JP2006174524A - Inverter controller of induction motor - Google Patents

Inverter controller of induction motor Download PDF

Info

Publication number
JP2006174524A
JP2006174524A JP2004359333A JP2004359333A JP2006174524A JP 2006174524 A JP2006174524 A JP 2006174524A JP 2004359333 A JP2004359333 A JP 2004359333A JP 2004359333 A JP2004359333 A JP 2004359333A JP 2006174524 A JP2006174524 A JP 2006174524A
Authority
JP
Japan
Prior art keywords
magnetic flux
current
voltage
sine wave
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004359333A
Other languages
Japanese (ja)
Other versions
JP4632170B2 (en
Inventor
Yoichi Yamamoto
陽一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004359333A priority Critical patent/JP4632170B2/en
Publication of JP2006174524A publication Critical patent/JP2006174524A/en
Application granted granted Critical
Publication of JP4632170B2 publication Critical patent/JP4632170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inverter controller of an induction motor in which motor constants including the saturation characteristics of excitation inductance can be measured precisely under a state where the motor is stopping before operation. <P>SOLUTION: A coordinate conversion means for determining the biaxial component value on a fixed coordinate, a voltage model type flux operating means performing compensation of primary resistance R1 and leakage inductance and including an integration means for operating the secondary flux of the motor by using voltage information, a current model type flux operating means including a primary delay element for operating the secondary flux of the motor by using current information, a sine wave generation means for commanding excitation current containing a sine wave component to generate an AC flux, a means for detecting each amplitude value of the output signal from the voltage model type flux operating means and the current information on a fixed coordinate, and a means for detecting phase difference between the output signal from the voltage model type flux operating means and the current information on the fixed coordinate are provided, respectively, for the voltage information and current information of an induction motor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、誘導電動機のインバータ制御装置に関する。   The present invention relates to an inverter control device for an induction motor.

従来の誘導電動機のインバータ制御装置のうち、電動機停止状態で励磁インダクタンスM、二次回路時定数T2、二次抵抗R2を求めるものとして下記のものが知られている。   Among the conventional inverter control devices for induction motors, the following are known for obtaining the excitation inductance M, the secondary circuit time constant T2, and the secondary resistance R2 when the motor is stopped.

第1の従来技術は、電圧モデル式磁束演算回路(電圧モデル)は高速域で演算精度が高く、電流モデル式磁束演算回路(電流モデル)は低速域での安定性が高いことに着目し、上記補償手段により両者の出力をそれぞれ補正して、低速から高速域にわたる広い速度範囲で安定な演算ができるようにし、また励磁インダクタンスおよび二次時定数の誤差は電流モデルで演算した二次磁束の振幅および位相の偏差となることに着目し、両モデルの出力差から励磁インダクタンスおよび二次時定数を演算して電流モデルのパラメータを設定するパラメータ調節手段を設け、二次磁束、励磁インダクタンスおよび二次時定数の高精度な演算を可能にしている。(例えば、特許文献1参照)   The first prior art pays attention to the fact that the voltage model magnetic flux calculation circuit (voltage model) has high calculation accuracy in the high speed range, and the current model magnetic flux calculation circuit (current model) has high stability in the low speed range, Both of the outputs are corrected by the above compensation means so that stable calculation can be performed over a wide speed range from low speed to high speed, and the errors of the excitation inductance and the secondary time constant are the values of the secondary magnetic flux calculated by the current model. Paying attention to the amplitude and phase deviation, parameter adjustment means is provided to set the parameters of the current model by calculating the excitation inductance and the secondary time constant from the output difference of both models. Enables highly accurate calculation of the next time constant. (For example, see Patent Document 1)

また、第2の従来技術は、一次抵抗と漏れインダクタンスを正しく設定・補償し、誘導電動機の停止状態で、交番磁束が発生するように正弦波の励磁電流指令を与え、電動機磁束と電流指令値から導かれる電流モデル磁束の位相差が零となるように二次回路時定数を同定し、電動機磁束と電流モデル磁束の振幅差が零となるように励磁インダクタンスを同定し、これら二次回路時定数と励磁インダクタンスを用いて二次抵抗を測定している。(例えば、特許文献2参照)。   In addition, the second prior art correctly sets and compensates the primary resistance and the leakage inductance, gives a sinusoidal excitation current command so that an alternating magnetic flux is generated when the induction motor is stopped, and the motor flux and the current command value. The secondary circuit time constant is identified so that the phase difference of the current model magnetic flux derived from is zero, and the excitation inductance is identified so that the amplitude difference between the motor magnetic flux and the current model magnetic flux is zero. Secondary resistance is measured using constant and exciting inductance. (For example, refer to Patent Document 2).

さらに、第3の従来技術は、電圧出力位相を予め設定された任意の固定値とし、出力電圧指令値として所定値を与え、この際に誘導電動機に流れる一次電流検出値とその収束値i1∞を読み取り、一次電流検出値の時刻tにおけるi1(t)および一次抵抗値から磁束を推定(φ^(t))し、この収束値に係数kを乗じた値がi1∞となるようにkを定め、
R2=−R1(i1∞−i1(t))/(φ^(t)−i1(t))
更に、磁束推定値(φ^(t))の立ち上がりの時定数τφを用いて
M=R1・R2・τφ/(R1+R2)
により求めるようにしている。(例えば、特許文献3参照)
Further, in the third prior art, the voltage output phase is set to an arbitrary fixed value set in advance, and a predetermined value is given as the output voltage command value. At this time, the primary current detection value flowing through the induction motor and its convergence value i1∞ , The magnetic flux is estimated from the primary current detection value i1 (t) and the primary resistance value at time t (φ ^ (t)), and the value obtained by multiplying the convergence value by the coefficient k becomes i1∞. And
R2 = −R1 (i1∞−i1 (t)) / (φ ^ (t) −i1 (t))
Further, using the time constant τφ of the rise of the estimated magnetic flux value (φ ^ (t)), M = R 1 · R 2 · τφ / (R 1 + R 2)
I want to ask. (For example, see Patent Document 3)

このように、従来の誘導電動機のインバータ制御装置は、M,T2を求める際、電圧モデルと電流モデルという異なる2つの磁束演算値を比較して求めたり、磁束推定値の立ち上がりの時定数を用いて求めたりするのである。
特公平6−79057号公報 特開平6−34724号公報 特開2004−144658号公報
As described above, the conventional inverter control device for an induction motor obtains M and T2 by comparing two different calculated magnetic flux values of the voltage model and the current model, or uses the time constant of the rise of the estimated magnetic flux value. Or ask for it.
Japanese Examined Patent Publication No. 6-79057 JP-A-6-34724 JP 2004-144658 A

従来の誘導電動機のインバータ制御装置は、運転前の電動機停止状態でのモータ電気定数のオートチューニングとしては使用が困難であったり、処理が複雑であったり、励磁インダクタンスの飽和特性の測定には不向きである等の問題があった。
本発明はこのような問題点に鑑みてなされたものであり、運転前に電動機停止状態で、励磁インダクタンスの飽和特性を含めモータ電気定数を高精度に測定することができる誘導電動機のインバータ制御装置を提供することを目的とする。
また、電動機に速度センサを持たない場合でも、既に電動機を負荷機械へ組み込まれた機械にも適用でき、静・動特性等の制御精度向上させることを目的とする。
Conventional inverter control devices for induction motors are difficult to use for automatic tuning of motor electrical constants when the motor is stopped before operation, are complicated in processing, and are not suitable for measuring saturation characteristics of excitation inductance. There was a problem such as.
The present invention has been made in view of such problems, and is an inverter control device for an induction motor that can accurately measure a motor electrical constant including a saturation characteristic of an excitation inductance when the motor is stopped before operation. The purpose is to provide.
Further, even when the electric motor does not have a speed sensor, it can be applied to a machine in which the electric motor is already incorporated in a load machine, and an object is to improve control accuracy such as static / dynamic characteristics.

