JP2006173063A - Manufacturing method of cold-cathode fluorescent lamp - Google Patents

Manufacturing method of cold-cathode fluorescent lamp Download PDF

Info

Publication number
JP2006173063A
JP2006173063A JP2004367835A JP2004367835A JP2006173063A JP 2006173063 A JP2006173063 A JP 2006173063A JP 2004367835 A JP2004367835 A JP 2004367835A JP 2004367835 A JP2004367835 A JP 2004367835A JP 2006173063 A JP2006173063 A JP 2006173063A
Authority
JP
Japan
Prior art keywords
glass tube
manufacturing
phosphor
cathode fluorescent
fluorescent lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004367835A
Other languages
Japanese (ja)
Inventor
Fumiya Shigematsu
文也 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2004367835A priority Critical patent/JP2006173063A/en
Publication of JP2006173063A publication Critical patent/JP2006173063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a cold-cathode fluorescent lamp capable of preventing the thickness of a phosphor layer formed on an inner wall of a glass tube from becoming uneven in a tube axis direction. <P>SOLUTION: After a process of applying phosphor solution 2, the phosphor solution is dried by a drying machine 3 in a state of slanting a glass tube 1. Thus, by providing the process drying the phosphor solution in a state of slanting the glass tube 1, fluidity of the phosphor solution in the glass tube 1 can be reduced, and the thickness of phosphor layer formed on an inner wall of a glass tube can be prevented from becoming uneven in tube axis direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示装置の背面照明用光源や小型の照明光源として使用される冷陰極蛍光ランプの製造方法に関し、特に、ガラス管の内壁に形成される蛍光体層の膜厚が管の軸方向で不均一になるのを防止できる冷陰極蛍光ランプの製造方法に関する。   The present invention relates to a method of manufacturing a cold cathode fluorescent lamp used as a light source for backlighting a liquid crystal display device or a small illumination light source, and in particular, the thickness of a phosphor layer formed on the inner wall of a glass tube is the axis of the tube. The present invention relates to a method of manufacturing a cold cathode fluorescent lamp capable of preventing non-uniformity in direction.

一般に、冷陰極蛍光ランプは、パーソナルコンピュータ、ワードプロセッサ、モニター等の液晶表示装置の液晶表示装置の背面照明用光源や、小型の照明光源として使用され、ガラス管の両端内部に一対の冷陰極を備えた構成を有している。そして、ガラス管の内壁に蛍光体溶液を塗布し乾燥させることにより蛍光体層が形成されている。   Generally, a cold cathode fluorescent lamp is used as a light source for back lighting of a liquid crystal display device such as a personal computer, a word processor, a monitor, etc., or as a small illumination light source, and has a pair of cold cathodes inside both ends of a glass tube. It has a configuration. A phosphor layer is formed by applying a phosphor solution to the inner wall of the glass tube and drying it.

図7は、従来の冷陰極蛍光ランプの製造方法における蛍光体溶液の塗布及び乾燥の工程を示す図である。   FIG. 7 is a diagram showing steps of applying and drying a phosphor solution in a conventional method for manufacturing a cold cathode fluorescent lamp.

先ず、塗布工程においては、直立に固定されたガラス管1の下端部から、赤、緑及び青それぞれの蛍光体を混合した蛍光体溶液2を規定の位置まで吸い上げることにより、ガラス管1の内壁に蛍光体溶液を塗布する。次の乾燥工程においては、乾燥機3によりガラス管内に空気を吹き込む。このとき、内部の蛍光体溶液が乾燥して内壁に付着し蛍光体層となる。一方、乾燥付着しなかった余剰分の蛍光体溶液はガラス管1内を流れて落下する。   First, in the coating process, the inner wall of the glass tube 1 is sucked up from a lower end portion of the glass tube 1 fixed upright to a predetermined position of the phosphor solution 2 in which the phosphors of red, green and blue are mixed. The phosphor solution is applied to In the next drying step, air is blown into the glass tube by the dryer 3. At this time, the phosphor solution inside is dried and adheres to the inner wall to form a phosphor layer. On the other hand, the surplus phosphor solution that has not adhered to the liquid flows and falls in the glass tube 1.

