンプ22を設けることによって、リン酸イオンの除去の他に、返送ポンプ22で循環水を返送させることにより、好気処理槽18又は沈殿槽19内に浮遊しているSSまたは沈殿している汚泥を引抜くことができることや、亜硝酸態窒素、硝酸態窒素がある場合には第一の嫌気処理槽16、第二の嫌気処理槽17にて生物的作用によって窒素除去もできる。返送ポンプ22からの循環水の返送は、連続であっても間欠であってもよい。なお、返送ポンプ22は、本実施例ではブロワ24から送気するエアリフトポンプを示したが、密閉容器に空気を圧送させる間欠定量ポンプや電動ポンプ等を用いることもできる。   At the bottom of the aerobic treatment tank 18, there is an opening (advection port) 34 that communicates with the settling tank 19 (or the treated water tank). The settling tank 19 is provided with a return pump 22 that pumps up a part of the aerobic treated water treated in the aerobic treatment tank 18 as circulating water. The return pump 22 is connected to the circulating water channel 21 at the upper part thereof. By providing the return pump 22, in addition to removing phosphate ions, the circulating water is returned by the return pump 22, so that the suspended SS or sediment in the aerobic treatment tank 18 or the settling tank 19 is present. If sludge can be extracted, or if there is nitrite nitrogen or nitrate nitrogen, nitrogen can be removed by biological action in the first anaerobic treatment tank 16 and the second anaerobic treatment tank 17. The return of the circulating water from the return pump 22 may be continuous or intermittent. In the present embodiment, the return pump 22 is an air lift pump that supplies air from the blower 24. However, an intermittent metering pump, an electric pump, or the like that pumps air into a sealed container can also be used.

沈殿槽19の上部には、リン酸イオン、窒素分、有機物が除去された処理水を消毒して放流させる消毒槽20があり、消毒槽20には放流口35を臨ませている。   Above the settling tank 19, there is a disinfection tank 20 that disinfects and discharges treated water from which phosphate ions, nitrogen, and organic substances have been removed. The disinfection tank 20 faces a discharge port 35.

次に排水浄化槽15の運転方法を説明する。流入排水は、図5中の実線矢印で示すとおり、流入口26から第一の嫌気処理槽16に入り、そこで固液分離及び嫌気的生物処理が行われる。ここを通過した移流液は、第二の嫌気処理槽17に入り、さらに固液分離及び嫌気的生物処理が進む。また、流量調整部32において、第一の嫌気処理槽16及び第二の嫌気処理槽17へ流入する排水量の変動を吸収・緩和しながら、排水を移送ポンプ31で次の好気処理槽18へ定量的に移送する。   Next, an operation method of the drainage septic tank 15 will be described. The inflow wastewater enters the first anaerobic treatment tank 16 from the inlet 26 as indicated by solid line arrows in FIG. 5, where solid-liquid separation and anaerobic biological treatment are performed. The advection liquid that has passed here enters the second anaerobic treatment tank 17, and further undergoes solid-liquid separation and anaerobic biological treatment. Further, in the flow rate adjustment unit 32, the wastewater is transferred to the next aerobic treatment tank 18 by the transfer pump 31 while absorbing and mitigating fluctuations in the amount of wastewater flowing into the first anaerobic treatment tank 16 and the second anaerobic treatment tank 17. Transport quantitatively.