上記問題を解決するため、本発明は、次のように構成したのである。 In order to solve the above problem, the present invention is configured as follows.

請求項1に記載の発明は、誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の各振幅値を検出する振幅値検出手段とを設け、前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記振幅値検出手段で求められる二次磁束と前記電流情報の振幅値の各最大値に基づいて、二次抵抗値を得ることを特徴とするものである。   The invention according to claim 1 performs coordinate transformation means for obtaining a biaxial component value on a fixed coordinate system for each of voltage information and current information of the induction motor, compensation of primary resistance and leakage inductance, and Voltage model type magnetic flux calculation means including integration means for calculating the secondary magnetic flux of the electric motor using voltage information, sine wave generation means for instructing an excitation current including a sine wave component so as to generate an alternating magnetic flux, and the voltage A model-type magnetic flux calculation means output signal and an amplitude value detection means for detecting each amplitude value of the current information on a fixed coordinate system, an angular frequency included in the excitation current command signal generated from the sine wave generation means, A secondary resistance value is obtained based on the maximum value of the secondary magnetic flux obtained by the amplitude value detecting means and the amplitude value of the current information.

また、請求項2に記載の発明は、誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の位相差検出手段とを設け、前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記位相差検出手段で求められる二次磁束と前記電流情報の位相差に基づいて、二次回路時定数を得ることを特徴とするものである。   Further, the invention according to claim 2 performs coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system and compensation of primary resistance and leakage inductance for each of voltage information and current information of the induction motor. A voltage model type magnetic flux calculating means including an integrating means for calculating the secondary magnetic flux of the electric motor using the voltage information; and a sine wave generating means for commanding an excitation current including a sine wave component so that an alternating magnetic flux is generated; An output signal of the voltage model type magnetic flux calculation means and a phase difference detection means of the current information on a fixed coordinate system are provided, an angular frequency included in an excitation current command signal generated from the sine wave generation means, and the phase difference detection A secondary circuit time constant is obtained based on the phase difference between the secondary magnetic flux obtained by the means and the current information.

また、請求項3に記載の発明は、誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の位相差検出手段とを設け、前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記振幅値検出手段で求められる二次磁束と前記電流情報の振幅値の各最大値に基づいて、励磁インダクタンスを得ることを特徴とするものである。   According to the third aspect of the present invention, for each of the voltage information and current information of the induction motor, coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system, and compensation of primary resistance and leakage inductance are performed. A voltage model type magnetic flux calculation means including an integration means for calculating the secondary magnetic flux of the electric motor using the voltage information; a sine wave generation means for commanding an excitation current including a sine wave component so that an alternating magnetic flux is generated; An output signal of the voltage model type magnetic flux calculation means and a phase difference detection means of the current information on a fixed coordinate system are provided, an angular frequency included in an excitation current command signal generated from the sine wave generation means, and the amplitude value detection The exciting inductance is obtained based on the secondary magnetic flux obtained by the means and the maximum value of the amplitude value of the current information.

また、請求項4に記載の発明は、請求項1から3で得られた二次抵抗,励磁インダクタンス、二次回路時定数を設定し、前記電流情報を用いて電動機の二次磁束を演算する一次遅れ要素を含む電流モデル式磁束演算手段と、前記電流モデル磁束演算手段と前記電圧モデル式磁束演算手段のそれぞれの出力値が一致するように補償する補償手段とを設け、前記電圧モデル式磁束演算手段の積分手段のオフセット補償することを特徴とするものである。   According to a fourth aspect of the present invention, the secondary resistance, exciting inductance, and secondary circuit time constant obtained in the first to third aspects are set, and the secondary magnetic flux of the motor is calculated using the current information. A current model type magnetic flux calculating means including a first-order lag element; and a compensating means for compensating so that respective output values of the current model magnetic flux calculating means and the voltage model magnetic flux calculating means match, and the voltage model type magnetic flux The offset compensation of the integration means of the computing means is performed.

また、請求項5に記載の発明は、請求項1から3で得られた二次抵抗、励磁インダクタンス、二次回路時定数を設定し、前記電流情報を用いて電動機の二次磁束を演算する一次遅れ要素を含む電流モデル式磁束演算手段と、前記電流モデル磁束演算手段と前記電圧モデル式磁束演算手段のそれぞれの出力値が一致するように補償する補償手段とを設け、 二次抵抗を補正演算することを特徴とするものである。   According to a fifth aspect of the present invention, the secondary resistance, exciting inductance, and secondary circuit time constant obtained in the first to third aspects are set, and the secondary magnetic flux of the motor is calculated using the current information. A current model type magnetic flux calculating means including a first order lag element, and a compensating means for compensating the output values of the current model magnetic flux calculating means and the voltage model type magnetic flux calculating means to coincide with each other to correct the secondary resistance It is characterized by calculating.

また、請求項6に記載の発明は、請求項5において、二次抵抗の補正前後の演算値比率が所定値以下になるまで、補正処理を繰り返すことを特徴とするものである。   According to a sixth aspect of the present invention, in the fifth aspect, the correction process is repeated until the calculation value ratio before and after the correction of the secondary resistance becomes a predetermined value or less.

また、請求項7に記載の発明は、請求項2において、前記正弦波発生手段から発生された励磁電流指令信号に直流信号を含むようにして前記位相差検出手段で位相差を求め、その位相差に基づいて、励磁インダクタンスMの飽和特性を得ることを特徴とするものである。   According to a seventh aspect of the present invention, in the second aspect, the phase difference is detected by the phase difference detecting means so that the excitation current command signal generated from the sine wave generating means includes a DC signal, and the phase difference is calculated by the phase difference. Based on this, the saturation characteristic of the excitation inductance M is obtained.

また、請求項8に記載の発明は、請求項1、2、5、6から得られた二次抵抗R2,二次回路時定数T2から、励磁インダクタンスMを得ることを特徴とするものである。
また、請求項9に記載の発明は、誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の各振幅値を検出する振幅値検出手段とを設け、前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の位相差検出手段とを設け、前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記振幅値検出手段で求められる二次磁束と前記電流情報の振幅値の各最大値または前記位相差検出手段で求められる二次磁束と前記電流情報の位相差に基づいて、モータ電気定数を求める定数演算手段とを備えたことを特徴とするものである。
The invention described in claim 8 is characterized in that the magnetizing inductance M is obtained from the secondary resistance R2 and the secondary circuit time constant T2 obtained from claims 1, 2, 5, and 6. .
According to the ninth aspect of the present invention, coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system and compensation of primary resistance and leakage inductance are performed for each of voltage information and current information of the induction motor. A voltage model type magnetic flux calculating means including an integrating means for calculating the secondary magnetic flux of the electric motor using the voltage information; and a sine wave generating means for commanding an excitation current including a sine wave component so that an alternating magnetic flux is generated; An output signal of the voltage model type magnetic flux calculation means and an amplitude value detection means for detecting each amplitude value of the current information on a fixed coordinate system are provided, and the voltage model type magnetic flux calculation means output signal and the current on the fixed coordinate system are provided. An information phase difference detecting means, an angular frequency included in an excitation current command signal generated from the sine wave generating means, a secondary magnetic flux obtained by the amplitude value detecting means, and an amplitude value of the current information Or based on the phase difference between the secondary flux and the current information obtained by said phase difference detecting means, it is characterized in that a constant computing means for obtaining a motor electric constants.