上記した従来の冷陰極蛍光ランプの製造方法で用いられる蛍光体溶液においては、緑の蛍光体の比重は他の色の蛍光体の比重より大きいため、ガラス管内での流動性が他の色のものよりも速く、したがって下部へ流れやすい。一方、青の蛍光体の比重は他の色の蛍光体の比重より小さいため、ガラス管内での流動性が他の色のものよりも低く、したがってガラス管内の上部に残りやすい。そのため、冷陰極蛍光ランプの軸方向において、3色の蛍光体の配合比率が微妙に変化し膜厚が不均一になるという問題があった。   In the phosphor solution used in the conventional cold cathode fluorescent lamp manufacturing method described above, the specific gravity of the green phosphor is larger than the specific gravity of the phosphors of other colors. Faster than things, and therefore easier to flow down. On the other hand, since the specific gravity of the blue phosphor is lower than that of the phosphors of other colors, the fluidity in the glass tube is lower than that of the other colors, and therefore tends to remain at the top in the glass tube. Therefore, there has been a problem that in the axial direction of the cold cathode fluorescent lamp, the blending ratio of the phosphors of the three colors slightly changes and the film thickness becomes nonuniform.

本発明は、上記の課題に鑑みてなされたものであり、その目的とするところは、ガラス管の内壁に形成される蛍光体層の膜厚が管の軸方向で不均一になるのを防止できる冷陰極蛍光ランプの製造方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to prevent the thickness of the phosphor layer formed on the inner wall of the glass tube from becoming uneven in the axial direction of the tube. Another object of the present invention is to provide a method for manufacturing a cold cathode fluorescent lamp.

上記の課題を解決するために、請求項1記載の冷陰極蛍光ランプの製造方法は、請求項1記載の冷陰極蛍光ランプの製造方法は、ガラス管の内壁に蛍光体溶液を塗布する工程と、前記ガラス管を傾けた状態で前記塗布された蛍光体溶液を乾燥させる工程とを備えることを特徴とする。   In order to solve the above-mentioned problem, the manufacturing method of the cold cathode fluorescent lamp according to claim 1 includes the step of applying a phosphor solution to the inner wall of the glass tube. And drying the applied phosphor solution with the glass tube tilted.

この請求項1記載の製造方法によれば、ガラス管を傾けた状態で蛍光体溶液を乾燥させる工程を設けたことで、ガラス管内の蛍光体溶液の流動性を低くできるので、ガラス管の内壁に形成される蛍光体層の膜厚が管の軸方向で不均一になるのを防止できる。   According to the manufacturing method of the first aspect, since the flowability of the phosphor solution in the glass tube can be lowered by providing the step of drying the phosphor solution while the glass tube is inclined, the inner wall of the glass tube It is possible to prevent the thickness of the phosphor layer formed from becoming uneven in the axial direction of the tube.

また、請求項2記載の冷陰極蛍光ランプの製造方法は、請求項1記載の製造方法において、前記傾けた状態のガラス管の角度を調整することを特徴とする。   A manufacturing method of a cold cathode fluorescent lamp according to claim 2 is characterized in that, in the manufacturing method according to claim 1, the angle of the inclined glass tube is adjusted.

この請求項2記載の製造方法によれば、蛍光体層の膜厚が管の軸方向で不均一になるのを防止できることに加えて、傾けた状態のガラス管の角度を調整することで、蛍光体溶液の流動性を調整できるので、管の軸方向における蛍光体層の膜厚を調整することができる。   According to the manufacturing method of claim 2, in addition to preventing the film thickness of the phosphor layer from becoming uneven in the axial direction of the tube, by adjusting the angle of the inclined glass tube, Since the fluidity of the phosphor solution can be adjusted, the thickness of the phosphor layer in the axial direction of the tube can be adjusted.