好気処理槽18に流入する移流水は、散気管33から吐出される空気及び微生物付着材によって、好気的生物分解を受ける。分解された汚水中の有機物の一部は、微生物に転換されつつ微生物付着材に付着し、一部は液中に浮遊してSSとして存在する。好気処理槽18を出た移流水は、下部の開口部34から沈殿槽19に入る。ここで移流水は、一部が循環水として返送ポンプ22によって連続又は間欠的に循環水路21を介して固形リン除去剤溶解装置1に移送される。循環水は固形リン除去剤2を溶かしつつ、第一の嫌気処理槽16に入り、併せてリン酸イオンは難溶性又は不溶性の塩になり蓄積される。移流水の残り分は沈殿槽19の上部の越流口から消毒槽20へ入る。消毒された移流水(処理水)は、放流口35から系外へ放流される。   The advection water flowing into the aerobic treatment tank 18 is subjected to aerobic biodegradation by the air discharged from the aeration tube 33 and the microorganism adhesion material. A part of the decomposed organic matter in the sewage adheres to the microorganism-adhering material while being converted into microorganisms, and a part of the organic matter floats in the liquid and exists as SS. The advection water that has exited the aerobic treatment tank 18 enters the precipitation tank 19 from the lower opening 34. Here, a part of the advection water is transferred to the solid phosphorus removing agent dissolving apparatus 1 through the circulating water channel 21 continuously or intermittently by the return pump 22 as circulating water. The circulating water dissolves the solid phosphorus removing agent 2 and enters the first anaerobic treatment tank 16, and the phosphate ion is accumulated as a hardly soluble or insoluble salt. The remaining advection water enters the disinfection tank 20 from the overflow port at the top of the settling tank 19. The disinfected advection water (treated water) is discharged from the discharge port 35 to the outside of the system.

次に、本発明の別の固形リン除去剤溶解装置を備える排水浄化槽について説明する。
図7は、固形リン除去剤を連続的に水中へ浸漬させる固形リン除去剤溶解装置を備える排水浄化槽の一例であり、その概略断面図を示す。なお、平面図は図6(a)と類似するので省略する。排水浄化槽15は、嫌気処理槽(第一の嫌気処理槽16、第二の嫌気処理槽17)、好気処理槽18を組み込んで、これらの槽を一体化したものであり、その内側上部の空間には固形リン除去剤溶解装置1を備えている。
Next, a drainage septic tank provided with another solid phosphorus removing agent dissolving apparatus of the present invention will be described.
FIG. 7 is an example of a drainage septic tank provided with a solid phosphorus removing agent dissolving device for continuously immersing the solid phosphorus removing agent in water, and shows a schematic cross-sectional view thereof. The plan view is similar to FIG. The drainage purification tank 15 incorporates an anaerobic treatment tank (a first anaerobic treatment tank 16 and a second anaerobic treatment tank 17) and an aerobic treatment tank 18, and integrates these tanks. In the space, a solid phosphorus removing agent dissolving apparatus 1 is provided.

図7では、固形リン除去剤溶解装置1は、好気処理槽18を経た後の移流水を第一の嫌気処理槽16へ返送する循環水路21の終端に備えている。排水浄化槽の構成、構造は図6と同様であるので、相異する部分について説明する。返送ポンプ22で汲み上げられた循環水は、その上部で接続される循環水路21を流下して固形リン除去剤溶解装置1の給水部7に入る。ここで循環水は、固形リン除去剤2を浸漬させ、併せて固形リン除去剤2を溶かしながら、排水部8から第一の嫌気処理槽16の上部に設けられている流入バッフル25内に入る。   In FIG. 7, the solid phosphorus removing agent dissolving apparatus 1 is provided at the end of the circulation water channel 21 for returning the advection water after passing through the aerobic treatment tank 18 to the first anaerobic treatment tank 16. Since the structure and structure of the waste water septic tank are the same as those in FIG. 6, the different parts will be described. The circulating water pumped up by the return pump 22 flows down the circulating water passage 21 connected at the upper part thereof and enters the water supply unit 7 of the solid phosphorus removing agent dissolving apparatus 1. Here, the circulating water enters the inflow baffle 25 provided in the upper part of the first anaerobic treatment tank 16 from the drainage part 8 while immersing the solid phosphorus removing agent 2 and simultaneously dissolving the solid phosphorus removing agent 2. .