請求項1に記載の発明によると、二次抵抗値を得ることができ、請求項2に記載の発明によると、二次回路時定数を得ることができ、請求項3に記載の発明によると、励磁インダクタンスを得ることができ、請求項4に記載の発明によると、前記電圧モデル式磁束演算手段の積分手段のオフセット補償することができるので、モータ電気定数の測定精度を上げることができ、請求項5、6に記載の発明によると、二次抵抗の測定精度を上げることができ、請求項7に記載の発明によると、励磁インダクタンスの飽和特性を得ることができ、請求項8に記載の発明によると、請求項3とは別手法で励磁インダクタンスを得ることができる。請求項9の発明によると、モータ電気定数を求めることができる。
これによって、モータ電気定数を精度よく得ることができるので、誘導電動機のインバータ制御装置での静・動特性等の制御精度を向上させる効果がある。
According to the invention described in claim 1, the secondary resistance value can be obtained, and according to the invention described in claim 2, the secondary circuit time constant can be obtained. According to the invention described in claim 3, In accordance with the invention according to claim 4, since the offset compensation of the integration means of the voltage model magnetic flux calculation means can be compensated, the measurement accuracy of the motor electrical constant can be increased, According to the fifth and sixth aspects of the invention, the measurement accuracy of the secondary resistance can be increased, and according to the seventh aspect of the invention, the saturation characteristic of the exciting inductance can be obtained. According to the invention, the exciting inductance can be obtained by a method different from that of the third aspect. According to the invention of claim 9, the motor electrical constant can be obtained.
As a result, the motor electrical constant can be obtained with high accuracy, and there is an effect of improving the control accuracy such as static / dynamic characteristics in the inverter control device of the induction motor.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は、本発明を適用する誘導電動機のインバータ制御装置のブロック図である。図において、1は誘導電動機、2は誘導電動機1を駆動する電圧形インバータ(2-1はコンバータ部、2-2はインバータ部)、3はPWM演算部で固定座標系における一次電圧指令Vu*,Vv*、Vw*からPWM演算を行ってPWMパルスパターンを発生する。
4はベース回路、5はインバータ出力電流を検出する電流検出器、6は誘導電動機に付設された速度検出器、7は速度演算部で速度検出器6の検出パルスから誘導電動機1の検出速度ωrを発生する。
8は座標変換部で後述する磁束指令位相θを用いて、前記検出電流を3相/2相変換して回転座標d−q軸成分(Id:励磁電流,Iq:トルク電流)に変換し、9、10は減算器で、励磁電流指令Id*と検出Idとを突き合わせて励磁電流偏差ΔIdを、トルク電流指令Iq*と検出Iqとを突き合わせてトルク電流偏差ΔIqをそれぞれ求める。11は励磁電流制御部(ACRd)で励磁電流偏差ΔIdから励磁電流方向の電圧指令Vd*を、12はトルク電流制御部(ACRq)でトルク電流偏差ΔIdからトルク電流方向の電圧指令Vq*を求める。13は座標変換部で後述する磁束指令位相θを用いて、励磁電流方向の電圧指令Vd*とトルク電流方向の電圧指令Vq*から、固定座標系における一次電圧指令Vu*,Vv*、Vw*を求める。
なお、座標変換部8,13では、それぞれ(1)式、(2)式の演算が行われる。
FIG. 3 is a block diagram of an inverter control apparatus for an induction motor to which the present invention is applied. In the figure, 1 is an induction motor, 2 is a voltage source inverter (2-1 is a converter unit, 2-2 is an inverter unit) that drives the induction motor 1, and 3 is a PWM calculation unit, which is a primary voltage command Vu * in a fixed coordinate system. , Vv *, Vw * to generate a PWM pulse pattern.
4 is a base circuit, 5 is a current detector for detecting an inverter output current, 6 is a speed detector attached to the induction motor, 7 is a speed calculation unit, and a detection speed ωr of the induction motor 1 from a detection pulse of the speed detector 6. Is generated.
8 is a coordinate conversion unit that uses a magnetic flux command phase θ, which will be described later, to convert the detected current into a three-phase / two-phase conversion into a rotation coordinate dq axis component (Id: excitation current, Iq: torque current), Reference numerals 9 and 10 denote subtractors that match the excitation current command Id * and the detection Id to obtain the excitation current deviation ΔId, and match the torque current command Iq * and the detection Iq to obtain the torque current deviation ΔIq. Reference numeral 11 denotes an excitation current control unit (ACRd) that determines a voltage command Vd * in the direction of excitation current from the excitation current deviation ΔId, and reference numeral 12 denotes a torque current control unit (ACRq) that determines a voltage command Vq * in the direction of torque current from the torque current deviation ΔId. . Reference numeral 13 denotes a coordinate conversion unit, which uses a magnetic flux command phase θ, which will be described later, from the voltage command Vd * in the excitation current direction and the voltage command Vq * in the torque current direction, and the primary voltage commands Vu *, Vv *, Vw * in the fixed coordinate system. Ask for.
In the coordinate conversion units 8 and 13, the calculations of the formulas (1) and (2) are performed, respectively.

14は磁束指令演算部、15はすべり周波数演算部、16は加算器で磁束指令演算部14は、前記検出速度ωrと、すべり周波数演算部15の出力値であるすべり周波数指令ωs*を加算器16を用いて加算した一次周波数指令ω1*を入力として、磁束指令φ*を出力する。17は係数器で前記φ*から励磁電流指令Id*を求める。18は積分器で前記一次周波数指令ω1*を積分し、磁束指令位相θを求める構成となっている。   Reference numeral 14 denotes a magnetic flux command calculation unit, 15 denotes a slip frequency calculation unit, 16 denotes an adder, and the magnetic flux command calculation unit 14 adds the detected speed ωr and a slip frequency command ωs * which is an output value of the slip frequency calculation unit 15. The primary frequency command ω1 * added using 16 is input and the magnetic flux command φ * is output. Reference numeral 17 denotes a coefficient unit that obtains an excitation current command Id * from the φ *. An integrator 18 integrates the primary frequency command ω1 * to obtain a magnetic flux command phase θ.

図1は、本発明動作時の誘導電動機のインバータ制御装置のブロック図である。図において、20は正弦波発生手段、21はモータ定数測定手段である。正弦波発生手段20は正弦波成分を含む信号を出力し、出力信号は励磁電流指令Id*となる。磁束指令位相θとトルク電流指令Iq*を0に固定し、座標変換部8、13から、Vα*とIα信号を出力させ、モータ定数測定手段21へ入力する。
これら構成と上記(1)、(2)式により、電動機1は停止状態を保持でき、IαとVα*は正弦波発生手段20の出力信号に基づいた信号となり、Iβ=Iq*=0、Vβ*=Vq*=0となることがわかる。
FIG. 1 is a block diagram of an inverter control device for an induction motor during operation of the present invention. In the figure, 20 is a sine wave generating means and 21 is a motor constant measuring means. The sine wave generating means 20 outputs a signal including a sine wave component, and the output signal becomes an excitation current command Id *. The magnetic flux command phase θ and the torque current command Iq * are fixed to 0, and the Vα * and Iα signals are output from the coordinate conversion units 8 and 13 and input to the motor constant measuring means 21.
With these configurations and the above formulas (1) and (2), the electric motor 1 can maintain a stopped state, and Iα and Vα * are signals based on the output signal of the sine wave generating means 20, and Iβ = Iq * = 0, Vβ It can be seen that * = Vq * = 0.