また、請求項3記載の冷陰極蛍光ランプの製造方法は、請求項1または2記載の製造方法において、前記傾けた状態のガラス管が鉛直方向に対して有する角度は70度以上で且つ80度以下であることを特徴とする。   The manufacturing method of the cold cathode fluorescent lamp according to claim 3 is the manufacturing method according to claim 1 or 2, wherein the inclined glass tube has an angle of 70 degrees or more and 80 degrees with respect to the vertical direction. It is characterized by the following.

この請求項3記載の製造方法によれば、蛍光体層の膜厚が管の軸方向で不均一になるのを防止できることに加えて、傾けた状態のガラス管が鉛直方向に対して有する角度を70度以上で且つ80度以下としたことで、軸方向における蛍光体層の膜厚が適切な冷陰極蛍光ランプを製造できる。   According to the manufacturing method of claim 3, in addition to preventing the film thickness of the phosphor layer from becoming non-uniform in the axial direction of the tube, the angle of the tilted glass tube with respect to the vertical direction By setting the angle to 70 degrees or more and 80 degrees or less, it is possible to manufacture a cold cathode fluorescent lamp in which the thickness of the phosphor layer in the axial direction is appropriate.

また、請求項1乃至3のいずれかに記載の製造方法において、前記傾けた状態のガラス管をその軸中心に回転させてもよい。   In the manufacturing method according to any one of claims 1 to 3, the tilted glass tube may be rotated about its axis.

この製造方法によれば、蛍光体層の膜厚が管の軸方向で不均一になるのを防止できることに加えて、傾けた状態のガラス管をその軸中心に回転させることで、蛍光体溶液が周回しながら乾燥していくので、蛍光体層の膜厚が周方向において不均一になるのを防止できる。   According to this manufacturing method, in addition to preventing the thickness of the phosphor layer from becoming non-uniform in the axial direction of the tube, the phosphor solution can be obtained by rotating the tilted glass tube about its axis. Since the film is dried while rotating, it is possible to prevent the phosphor layer from becoming uneven in the circumferential direction.

また、この製造方法において、前記ガラス管は横断面が楕円形状又は扁平形状を有するものであり、当該横断面における長径が垂直なときの回転速度を水平なときの回転速度より遅くしてもよい。   Further, in this manufacturing method, the glass tube has an elliptical or flat cross section, and the rotation speed when the major axis in the cross section is vertical may be slower than the rotation speed when horizontal. .

この製造方法によれば、蛍光体層の膜厚が管の軸方向及び周方向で不均一になるのを防止できることに加えて、横断面における長径が垂直なときの回転速度を水平なときの回転速度より遅くすることで、長径が垂直になるときの時間が長くなり、表面張力に抗して蛍光体溶液が流動するようになるので、横断面が楕円形状又は扁平形状を有するガラス管に形成される蛍光体層の膜厚が周方向において不均一になるのを防止できる。   According to this manufacturing method, in addition to preventing the phosphor layer thickness from becoming uneven in the axial direction and circumferential direction of the tube, the rotational speed when the major axis in the cross section is vertical is By making it slower than the rotation speed, the time when the major axis becomes vertical becomes longer, and the phosphor solution flows against the surface tension, so that the glass tube having an elliptical shape or a flat shape is used for the cross section. It is possible to prevent the thickness of the phosphor layer to be formed from becoming uneven in the circumferential direction.

本発明の冷陰極蛍光ランプの製造方法によれば、ガラス管を傾けた状態で蛍光体溶液を乾燥させる工程を設けたことで、ガラス管内の蛍光体溶液の流動性を低くできるので、ガラス管の内壁に形成される蛍光体層の膜厚が管の軸方向で不均一になるのを防止できる。   According to the manufacturing method of the cold cathode fluorescent lamp of the present invention, the flow of the phosphor solution in the glass tube can be lowered by providing the step of drying the phosphor solution while the glass tube is inclined. It is possible to prevent the phosphor layer formed on the inner wall from becoming uneven in the axial direction of the tube.