固形リン除去剤を間欠的に水中へ浸漬させる固形リン除去剤溶解装置を備える排水浄化槽の場合は、例えば排水部8にサイフォン管11等の手段を設けることで、間欠的浸漬が成される(図示省略)。排水浄化槽15の構成、構造、運転方法については前記図6と重複するので、説明を省略する。   In the case of a wastewater septic tank equipped with a solid phosphorus removing agent dissolving device that intermittently immerses the solid phosphorus removing agent in water, intermittent immersion is achieved by providing means such as a siphon tube 11 in the drainage section 8 ( (Not shown). The configuration, structure, and operation method of the drainage septic tank 15 are the same as those in FIG.

以下、実施例により本発明を具体的に説明する。
(実施例1〜7)
図1に示した製造方法に従って固形リン除去剤を製造した。鉄塩には硫酸第一鉄七水和物(関東化学株式会社、試薬1級)を用いた。結合剤には、デキストリン(関東化学株式会社、試薬1級)、ポリエチレンオキサイド(住友精化株式会社 PEO−8Z)、ポリビニルアルコール(日本合成化学工業株式会社 NM−14)、ポリビニルアセタール(積水化学工業株式会社 KS−10)、充填剤にはフュームドシリカ(株式会社トクヤマ QS−09、MT−10)、ラウリン酸ナトリウム(関東化学株式会社、試薬1級)を用いた。また、液状疎水性物質には、パイン油(三栄化工株式会社)を用いた。実施例1〜7の成分と配合比は表1(1)に示す。
Hereinafter, the present invention will be described specifically by way of examples.
(Examples 1-7)
A solid phosphorus removing agent was produced according to the production method shown in FIG. Ferrous sulfate heptahydrate (Kanto Chemical Co., Inc., reagent grade 1) was used as the iron salt. Examples of binders include dextrin (Kanto Chemical Co., Ltd., reagent grade 1), polyethylene oxide (Sumitomo Seika Co., Ltd., PEO-8Z), polyvinyl alcohol (Nippon Synthetic Chemical Industry Co., Ltd., NM-14), and polyvinyl acetal (Sekisui Chemical Co., Ltd.). KS-10), fumed silica (Tokuyama QS-09, MT-10) and sodium laurate (Kanto Chemical Co., Ltd., reagent grade 1) were used as fillers. Moreover, pine oil (Sanei Chemical Co., Ltd.) was used for the liquid hydrophobic substance. The components and blending ratios of Examples 1 to 7 are shown in Table 1 (1).

(混合)
予め乳鉢で粉砕した硫酸第一鉄七水和物をホモジナイザーに移し、これに結合剤、または更に充填剤を入れて混合した。結合剤が複数種の場合は、1種類を添加ごとに所定時間混合して順次加えた。
(混練合)
前記混合物に液状疎水性物質を入れて、所定時間混練合した。なお、ホモジナイザーを使用したため、混練合物はいずれもドウ状態以上の硬さで不定形の塊(フレーク状)であった。
(成形)
前記混練合物を取り出し、約5gを用いて、ハンドプレス型錠剤成形器によりシリンダー圧30MPaで圧縮成形し、直径20mm、高さ11mmの円柱状のタブレット、すなわち固形リン除去剤を得た。
(mixture)
Ferrous sulfate heptahydrate previously ground in a mortar was transferred to a homogenizer and mixed with a binder or further filler. When there were a plurality of types of binders, one type was mixed for a predetermined time for each addition and sequentially added.
(Kneading)
A liquid hydrophobic substance was put into the mixture and kneaded for a predetermined time. In addition, since the homogenizer was used, all of the kneaded compounds were in the form of lumps (flakes) having a hardness higher than the dough state.
(Molding)
The kneaded mixture was taken out and about 5 g was compressed with a hand press type tablet molding machine at a cylinder pressure of 30 MPa to obtain a cylindrical tablet having a diameter of 20 mm and a height of 11 mm, that is, a solid phosphorus removing agent.