図2は、モータ定数測定手段21のブロック図である。図において、22-1、22-2は除算手段、23は乗算手段、24は正接(tan)演算手段、30は電圧モデル式磁束演算手段、40は電流モデル式磁束演算手段、50-1、50-2は振幅値検出手段、60は位相差検出手段、70はオフセット補償手段、80はR2補正手段であり、モータ定数測定手段21には、正弦波発生手段20が出力する正弦波信号の角周波数値ω1、ω2とタイマ情報が入力される。   FIG. 2 is a block diagram of the motor constant measuring means 21. In the figure, 22-1 and 22-2 are division means, 23 is multiplication means, 24 is a tangent (tan) calculation means, 30 is a voltage model type magnetic flux calculation means, 40 is a current model type magnetic flux calculation means, 50-1, 50-2 is an amplitude value detecting means, 60 is a phase difference detecting means, 70 is an offset compensating means, 80 is an R2 correcting means, and the motor constant measuring means 21 receives the sine wave signal output from the sine wave generating means 20. Angular frequency values ω1, ω2 and timer information are input.

図4は、電圧モデル式磁束演算手段30の構成図である。図において、31は積分手段、32、33は1次電圧降下演算手段であり、32は一次抵抗R1分、33は漏れインダクタンス分を演算し、34-1、34-2は減算手段である。
この構成により、誘導電動機の電圧方程式に基づいて二次磁束φαVを(3)式により演算する。
FIG. 4 is a configuration diagram of the voltage model type magnetic flux calculation means 30. In the figure, 31 is an integrating means, 32 and 33 are primary voltage drop calculating means, 32 is a primary resistance R 1, 33 is a leakage inductance, and 34-1 and 34-2 are subtracting means.
With this configuration, the secondary magnetic flux φαV is calculated from the equation (3) based on the voltage equation of the induction motor.

図5は、電流モデル式磁束演算手段40の構成図である。図5はモータ停止状態であることより、検出速度ωr=0のときを示している。図において、41は積分手段、42、43は係数器で、42は二次回路時定数T2、43は二次抵抗R2の値が設定され、44は減算手段である。
この構成により、誘導電動機の電流方程式に基づいて二次磁束φαIを(4)式により演算する。
FIG. 5 is a configuration diagram of the current model type magnetic flux calculation means 40. FIG. 5 shows the detection speed ωr = 0 because the motor is stopped. In the figure, 41 is an integrating means, 42 and 43 are coefficient multipliers, 42 is a secondary circuit time constant T2, 43 is a value of the secondary resistance R2, and 44 is a subtracting means.
With this configuration, the secondary magnetic flux φαI is calculated from the equation (4) based on the current equation of the induction motor.

図6は、振幅値検出手段50-1の構成図である。図において、51は最大値選択手段、52は最小値検出手段、53-1、53-2は遅延手段、54は減算器である。
この構成により、入力信号であるIαの最大値max(Iα)と最小値min(Iα)の差として振幅値を検出する。
|Iα|peak=max(Iα)−min(Iα) ・・・(5)
FIG. 6 is a block diagram of the amplitude value detecting means 50-1. In the figure, 51 is a maximum value selection means, 52 is a minimum value detection means, 53-1, 53-2 are delay means, and 54 is a subtractor.
With this configuration, the amplitude value is detected as the difference between the maximum value max (Iα) and the minimum value min (Iα) of Iα that is the input signal.
| Iα | peak = max (Iα) −min (Iα) (5)

図7は、位相差検出手段60の構成図である。図において、61-1、61-2は最大値検出手段、62-1〜62-6は遅延手段、63-1、63-1はラッチ手段、64-1、64-2は最大値選択手段、65は減算手段、66は乗算手段である。
最大値検出手段61-1は、Iα信号の連続した3信号をU1,U2,U3としたとき、U1<U2、かつ、U2>U3を満足したときにトリガ信号を出力する回路である。
この構成により、Iα信号とφαV信号がそれぞれ最大値となる時間差(t2 −t1)と、このとき指令されている正弦波信号の角周波数値ωとの積により、Iα信号とφαV信号の位相差δを測定する。
δ=(t2−t1)×ω ・・・(6)
FIG. 7 is a configuration diagram of the phase difference detection means 60. In the figure, 61-1 and 61-2 are maximum value detection means, 62-1 to 62-6 are delay means, 63-1 and 63-1 are latch means, and 64-1 and 64-2 are maximum value selection means. , 65 is a subtracting means, and 66 is a multiplying means.
The maximum value detecting means 61-1 is a circuit that outputs a trigger signal when U1 <U2 and U2> U3 are satisfied when three consecutive Iα signals are U1, U2, and U3.
With this configuration, the phase difference between the Iα signal and the φαV signal is obtained by the product of the time difference (t2−t1) at which the Iα signal and the φαV signal are maximum values and the angular frequency value ω of the sine wave signal commanded at this time. δ is measured.
δ = (t2−t1) × ω (6)

実施例の詳細な説明の前に、図2に示すモータ定数測定手段21での測定の基本的考え方を説明する。
いま、上記(4)式より、誘導電動機の電流方程式に基づく二次磁束φαIは、入力信号Iαとすれば、一次遅れ要素G(s)=M/(1+T2・p)の伝達関数で示される。
このとき、周知のように、角周波数がωである正弦波信号を入力したときの出力の振幅比|G|、遅れ位相角∠Gは、次式で求まる。
Prior to detailed description of the embodiment, the basic concept of measurement by the motor constant measuring means 21 shown in FIG. 2 will be described.
Now, from the above equation (4), the secondary magnetic flux φαI based on the current equation of the induction motor is represented by a transfer function of a primary delay element G (s) = M / (1 + T2 · p) if the input signal Iα is used. .
At this time, as is well known, the output amplitude ratio | G | and delayed phase angle ∠G when a sine wave signal having an angular frequency of ω is input are obtained by the following equations.

ここで、1に対してω・T2が十分大きくなるようにωを選ぶ(以下、ω1とする)と、   Here, when ω is selected so that ω · T2 is sufficiently large with respect to 1 (hereinafter referred to as ω1),

となる。
したがって、ω1は既知であるので、次式で二次抵抗R2が求まる。
It becomes.
Therefore, since ω1 is known, the secondary resistance R2 is obtained by the following equation.

次に、1とω・T2がほぼ等しくなるようなωを選ぶ(以下、ω2とする)と、   Next, when ω is selected so that 1 and ω · T2 are substantially equal (hereinafter referred to as ω2),

となる。(9)、(10)式より、次式で励磁インダクタンスMが求まる。 It becomes. From the equations (9) and (10), the excitation inductance M is obtained by the following equation.