以下、本発明の実施の形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本実施の形態における蛍光体溶液の乾燥工程を示す図である。ここでは、図7を用いて説明した塗布工程が行われたこととして説明を行う。   FIG. 1 is a diagram illustrating a drying process of a phosphor solution in the present embodiment. Here, it demonstrates as the application | coating process demonstrated using FIG. 7 having been performed.

蛍光体溶液2の塗布工程後においては、図1に示すように、ガラス管1を傾けた状態とし、管上端部に配置した乾燥機3により、塗布された蛍光体溶液を乾燥させる。例えば、乾燥機3の位置を中心にしてガラス管1を回動させることによりガラス管1を傾けることができる。   After the application process of the phosphor solution 2, as shown in FIG. 1, the glass tube 1 is inclined and the applied phosphor solution is dried by the dryer 3 disposed at the upper end of the tube. For example, the glass tube 1 can be tilted by rotating the glass tube 1 around the position of the dryer 3.

このように、ガラス管1を傾けた状態で蛍光体溶液を乾燥させる工程を設けたことで、ガラス管1内における蛍光体溶液の流動性を低くできるので、ガラス管1の内壁に形成される蛍光体層の膜厚が管の軸方向で不均一になるのを防止できる。   As described above, by providing the step of drying the phosphor solution while the glass tube 1 is inclined, the flowability of the phosphor solution in the glass tube 1 can be lowered, so that it is formed on the inner wall of the glass tube 1. It is possible to prevent the thickness of the phosphor layer from becoming nonuniform in the axial direction of the tube.

また、各色の蛍光体の含有量の不均一化を防止できるので、軸方向の色度差を低減することができる。   Moreover, since the non-uniformity of the phosphor content of each color can be prevented, the chromaticity difference in the axial direction can be reduced.

また、傾けた状態のガラス管1の角度を調整することで、蛍光体溶液の流動性を調整できるので、管の軸方向における蛍光体層の膜厚及び色度差を調整することができる。   Moreover, since the fluidity | liquidity of a fluorescent substance solution can be adjusted by adjusting the angle of the glass tube 1 of the inclined state, the film thickness and chromaticity difference of the fluorescent substance layer in the axial direction of a pipe | tube can be adjusted.

また、ガラス管1の角度を変化させながら乾燥を行うようにしてもよい。   Further, drying may be performed while changing the angle of the glass tube 1.

特に、管の軸方向における膜厚の不均一を防止するため、傾けた状態のガラス管が鉛直方向に対して有する角度を70度以上で且つ80度以下とするのが望ましい。   In particular, in order to prevent non-uniform film thickness in the axial direction of the tube, it is desirable that the angle of the tilted glass tube with respect to the vertical direction is 70 degrees or more and 80 degrees or less.

また、本実施の形態の製造方法を、例えば、内径が0.8mm以上8.0mm以下のガラス管を用いた冷陰極蛍光ランプに適用することができる。   Further, the manufacturing method of the present embodiment can be applied to, for example, a cold cathode fluorescent lamp using a glass tube having an inner diameter of 0.8 mm or more and 8.0 mm or less.

次に、本実施の形態では、傾けた状態のガラス管1を管の軸中心に回転させる。このように、ガラス管1を管の軸中心に回転させることで、ガラス管1の内壁上を蛍光体溶液が周回しながら乾燥していくので、蛍光体層の膜厚が周方向において不均一となりムラが発生するのを防止することができる。   Next, in the present embodiment, the tilted glass tube 1 is rotated about the axis of the tube. Thus, by rotating the glass tube 1 about the axis of the tube, the phosphor solution is dried while circling around the inner wall of the glass tube 1, so that the thickness of the phosphor layer is not uniform in the circumferential direction. Therefore, the occurrence of unevenness can be prevented.