(比較例1)
硫酸第一鉄七水和物(実施例と同じ)と結合剤のデキストリン(実施例と同じ)とからなるタブレットを比較例1とし、その配合比を表1(1)に示す。
(混合)
予め乳鉢で粉砕した硫酸第一鉄七水和物をホモジナイザーに移し、これにデキストリンを加えて混合した。
(成形)
この混合粉体5gをハンドプレス型錠剤成形器によりシリンダー圧40MPaで圧縮成形し、直径20mm、高さ11mmの円柱状のタブレットを得た。
(Comparative Example 1)
A tablet composed of ferrous sulfate heptahydrate (same as in the example) and dextrin as a binder (same as in the example) is referred to as comparative example 1, and the blending ratio is shown in Table 1 (1).
(mixture)
Ferrous sulfate heptahydrate previously ground in a mortar was transferred to a homogenizer, and dextrin was added to this and mixed.
(Molding)
5 g of this mixed powder was compression molded at a cylinder pressure of 40 MPa using a hand press type tablet molding machine to obtain a cylindrical tablet having a diameter of 20 mm and a height of 11 mm.

(溶解性試験)
徐放性評価として溶解試験を実施した。幅23mm、長さ60mmの塩化ビニル製トレイに、上記実施例1〜7及び比較例1で作製したタブレットをそれぞれの試験ごとに置き、トレイの上流側から水道水10ml/minを定量ポンプにより10分間連続供給した。このとき、タブレットの下端部から2mm程度の高さまでが水道水と接触した。タブレットと接触した後、トレイから流れ出る流出水全量を容器で受けた。そして、流出水中に溶解した鉄イオン濃度を測定し、タブレット中の鉄分の含有率からタブレットの溶解量を算出した。タブレットの溶解試験結果を表1(2)に示す。なお、鉄イオン濃度の測定には、デジタル簡易水質計(株式会社共立理化学研究所、Λ−8000型)を用いた。
(Solubility test)
A dissolution test was conducted as a sustained release evaluation. The tablets prepared in Examples 1 to 7 and Comparative Example 1 were placed in a vinyl chloride tray having a width of 23 mm and a length of 60 mm for each test, and 10 ml / min of tap water from the upstream side of the tray was 10 by a metering pump. Feed continuously for minutes. At this time, a height of about 2 mm from the lower end of the tablet was in contact with tap water. After contact with the tablet, the container received the total amount of effluent flowing from the tray. And the iron ion density | concentration melt | dissolved in effluent water was measured, and the melt | dissolution amount of the tablet was computed from the content rate of the iron content in a tablet. The dissolution test results of the tablet are shown in Table 1 (2). In addition, a digital simple water quality meter (Kyoritsu Riken, Inc., Λ-8000 type) was used for the measurement of the iron ion concentration.

Figure 2011167689
Figure 2011167689

表1から、タブレットの溶解速度比(VS比較例1比)を見ると、比較例1に対し、実施例1〜7はそれぞれ1/10以下の値を示している。すなわち、硫酸第一鉄七水和物と結合剤と液状疎水性物質とからなる固形リン除去剤は、顕著な徐放性を有している。   From Table 1, when the dissolution rate ratio of the tablet (VS Comparative Example 1 ratio) is seen, Examples 1 to 7 show values of 1/10 or less of Comparative Example 1, respectively. That is, the solid phosphorus removing agent comprising ferrous sulfate heptahydrate, a binder, and a liquid hydrophobic substance has a remarkable sustained release property.

(実施例8〜11)
図1に示した製造方法に従って固形リン除去剤を製造した。アルミニウム塩には硫酸アルミニウムカリウム12水和物(以降、カリミョウバンと略す)(関東化学株式会社、試薬1級)を用いた。結合剤には、エチルセルロース(日新化成株式会社 エトセルSTD−4)、液状疎水性物質には、パイン油(三栄化工株式会社)を用いた。実施例8〜11の成分と配合比は表2(1)に示す。
(Examples 8 to 11)
A solid phosphorus removing agent was produced according to the production method shown in FIG. As the aluminum salt, potassium aluminum sulfate dodecahydrate (hereinafter, abbreviated as “Kari Alum”) (Kanto Chemical Co., Ltd., reagent grade 1) was used. Ethyl cellulose (Nisshin Kasei Co., Ltd. Etcel STD-4) was used as the binder, and pine oil (Sanei Chemical Co., Ltd.) was used as the liquid hydrophobic substance. The components and blending ratios of Examples 8 to 11 are shown in Table 2 (1).