以下、実施例を説明する。
正弦波発生手段20から発生された励磁電流指令信号が含む角周波数値ω1と、前記振幅値検出手段50-1、50-2で求められる電圧モデル式二次磁束と電流情報の振幅値の各最大値に基づいて、二次抵抗値R2を得る際の動作について説明する。
電圧モデル式磁束演算手段30と電流モデル式磁束演算手段40出力は一致すること、電流モデル式は、G(s)=M/(1+T2・p)と表現できることより、図4に示した電圧モデル式磁束演算手段30を用いて、図1の回路で運転すれば、図6よりφαvとIαの振幅値の比率を|G|ω1として測定できるので、(8)式から次式で二次抵抗R2を演算することができる。
R2=|φαv|peak /|Iα|peak×ω1 ・・・(12)
Examples will be described below.
Each of the angular frequency value ω1 included in the excitation current command signal generated from the sine wave generating means 20, the voltage model type secondary magnetic flux obtained by the amplitude value detecting means 50-1 and 50-2, and the amplitude value of the current information. An operation for obtaining the secondary resistance value R2 based on the maximum value will be described.
Since the voltage model type magnetic flux calculating means 30 and the current model type magnetic flux calculating means 40 output coincide with each other and the current model expression can be expressed as G I (s) = M / (1 + T 2 · p), the voltage shown in FIG. If the model type magnetic flux calculation means 30 is used and the circuit of FIG. 1 is operated, the ratio of the amplitude values of φαv and Iα can be measured as | G | ω1 from FIG. The resistance R2 can be calculated.
R2 = | φαv | peak / | Iα | peak × ω1 (12)

次に、正弦波発生手段20から発生された励磁電流指令信号が含む角周波数値ω2と、位相差検出手段60で求められる電圧モデル式磁束と電流情報の位相差に基づいて、二次回路時定数T2を得る際の動作について説明する。
図4に示した電圧モデル式磁束演算手段30を用いて、図1の回路で運転すれば、図7によりφαv、Iαの位相差δが測定できるので、(7)式から次式で二次回路時定数T2を演算することができる。
T2=tanδ/ω2 ・・・(13)
Next, based on the angular frequency value ω2 included in the excitation current command signal generated from the sine wave generating means 20 and the phase difference between the voltage model magnetic flux and current information obtained by the phase difference detecting means 60, the secondary circuit time The operation for obtaining the constant T2 will be described.
If the voltage model type magnetic flux calculating means 30 shown in FIG. 4 is used to operate the circuit of FIG. 1, the phase difference δ of φαv and Iα can be measured according to FIG. The circuit time constant T2 can be calculated.
T2 = tanδ / ω2 (13)

次に、電圧モデル式磁束と電流情報の振幅値の各最大値に基づいて励磁インダクタンスMを得る際の動作について説明する。
ω1とω2で、図4に示した電圧モデル式磁束演算手段30を用いて、図1の回路で運転し、図6よりφαvとIαの振幅値の比率を、それぞれ測定できるので、(11)式から次式により、励磁インダクタンスMを演算することができる。
Next, the operation when obtaining the exciting inductance M based on the maximum values of the voltage model type magnetic flux and the amplitude value of the current information will be described.
Since the voltage model type magnetic flux calculating means 30 shown in FIG. 4 is used at ω1 and ω2, and the circuit of FIG. 1 is operated, the ratio of the amplitude values of φαv and Iα can be measured from FIG. The exciting inductance M can be calculated from the equation by the following equation.

また、これは二次抵抗R2を用いて、次のように演算することもできる。   This can also be calculated as follows using the secondary resistance R2.

次に、電圧モデル式磁束演算手段30のオフセット補償と電流モデル式磁束演算手段40でのR2の補正する際の動作について説明する。   Next, the offset compensation of the voltage model type magnetic flux calculation means 30 and the operation when the current model type magnetic flux calculation means 40 corrects R2 will be described.

図8は、電圧モデル式磁束演算手段30と電流モデル式磁束演算手段40と各出力値が一致するように補償する補償手段70およびR2補正手段80の構成図である。図において、71は減算手段、72は積分手段、73は係数器、81-1、81-2は絶対値化手段、82は減算手段、83は積分手段、84は係数器である。
減算手段71は電圧モデル式磁束演算手段30と電流モデル式磁束演算手段40の偏差Δφを積分手段72に出力し、積分手段72により偏差Δφを積分し、係数器73で係数(k1)倍後、電圧モデル式磁束演算手段30内の積分手段31の前段に帰還する。
また、絶対値化手段81-1、81-2はそれぞれ電圧モデル式磁束演算手段30と電流モデル式磁束演算手段40の出力値の絶対値をとり、減算手段82は前記絶対値信号の偏差Δ|φ|を積分手段83へ出力し、積分手段83で偏差Δ|φ|を積分して係数器84で係数(k2)倍後、電流モデル式磁束演算手段40内の係数器43を補正する。この補正は、図示していないが、加算手段、乗算手段を追加して、R2×(1+k)として行う。なお、kは係数器84の出力、R2は係数器43が対応している。
図8に示すように、これまで得た二次抵抗R2、二次回路時定数T2を電流モデル式磁束演算手段40に設定し、電圧モデル式磁束演算手段30のオフセット補償と電流モデル式磁束演算手段40でそれぞれ演算した二次磁束が一致しないのは、各演算手段に誤差成分があるからだと考える。
誤差成分として、電圧モデル式磁束演算手段30では入力信号のオフセットであり、電流モデル式磁束演算手段40では二次抵抗R2の測定誤差とする。
オフセット補償では、上記積分手段72と係数器73で与える積分時間は、正弦波発生手段20が出力する信号の正弦波成分の周期(1/ω2)に対し、十分長く取ることで平均化されるようにし、R2の補正処理では、オフセット補償と干渉しないように、上記積分手段83と係数器84で与える積分時間は、正弦波発生手段20が出力する信号の正弦波成分の周期(1/ω2)に対し、短めに取るとよい。
また、実際の二次抵抗R2の補正処理は、係数器84の出力Kを用い、次式で演算し、R’として得る。
FIG. 8 is a configuration diagram of the voltage model type magnetic flux calculation means 30 and the current model type magnetic flux calculation means 40 and the compensation means 70 and the R2 correction means 80 for compensating each output value to coincide with each other. In the figure, 71 is a subtracting means, 72 is an integrating means, 73 is a coefficient unit, 81-1 and 81-2 are absolute value converting means, 82 is a subtracting means, 83 is an integrating means, and 84 is a coefficient unit.
The subtracting means 71 outputs the deviation Δφ of the voltage model type magnetic flux calculating means 30 and the current model type magnetic flux calculating means 40 to the integrating means 72, integrates the deviation Δφ by the integrating means 72, and after the coefficient (k1) is multiplied by the coefficient unit 73. Then, the voltage model type magnetic flux calculation means 30 returns to the previous stage of the integration means 31.
The absolute value converting means 81-1 and 81-2 take the absolute values of the output values of the voltage model magnetic flux calculating means 30 and the current model magnetic flux calculating means 40, respectively, and the subtracting means 82 is the deviation Δ of the absolute value signal. | Φ | is output to the integrating means 83, the deviation Δ | φ | is integrated by the integrating means 83, multiplied by a coefficient (k2) by the coefficient multiplier 84, and then the coefficient unit 43 in the current model type magnetic flux calculating means 40 is corrected. . Although not shown, this correction is performed as R2 × (1 + k) by adding an adding unit and a multiplying unit. Note that k corresponds to the output of the coefficient unit 84, and R2 corresponds to the coefficient unit 43.
As shown in FIG. 8, the secondary resistance R2 and the secondary circuit time constant T2 obtained so far are set in the current model type magnetic flux calculating means 40, and the offset compensation of the voltage model type magnetic flux calculating means 30 and the current model type magnetic flux calculation are performed. The reason why the secondary magnetic fluxes calculated by the means 40 do not coincide is considered to be because each calculation means has an error component.
As an error component, the voltage model type magnetic flux calculating means 30 is an offset of the input signal, and the current model magnetic flux calculating means 40 is a measurement error of the secondary resistance R2.
In the offset compensation, the integration time given by the integration means 72 and the coefficient unit 73 is averaged by taking it sufficiently long with respect to the period (1 / ω2) of the sine wave component of the signal output from the sine wave generation means 20. In the correction process of R2, the integration time given by the integration means 83 and the coefficient unit 84 is the period of the sine wave component of the signal output from the sine wave generation means 20 (1 / ω 2) so as not to interfere with the offset compensation. ) In contrast to this.
Further, the actual correction process of the secondary resistance R2 is calculated by the following equation using the output K of the coefficient unit 84 and obtained as R ′.