なお、傾けた状態のガラス管1の角度を調整しながら回転させるようにしてもよい。   In addition, you may make it rotate, adjusting the angle of the glass tube 1 of the inclined state.

ところで、上記した製造方法を横断面が扁平形状のガラス管1を用いた冷陰極蛍光ランプに適用した場合、図2に示すように、蛍光体溶液は、その表面張力により、横断面の長径の端部近傍に溜まる傾向があり、そのため、周方向の膜厚を均一化することが難しい。   By the way, when the manufacturing method described above is applied to a cold cathode fluorescent lamp using a glass tube 1 having a flat cross section, as shown in FIG. 2, the phosphor solution has a long diameter of the cross section due to its surface tension. There is a tendency to accumulate in the vicinity of the end, and therefore it is difficult to make the film thickness in the circumferential direction uniform.

この不都合を防止するため、本実施の形態では、横断面が扁平形状のガラス管1を用いた場合には、横断面における長径が垂直なときの回転速度を水平なときの回転速度より遅くしている。   In order to prevent this inconvenience, in the present embodiment, when the glass tube 1 having a flat cross section is used, the rotation speed when the major axis in the cross section is vertical is made slower than the rotation speed when it is horizontal. ing.

図3は、横断面が扁平形状のガラス管1を用いた場合の回転速度の推移を示すグラフである。   FIG. 3 is a graph showing the transition of the rotational speed when the glass tube 1 having a flat cross section is used.

図3の横軸に示す回転角aやbのとき、つまり、扁平形状のガラス管1の横断面の長径が垂直なときに回転速度は最低になる。一方、図3に示す回転角cのとき、つまり、長径が水平なときに回転速度が最高になる。例えば、長径が垂直のときの回転速度は10乃至20rpm(回転/分)であり、長径が水平のときの回転速度は120rpm(回転/分)である。   At the rotation angles a and b shown on the horizontal axis in FIG. 3, that is, when the major axis of the cross section of the flat glass tube 1 is vertical, the rotation speed is the lowest. On the other hand, at the rotation angle c shown in FIG. 3, that is, when the major axis is horizontal, the rotation speed becomes maximum. For example, the rotation speed when the major axis is vertical is 10 to 20 rpm (rotation / min), and the rotation speed when the major axis is horizontal is 120 rpm (rotation / min).

図4は、横断面が扁平形状のガラス管1を管軸中心に回転させた場合の各横断面を示す図である。   FIG. 4 is a view showing each cross section when the glass tube 1 having a flat cross section is rotated about the tube axis.

同図の左に示すように、横断面の長径が垂直であり、その長径の下端近傍に蛍光体溶液2が溜まっているときに、ガラス管1を180度回動させると、同図の中央に示すように蛍光体溶液2が見かけ上、長径の上端近傍に移動する。本実施の形態では、同図の中央に示すように長径が垂直なときの回転速度を水平なときの回転速度より遅くしたので、表面張力に抗して蛍光体溶液が流動するようになり、これにより、同図の右に示すよう、長径の上端近傍の膜厚と下端近傍の膜厚とを等しくすることができる。   As shown on the left side of the figure, when the major axis of the cross section is vertical and the phosphor solution 2 is accumulated near the lower end of the major axis, if the glass tube 1 is rotated 180 degrees, the center of the figure As shown, the phosphor solution 2 apparently moves to the vicinity of the upper end of the long diameter. In the present embodiment, as shown in the center of the figure, since the rotation speed when the major axis is vertical is slower than the rotation speed when horizontal, the phosphor solution flows against the surface tension, Thereby, as shown on the right side of the figure, the film thickness near the upper end of the major axis and the film thickness near the lower end can be made equal.

このように、横断面における長径が垂直なときの回転速度を水平なときの回転速度より遅くすることで、長径が垂直になるときの時間が長くなり、表面張力に抗して蛍光体溶液が流動するようになるので、横断面が楕円形状又は扁平形状を有するガラス管に形成される蛍光体層の膜厚が周方向において不均一になるのを防止できる。   Thus, by making the rotational speed when the major axis in the cross section is vertical lower than the rotational speed when it is horizontal, the time when the major axis becomes vertical becomes longer, and the phosphor solution resists the surface tension. Since it flows, it can prevent that the film thickness of the fluorescent substance layer formed in the glass tube which has an elliptical shape or a flat shape in a cross section becomes uneven in the circumferential direction.

なお、上記した回転速度の制御は、横断面が楕円形状を有するガラス管を用いた冷陰極蛍光ランプの製造方法にも適用可能である。   Note that the control of the rotational speed described above can also be applied to a method for manufacturing a cold cathode fluorescent lamp using a glass tube having an elliptical cross section.

図5(a)は、従来の製造方法と本実施の形態の製造方法によりそれぞれ製造された冷陰極蛍光ランプの蛍光体層の膜厚を示す表である。図5(b)は、膜厚の測定箇所を示すガラス管の横断面図である。特に、これらは横断面が扁平形状のガラス管についてのものである。   FIG. 5A is a table showing the film thicknesses of the phosphor layers of the cold cathode fluorescent lamps manufactured by the conventional manufacturing method and the manufacturing method of the present embodiment, respectively. FIG.5 (b) is a cross-sectional view of the glass tube which shows the film thickness measurement location. In particular, these are for glass tubes having a flat cross section.

図5(a)に示すように、従来の製造方法では、横断面の短径の端部(図5(b)の矢印Y1で示す)における蛍光体層の膜厚は9μm程度であり、横断面の長径の端部(図5(b)の矢印Y2で示す)における膜厚20μmよりも薄くなってしまう。これに対し、本実施の形態の製造方法によれば、短径の端部における蛍光体層の膜厚を、長径の端部における膜厚にほぼ等しくなるまで厚くできるので、周方向における蛍光体層の膜厚の均一化を図ることができる。   As shown in FIG. 5A, in the conventional manufacturing method, the film thickness of the phosphor layer at the short-diameter end of the cross section (indicated by the arrow Y1 in FIG. 5B) is about 9 μm. It becomes thinner than the film thickness of 20 μm at the long-diameter end of the surface (indicated by the arrow Y2 in FIG. 5B). On the other hand, according to the manufacturing method of the present embodiment, the thickness of the phosphor layer at the end portion of the short diameter can be increased until it is substantially equal to the film thickness at the end portion of the long diameter. The layer thickness can be made uniform.

図6は、横断面が円形状のガラス管を用いて、従来の製造方法と本実施の形態の製造方法によりそれぞれ製造された冷陰極蛍光ランプの色度偏差を示す図である。特に、図6(a)は、円周方向の色度偏差(x偏差)を縦軸に、円周方向のある点からの距離を横軸にとったグラフであり、図6(b)は、軸方向の色度偏差(y偏差)を縦軸に、ガラス管の端部からの距離を横軸にとったグラフである。また、これらは、内径が2.4mmで長さが300mmのガラス管を備え、ランプ電流を6mAとしたときの冷陰極蛍光ランプのグラフである。   FIG. 6 is a diagram showing chromaticity deviations of cold cathode fluorescent lamps manufactured by a conventional manufacturing method and a manufacturing method of the present embodiment using a glass tube having a circular cross section. In particular, FIG. 6A is a graph in which the chromaticity deviation (x deviation) in the circumferential direction is taken on the vertical axis, and the distance from a point in the circumferential direction is taken on the horizontal axis, and FIG. 3 is a graph in which the chromaticity deviation (y deviation) in the axial direction is taken on the vertical axis and the distance from the end of the glass tube is taken on the horizontal axis. These are graphs of a cold cathode fluorescent lamp provided with a glass tube having an inner diameter of 2.4 mm and a length of 300 mm and a lamp current of 6 mA.

図6(a)に示すように、円周方向の色度偏差については、従来の製造方法による冷陰極蛍光ランプの色度偏差よりも、本実施の形態の製造方法による冷陰極蛍光ランプの色度偏差の方を小さくすることができる。また、図6(b)に示すように、軸方向の色度偏差については、従来の製造方法による色度偏差は0.008程度あったが、本実施の形態の製造方法によれば、色度偏差を0.002程度まで小さくすることができる。   As shown in FIG. 6 (a), the chromaticity deviation in the circumferential direction is not the chromaticity deviation of the cold cathode fluorescent lamp by the conventional manufacturing method, but the color of the cold cathode fluorescent lamp by the manufacturing method of the present embodiment. The degree deviation can be reduced. Further, as shown in FIG. 6B, the chromaticity deviation in the axial direction was about 0.008 by the conventional manufacturing method, but according to the manufacturing method of the present embodiment, the color deviation is The degree deviation can be reduced to about 0.002.

図1は、本実施の形態における蛍光体溶液の乾燥工程を示す図である。FIG. 1 is a diagram illustrating a drying process of a phosphor solution in the present embodiment. 図2は、扁平形状である横断面の長径の端部近傍に蛍光体溶液が溜まる様子を示す横断面図である。FIG. 2 is a cross-sectional view showing a state in which the phosphor solution accumulates in the vicinity of the end portion of the long diameter of the flat cross section. 図3は、横断面が扁平形状のガラス管1を用いた場合の回転速度の推移を示すグラフである。FIG. 3 is a graph showing the transition of the rotational speed when the glass tube 1 having a flat cross section is used. 図4は、横断面が扁平形状のガラス管1を管軸中心に回転させた場合の各横断面を示す図である。FIG. 4 is a view showing each cross section when the glass tube 1 having a flat cross section is rotated about the tube axis. 図5(a)は、従来の製造方法と本実施の形態の製造方法によりそれぞれ製造された冷陰極蛍光ランプの蛍光体層の膜厚を示す表であり、図5(b)は、膜厚の測定箇所を示すガラス管の横断面図である。FIG. 5A is a table showing the film thicknesses of the phosphor layers of the cold cathode fluorescent lamps manufactured by the conventional manufacturing method and the manufacturing method of the present embodiment, and FIG. It is a cross-sectional view of the glass tube which shows the measurement location. 図6は、横断面が円形状のガラス管を用いて、従来の製造方法と本実施の形態の製造方法によりそれぞれ製造された冷陰極蛍光ランプの色度偏差を示す図であり、図6(a)は、円周方向の色度偏差のグラフであり、図6(b)は、軸方向の色度偏差のグラフである。FIG. 6 is a diagram showing the chromaticity deviations of the cold cathode fluorescent lamps manufactured by the conventional manufacturing method and the manufacturing method of the present embodiment, using a glass tube having a circular cross section. a) is a graph of chromaticity deviation in the circumferential direction, and FIG. 6B is a graph of chromaticity deviation in the axial direction. 図7は、従来における蛍光体溶液の塗布及び乾燥の工程を示す図である。FIG. 7 is a diagram showing a conventional phosphor solution coating and drying process.

符号の説明Explanation of symbols

1…ガラス管
2…蛍光体溶液
3…乾燥機
DESCRIPTION OF SYMBOLS 1 ... Glass tube 2 ... Phosphor solution 3 ... Dryer

Claims (3)

ガラス管の内壁に蛍光体溶液を塗布する工程と、前記ガラス管を傾けた状態で前記塗布された蛍光体溶液を乾燥させる工程とを備えることを特徴とする冷陰極蛍光ランプの製造方法。   A method of manufacturing a cold cathode fluorescent lamp, comprising: applying a phosphor solution to an inner wall of a glass tube; and drying the applied phosphor solution while the glass tube is inclined. 前記傾けた状態のガラス管の角度を調整することを特徴とする請求項1記載の冷陰極蛍光ランプの製造方法。   2. The method of manufacturing a cold cathode fluorescent lamp according to claim 1, wherein an angle of the tilted glass tube is adjusted. 前記傾けた状態のガラス管が鉛直方向に対して有する角度は70度以上で且つ80度以下であることを特徴とする請求項1または2記載の冷陰極蛍光ランプの製造方法。






































3. The method of manufacturing a cold cathode fluorescent lamp according to claim 1, wherein the inclined glass tube has an angle of 70 degrees or more and 80 degrees or less with respect to the vertical direction.






































JP2004367835A 2004-12-20 2004-12-20 Manufacturing method of cold-cathode fluorescent lamp Pending JP2006173063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367835A JP2006173063A (en) 2004-12-20 2004-12-20 Manufacturing method of cold-cathode fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367835A JP2006173063A (en) 2004-12-20 2004-12-20 Manufacturing method of cold-cathode fluorescent lamp

Publications (1)

Publication Number Publication Date
JP2006173063A true JP2006173063A (en) 2006-06-29

Family

ID=36673560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367835A Pending JP2006173063A (en) 2004-12-20 2004-12-20 Manufacturing method of cold-cathode fluorescent lamp

Country Status (1)

Country Link
JP (1) JP2006173063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034813A1 (en) * 2005-09-20 2007-03-29 Mitsubishi Rayon Co., Ltd. Polyester resin for toner, method for producing same and toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034813A1 (en) * 2005-09-20 2007-03-29 Mitsubishi Rayon Co., Ltd. Polyester resin for toner, method for producing same and toner

Similar Documents

Publication Publication Date Title
JP2010161070A (en) Methods of manufacturing optical element and display device including the optical element
JP2007203293A (en) Method for manufacturing slit coater for manufacturing display device, and method for manufacturing display device using this slit coater
JP4451836B2 (en) Phosphor coating method
JP2006173063A (en) Manufacturing method of cold-cathode fluorescent lamp
US7032509B2 (en) Apparatus and method of fabricating electro luminescence display device
JP2008287901A (en) Fluorescent lamp manufacturing method
JP2004349147A (en) Coated film layer forming method, and manufacturing method and manufacturing device of lamp
JP2006172978A (en) Fluorescent lamp, backlight unit, liquid crystal television, and manufacturing method of fluorescent lamp
JP5332711B2 (en) Fluorescent lamp and method for manufacturing fluorescent lamp
JP2007012387A (en) Manufacturing method of organic electroluminescent display device
JP2007197478A (en) 3-wavelength phosphor and fluorescent lamp
JP2004342427A (en) Coating film layer forming method, lamp manufacturing method and apparatus
JP2006114292A (en) Manufacturing method of lamp
JP2005310736A (en) Manufacturing method for fluorescent lamp
JP2007194147A (en) Fluorescent lamp, method of forming phosphor film, backlight unit, and liquid crystal display device equipped with backlight unit
KR100326763B1 (en) Method manufacturing rib for Plasma Display Panel
JP2004186090A (en) Cold cathode fluorescent lamp and its manufacturing method
JP2007005035A (en) Manufacturing method of lamp, lamp, and fluorescent lamp
JPH06203752A (en) Manufacture of fluorescent screen for color cathode-ray tube
JPS63271861A (en) Fluorescent lamp
JP2006202515A (en) Cold cathode fluorescent lamp
JP2010232124A (en) Forming method of phosphor coat and cold-cathode discharge tube
KR100287736B1 (en) Bulkhead Formation Method of Plasma Display Panel
JP5591081B2 (en) Fluorescent lamp manufacturing method, fluorescent lamp, bulb-type fluorescent lamp, and illumination device
JPS60165035A (en) Fluorescent lamp for copy and its manufacture