(混合)
予め乳鉢で粉砕したカリミョウバンをホモジナイザーに移し、これにエチルセルロースを入れて混合した。
(混練合)
前記混合物を乳鉢に移し、これにパイン油を入れて、所定時間混練合した。なお、混練合物は湿り気のある粉粒状であった。
(成形)
前記混練合物のそれぞれの5gを用いて、ハンドプレス型錠剤成形器によりシリンダー圧25MPaで圧縮成形し、直径20mm、高さ11mmの円柱状のタブレット、すなわち固形リン除去剤を得た。
(mixture)
Potash alum previously ground in a mortar was transferred to a homogenizer, and ethyl cellulose was added thereto and mixed.
(Kneading)
The mixture was transferred to a mortar, pine oil was added thereto, and kneaded for a predetermined time. The kneaded compound was wet and granular.
(Molding)
Using 5 g of each of the kneaded compounds, compression molding was performed at a cylinder pressure of 25 MPa with a hand press type tablet molding machine to obtain a cylindrical tablet having a diameter of 20 mm and a height of 11 mm, that is, a solid phosphorus removing agent.

(比較例2〜4)
カリミョウバンとエチルセルロース、カリミョウバンとパイン油、カリミョウバンのみとからなるタブレットを比較例2、3、4とし、その配合比を表2(1)に示す。
(Comparative Examples 2 to 4)
Tablets consisting only of potassium alum and ethyl cellulose, potassium alum and pine oil, and potassium alum are referred to as Comparative Examples 2, 3, and 4, and the blending ratio is shown in Table 2 (1).

(混合)
カリミョウバンとエチルセルロースの場合は、予め乳鉢で粉砕したカリミョウバンをホモジナイザーに移し、これにエチルセルロースを入れて混合した。なお、混合物は粉状であった。
(混練合)
カリミョウバンとパイン油の場合は、乳鉢へ先にカリミョウバンを入れ粉砕した後、これにパイン油を入れて、所定時間混練合した。なお、混練合物は湿り気のある粉粒状であった。
(成形)
前記混合物、混練合物及び粉砕したカリミョウバンのそれぞれ約5gを用いて、ハンドプレス型錠剤成形器によりシリンダー圧25MPaで圧縮成形し、直径20mm、高さ10mmの円柱状のタブレット、すなわち固形リン除去剤を得た。
(mixture)
In the case of potash alum and ethyl cellulose, potash alum previously ground in a mortar was transferred to a homogenizer, and ethyl cellulose was added to this and mixed. The mixture was powdery.
(Kneading)
In the case of potash alum and pine oil, the potash alum was first put in a mortar and pulverized, then the pine oil was put into this and kneaded for a predetermined time. The kneaded compound was wet and granular.
(Molding)
About 5 g of each of the mixture, the kneaded mixture and the pulverized potash alum were compression-molded at a cylinder pressure of 25 MPa by a hand press type tablet press, and a cylindrical tablet having a diameter of 20 mm and a height of 10 mm, ie, removal of solid phosphorus An agent was obtained.