なお、励磁インダクタンスMは、(14)、(14)’ 式でなく、(15)式のようにR2、T2から演算で求めてもよい。   The exciting inductance M may be obtained by calculation from R2 and T2 as shown in equation (15) instead of equations (14) and (14) '.

上述したオフセット補償処理とR2補正処理を実施すると、電圧モデル式磁束演算値と電流モデル式磁束演算値の値が精度よく一致するようになるので、オフセット補償の精度が上がる。したがって、精度よくオフセット補償された電圧モデル式磁束演算手段30を用いることで更に、二次抵抗R2の測定精度が上がるという好循環をもたらす。
二次抵抗R2の補正比率(R2’/R2)が所定値範囲内になるまで、上述したオフセット補償とR2補正処理を繰り返すようにすれば、精度のよい誘導電動機の二次抵抗R2、励磁インダクタンスMを得ることができる。
When the offset compensation process and the R2 correction process described above are performed, the voltage model type magnetic flux calculation value and the current model type magnetic flux calculation value coincide with each other with high accuracy, so that the accuracy of the offset compensation is improved. Therefore, the use of the voltage model type magnetic flux calculation means 30 with offset compensation with high accuracy further brings about a virtuous cycle in which the measurement accuracy of the secondary resistance R2 increases.
If the offset compensation and the R2 correction process described above are repeated until the correction ratio (R2 ′ / R2) of the secondary resistance R2 falls within a predetermined value range, the secondary resistance R2 and the excitation inductance of the induction motor with high accuracy can be obtained. M can be obtained.

次に、励磁インダクタンスMの飽和特性を得る際の動作について説明する。この動作の手順を順に追って説明する。
(1)事前準備として測定しようとしている誘導電動機のベース電圧Vbase、ベース周波数fbaseに基づいて、励磁電流(無負荷電流)Im0を次式で演算する。
Next, the operation for obtaining the saturation characteristic of the excitation inductance M will be described. The procedure of this operation will be described in order.
(1) Based on the base voltage Vbase and base frequency fbase of the induction motor to be measured as advance preparation, the excitation current (no-load current) Im0 is calculated by the following equation.

なお、ベース電圧、ベース周波数情報は、通常インバータ制御装置内に記憶されているが、無ければ、インバータ装置に付属のオペレータ等(図示せず)から入力する。
(2)励磁インダクタンスMの飽和特性の測定ポイントを決定する。係数としてあるいは関数と得たい励磁電流値を決定する。
ここでは、(16)式でのIm0に対して、50%、75%、100%のポイントとして説明する。
(3)次に、これまで得た二次抵抗R2、二次回路時定数T2を電流モデル式磁束演算手段40に設定するとともに、正弦波発生手段20から発生された励磁電流指令信号(例えば、角周波数値ω2)に、直流量を含むようにして(17)式で与え、上述した図7の回路でφαv、Iαの位相差δを測定し、上記(13)式で二次回路時定数T21を演算する。
Id*=A・sinω2t+Im0×0.5 ・・・(17)
なお、振幅Aは、図7での最大値選択手段64-1、64-2が、その最大値を測定可能な範囲で小さい値とする。
(4)(3)の動作を75%、100%の直流量で行い、T22、T23を演算する。
(5)測定したT21、T22、T23を用いて、その条件での励磁インダクタンスMを演算する。
M1=R2×T21
M2=R2×T22
M3=R2×T23
以上のようにして励磁インダクタンスMの飽和特性を測定することができる。
Note that the base voltage and base frequency information are normally stored in the inverter control device, but if they are not present, they are input from an operator (not shown) attached to the inverter device.
(2) The measurement point of the saturation characteristic of the excitation inductance M is determined. The excitation current value to be obtained as a coefficient or a function is determined.
Here, description will be made with respect to Im0 in the equation (16) as points of 50%, 75%, and 100%.
(3) Next, the secondary resistance R2 and the secondary circuit time constant T2 obtained so far are set in the current model type magnetic flux calculation means 40, and the excitation current command signal generated from the sine wave generation means 20 (for example, The angular frequency value ω2) is given by the equation (17) so as to include the DC amount, the phase difference δ of φαv and Iα is measured by the circuit shown in FIG. 7, and the secondary circuit time constant T21 is obtained by the equation (13). Calculate.
Id * = A · sinω2t + Im0 × 0.5 (17)
The amplitude A is set to a small value within a range in which the maximum value selection means 64-1 and 64-2 in FIG. 7 can measure the maximum value.
(4) The operation of (3) is performed with a DC amount of 75% and 100%, and T2 2 and T2 3 are calculated.
(5) Using the measured T21, T22, and T23, the excitation inductance M under the conditions is calculated.
M1 = R2 × T21
M2 = R2 × T22
M3 = R2 × T23
As described above, the saturation characteristics of the excitation inductance M can be measured.

モータ電気定数のオフラインチューニングを、電動機停止状態で行うことができるので、速度センサを持たない場合でも、一度電動機を組み込んでしまった機械や、エレベータ・クレーン用途のようにブレーキ付きで垂直方向に移動する機械に適用できるとともに、静・動特性等の制御精度を期待される用途に適用できるようになる。   Off-line tuning of motor electrical constants can be performed while the motor is stopped, so even if you do not have a speed sensor, you can move the motor in a vertical direction with a brake, such as a machine that has already been equipped with an electric motor or elevator / crane applications. It can be applied to machines that are expected to have control accuracy such as static and dynamic characteristics.

本発明動作時の誘導電動機のインバータ制御装置のブロック図Block diagram of an inverter control device for an induction motor during operation of the present invention モータ定数測定手段21のブロック図Block diagram of motor constant measuring means 21 本発明を適用する誘導電動機のインバータ制御装置のブロック図The block diagram of the inverter control apparatus of the induction motor to which the present invention is applied 電圧モデル式磁束演算手段の構成図Configuration diagram of voltage model type magnetic flux calculation means 電流モデル式磁束演算手段の構成図Configuration diagram of current model type magnetic flux calculation means 振幅値検出手段の構成図Configuration diagram of amplitude value detection means 位相差検出手段の構成図Configuration diagram of phase difference detection means オフセット補償手段とR2補正手段の構成図Configuration diagram of offset compensation means and R2 correction means