(溶解性試験)
徐放性評価として溶解試験を実施した。試験装置には前記したものを用いた。トレイの上流側からは、水道水10ml/minを定量ポンプにより15分間連続供給した。このとき、タブレットの下端部から1mm程度の高さまでが水道水と接触した。タブレットと接触した後、トレイから流れ出る流出水全量を容器で受けた。そして、流出水中に溶解した硫酸イオン濃度を測定し、タブレット中の硫酸分の含有率からタブレットの溶解量を算出した。タブレットの溶解試験結果を表2(2)に示す。なお、硫酸イオン濃度の測定には、デジタル簡易水質計(株式会社共立理化学研究所、Λ−8000型)を用いた。
(Solubility test)
A dissolution test was conducted as a sustained release evaluation. The test equipment described above was used. From the upstream side of the tray, 10 ml / min of tap water was continuously supplied for 15 minutes by a metering pump. At this time, a height of about 1 mm from the lower end of the tablet was in contact with tap water. After contact with the tablet, the container received the total amount of effluent flowing from the tray. And the sulfate ion density | concentration melt | dissolved in the outflow water was measured, and the melt | dissolution amount of the tablet was computed from the content rate of the sulfuric-acid content in a tablet. The dissolution test results of the tablet are shown in Table 2 (2). In addition, a digital simple water quality meter (Kyoritsu Riken, Inc., Λ-8000 type) was used for measurement of sulfate ion concentration.

Figure 2011167689
Figure 2011167689

表2から、タブレットの溶解速度比(VS比較例4比)を見ると、比較例4に対し、実施例8〜11はそれぞれ約1/4以下の値を示している。すなわち、カリミョウバンと結合剤と液状疎水性物質とからなる固形リン除去剤は、顕著な徐放性を有している。   From Table 2, when the dissolution rate ratio of the tablet (VS comparison example 4 ratio) is seen, in comparison with the comparison example 4, each of the examples 8 to 11 shows a value of about 1/4 or less. That is, the solid phosphorus removing agent composed of potash alum, binder and liquid hydrophobic substance has a remarkable sustained release property.

1:固形リン除去剤溶解装置、2:固形リン除去剤、3:支持部材、4:収納容器、5:散水部材、6:集水部、7:給水部、8:排水部、10:遮蔽版、11:サイフォン管、15:排水浄化槽、16:第一の嫌気処理槽、17:第ニの嫌気処理槽、18:好気処理槽、19:沈殿槽、20:消毒槽、21:循環水路、22:返送ポンプ、24:ブロワ、25:流入バッフル、26:流入口、27:移流管、28:濾床、29:濾床、30:移流管、31:移送ポンプ、32:流量調整部、33:散気管、34:開口部、35:放流口、36:マンホールカバー。   1: Solid phosphorus remover dissolving device, 2: Solid phosphorus remover, 3: Support member, 4: Storage container, 5: Sprinkling member, 6: Water collecting part, 7: Water supply part, 8: Drainage part, 10: Shielding Plate, 11: Siphon tube, 15: Waste water purification tank, 16: First anaerobic tank, 17: Second anaerobic tank, 18: Aerobic tank, 19: Settling tank, 20: Disinfection tank, 21: Circulation Water channel, 22: return pump, 24: blower, 25: inflow baffle, 26: inlet, 27: advection pipe, 28: filter bed, 29: filter bed, 30: advection pipe, 31: transfer pump, 32: flow rate adjustment Part, 33: diffuser, 34: opening, 35: outlet, 36: manhole cover.

Claims (5)

鉄塩又はアルミニウム塩と、結合剤と、液状疎水性物質としての植物油を含む、固形リン除去剤。   A solid phosphorus removing agent comprising an iron salt or aluminum salt, a binder, and vegetable oil as a liquid hydrophobic substance. 前記植物油がそれらから誘導される精油であることを特徴とする請求項1に記載の固形リン除去剤。   The solid phosphorus removing agent according to claim 1, wherein the vegetable oil is an essential oil derived therefrom. 前記精油がパイン油であることを特徴とする請求項2に記載の固形リン除去剤。   The solid phosphorus removing agent according to claim 2, wherein the essential oil is pine oil. 請求項1において、結合剤が、天然物由来の高分子物質若しくは誘導物質、又は、水溶性合成高分子物質である、固形リン除去剤。 2. The solid phosphorus removing agent according to claim 1, wherein the binder is a polymer substance or derivative substance derived from a natural product, or a water-soluble synthetic polymer substance. 請求項1、2、3または4の何れかに記載の固形リン除去剤を備えた排水浄化槽。   A drainage septic tank comprising the solid phosphorus removing agent according to any one of claims 1, 2, 3, and 4.
JP2011083084A 2006-08-17 2011-04-04 Solid phosphorus removing agent and waste water septic tank provided with the same Active JP5154671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083084A JP5154671B2 (en) 2006-08-17 2011-04-04 Solid phosphorus removing agent and waste water septic tank provided with the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006222452 2006-08-17
JP2006222452 2006-08-17
JP2011083084A JP5154671B2 (en) 2006-08-17 2011-04-04 Solid phosphorus removing agent and waste water septic tank provided with the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007010161A Division JP2008068248A (en) 2006-08-17 2007-01-19 Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus

Publications (2)

Publication Number Publication Date
JP2011167689A true JP2011167689A (en) 2011-09-01
JP5154671B2 JP5154671B2 (en) 2013-02-27

Family

ID=44682358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083084A Active JP5154671B2 (en) 2006-08-17 2011-04-04 Solid phosphorus removing agent and waste water septic tank provided with the same

Country Status (1)

Country Link
JP (1) JP5154671B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050402A1 (en) * 2012-09-28 2014-04-03 株式会社日立製作所 Desalination system
CN111217477A (en) * 2019-12-27 2020-06-02 安道麦股份有限公司 Method for treating wastewater from phosphorus trichloride production
CN114455665A (en) * 2022-01-25 2022-05-10 太原市润民环保节能有限公司 Sewage dephosphorization agent and preparation method thereof
CN115259251A (en) * 2022-07-30 2022-11-01 宜兴禾大水处理技术有限公司 Multifunctional dosing equipment for waste biological water treatment medicament and use method
CN117566981A (en) * 2024-01-17 2024-02-20 惠州金茂源环保科技有限公司 Method and system for removing phosphorus from electroplating wastewater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230777A (en) * 1988-07-18 1990-02-01 Somar Corp Slow releasable water treating agent
JPH0889950A (en) * 1994-09-20 1996-04-09 Dam Suigenchi Kankyo Seibi Center Material for removing phosphorus in water
JP2000210676A (en) * 1999-01-22 2000-08-02 Hitachi Chem Co Ltd Solid agent for phosphorous removal and sterilization and treatment of sewage and septic tank using the same
JP2001233703A (en) * 1999-12-13 2001-08-28 Nippon Soda Co Ltd Antimicrobial agent composition and molding
JP2001269689A (en) * 2000-03-24 2001-10-02 Matsushita Electric Ind Co Ltd Solid denitrification/dephosphorization accelerating agent
JP2006175400A (en) * 2004-12-24 2006-07-06 Hitachi Housetec Co Ltd Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it
JP2006181431A (en) * 2004-12-27 2006-07-13 Hitachi Housetec Co Ltd Phosphorus removing agent feeding device and small-scale septic tank equipped with it
JP2006281177A (en) * 2005-04-05 2006-10-19 Hitachi Housetec Co Ltd Solid phosphorus removing agent, phosphorus removing agent supply device, and small-scaled waste water septic tank equipped with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230777A (en) * 1988-07-18 1990-02-01 Somar Corp Slow releasable water treating agent
JPH0889950A (en) * 1994-09-20 1996-04-09 Dam Suigenchi Kankyo Seibi Center Material for removing phosphorus in water
JP2000210676A (en) * 1999-01-22 2000-08-02 Hitachi Chem Co Ltd Solid agent for phosphorous removal and sterilization and treatment of sewage and septic tank using the same
JP2001233703A (en) * 1999-12-13 2001-08-28 Nippon Soda Co Ltd Antimicrobial agent composition and molding
JP2001269689A (en) * 2000-03-24 2001-10-02 Matsushita Electric Ind Co Ltd Solid denitrification/dephosphorization accelerating agent
JP2006175400A (en) * 2004-12-24 2006-07-06 Hitachi Housetec Co Ltd Phosphate ion solidification agent, phosphate ion solidification apparatus, and septic tank equipped with it
JP2006181431A (en) * 2004-12-27 2006-07-13 Hitachi Housetec Co Ltd Phosphorus removing agent feeding device and small-scale septic tank equipped with it
JP2006281177A (en) * 2005-04-05 2006-10-19 Hitachi Housetec Co Ltd Solid phosphorus removing agent, phosphorus removing agent supply device, and small-scaled waste water septic tank equipped with the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050402A1 (en) * 2012-09-28 2014-04-03 株式会社日立製作所 Desalination system
CN104661965A (en) * 2012-09-28 2015-05-27 株式会社日立制作所 Desalination system
JPWO2014050402A1 (en) * 2012-09-28 2016-08-22 株式会社日立製作所 Desalination system
CN111217477A (en) * 2019-12-27 2020-06-02 安道麦股份有限公司 Method for treating wastewater from phosphorus trichloride production
CN114455665A (en) * 2022-01-25 2022-05-10 太原市润民环保节能有限公司 Sewage dephosphorization agent and preparation method thereof
CN115259251A (en) * 2022-07-30 2022-11-01 宜兴禾大水处理技术有限公司 Multifunctional dosing equipment for waste biological water treatment medicament and use method
CN117566981A (en) * 2024-01-17 2024-02-20 惠州金茂源环保科技有限公司 Method and system for removing phosphorus from electroplating wastewater
CN117566981B (en) * 2024-01-17 2024-04-09 惠州金茂源环保科技有限公司 Method and system for removing phosphorus from electroplating wastewater

Also Published As

Publication number Publication date
JP5154671B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5154671B2 (en) Solid phosphorus removing agent and waste water septic tank provided with the same
JP4713201B2 (en) Phosphorus remover supply device and small-scale wastewater septic tank equipped with the same
JP2008068248A (en) Solid phosphorus removing agent, method for producing the same, method for dissolving the same in water, apparatus for dissolving the same and waste water cleaning tank equipped with the apparatus
CA2897773A1 (en) Wastewater treatment systems and methods
CN108328868A (en) A kind of environment-friendly long-life industrial wastewater treatment system
CN105236626B (en) The multistage light electrolysis Fenton&#39;s reaction device and its application method of a kind of module type iron carbon filler
Jawed et al. Post-mortem examination and analysis of anaerobic filters
JP6935653B2 (en) Sulfur material for denitrification
KR102112732B1 (en) Soil type Advanced Purification Circulation Reuse System
EP2431333A2 (en) Effluent treatment
CN108117196A (en) Leather waste water advanced treatment system and method
JP3587733B2 (en) Microbial carrier and wastewater treatment equipment
US11370678B2 (en) Composition for water treatment and methods of manufacture
JPH0376200B2 (en)
Ziajahromi et al. Experimental evaluation of nitrate reduction from water using synthesis nanoscale zero-valent iron (NZVI) under aerobic conditions
JP2006181431A (en) Phosphorus removing agent feeding device and small-scale septic tank equipped with it
CN102791635A (en) Method of rapidly removing phosphorus, COD substance, nitrogen, color, and odor from excreta or excretal wastewater and removal device using the method
JP5461251B2 (en) Solid pH adjuster
JP2009189955A (en) Method for producing solid phosphorus removing agent
JP2006075815A (en) Molding for denitrifying/dephosphorizing and method for denitrifying/dephosphorizing sewage or waste water
JP2006218347A (en) Advective baffle and sewage septic tank
JP2001190929A (en) Exhaust gas treatment method
JP4757788B2 (en) Denitrification accelerator
WO2015012700A1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
CN103979752A (en) Sewage treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250