符号の説明Explanation of symbols

1 誘導電動機
2 電圧形インバータ
2-1 コンバータ部
2-2 インバータ部
3 PWM演算部
4 ベース回路
5 電流検出器
6 速度検出器
7 速度演算部
8、13 座標変換部
9、10 減算手段
11 励磁電流制御部(ACRd)
12 トルク電流制御部(ACRq)
14 磁束指令演算部
15 すべり周波数演算部
16 加算手段
17、42、43、73、84 係数器
18、31、41、72、83 積分手段
20 正弦波発生手段
21 モータ定数測定手段
22-1、22-2 除算手段
23、66 乗算手段
24 正接(tan)演算手段
30 電圧モデル式磁束演算手段
32、33 1次電圧降下演算手段
34-1、34-2、44、54、65、71、82 減算手段
40 電流モデル式磁束演算手段
50-1、50-2 振幅値検出手段
51、64-1、64-2 最大値選択手段
52 最小値検出手段
53-1、53-2、62-1〜62-6 遅延手段
60 位相差検出手段
61-1、61-2 最大値検出手段
63-1、63-1 ラッチ手段
70 オフセット補償手段
80 R2補正手段
81-1、81-2 絶対値化手段
DESCRIPTION OF SYMBOLS 1 Induction motor 2 Voltage type inverter 2-1 Converter part 2-2 Inverter part 3 PWM calculating part 4 Base circuit 5 Current detector 6 Speed detector 7 Speed calculating part 8, 13 Coordinate conversion part 9, 10 Subtraction means 11 Excitation current Control unit (ACRd)
12 Torque current controller (ACRq)
14 Magnetic flux command calculation unit 15 Slip frequency calculation unit 16 Addition means 17, 42, 43, 73, 84 Coefficient units 18, 31, 41, 72, 83 Integration means 20 Sine wave generation means 21 Motor constant measurement means 22-1, 22 -2 Division means 23, 66 Multiplication means 24 Tangent (tan) calculation means 30 Voltage model type magnetic flux calculation means 32, 33 Primary voltage drop calculation means 34-1, 34-2, 44, 54, 65, 71, 82 Subtraction Means 40 Current model type magnetic flux calculating means 50-1, 50-2 Amplitude value detecting means 51, 64-1, 64-2 Maximum value selecting means 52 Minimum value detecting means 53-1, 53-2, 62-1 to 62 -6 Delay means 60 Phase difference detection means 61-1 and 61-2 Maximum value detection means 63-1 and 63-1 Latch means
70 Offset compensation means 80 R2 correction means 81-1 and 81-2 Absolute value making means

Claims (9)

誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、
一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、
交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、
前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の各振幅値を検出する振幅値検出手段とを設け、
前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記振幅値検出手段で求められる二次磁束と前記電流情報の振幅値の各最大値に基づいて、二次抵抗値を得ることを特徴とする誘導電動機のインバータ制御装置。
Coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system for each of the voltage information and current information of the induction motor;
Voltage model type magnetic flux calculating means including an integrating means for performing compensation of primary resistance and leakage inductance and calculating the secondary magnetic flux of the motor using the voltage information;
Sine wave generating means for commanding an exciting current including a sine wave component so that an alternating magnetic flux is generated;
Providing an output signal of the voltage model type magnetic flux calculating means and an amplitude value detecting means for detecting each amplitude value of the current information on a fixed coordinate system;
Based on the angular frequency included in the excitation current command signal generated from the sine wave generation means, the secondary magnetic flux obtained by the amplitude value detection means, and the maximum value of the amplitude value of the current information, the secondary resistance value is determined. An inverter control device for an induction motor, characterized in that it is obtained.
誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、
一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、
交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、
前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の位相差検出手段とを設け、
前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記位相差検出手段で求められる二次磁束と前記電流情報の位相差に基づいて、二次回路時定数を得ることを特徴とする誘導電動機のインバータ制御装置。
Coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system for each of the voltage information and current information of the induction motor;
Voltage model type magnetic flux calculating means including an integrating means for performing compensation of primary resistance and leakage inductance and calculating the secondary magnetic flux of the motor using the voltage information;
Sine wave generating means for commanding an exciting current including a sine wave component so that an alternating magnetic flux is generated;
The voltage model magnetic flux calculation means output signal and the phase difference detection means of the current information on a fixed coordinate system,
Obtaining a secondary circuit time constant based on the angular frequency included in the excitation current command signal generated from the sine wave generating means and the phase difference between the secondary magnetic flux obtained by the phase difference detecting means and the current information; Inverter control device for induction motor, which is a feature.
誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、
一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、
交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、
前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の位相差検出手段とを設け、
前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記振幅値検出手段で求められる二次磁束と前記電流情報の振幅値の各最大値に基づいて、励磁インダクタンスを得ることを特徴とする誘導電動機のインバータ制御装置。
Coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system for each of the voltage information and current information of the induction motor;
Voltage model type magnetic flux calculating means including an integrating means for performing compensation of primary resistance and leakage inductance and calculating the secondary magnetic flux of the motor using the voltage information;
Sine wave generating means for commanding an exciting current including a sine wave component so that an alternating magnetic flux is generated;
The voltage model magnetic flux calculation means output signal and the phase difference detection means of the current information on a fixed coordinate system,
An excitation inductance is obtained based on the angular frequency included in the excitation current command signal generated from the sine wave generation means, the secondary magnetic flux obtained by the amplitude value detection means, and the maximum value of the amplitude value of the current information. An induction motor inverter control device characterized by the above.
請求項1から3で得られた二次抵抗、励磁インダクタンス、二次回路時定数を設定し、前記電流情報を用いて電動機の二次磁束を演算する一次遅れ要素を含む電流モデル式磁束演算手段と、
前記電流モデル磁束演算手段と前記電圧モデル式磁束演算手段のそれぞれの出力値が一致するように補償する補償手段とを設け、
前記電圧モデル式磁束演算手段の積分手段のオフセット補償することを特徴とする誘導電動機のインバータ制御装置。
A current model type magnetic flux calculating means including a primary delay element that sets the secondary resistance, exciting inductance, and secondary circuit time constant obtained in claims 1 to 3 and calculates the secondary magnetic flux of the motor using the current information. When,
Compensating means for compensating so that the output values of the current model magnetic flux calculating means and the voltage model magnetic flux calculating means match,
An inverter control apparatus for an induction motor, wherein offset compensation of an integration means of the voltage model type magnetic flux calculation means is performed.
請求項1から3で得られた二次抵抗、励磁インダクタンス、二次回路時定数を設定し、前記電流情報を用いて電動機の二次磁束を演算する一次遅れ要素を含む電流モデル式磁束演算手段と、
前記電流モデル磁束演算手段と前記電圧モデル式磁束演算手段のそれぞれの出力値が一致するように補償する補償手段とを設け、
二次抵抗を補正演算することを特徴とする誘導電動機のインバータ制御装置。
A current model type magnetic flux calculating means including a primary delay element that sets the secondary resistance, exciting inductance, and secondary circuit time constant obtained in claims 1 to 3 and calculates the secondary magnetic flux of the motor using the current information. When,
Compensating means for compensating so that the output values of the current model magnetic flux calculating means and the voltage model magnetic flux calculating means match,
An inverter control apparatus for an induction motor, wherein a secondary resistance is corrected and calculated.
二次抵抗の補正前後の演算値比率が所定値以下になるまで、補正処理を繰り返すことを特徴とする請求項5記載の誘導電動機のインバータ制御装置。   6. The inverter control apparatus for an induction motor according to claim 5, wherein the correction process is repeated until the calculated value ratio before and after the correction of the secondary resistance becomes a predetermined value or less. 前記正弦波発生手段から発生された励磁電流指令信号に直流信号を含むようにして前記位相差検出手段で位相差を求め、その位相差に基づいて、励磁インダクタンスの飽和特性を得ることを特徴とする請求項2記載の誘導電動機のインバータ制御装置。   The excitation current command signal generated from the sine wave generation means includes a DC signal so that a phase difference is obtained by the phase difference detection means, and a saturation characteristic of the excitation inductance is obtained based on the phase difference. Item 3. An inverter control device for an induction motor according to Item 2. 請求項1、2、5、6から得られた二次抵抗、二次回路時定数から、励磁インダクタンスを得ることを特徴とする誘導電動機のインバータ制御装置。   An inverter control apparatus for an induction motor, wherein an excitation inductance is obtained from the secondary resistance and secondary circuit time constant obtained from claims 1, 2, 5, and 6. 誘導電動機の電圧情報と電流情報のそれぞれに対して、固定座標系上の二軸成分値を求める座標変換手段と、
一次抵抗と漏れインダクタンスの補償を行い、前記電圧情報を用いて電動機の二次磁束を演算する積分手段を含む電圧モデル式磁束演算手段と、
交番磁束が発生するように正弦波成分を含む励磁電流を指令する正弦波発生手段と、
前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の各振幅値を検出する振幅値検出手段とを設け、
前記電圧モデル式磁束演算手段出力信号と固定座標系上の前記電流情報の位相差検出手段とを設け、
前記正弦波発生手段から発生された励磁電流指令信号が含む角周波数と、前記振幅値検出手段で求められる二次磁束と前記電流情報の振幅値の各最大値または前記位相差検出手段で求められる二次磁束と前記電流情報の位相差に基づいて、モータ電気定数を求める定数演算手段とを備えたことを特徴とする誘導電動機のインバータ制御装置。
Coordinate conversion means for obtaining a biaxial component value on a fixed coordinate system for each of the voltage information and current information of the induction motor;
Voltage model type magnetic flux calculating means including an integrating means for performing compensation of primary resistance and leakage inductance and calculating the secondary magnetic flux of the motor using the voltage information;
Sine wave generating means for commanding an exciting current including a sine wave component so that an alternating magnetic flux is generated;
Providing an output signal of the voltage model type magnetic flux calculating means and an amplitude value detecting means for detecting each amplitude value of the current information on a fixed coordinate system;
The voltage model magnetic flux calculation means output signal and the phase difference detection means of the current information on a fixed coordinate system,
The angular frequency included in the excitation current command signal generated from the sine wave generating means, the secondary magnetic flux obtained by the amplitude value detecting means, and the maximum value of the amplitude value of the current information or the phase difference detecting means. An inverter control apparatus for an induction motor, comprising: constant calculation means for obtaining a motor electrical constant based on a phase difference between a secondary magnetic flux and the current information.
JP2004359333A 2004-12-13 2004-12-13 Inverter control device for induction motor Expired - Fee Related JP4632170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359333A JP4632170B2 (en) 2004-12-13 2004-12-13 Inverter control device for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004359333A JP4632170B2 (en) 2004-12-13 2004-12-13 Inverter control device for induction motor

Publications (2)

Publication Number Publication Date
JP2006174524A true JP2006174524A (en) 2006-06-29
JP4632170B2 JP4632170B2 (en) 2011-02-16

Family

ID=36674670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359333A Expired - Fee Related JP4632170B2 (en) 2004-12-13 2004-12-13 Inverter control device for induction motor

Country Status (1)

Country Link
JP (1) JP4632170B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063343A (en) * 2008-08-06 2010-03-18 Yaskawa Electric Corp Motor control apparatus, torque ripple correction method thereof, and motor control system
KR101073688B1 (en) * 2010-01-25 2011-10-14 강원대학교산학협력단 Apparatus for estimating rotor speed of an induction motor
WO2013018349A1 (en) * 2011-08-03 2013-02-07 パナソニック株式会社 Method for calculating motor constant of permanent magnet synchronous electric motor and motor constant computation device
CN104135203A (en) * 2014-07-29 2014-11-05 中国东方电气集团有限公司 Field weakening control method of asynchronous motor based on bandgap variable step size method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634724A (en) * 1992-07-15 1994-02-10 Yaskawa Electric Corp Motor constant identifying method in vector control device for induction motor
JPH09149698A (en) * 1995-11-20 1997-06-06 Matsushita Electric Ind Co Ltd Controller for induction motor
JPH10225200A (en) * 1997-02-12 1998-08-21 Fuji Electric Co Ltd Variable speed controller for ac motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634724A (en) * 1992-07-15 1994-02-10 Yaskawa Electric Corp Motor constant identifying method in vector control device for induction motor
JPH09149698A (en) * 1995-11-20 1997-06-06 Matsushita Electric Ind Co Ltd Controller for induction motor
JPH10225200A (en) * 1997-02-12 1998-08-21 Fuji Electric Co Ltd Variable speed controller for ac motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063343A (en) * 2008-08-06 2010-03-18 Yaskawa Electric Corp Motor control apparatus, torque ripple correction method thereof, and motor control system
KR101073688B1 (en) * 2010-01-25 2011-10-14 강원대학교산학협력단 Apparatus for estimating rotor speed of an induction motor
WO2013018349A1 (en) * 2011-08-03 2013-02-07 パナソニック株式会社 Method for calculating motor constant of permanent magnet synchronous electric motor and motor constant computation device
CN103718454A (en) * 2011-08-03 2014-04-09 松下电器产业株式会社 Method for calculating motor constant of permanent magnet synchronous electric motor and motor constant computation device
JPWO2013018349A1 (en) * 2011-08-03 2015-03-05 パナソニック株式会社 Motor constant calculation method and motor constant calculation apparatus for permanent magnet type synchronous motor
US9065380B2 (en) 2011-08-03 2015-06-23 Panasonic Intellectual Property Management Co., Ltd. Method for calculating motor constant of permanent magnet type synchronous motor and motor constant calculating device
CN103718454B (en) * 2011-08-03 2016-02-17 松下电器产业株式会社 The motor constant computational methods of permanent magnet synchronous motor and motor constant calculation element
CN104135203A (en) * 2014-07-29 2014-11-05 中国东方电气集团有限公司 Field weakening control method of asynchronous motor based on bandgap variable step size method

Also Published As

Publication number Publication date
JP4632170B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4519864B2 (en) AC rotating machine electrical constant measuring method and AC rotating machine control apparatus used for carrying out this measuring method
EP1944862B1 (en) Induction motor controller
JP2007306694A (en) Inverter controller of induction motor
JP2006033993A (en) Computation method for zero offset in rotational position detector for motor and motor controller using this computation method
JP2010045914A (en) Synchronous motor drive control device
JP2008234298A (en) Semiconductor power conversion device
JP2007306694A5 (en)
JP6183554B2 (en) Periodic disturbance automatic suppression device
JP6519149B2 (en) Motor controller
JP2017216807A (en) Vector control compensation method for induction motor, and vector control device
JP4632170B2 (en) Inverter control device for induction motor
JP2929344B2 (en) Method and apparatus for measuring motor constants
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP3099159B2 (en) Method and apparatus for measuring motor constants
JP2007135281A (en) Speed sensorless vector control device of induction motor
JP5768255B2 (en) Control device for permanent magnet synchronous motor
JP2018125955A (en) Motor controller
JP6305573B2 (en) Angular error correction device and angular error correction method for position detector
JP2010183691A (en) Control device of induction motor
JP2017005920A (en) Power conversion apparatus for inductor, secondary time constant measurement method and velocity control method
JP2004135407A (en) Control device for ac motor
JP2016019341A (en) Control device for three-phase ac rotary machine
JP3636901B2 (en) Induction motor control device
JP6080687B2 (en) Motor control device
CN106877770B (en) Torque control device and torque control system for electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141126

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees