JP2006170503A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2006170503A
JP2006170503A JP2004362356A JP2004362356A JP2006170503A JP 2006170503 A JP2006170503 A JP 2006170503A JP 2004362356 A JP2004362356 A JP 2004362356A JP 2004362356 A JP2004362356 A JP 2004362356A JP 2006170503 A JP2006170503 A JP 2006170503A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
temperature
compressor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004362356A
Other languages
Japanese (ja)
Inventor
Minoru Kobayashi
小林  実
Hideyuki Matsushima
秀行 松島
Kiwa Mogi
喜和 茂木
Yoshiaki Notoya
義明 能登谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004362356A priority Critical patent/JP2006170503A/en
Publication of JP2006170503A publication Critical patent/JP2006170503A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of reducing residual attachment of condensate on a fin of a heat exchanger in a cooling operation, reducing re-evaporation into a room, shortening a time to dry, and reducing return of moisture into the room. <P>SOLUTION: This air conditioner comprises a refrigerating cycle constituted of a compressor, an indoor heat exchanger, a throttle device and an outdoor heat exchanger connected by refrigerant pipes, and a control device for controlling rotational frequency of the compressor according to indoor temperature or indoor humidity, and indoor set temperature or indoor set humidity. The control device implements a water reducing operation for decelerating the compressor in comparison with the rotational frequency of the compressor controlled according to the indoor temperature or indoor humidity, and indoor set temperature or indoor set humidity, for a prescribed time, and then stops the operation or implements the other operation, when the operation applying the indoor heat exchanger as a cooling unit, is stopped, or the operation gives way to the other operation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気調和機に係り、特に圧縮機の回転数を制御する空気調和機に好適なものである。   The present invention relates to an air conditioner, and is particularly suitable for an air conditioner that controls the rotational speed of a compressor.

空気調和機で冷房運転を行った場合、室内機内の熱交換器は冷凍サイクルの冷却器として作用するため冷却されており、通過する室内空気流に含まれている水分を凝縮する。この結果、熱交換器の表面には凝縮水が付着する。熱交換器から滴下した凝縮水は露受け皿に集められ、ドレンホースを介して室外に排出される。更に、冷房運転時には構成部材である送風ファンや通風路の表面等も、冷たい室内空気流により冷却されると共に相対湿度の高い状態となる。従って、かかる状態で冷房運転を終了した場合、室内機内部は熱交換器の表面や露受け皿に凝縮水が付着したままとなり、自然に蒸発し乾燥するまでの間、高湿状態が維持されることとなる。   When the cooling operation is performed by the air conditioner, the heat exchanger in the indoor unit is cooled because it acts as a cooler of the refrigeration cycle, and condenses moisture contained in the passing indoor air flow. As a result, condensed water adheres to the surface of the heat exchanger. Condensed water dripped from the heat exchanger is collected in a dew receiving tray and discharged to the outside through a drain hose. Further, during the cooling operation, the components such as the blower fan and the surface of the ventilation path, which are constituent members, are cooled by the cold indoor air flow and have a high relative humidity. Therefore, when the cooling operation is finished in such a state, the condensed water remains on the surface of the heat exchanger and the dew tray in the indoor unit, and the high humidity state is maintained until it naturally evaporates and dries. It will be.

一方、室内空気中を浮遊しているカビ胞子や細菌類等は、温湿度環境が発育可能範囲で且つ餌となる物質が存在すれば、付着した位置で温湿度環境に応じた早さで発芽、成長を始める。従って前述の付着したままの凝縮水の量が多いと、その分、乾燥までに長い時間がかかり、高湿状態が維持される時間が長くなる。かかる生育可能環境が長時間維持されると、例えばカビ胞子では発芽した菌糸に胞子ができ、成長した胞子の飛散、再付着、今度は再びその胞子が発芽を開始する過程となり、以後同様に急速に増殖する。かかる増殖の過程が順次進むと、コロニーを形成した大量のカビが作る分泌物による臭い、カビ胞子、老廃物等が吐出気流と共に室内に吐出され、室内の居住者に不快感を与える。また、冷房運転から除湿運転に切り替えられ、凝縮水が付着した熱交換器が加熱されると、その凝縮水が室内に戻されるため、室内の湿度が上昇し、この面からも室内の居住者に不快感を与える。   On the other hand, mold spores, bacteria, etc. floating in the indoor air will germinate at a fast position according to the temperature / humidity environment where the temperature / humidity environment can grow and if there is a substance to be used as food. , Start growing. Accordingly, if the amount of the condensed water that remains attached is large, it takes a long time to dry, and the time for maintaining the high humidity state becomes long. If such a viable environment is maintained for a long time, for example, mold spores form spores on the germinated mycelium, and the spores of the grown spores are scattered and reattached. To proliferate. As the growth process proceeds in sequence, odors, mold spores, wastes, etc. due to secretions produced by a large amount of fungi forming colonies are discharged into the room together with the discharged air current, causing discomfort to indoor residents. In addition, when the cooling operation is switched to the dehumidifying operation and the heat exchanger to which the condensed water is attached is heated, the condensed water is returned to the room, so that the indoor humidity rises. Gives you discomfort.

このような室内機内部汚染を防ぐ一つの簡易的な解決方法としては、カビ胞子や細菌類等は乾燥状態に弱いため、室内機内部を乾燥状態としてカビ等の増殖を抑える方法がある。また、熱交換器に残存している凝縮水を減少させることも、室内機内部を乾燥状態にしてカビカビ等の増殖を抑え、しかも室内に戻る湿気を減少させる方法として有効である。この種の従来技術として、特開2003−14334号公報(特許文献1)、特開2002−286278号公報(特許文献2)、特開2003−322385号公報(特許文献3)、特開2002−221373号公報(特許文献4)が知られている。   As one simple solution for preventing such indoor unit contamination, there is a method of suppressing the growth of mold and the like by making the interior of the indoor unit dry because mold spores and bacteria are vulnerable to the dry state. In addition, reducing the condensed water remaining in the heat exchanger is also effective as a method of reducing the humidity returning to the room while keeping the interior of the indoor unit in a dry state to suppress the growth of mold and the like. As this kind of prior art, JP2003-143334A (Patent Document 1), JP2002-286278A (Patent Document 2), JP2003-322385A (Patent Document 3), JP2002-2002A, and the like. No. 221373 (Patent Document 4) is known.

特許文献1は、冷房運転終了時に、サイクルドライ運転とこれに引続く送風運転により熱交換器を乾燥させ、また、除湿運転終了時は送風運転で熱交換器を乾燥させるものである。   In Patent Document 1, the heat exchanger is dried by the cycle dry operation and the subsequent air blowing operation at the end of the cooling operation, and the heat exchanger is dried by the air blowing operation at the end of the dehumidifying operation.

特許文献2は、冷房運転終了時に、乾燥モード除湿運転で熱交換器を乾燥させるものである。   Patent Document 2 is for drying a heat exchanger in a dry mode dehumidifying operation at the end of a cooling operation.

特許文献3は、除湿運転開始後の所定時間に圧縮機を最低回転数で運転し、再熱器の温度の上がり方を緩慢にし、冷房運転時に除湿サイクルの再熱器部に付いていた凝縮水の急激な蒸発を規制して、吹出し空気が過飽和にならないようにして室内への霧吹きや水飛びを防止するものである。   In Patent Document 3, the compressor is operated at the minimum number of revolutions for a predetermined time after the start of the dehumidifying operation, the temperature rise of the reheater is slowed down, and the condensation attached to the reheater part of the dehumidifying cycle during the cooling operation By restricting the rapid evaporation of water, the sprayed air is prevented from being oversaturated to prevent spraying into the room or splashing water.

特許文献4は、冷房運転から除湿運転への切換時に除湿運転を低速の暖房気味ドライから開始するものである。   In Patent Document 4, the dehumidifying operation is started from low-speed heating-like dry at the time of switching from the cooling operation to the dehumidifying operation.

特開2003−14334号公報JP 2003-14334 A 特開2002−286278号公報JP 2002-286278 A 特開2003−322385号公報JP 2003-322385 A 特開2002−221373号公報JP 2002-221373 A

特許文献1では、サイクルドライ運転で除湿はしているものの、細かく見ると、冷房運転時にサイクルドライの再熱器部に付いた凝縮水は一端、蒸発して室内に戻ってしまい、それを補うようにサイクルドライ運転で除湿しているものである。つまり、冷房運転時にサイクルドライの再熱器部に付いた凝縮水は全量再蒸発して室内に戻っており、これをサイクルドライ運転でもう一度凝縮させて室外に排出するものである。更に引続いて行われる送風乾燥運転でサイクルドライ運転の冷却器部分の凝縮水も再蒸発して室内に戻っている。   In Patent Document 1, although dehumidification is performed in the cycle dry operation, when viewed closely, the condensed water attached to the reheater part of the cycle dry during the cooling operation is once evaporated to return to the room to compensate for it. Thus, it is dehumidified by cycle dry operation. That is, all the condensed water attached to the reheater of the cycle dry during the cooling operation is re-evaporated and returned to the room, and is condensed again in the cycle dry operation and discharged to the outside. Further, the condensed water in the cooler portion of the cycle dry operation is re-evaporated and returned to the room in the subsequent blow drying operation.

特許文献2でも、やはり冷房運転時に除湿サイクルの再熱器部に付いた凝縮水は全量再蒸発されて室内に戻っており、これを乾燥モード除湿運転でもう一度凝縮させて室外に排出するものである。また、乾燥モード除湿運転の冷却器部分についた凝縮水は未乾燥のまま残されている。   Even in Patent Document 2, all the condensed water attached to the reheater part of the dehumidification cycle is re-evaporated and returned to the room during the cooling operation, and is condensed again in the dry mode dehumidification operation and discharged to the outside. is there. Further, the condensed water attached to the cooler portion in the dry mode dehumidifying operation is left undried.

特許文献3では、冷房運転時に除湿サイクルの再熱器部分に付着していた凝縮水を緩慢に蒸発させるものであり、最終的にはこの部分の凝縮水の全量が再蒸発されて室内に戻されるものであり、これを除湿運転でもう一度凝縮させて室外に排出するものである。   In Patent Document 3, the condensed water adhering to the reheater portion of the dehumidification cycle during the cooling operation is slowly evaporated, and finally the entire amount of the condensed water in this portion is re-evaporated and returned to the room. This is condensed again in the dehumidifying operation and discharged outside the room.

特許文献4は、冷房運転から除湿運転への切換時に除湿運転を低速の暖房気味ドライから開始するものであり、冷却運転時に除湿サイクルの再熱器部分に付着していた凝縮水は最終的に全量再蒸発されて室内に戻ってしまい、これを除湿運転でもう一度凝縮させて室外に排出するものである。   In Patent Document 4, the dehumidifying operation is started from low-speed heating-like dry when switching from the cooling operation to the dehumidifying operation, and the condensed water adhering to the reheater portion of the dehumidifying cycle during the cooling operation is finally The whole amount is re-evaporated and returned to the room, which is condensed again in the dehumidifying operation and discharged outside the room.

本発明の目的は、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を提供することにある。   The purpose of the present invention is to reduce the amount of residual condensed water condensed on the fins of the heat exchanger during the cooling operation, reduce re-evaporation into the room, shorten the time to drying, and reduce the moisture in the room. The object is to provide an air conditioner with reduced return.

前述の目的を達成するための本発明の第1の態様は、圧縮機、室内熱交換器、絞り装置及び室外熱交換器を冷媒配管で接続してなる冷凍サイクルと、運転時に室内温度または室内湿度と室内設定温度または室内設定湿度とに応じて前記圧縮機の回転数を制御する制御装置とを備えた空気調和機において、前記制御装置は、前記室内熱交換器を冷却器とした運転を停止または他の運転に移行する際に、室内温度または室内湿度と室内設定温度または室内設定湿度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速とする減水運転を所定時間行なってから停止または他の運転に移行するように制御する構成としたものである。   The first aspect of the present invention for achieving the above-described object includes a refrigeration cycle in which a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger are connected by refrigerant piping, and an indoor temperature or an indoor temperature during operation. In an air conditioner comprising a control device that controls the number of revolutions of the compressor according to humidity and indoor set temperature or indoor set humidity, the control device performs an operation using the indoor heat exchanger as a cooler. When stopping or shifting to another operation, the water reducing operation is performed for a predetermined time to reduce the compressor speed by the number of rotations of the compressor controlled according to the room temperature or room humidity and the room set temperature or room set humidity. It is set as the structure controlled so that it may stop or transfer to another driving | operation after starting.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記制御装置は、前記減水運転時に、前記絞り装置の絞り量をそれまでの絞り量より小さく制御すること。
(2)前記制御装置は、前記減水運転時に、前記室外熱交換器に通風する室外送風機を停止またはそれまでの回転数より低速で運転すること。
(3)前記制御装置は、前記減水運転時に、前記室内熱交換器に通風する室内送風機を停止またはそれまでの回転数より低速で運転すること。
A more preferable specific configuration example in the first aspect of the present invention is as follows.
(1) The control device controls the throttle amount of the throttle device to be smaller than the throttle amount so far during the water reduction operation.
(2) The controller is configured to stop or operate the outdoor blower that ventilates the outdoor heat exchanger at a lower speed than the number of rotations until then during the water reduction operation.
(3) During the water reduction operation, the control device stops the indoor blower passing through the indoor heat exchanger or operates at a lower speed than the number of rotations up to that time.

また、本発明の第2の態様は、圧縮機、2つの室内熱交換器、主絞り装置、除湿絞り装置及び室外熱交換器を冷媒配管で接続してなる冷凍サイクルと、運転時に室内温度と室内設定温度とに応じて前記圧縮機の回転数を制御する制御装置とを備え、前記冷凍サイクルは、前記2つの室内熱交換器の両方を冷却器とした冷房サイクルと、前記2つの室内熱交換器の一方を冷却器とし他方を加熱器とする除湿サイクルとに切り替えられる空気調和機において、前記制御装置は、除湿運転モードで、前記冷房サイクルから停止時間を経て前記除湿サイクルに切り替える際に、前記冷房サイクルによる室内温度と室内設定温度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速とする減水運転を所定時間してから停止時間に至るように制御する構成としたものである。   The second aspect of the present invention includes a refrigeration cycle in which a compressor, two indoor heat exchangers, a main throttle device, a dehumidifying throttle device, and an outdoor heat exchanger are connected by refrigerant piping, and an indoor temperature during operation. A control device that controls the number of revolutions of the compressor according to the indoor set temperature, and the refrigeration cycle includes a cooling cycle in which both the two indoor heat exchangers are coolers, and the two indoor heats. In the air conditioner that can be switched to a dehumidification cycle in which one of the exchangers is a cooler and the other is a heater, the control device switches from the cooling cycle to the dehumidification cycle after a stop time in the dehumidifying operation mode. The water reducing operation for reducing the speed of the compressor from the number of rotations of the compressor controlled in accordance with the indoor temperature and the indoor set temperature by the cooling cycle is controlled so as to reach a stop time after a predetermined time. It is obtained by a configuration in which.

係る本発明の第2の態様におけるより好ましい具体的構成例は次の通りである。
(1)前記制御装置は、前記減水運転時の所定時間を前記冷房サイクルから前記除湿サイクルに切り替える際の停止時間より短くしたこと。
(2)前記制御装置は、前記減水運転時に、前記冷房サイクルによる室内温度及び室内湿度と室内設定温度及び室内設定湿度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速に制御すること。
A more preferable specific configuration example in the second aspect of the present invention is as follows.
(1) The said control apparatus made the predetermined time at the time of the said water reduction operation shorter than the stop time at the time of switching from the said cooling cycle to the said dehumidification cycle.
(2) During the water reduction operation, the control device causes the compressor to run at a lower speed than the number of rotations of the compressor controlled according to the indoor temperature and indoor humidity, the indoor set temperature and the indoor set humidity due to the cooling cycle. To control.

係る本発明の第1または第2の態様におけるより好ましい具体的構成例は次の通りである。
(3)前記室内熱交換器に表面を親水化処理したアルミ製フィンを使用したこと。
A more preferable specific configuration example in the first or second aspect of the present invention is as follows.
(3) An aluminum fin having a hydrophilic surface is used for the indoor heat exchanger.

本発明によれば、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を提供することができる。   According to the present invention, the remaining amount of condensed water condensed on the fins of the heat exchanger during the cooling operation is reduced, the re-evaporation into the room is reduced, the time until drying is shortened, and the moisture inside the room is reduced. An air conditioner with reduced return can be provided.

以下、本発明の一実施例の空気調和機を図面を用いて説明する。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施例に係る空気調和機を示すブロック図である。10は空気調和機の室内機、20は室内機10と協働して冷暖房・除湿の運転を行ない室内を空気調和する室外機である。   FIG. 1 is a block diagram showing an air conditioner according to an embodiment of the present invention. Reference numeral 10 denotes an indoor unit of an air conditioner, and reference numeral 20 denotes an outdoor unit that performs air conditioning / dehumidification operation in cooperation with the indoor unit 10 to air-condition the room.

室内機制御装置18は、室内温度を検出する室内温度検出手段12と、湿度を検出する湿度検出手段13と、室内温度を設定する室内温度設定手段14と、室内の湿度を設定する湿度設定手段15とを備えている。この室内機制御装置18は、室内温度検出手段12と湿度検出手段13と室内温度設定手段14と湿度設定手段15が出力する信号に基づいて、圧縮機29の回転数指令値を作成し、室内送風機11と風向板(図示せず)と除湿絞り装置16等の制御を実行する。   The indoor unit control device 18 includes an indoor temperature detecting means 12 for detecting the indoor temperature, a humidity detecting means 13 for detecting the humidity, an indoor temperature setting means 14 for setting the indoor temperature, and a humidity setting means for setting the indoor humidity. 15. The indoor unit control device 18 creates a rotational speed command value for the compressor 29 based on signals output from the indoor temperature detecting means 12, the humidity detecting means 13, the indoor temperature setting means 14, and the humidity setting means 15, Control of the air blower 11, a wind direction board (not shown), the dehumidifying squeeze device 16, etc. is performed.

室外機制御装置28は、この室内機制御装置18から送られてくる信号を入力して圧縮機29と室外送風機21と冷暖房絞り装置26と四方弁30等を制御する。なお、室内機制御装置18と室外機制御装置28とにより制御装置が構成されている。   The outdoor unit control device 28 inputs a signal sent from the indoor unit control device 18 and controls the compressor 29, the outdoor blower 21, the cooling / heating throttle device 26, the four-way valve 30, and the like. The indoor unit control device 18 and the outdoor unit control device 28 constitute a control device.

また、本実施例に係る空気調和機の冷凍サイクルは、図4に示すように、圧縮機29、四方弁30、室外熱交換器31、冷暖房絞り装置26、第1の室内熱交換器32a(除湿運転時の再熱器)、除湿絞り装置16、第2の室内熱交換器32b(除湿運転時の冷却器)を有しており、これら構成要素がこの順で冷媒配管によって接続されている。なお、室内熱交換器32(32の符号は図示省略)を構成する第1の室内熱交換器32aと第2の室内熱交換器32bは、超親水化処理したフィンを有するフィンチューブ型熱交換器で構成されている。冷暖房絞り装置26は電動膨張弁で構成されている。除湿絞り装置16は除湿膨張弁16aと除湿開閉弁16bとから構成されている。   Further, as shown in FIG. 4, the refrigeration cycle of the air conditioner according to the present embodiment includes a compressor 29, a four-way valve 30, an outdoor heat exchanger 31, an air conditioner / throttle device 26, and a first indoor heat exchanger 32a ( A reheater at the time of dehumidifying operation), a dehumidifying throttle device 16, and a second indoor heat exchanger 32b (cooler at the time of dehumidifying operation), and these components are connected by refrigerant piping in this order. . In addition, the 1st indoor heat exchanger 32a and the 2nd indoor heat exchanger 32b which comprise the indoor heat exchanger 32 (The code | symbol of 32 is abbreviate | omitted illustration) are the fin tube type heat exchange which has the fin hydrophilized. It is composed of a vessel. The cooling / heating throttle device 26 is constituted by an electric expansion valve. The dehumidifying throttle device 16 includes a dehumidifying expansion valve 16a and a dehumidifying on / off valve 16b.

先ず、冷房運転時の冷凍サイクルの動作を説明する。圧縮機29によって圧縮された高温高圧のガス冷媒は、冷房・除湿運転側に切り替えられた四方弁30を介して室外熱交換器31に流入し、この室外熱交換器31で外気に熱を放出することで凝縮して高圧の液冷媒となる。   First, the operation of the refrigeration cycle during the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 29 flows into the outdoor heat exchanger 31 via the four-way valve 30 switched to the cooling / dehumidifying operation side, and releases heat to the outside air by the outdoor heat exchanger 31. This condenses into a high-pressure liquid refrigerant.

この冷媒は冷暖房絞り装置26を通過する間に減圧されて低温低圧の冷媒となって室内機10に流入する。冷房運転時に除湿用絞り装置16の膨張弁16aは全開して絞り作用を行なわないので、第1の室内熱交換器32a、第2の室内熱交換器32bは共に冷却器として働く。   This refrigerant is reduced in pressure while passing through the air conditioning / throttle device 26 and becomes a low-temperature and low-pressure refrigerant and flows into the indoor unit 10. During the cooling operation, the expansion valve 16a of the dehumidifying expansion device 16 is fully opened and does not perform the throttling action, so both the first indoor heat exchanger 32a and the second indoor heat exchanger 32b function as coolers.

一方、室内送風機11により室内空気を吸込み、第1の室内熱交換器32a、第2の室内熱交換器32bに流通させ、冷媒と熱交換させて流通空気を冷却する。冷媒温度が低ければ、流入空気中の水分が凝縮され凝縮水として室外に排出されると共に、冷却、除湿された空気が室内に吹出される。   On the other hand, indoor air is sucked in by the indoor blower 11 and is circulated through the first indoor heat exchanger 32a and the second indoor heat exchanger 32b, and heat is exchanged with the refrigerant to cool the circulating air. If the refrigerant temperature is low, moisture in the inflowing air is condensed and discharged to the outside as condensed water, and the cooled and dehumidified air is blown out into the room.

次に、除湿運転時の冷凍サイクルの動作を説明する。圧縮機29によって圧縮された高温高圧のガス冷媒は、冷房・除湿運転側に切り替えられた四方弁30を介して室外熱交換器31に流入する。   Next, the operation of the refrigeration cycle during the dehumidifying operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 29 flows into the outdoor heat exchanger 31 through the four-way valve 30 switched to the cooling / dehumidifying operation side.

除湿運転時には室外送風機21は冷房運転時より回転数の低い除湿回転数で回転しているので、室外熱交換器31から外気への熱の放出は減少し、高圧冷媒の一部は未凝縮のままとなる。除湿運転時には冷暖房絞り装置26を全開しているので、一部が未凝縮の高圧冷媒はそのまま室内機10の第1の室内熱交換器32aに流入する。   During the dehumidifying operation, the outdoor blower 21 rotates at a dehumidifying rotational speed that is lower than that during the cooling operation. Therefore, heat release from the outdoor heat exchanger 31 to the outside air is reduced, and part of the high-pressure refrigerant is not condensed. Will remain. Since the air conditioning and throttling device 26 is fully opened during the dehumidifying operation, the partially uncondensed high-pressure refrigerant flows into the first indoor heat exchanger 32a of the indoor unit 10 as it is.

この第1の室内熱交換器32aで一部が未凝縮の高圧冷媒は室内送風機11により流通される室内空気に放熱し液化し、第1の室内熱交換器32aは再熱器として働く。除湿運転時に除湿開閉弁16bが閉じ除湿膨張弁16aが所定の絞り作用を行なうので、第1の室内熱交換器32aから除湿膨張弁16aに入った液化冷媒は減圧されて低温低圧の冷媒となって第2の室内熱交換器32bに入り、冷却器として働いて室内送風機11により流通される室内空気を冷却、除湿する。   The high-pressure refrigerant partially uncondensed in the first indoor heat exchanger 32a radiates and liquefies the indoor air circulated by the indoor blower 11, and the first indoor heat exchanger 32a functions as a reheater. During the dehumidifying operation, the dehumidifying on-off valve 16b is closed and the dehumidifying expansion valve 16a performs a predetermined throttling action, so that the liquefied refrigerant that has entered the dehumidifying expansion valve 16a from the first indoor heat exchanger 32a is decompressed to become a low-temperature and low-pressure refrigerant. Then, the air enters the second indoor heat exchanger 32b and functions as a cooler to cool and dehumidify the indoor air circulated by the indoor blower 11.

これによって、室内送風機11により吸込まれた室内空気は、第1の室内熱交換器32aで加熱され、第2の室内熱交換器32bで冷却、除湿されるので、吸込み空気に近い温度で、湿度が低下した乾燥空気として室内に吹出される。   As a result, the indoor air sucked by the indoor blower 11 is heated by the first indoor heat exchanger 32a and cooled and dehumidified by the second indoor heat exchanger 32b. Is blown into the room as dry air.

次に、室内機制御装置18の動作を図2と図3を併用して説明する。図2は本実施例の空気調和機の空気調和運転モードを除湿モードに設定して運転した場合の冷房運転から除湿運転に切換わる時の室内温度、湿度及び圧縮機回転数の時間変化を示したグラフであり、図3は図2の動作詳細を説明するフローチャートである。空気調和対象の部屋の条件が高温高湿であるとして説明を進める。   Next, the operation of the indoor unit control device 18 will be described with reference to FIGS. FIG. 2 shows changes over time in room temperature, humidity, and compressor rotation speed when switching from cooling operation to dehumidification operation when the air conditioner operation mode of the present embodiment is set to the dehumidification mode. FIG. 3 is a flowchart for explaining the operation details of FIG. The description will be made assuming that the condition of the air-conditioned room is high temperature and high humidity.

空気調和運転モードを除湿モードに設定した場合、運転開始時、室内設定温度より室内温度が高い場合は冷房運転し、室内設定温度より室内温度が低く、かつ、室内設定湿度より室内の湿度が高い場合は除湿運転する。また、室内設定温度より室内温度が低く、かつ、室内設定湿度より室内の湿度が低い場合は、送風機11、圧縮機29の運転を止めて室内温度、湿度の監視を行う。   When the air-conditioning operation mode is set to the dehumidifying mode, at the start of operation, if the room temperature is higher than the indoor set temperature, the cooling operation is performed, the indoor temperature is lower than the indoor set temperature, and the indoor humidity is higher than the indoor set humidity. If so, dehumidify. When the room temperature is lower than the indoor set temperature and the indoor humidity is lower than the indoor set humidity, the fan 11 and the compressor 29 are stopped and the room temperature and humidity are monitored.

この場合、室内を高温高湿と想定しているので、空気調和機は運転開始時に冷房運転を行ない、圧縮機29の回転数は、室内温度と室内設定温度との温度差に応じた値に制御され、時間が経過するにつれ、室内温度が室内設定温度に近づくと共に湿度も低下してゆき、圧縮機29の回転数もNc1→Nc4と低下してゆく。   In this case, since the room is assumed to be hot and humid, the air conditioner performs a cooling operation at the start of operation, and the rotation speed of the compressor 29 is a value corresponding to the temperature difference between the room temperature and the room set temperature. As the time elapses, the room temperature approaches the room set temperature and the humidity decreases, and the rotational speed of the compressor 29 also decreases from Nc1 to Nc4.

室内温度が室内設定温度(TS℃)から、空気調和機が過敏に応答しないように定めたヒステリシス分(Th℃)を減じたTS−Thに達した時点で室内機制御装置18は冷却器についた凝縮水を速やかに流下させて、室内熱交換器32(冷却器)に残る凝縮水の量を減ずる減水運転制御に入る。   When the indoor temperature reaches TS-Th obtained by subtracting the hysteresis (Th ° C.) determined so that the air conditioner does not respond sensitively from the indoor set temperature (TS ° C.), the indoor unit controller 18 is attached to the cooler. The condensed water that has flowed down is quickly flowed down, and the water reduction operation control is started to reduce the amount of condensed water remaining in the indoor heat exchanger 32 (cooler).

ステップS1で減水運転制御を開始する。ステップS2で、圧縮機29の回転数をチェックし、予め定めた減水運転に適した低速回転数(Nps)であればステップS30に進み、そうでなければステップS10に進む。   In step S1, water reduction operation control is started. In step S2, the rotation speed of the compressor 29 is checked. If the rotation speed is low (Nps) suitable for the predetermined water reduction operation, the process proceeds to step S30. Otherwise, the process proceeds to step S10.

減水運転制御に入った直後は、圧縮機29の回転数は室内温度と室内設定温度との温度差に応じた値に制御され低速回転していないので、ステップS10に進み、予め定めた減水運転の運転時間(t分間)を大インターバルとしてセットし、ステップS11で冷凍サイクルの応答が過敏にならないように定めた制御間隔を小インターバルとしてセットする。この減水運転の運転時間は、長すぎると消費電力の増加を招くので、冷房運転から除湿運転に切り替えられる際に設けられる停止時間より短く設定されている。   Immediately after entering the water reduction operation control, since the rotation speed of the compressor 29 is controlled to a value corresponding to the temperature difference between the room temperature and the indoor set temperature and does not rotate at a low speed, the process proceeds to step S10 and a predetermined water reduction operation is performed. The operation time (t minutes) is set as a large interval, and the control interval determined so that the response of the refrigeration cycle does not become hypersensitive in step S11 is set as a small interval. Since the operation time of this water reduction operation causes an increase in power consumption if it is too long, it is set shorter than the stop time provided when switching from the cooling operation to the dehumidifying operation.

次に、ステップS12で圧縮機29の回転数を減水運転に適した低速の回転数(Nps)に、ステップS13で冷房運転時の主冷媒回路の絞り装置である冷暖房絞り装置26を緩め減水運転に適した絞り量に、ステップS14で室外送風機21を減水運転に適した低速の回転数に制御するよう室外機20に指示する。減水運転に適した低速の回転数(Nps)は、室内温度と室内設定温度との温度差に応じた値に制御される圧縮機29の回転数より低く設定されている。   Next, in step S12, the rotation speed of the compressor 29 is reduced to a low speed rotation speed (Nps) suitable for water reduction operation, and in step S13, the cooling / heating expansion device 26, which is the expansion device of the main refrigerant circuit at the time of cooling operation, is loosened to reduce water operation. In step S14, the outdoor unit 20 is instructed to control the outdoor blower 21 to a low speed suitable for water reduction operation. The low-speed rotation speed (Nps) suitable for the water reduction operation is set lower than the rotation speed of the compressor 29 controlled to a value corresponding to the temperature difference between the indoor temperature and the indoor set temperature.

このように圧縮機29の回転数を低速にするのは、減水運転中に冷凍サイクルを循環する冷媒の循環量が減少し、室内熱交換器の蒸発圧力が上昇し、蒸発温度が上昇することを意図したものである。また冷暖房絞り装置26を緩めるのは、室内熱交換器の蒸発圧力が上昇し、蒸発温度が上昇することを意図したものである。また室外送風機21を低速の回転数にするのは、凝縮圧力が上昇し、つられて蒸発圧力も上昇して蒸発温度が上昇することを意図したものである。   The reason why the rotation speed of the compressor 29 is reduced in this way is that the amount of refrigerant circulating in the refrigeration cycle during the water reduction operation decreases, the evaporation pressure of the indoor heat exchanger increases, and the evaporation temperature increases. Is intended. In addition, the air-conditioning expansion / contraction device 26 is loosened in order to increase the evaporation pressure of the indoor heat exchanger and increase the evaporation temperature. The reason why the outdoor fan 21 is set to a low speed is that the condensation pressure rises and the evaporation pressure rises and the evaporation temperature rises.

個々の変化量の蒸発温度に及ぼす影響は一定ではなく、他の変化量の大小によってもまた後述する室内送風機の回転数の変化量によっても変ってくる。このため予め詳細な検討を行ない前述の圧縮機29の回転数、冷暖房絞り装置26の絞り量及び室外送風機21の回転数の変化量並びに後述する室内送風機11の回転数の変化量を適正な範囲に定めておく必要が有る。   The influence of each change amount on the evaporation temperature is not constant, and changes depending on the amount of other change amounts and the change amount of the rotational speed of the indoor blower described later. For this reason, detailed examination is performed in advance, and the above-described rotation speed of the compressor 29, the amount of restriction of the cooling / heating throttle device 26, the amount of change in the number of rotations of the outdoor fan 21, and the amount of change in the number of rotations of the indoor fan 11 to be described later are in an appropriate range. It is necessary to prescribe in

次に、ステップS15で室内送風機11の回転数を予め定めた初期指示回転数(NFps0)にセットし、ステップS25で室内送風機11をこの初期指示回転数(NFps0)で低速運転し、ステップS40で終了する。   Next, in step S15, the rotational speed of the indoor blower 11 is set to a predetermined initial designated rotational speed (NFps0). In step S25, the indoor blower 11 is operated at a low speed at this initial designated rotational speed (NFps0), and in step S40. finish.

このように室内送風機の回転数を低速にするのは、減水運転中に室内熱交換器のフィンの温度が低いときに室内空気の湿気がフィンに凝縮してくる量を抑制すると共に、減水運転中に室内熱交換器のフィンの温度が上昇し過ぎたときにも、液滴からの再蒸発量を少ない量に抑制することを意図したものである。   The reason why the rotational speed of the indoor blower is reduced in this way is to reduce the amount of indoor air moisture condensed into the fins when the temperature of the fins of the indoor heat exchanger is low during the water reduction operation, and the water reduction operation. Even when the temperature of the fins of the indoor heat exchanger rises excessively, the amount of reevaporation from the droplets is intended to be suppressed to a small amount.

この後、室内機制御装置18は一端、減水運転制御を離れ、室内機10の他の機器の制御を行った後に再び減水運転制御に戻り、ステップS1で減水運転制御を再開する。   Thereafter, the indoor unit control device 18 leaves the water reduction operation control at one end, and after controlling other devices of the indoor unit 10, returns to the water reduction operation control again, and resumes the water reduction operation control in step S1.

減水運転制御の再開後、ステップS2で圧縮機29の回転数をチェックするが、圧縮機29はステップS12で予め定めた減水運転に適した低速回転数(Nps)になっているので、ステップS30に進み、減水運転の運転時間内であればステップS20に進み、減水運転の運転時間が経過していればステップS31に進む。   After restarting the water reduction operation control, the rotational speed of the compressor 29 is checked in step S2. The compressor 29 has a low speed rotational speed (Nps) suitable for the water reduction operation determined in advance in step S12. If it is within the operation time of the water reduction operation, the process proceeds to step S20, and if the operation time of the water reduction operation has elapsed, the process proceeds to step S31.

減水運転の運転時間は冷却器についた凝縮水の残存量、室内温度、湿度の変化の度合い、空調運転モードの種類、冷却器の構造によって変わり、事前の慎重な検討が必要な事項である。ステップS20に進むと、小インターバルが経過していなければステップS40に進み終了し、冷凍サイクルの適正な応答を待って、同様のフローを繰返す。   The operation time of reduced water operation varies depending on the remaining amount of condensed water on the cooler, the room temperature, the degree of change in humidity, the type of air conditioning operation mode, and the structure of the cooler, and requires careful consideration in advance. If it progresses to step S20, if the small interval has not passed, it will progress to step S40, will be complete | finished, will wait for the appropriate response of a refrigerating cycle, and will repeat the same flow.

ステップS20で小インターバルが経過した場合は、ステップS21に進み、小インターバルを再度セットし、ステップS22に進む。ステップS22で室内温度検出手段12、湿度検出手段13からのデータに基づき吸込み空気の露点温度(Td)を演算し、ステップS23で冷房運転時に冷却器として働き、除湿運転時に加熱器となる第1の室内熱交換器32aの温度(Tc)を検出する。   If the small interval has elapsed in step S20, the process proceeds to step S21, the small interval is set again, and the process proceeds to step S22. In step S22, the dew point temperature (Td) of the intake air is calculated based on the data from the room temperature detecting means 12 and the humidity detecting means 13, and in step S23, the first air functioning as a cooler during the cooling operation and serving as the heater during the dehumidifying operation. The temperature (Tc) of the indoor heat exchanger 32a is detected.

次に、ステップS24で露点温度(Td)と第1の室内熱交換器32aの温度(Tc)との差(Td−Tc)とそれまでの室内送風機11への指示回転数(NFps)に比例する回転数の増加量ΔNFpsを演算し、それまでの室内送風機11への指示回転数(NFps)に加えて新しい指示回転数(NFps)とし、ステップS25で室内送風機11を新しい指示回転数(NFps)で運転し、ステップS40で終了する。   Next, in step S24, it is proportional to the difference (Td-Tc) between the dew point temperature (Td) and the temperature (Tc) of the first indoor heat exchanger 32a and the commanded rotational speed (NFps) to the indoor blower 11 so far. The amount of increase ΔNFps of the rotational speed to be calculated is calculated, and in addition to the commanded rotational speed (NFps) to the indoor blower 11 until that time, a new commanded rotational speed (NFps) is set. In step S25, the indoor blower 11 is set to a new commanded rotational speed (NFps). ) And finishes in step S40.

このように室内送風機11の回転数を制御するのは、第1の室内熱交換器32aのフィンの温度を室内空気の露点温度に近い温度にして室内空気の湿気の更なる凝縮を押さえると共に、フィンに付いた凝縮水の室内空気への再蒸発を抑制することを意図したものである。   The rotational speed of the indoor blower 11 is controlled in this manner by setting the temperature of the fins of the first indoor heat exchanger 32a close to the dew point temperature of the indoor air and suppressing further condensation of the indoor air moisture. It is intended to suppress the re-evaporation of the condensed water attached to the fins into the room air.

ここで、室内送風機11の回転数を制御する方法として実施例では露点温度(Td)と第1の室内熱交換器32aの温度(Tc)との差(Td−Tc)とそれまでの室内送風機11への指示回転数(NFps)に比例する回転数の増加量ΔNFpsをそれまでの室内送風機11への指示回転数(NFps)に加える方法を採用しているが、本発明はこれに限定されるものではなく、第1の室内熱交換器32aの温度(Tc)を室内の露点温度(Td)に近づける方法であればその方法は問わない。   Here, as a method for controlling the rotation speed of the indoor blower 11, in the embodiment, the difference (Td−Tc) between the dew point temperature (Td) and the temperature (Tc) of the first indoor heat exchanger 32a and the indoor blower up to that point. 11, a method of adding the amount of increase ΔNFps in proportion to the indicated rotational speed (NFps) to 11 to the previous indicated rotational speed (NFps) to the indoor blower 11 is employed, but the present invention is not limited to this. The method is not limited as long as the temperature (Tc) of the first indoor heat exchanger 32a is brought close to the dew point temperature (Td) in the room.

更に、ステップS30で減水運転時間である大インターバルが経過した場合はステップS31に進み圧縮機29を停止に、ステップS32で冷房運転時の主冷媒回路の絞り装置である冷暖房絞り装置26を全開に、ステップS33で室外送風機21を停止にするよう室外機20に指示する。次に、ステップS34で減水運転フラグを「終了」にして、ステップS40で減水運転制御を終了する。   Further, when the large interval that is the water reduction operation time has elapsed in step S30, the process proceeds to step S31, where the compressor 29 is stopped, and in step S32, the cooling / heating expansion device 26, which is the expansion device of the main refrigerant circuit during the cooling operation, is fully opened. In step S33, the outdoor unit 20 is instructed to stop the outdoor blower 21. Next, the water reduction operation flag is set to “end” in step S34, and the water reduction operation control is ended in step S40.

この後、室内機制御装置18の制御は室内機11の他の機器の制御及び除湿運転の制御に移り、冷凍サイクルの高圧側の冷媒圧力と低圧側の冷媒圧力とをバランスさせる再起動禁止時間(停止時間)を経て、除湿絞り装置16を適宜な絞り量にすると共に、室内送風機11及び室外送風機21を除湿運転に適した回転数として、圧縮機29を除湿起動回転数(Nd0)で除湿起動保持時間の間運転した後に、室内温度と室内設定温度及び/又は室内湿度と室内設定湿度に応じた回転数(Nd1)で運転し除湿運転を継続する。   Thereafter, the control of the indoor unit control device 18 shifts to the control of other devices of the indoor unit 11 and the control of the dehumidifying operation, and the restart prohibition time for balancing the refrigerant pressure on the high pressure side and the refrigerant pressure on the low pressure side of the refrigeration cycle. After the (stop time), the dehumidifying throttle device 16 is adjusted to an appropriate throttle amount, and the compressor 29 is dehumidified at the dehumidifying start rotation speed (Nd0) with the indoor blower 11 and the outdoor blower 21 set to rotation speeds suitable for dehumidification operation. After operating for the start-up holding time, the dehumidifying operation is continued by operating at the room temperature and the indoor set temperature and / or the rotational speed (Nd1) corresponding to the indoor humidity and the indoor set humidity.

このようにすることにより、所定時間の運転である減水運転中に冷凍サイクルの室内熱交換器32の蒸発圧力が上昇し、蒸発温度が上昇する。このため室内熱交換器32のフィンの温度も上昇し、流下せずに液滴として室内熱交換器32に付着している結露水の温度も上昇する。   By doing in this way, the evaporation pressure of the indoor heat exchanger 32 of the refrigeration cycle increases during the water reduction operation that is the operation for a predetermined time, and the evaporation temperature increases. For this reason, the temperature of the fin of the indoor heat exchanger 32 also rises, and the temperature of the condensed water adhering to the indoor heat exchanger 32 as a droplet does not flow down but also rises.

結露水の温度が上昇することで結露水の表面張力が減少し液滴の表面が破れて結露水が流下するのに加えて粘性も下がり、結露水の流下が更にスムーズになる。このため減水運転前には、流下せずに熱交換器のフィンに残っていた結露水の多くの量が減水運転するに従って流下し、熱交換器下部に設けられた露受皿に落下し露受け皿に接続されたドレンパイプを通って室外に排出される。また、減水運転中に室内熱交換器32のフィンの温度が低いときも室内空気の湿気がフィンに凝縮する量を抑制することができると共に、室内熱交換器32のフィンの温度が高い時も室内熱交換器のフィンに付いた結露水が室内に再蒸発する量を抑制することができる。   As the temperature of the dew condensation water rises, the surface tension of the dew condensation water decreases, the surface of the droplet is broken and the dew condensation water flows down, and the viscosity also decreases, and the flow of the dew condensation water becomes even smoother. For this reason, before the water reduction operation, a large amount of the condensed water remaining in the fins of the heat exchanger without flowing down flows down as the water reduction operation is performed and falls to the dew pan provided at the lower part of the heat exchanger. It is discharged to the outside through a drain pipe connected to. In addition, when the temperature of the fins of the indoor heat exchanger 32 is low during the water reduction operation, it is possible to suppress the amount of moisture in the indoor air condensed to the fins, and also when the temperature of the fins of the indoor heat exchanger 32 is high. It is possible to suppress the amount of condensed water attached to the fins of the indoor heat exchanger and re-evaporating into the room.

尚、本実施例は冷房運転からサイクル除湿運転に移行する場合を説明しているが、本発明はこれに限定されるものでなく、冷房運転から暖房運転又は送風運転への移行、サイクル除湿運転から暖房運転又は送風運転への移行、同じサイクル除湿運転でも冷房ぎみ除湿運転から暖房ぎみ除湿運転への移行、冷房運転の停止、除湿運転の停止でも同様の水切り運転をすることにより、同様の効果を得ることができる。   In addition, although a present Example demonstrates the case where it transfers to cooling dehumidification operation from cooling operation, this invention is not limited to this, the transfer from cooling operation to heating operation or ventilation operation, cycle dehumidification operation The same effect can be obtained by switching from air conditioning to heating operation or air blowing operation, even in the same cycle dehumidifying operation, from cooling air dehumidifying operation to heating air dehumidifying operation, cooling operation stop, and similar water draining operation even when dehumidifying operation is stopped. Can be obtained.

また、本実施例は室内温度と室内設定温度に応じて圧縮機29の回転数を制御する場合について説明しているが、本発明はこれに限定されるものでなく、室内の湿度と室内設定湿度に応じて圧縮機29の回転数を制御する場合、室内温度及び湿度と室内設定温度及び室内設定湿度に応じて圧縮機29の回転数を制御する場合も同様の水切り運転をすることにより、同様の効果を得ることができる。   Although the present embodiment describes the case where the rotation speed of the compressor 29 is controlled in accordance with the room temperature and the room set temperature, the present invention is not limited to this, and the room humidity and the room setting are controlled. When controlling the rotation speed of the compressor 29 according to the humidity, also when controlling the rotation speed of the compressor 29 according to the indoor temperature and humidity, the indoor set temperature and the indoor set humidity, by performing the same draining operation, Similar effects can be obtained.

また、室内熱交換器32を冷却器として運転する例として本実施例では冷房運転の場合について説明しているが、本発明はこれに限定されるものでなく、室内熱交換器に冷却器と再熱器を併せ持つサイクル除湿運転の場合でも同様の水切り運転をすることにより、同様の効果を得ることができる。   Further, as an example of operating the indoor heat exchanger 32 as a cooler, the present embodiment describes the case of the cooling operation. However, the present invention is not limited to this, and the indoor heat exchanger includes a cooler and a cooler. Even in the case of the cycle dehumidifying operation having the reheater, the same effect can be obtained by performing the same draining operation.

また、本実施例は主冷媒回路絞り装置として室外機に置かれた冷暖房共用の電動膨張弁を用いる場合について説明しているが、本発明はこれに限定されるものでなく、二方弁とキャピラリチューブ又は二方弁と機械式膨張弁を組み合わせたものでも良く、サイクル除湿運転からの停止又は移行の場合は室内機に置かれた除湿用の絞り装置が主冷媒回路絞り装置となり、同様に電動膨張弁、二方弁とキャピラリチューブ又は二方弁と機械式膨張弁の組み合わせ等で構成されるものでも同様の水切り運転をすることにより、同様の効果を得ることができる。   In addition, the present embodiment describes the case of using an electric expansion valve for air conditioning that is placed in an outdoor unit as a main refrigerant circuit throttle device, but the present invention is not limited to this, and a two-way valve and A combination of a capillary tube or two-way valve and a mechanical expansion valve may be used, and in the case of stopping or shifting from cycle dehumidification operation, the dehumidifying throttling device placed in the indoor unit becomes the main refrigerant circuit throttling device, and similarly The same effect can be obtained by performing the same draining operation even with an electric expansion valve, a two-way valve and a capillary tube, or a combination of a two-way valve and a mechanical expansion valve.

また、本実施例では冷却器に超親水化処理したフィンを使用した場合について説明しているが、本発明はこれに限定されるものでなく、冷却器に親水化処理したフィンを使用した場合は、超親水化処理したフィンを使用した場合に較べて効果が若干減少するものの親水化処理していないフィンに較べて残存保水量が減少し、室内への再蒸発量が抑制され、同様の水切り運転をすることにより、超親水化処理したフィンを使用した場合に較べて効果が若干減少しはするが有用な結果を得ることができる。   Moreover, although the present Example demonstrates the case where the superhydrophilized fin is used for a cooler, this invention is not limited to this, When the hydrophilized fin is used for a cooler Although the effect is slightly reduced compared to the use of fins that have been subjected to superhydrophilic treatment, the amount of retained water is reduced compared to fins that have not been hydrophilized, and the amount of reevaporation into the room is suppressed. By performing the draining operation, a useful result can be obtained although the effect is slightly reduced as compared with the case of using the superhydrophilic fin.

なお超親水化処理したフィンとしては、例えば、特開2003−336986号公報、特開2002−90084号公報、特開2002−71298号公報などの多数の技術があるので、コストと性能のバランスを考慮して適宜な方法を選択すると良い。   Note that there are many techniques such as JP 2003-336986 A, JP 2002-90084 A, and JP 2002-71298 A as fins subjected to superhydrophilic treatment, so that the balance between cost and performance is balanced. An appropriate method may be selected in consideration of the above.

また、本実施例では室内温度と室内湿度を検出し、検出結果から露点温度を演算により求めているが、本発明はこれに限定されるものでなく、室内温度のみを検出し、湿度は例えば冷房運転であれば55〜65%に仮定し、除湿運転であれば45〜55%に仮定して演算しても誤差は多少大きくなるが、実用的に有用な結果を得ることができる。   Further, in this embodiment, the room temperature and the room humidity are detected, and the dew point temperature is obtained by calculation from the detection result, but the present invention is not limited to this, only the room temperature is detected, and the humidity is, for example, Even if the calculation is performed assuming 55 to 65% for the cooling operation and 45 to 55% for the dehumidifying operation, the error slightly increases, but a practically useful result can be obtained.

また、冷房及び除湿運転時の室内温度と冷却器の温度と露点温度から相関関係を実験的に求めて相関式又は相関表を得ておき、直前の冷却運転時の室内温度と冷却器温度と前述の相関式又は相関表から露点温度を演算又は読込んでも良く、いずれも有用な結果を得ることができる。   In addition, the correlation between the room temperature during cooling and dehumidifying operation, the temperature of the cooler, and the dew point temperature is experimentally obtained to obtain a correlation formula or correlation table. The dew point temperature may be calculated or read from the above correlation equation or correlation table, and any of them can provide useful results.

また、本実施例では、圧縮機の回転数、室外送風機回転数を低速にし、主冷媒回路絞り装置26を緩めて、室内送風機11の回転数を変化させて冷却器温度を制御するようにしているが、本発明はこれに限定されるものでなく、室内送風機11の回転数を低速にし、圧縮機29の回転数、室外送風機21の回転数又は主冷媒回路26の絞り量を変化させて冷却器温度を制御するようにしても良く、同様の水切り運転をすることにより、同様の効果を得ることができる。   In this embodiment, the compressor speed and the outdoor fan speed are reduced, the main refrigerant circuit throttle device 26 is loosened, and the speed of the indoor fan 11 is changed to control the cooler temperature. However, the present invention is not limited to this, and the rotational speed of the indoor blower 11 is reduced, and the rotational speed of the compressor 29, the rotational speed of the outdoor blower 21 or the throttle amount of the main refrigerant circuit 26 is changed. The cooler temperature may be controlled, and a similar effect can be obtained by performing a similar draining operation.

また、本実施例では、室内送風機11の回転数を実験的に求めた相関関係から演算で求めるようにしているが、本発明はこれに限定されるものでなく、例えば冷却器の温度と露点温度と室内送風機11の回転数から相関関係を実験的に求めて相関式又は相関表を得ておき、冷却器温度と露点温度とが一致する室内送風機11の回転数を前述の相関式又は相関表から演算又は読込んでも良く、いずれも有用な結果を得ることができる。   Further, in this embodiment, the rotational speed of the indoor blower 11 is obtained by calculation from the correlation obtained experimentally, but the present invention is not limited to this, for example, the temperature and dew point of the cooler. The correlation is experimentally obtained from the temperature and the rotational speed of the indoor blower 11 to obtain a correlation formula or a correlation table, and the rotational speed of the indoor blower 11 at which the cooler temperature and the dew point temperature coincide with each other is calculated using the above-described correlation formula or correlation. Calculations or readings from the table may be used, both of which can yield useful results.

以上説明したように、本実施例によれば、圧縮機、室内熱交換器、絞り装置及び室外熱交換器を冷媒配管で接続してなる冷凍サイクルと、運転時に室内温度または室内湿度と室内設定温度または室内設定湿度とに応じて前記圧縮機の回転数を制御する制御装置とを備えた空気調和機において、前記制御装置は、前記室内熱交換器を冷却器とした運転を停止または他の運転に移行する際に、室内温度または室内湿度と室内設定温度または室内設定湿度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速とする減水運転を所定時間行なってから停止または他の運転に移行するように制御する構成としているので、減水運転中に冷凍サイクルを循環する冷媒の循環量が減少し、室内熱交換器の蒸発圧力が上昇し、蒸発温度が上昇する。このため熱交換器のフィンの温度も上昇し、流下せずに液滴として付着している結露水の温度も上昇する。   As described above, according to the present embodiment, the refrigeration cycle in which the compressor, the indoor heat exchanger, the expansion device, and the outdoor heat exchanger are connected by the refrigerant pipe, the room temperature or the room humidity and the room setting during operation. An air conditioner including a control device that controls the rotation speed of the compressor according to temperature or indoor set humidity, wherein the control device stops the operation using the indoor heat exchanger as a cooler or other When shifting to operation, the water-reducing operation is performed for a predetermined time to reduce the speed of the compressor based on the rotation speed of the compressor controlled according to the room temperature or room humidity and the room set temperature or room set humidity, and then stopped. Alternatively, since the control is performed so as to shift to another operation, the circulation amount of the refrigerant circulating in the refrigeration cycle during the water reduction operation is decreased, the evaporation pressure of the indoor heat exchanger is increased, and the evaporation temperature is increased. For this reason, the temperature of the fin of the heat exchanger also rises, and the temperature of the condensed water adhering as droplets without flowing down also rises.

結露水の温度が上昇することで結露水の表面張力が減少し液滴の表面が破れて結露水が流下するのに加えて粘性も下がるので結露水の流下が更にスムーズになる。このため圧縮機を低速回転で運転する前には、流下せずに熱交換器のフィンに残っていた結露水の多くの量が圧縮機を低速回転で運転するに従って流下し、熱交換器下部に設けられた露受皿に落下し露受け皿に接続されたドレンパイプを通って室外に排出される。   As the temperature of the dew condensation water rises, the surface tension of the dew condensation water decreases, the surface of the droplet breaks, and the dew condensation water flows down. For this reason, before operating the compressor at low speed, a large amount of condensed water that has not flowed down and remains on the fins of the heat exchanger flows down as the compressor operates at low speed. It falls to the dew receiving tray provided in and is discharged to the outside through a drain pipe connected to the dew receiving tray.

このため送風または他の空調運転に移行することに伴って熱交換器に残った結露水が再蒸発して室内に戻る量を少ない量に抑制できるので、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を得ることができる。   For this reason, the amount of condensed water remaining in the heat exchanger due to re-evaporation or other air-conditioning operation can be reduced to a small amount and return to the room, so it is condensed on the heat exchanger fins during cooling operation. Thus, it is possible to obtain an air conditioner that reduces the amount of residual condensed water remaining, reduces re-evaporation into the room, shortens the time until drying, and suppresses the return of moisture to the room.

また、本実施例による空気調和機は、前記所定時間運転時に、主冷媒回路絞り装置の絞り量をそれまでの絞り量より小さくすることにより、所定時間運転中に冷凍サイクルの高温側圧力と低温側圧力の差が減少し、室内熱交換器の蒸発圧力が上昇し、蒸発温度が上昇する。このため熱交換器のフィンの温度も上昇し、流下せずに液滴として付着している結露水の温度も上昇する。   In addition, the air conditioner according to the present embodiment is configured such that, during the predetermined time operation, the main refrigerant circuit throttle device has the throttle amount smaller than the throttle amount so far, so that the high temperature side pressure and the low temperature of the refrigeration cycle can be reduced during the predetermined time operation. The difference in side pressure decreases, the evaporation pressure of the indoor heat exchanger increases, and the evaporation temperature increases. For this reason, the temperature of the fin of the heat exchanger also rises, and the temperature of the condensed water adhering as droplets without flowing down also rises.

結露水の温度が上昇することで結露水の表面張力が減少し液滴の表面が破れて結露水が流下するのに加えて粘性も下がるので結露水の流下が更にスムーズになる。このため圧縮機を低速回転で運転する前には、流下せずに熱交換器のフィンに残っていた結露水の多くの量が圧縮機を低速回転で運転するに従って流下し、熱交換器下部に設けられた露受皿に落下し露受け皿に接続されたドレンパイプを通って室外に排出される。   As the temperature of the dew condensation water rises, the surface tension of the dew condensation water decreases, the surface of the droplet breaks, and the dew condensation water flows down. For this reason, before operating the compressor at low speed, a large amount of condensed water that has not flowed down and remains on the fins of the heat exchanger flows down as the compressor operates at low speed. It falls to the dew receiving tray provided in and is discharged to the outside through a drain pipe connected to the dew receiving tray.

このため送風または他の空調運転に移行することに伴って熱交換器に残った結露水が再蒸発して室内に戻る量を少ない量に抑制できるので、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を得ることができる。   For this reason, the amount of condensed water remaining in the heat exchanger due to re-evaporation or other air-conditioning operation can be reduced to a small amount and return to the room, so it is condensed on the heat exchanger fins during cooling operation. Thus, it is possible to obtain an air conditioner that reduces the amount of residual condensed water remaining, reduces re-evaporation into the room, shortens the time until drying, and suppresses the return of moisture to the room.

また、本実施例による空気調和機は前記所定時間運転時に、室外送風機を停止またはそれまでの回転数より低速で運転することにより、所定時間運転中に冷凍サイクルの高温側熱交換器の熱交換能力が減少するため高温側圧力が上昇し、これにつられて低温側圧力も上昇するので、室内熱交換器の蒸発温度が上昇する。   Further, the air conditioner according to the present embodiment stops the outdoor blower during the predetermined time operation or operates at a lower speed than the rotation speed up to that time, thereby exchanging heat of the high-temperature side heat exchanger of the refrigeration cycle during the predetermined time operation. Since the capacity decreases, the high temperature side pressure rises, and accordingly, the low temperature side pressure also rises, so that the evaporation temperature of the indoor heat exchanger rises.

このため熱交換器のフィンの温度も上昇し、流下せずに液滴として付着している結露水の温度も上昇する。結露水の温度が上昇することで結露水の表面張力が減少し液滴の表面が破れて結露水が流下するのに加えて粘性も下がるので結露水の流下が更にスムーズになる。   For this reason, the temperature of the fin of the heat exchanger also rises, and the temperature of the condensed water adhering as droplets without flowing down also rises. As the temperature of the dew condensation water rises, the surface tension of the dew condensation water decreases, the surface of the droplet breaks, and the dew condensation water flows down.

このため圧縮機を低速回転で運転する前には、流下せずに熱交換器のフィンに残っていた結露水の多くの量が圧縮機を低速回転で運転するに従って流下し、熱交換器下部に設けられた露受皿に落下し露受け皿に接続されたドレンパイプを通って室外に排出される。   For this reason, before operating the compressor at low speed, a large amount of condensed water that has not flowed down and remains on the fins of the heat exchanger flows down as the compressor operates at low speed. It falls to the dew receiving tray provided in and is discharged to the outside through a drain pipe connected to the dew receiving tray.

このため送風または他の空調運転に移行することに伴って熱交換器に残った結露水が再蒸発して室内に戻る量を少ない量に抑制できるので、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を得ることができる。   For this reason, the amount of condensed water remaining in the heat exchanger due to re-evaporation or other air-conditioning operation can be reduced to a small amount and return to the room, so it is condensed on the heat exchanger fins during cooling operation. Thus, it is possible to obtain an air conditioner that reduces the amount of residual condensed water remaining, reduces re-evaporation into the room, shortens the time until drying, and suppresses the return of moisture to the room.

また、本実施例の発明による空気調和機は前記所定時間運転時に、室内送風機を停止またはそれまでの回転数より低速で運転することにより、所定時間運転中に室内熱交換器のフィンの温度が低いときに室内空気の湿気がフィンに凝縮してくる量を抑制すると共に、所定時間運転中に室内熱交換器のフィンの温度が上昇し過ぎて、液滴として付着している結露水の温度が露点温度以上に上昇しても室内送風機を停止またはそれまでの回転数より低速で運転しているので液滴からの所定時間運転中の再蒸発量を少ない量に抑制できるので、冷却運転時に室内熱交換器のフィンに凝縮した結露水の再蒸発を少なくし、室内への湿気の戻りを抑えた空気調和機を得ることができる。   Further, the air conditioner according to the invention of the present embodiment stops the indoor blower during the predetermined time operation or operates at a lower speed than the rotation speed until then, so that the temperature of the fins of the indoor heat exchanger can be increased during the predetermined time operation. Reduces the amount of indoor air moisture condensing into the fins when the temperature is low, and the temperature of the condensed water adhering as liquid droplets increases too much during the specified time operation due to the temperature of the fins of the indoor heat exchanger rising too high Even if the temperature rises above the dew point temperature, the indoor blower is stopped or operated at a lower speed than the rotation speed so far, so the amount of reevaporation during operation for a predetermined time from the droplets can be suppressed to a small amount. It is possible to obtain an air conditioner that reduces the re-evaporation of the condensed water condensed on the fins of the indoor heat exchanger and suppresses the return of moisture to the room.

また、本実施例による空気調和機は冷却器として使用される熱交換器に表面を親水化処理したアルミ製フィンを使用することにより、熱交換器のフィンに流下せずに液滴として残っている結露水の量が減少し、再蒸発して室内に戻る量を少ない量に抑制できるので、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を得ることができる。   In addition, the air conditioner according to this embodiment uses aluminum fins having a hydrophilic surface on the heat exchanger used as a cooler, so that the air conditioner remains as droplets without flowing down to the fins of the heat exchanger. This reduces the amount of condensed water that is re-evaporated and returns to the room indoors, so that the amount of condensed water that has condensed on the fins of the heat exchanger during cooling operation can be reduced and It is possible to obtain an air conditioner that reduces evaporation, shortens the time until drying, and suppresses the return of moisture to the room.

また、本実施例による空気調和機は前記所定時間運転時に、それまで冷却運転していた室内熱交換器の温度をその時の室内の露点温度以下であって、それまでの冷却運転時より高い温度にして運転することにより、所定時間運転中に室内熱交換器の蒸発圧力が上昇し、蒸発温度が上昇する。このため熱交換器のフィンの温度も上昇し、流下せずに液滴として付着している結露水の温度も上昇する。   In addition, the air conditioner according to the present embodiment has the temperature of the indoor heat exchanger that has been cooled until that time is lower than the indoor dew point temperature at the time of the predetermined time operation, and is higher than that at the time of the previous cooling operation. By operating as described above, the evaporation pressure of the indoor heat exchanger increases during the predetermined time operation, and the evaporation temperature increases. For this reason, the temperature of the fin of the heat exchanger also rises, and the temperature of the condensed water adhering as droplets without flowing down also rises.

しかし熱交換器の温度を露点温度以下にすることから結露水の温度は露点以下になり水切り運転中に再蒸発する量が少なくなる。露点温度以下ではあるが冷却運転中より結露水の温度が上昇することで結露水の表面張力が減少し液滴の表面が破れて結露水が流下するのに加えて粘性も下がるので結露水の流下が更にスムーズになる。   However, since the temperature of the heat exchanger is set to the dew point temperature or less, the temperature of the dew condensation water becomes the dew point or less, and the amount of re-evaporation during the draining operation is reduced. Although the dew point temperature is below the dew point temperature, the condensed water temperature rises during the cooling operation, the surface tension of the condensed water decreases, the surface of the droplet breaks and the condensed water flows down. The flow becomes even smoother.

このため圧縮機を低速回転で運転する前には、流下せずに熱交換器のフィンに残っていた結露水の多くの量が圧縮機を低速回転で運転するに従って流下し、熱交換器下部に設けられた露受皿に落下し露受け皿に接続されたドレンパイプを通って室外に排出される。   For this reason, before operating the compressor at low speed, a large amount of condensed water that has not flowed down and remains on the fins of the heat exchanger flows down as the compressor operates at low speed. It falls to the dew receiving tray provided in and is discharged to the outside through a drain pipe connected to the dew receiving tray.

このため送風または他の空調運転に移行することに伴って熱交換器に残った結露水が再蒸発して室内に戻る量を少ない量に抑制できるので、冷却運転時に熱交換器のフィンに凝縮した結露水の残存付着量を減少させ、室内への再蒸発を少なくし、乾燥までの時間を短縮すると共に、室内への湿気の戻りを抑えた空気調和機を得ることができる。   For this reason, the amount of condensed water remaining in the heat exchanger due to re-evaporation or other air-conditioning operation can be reduced to a small amount and return to the room, so it is condensed on the heat exchanger fins during cooling operation. Thus, it is possible to obtain an air conditioner that reduces the amount of residual condensed water remaining, reduces re-evaporation into the room, shortens the time until drying, and suppresses the return of moisture to the room.

本発明の一実施例に係る空気調和機を示すブロック図である。It is a block diagram which shows the air conditioner which concerns on one Example of this invention. 図1の空気調和機の冷房運転から除湿運転に切換わる時の室内温度、湿度及び圧縮機回転数の時間変化を示したグラフである。It is the graph which showed the time change of room temperature, humidity, and compressor rotation speed when switching from the cooling operation of the air conditioner of FIG. 1 to a dehumidification operation. 図2の動作詳細を説明するフローチャートである。It is a flowchart explaining the operation | movement detail of FIG. 図1の空気調和機の冷凍サイクルを示す図である。It is a figure which shows the refrigerating cycle of the air conditioner of FIG.

符号の説明Explanation of symbols

10…空気調和機の室内機、11…室内送風機、12…室温検出手段、13…湿度検出手段、14…室温設定手段、15…湿度設定手段、16…除湿絞り装置、16a…除湿膨張弁、16b…除湿開閉弁、17…冷却器温度検出手段、18…室内制御装置、20…空気調和機の室外機、21…室外送風機、26…冷暖房絞り装置、28…室外制御装置、29…圧縮機、30…四方弁、31…室外熱交換器、32…室内熱交換器、32a…第1の室内熱交換器、32b…第2の室内熱交換器。
DESCRIPTION OF SYMBOLS 10 ... Indoor unit of air conditioner, 11 ... Indoor blower, 12 ... Room temperature detection means, 13 ... Humidity detection means, 14 ... Room temperature setting means, 15 ... Humidity setting means, 16 ... Dehumidification throttle device, 16a ... Dehumidification expansion valve, 16b ... dehumidifying on-off valve, 17 ... cooler temperature detecting means, 18 ... indoor control device, 20 ... outdoor unit of air conditioner, 21 ... outdoor blower, 26 ... air conditioning and throttling device, 28 ... outdoor control device, 29 ... compressor 30 ... Four-way valve, 31 ... Outdoor heat exchanger, 32 ... Indoor heat exchanger, 32a ... First indoor heat exchanger, 32b ... Second indoor heat exchanger.

Claims (8)

圧縮機、室内熱交換器、絞り装置及び室外熱交換器を冷媒配管で接続してなる冷凍サイクルと、運転時に室内温度または室内湿度と室内設定温度または室内設定湿度とに応じて前記圧縮機の回転数を制御する制御装置とを備えた空気調和機において、
前記制御装置は、前記室内熱交換器を冷却器とした運転を停止または他の運転に移行する際に、室内温度または室内湿度と室内設定温度または室内設定湿度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速とする減水運転を所定時間行なってから停止または他の運転に移行するように制御する
ことを特徴とする空気調和機。
The compressor, the indoor heat exchanger, the expansion device, and the outdoor heat exchanger are connected by refrigerant piping, and the compressor is operated according to the indoor temperature or humidity and the indoor set temperature or indoor set humidity during operation. In an air conditioner equipped with a control device for controlling the rotational speed,
The control device is configured such that when the operation using the indoor heat exchanger as a cooler is stopped or shifted to another operation, the compression is controlled according to an indoor temperature or an indoor humidity and an indoor set temperature or an indoor set humidity. An air conditioner that is controlled so as to stop or shift to another operation after performing a water-reducing operation in which the compressor is driven at a lower speed than the number of rotations of the machine.
請求項1記載の空気調和機において、前記制御装置は、前記減水運転時に、前記絞り装置の絞り量をそれまでの絞り量より小さく制御することを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein the control device controls a throttle amount of the throttle device to be smaller than a throttle amount so far during the water reduction operation. 請求項1記載の空気調和機において、前記制御装置は、前記減水運転時に、前記室外熱交換器に通風する室外送風機を停止またはそれまでの回転数より低速で運転することを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein the control device is configured to stop or operate an outdoor blower that ventilates the outdoor heat exchanger at a speed lower than a rotational speed until then during the water reduction operation. Machine. 請求項1記載の空気調和機において、前記制御装置は、前記減水運転時に、前記室内熱交換器に通風する室内送風機を停止またはそれまでの回転数より低速で運転することを特徴とする空気調和機。   2. The air conditioner according to claim 1, wherein the control device is configured to stop or operate the indoor blower that ventilates the indoor heat exchanger at a lower speed than the number of rotations until then during the water reduction operation. Machine. 圧縮機、2つの室内熱交換器、主絞り装置、除湿絞り装置及び室外熱交換器を冷媒配管で接続してなる冷凍サイクルと、運転時に室内温度と室内設定温度とに応じて前記圧縮機の回転数を制御する制御装置とを備え、前記冷凍サイクルは、前記2つの室内熱交換器の両方を冷却器とした冷房サイクルと、前記2つの室内熱交換器の一方を冷却器とし他方を加熱器とする除湿サイクルとに切り替えられる空気調和機において、
前記制御装置は、除湿運転モードで、前記冷房サイクルから停止時間を経て前記除湿サイクルに切り替える際に、前記冷房サイクルによる室内温度と室内設定温度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速とする減水運転を所定時間してから停止時間に至るように制御する
ことを特徴とする空気調和機。
A compressor, two indoor heat exchangers, a main throttle device, a dehumidifying throttle device, and an outdoor heat exchanger connected by refrigerant piping, and the compressor according to the indoor temperature and the indoor set temperature during operation. A control device that controls the number of revolutions, and the refrigeration cycle includes a cooling cycle in which both of the two indoor heat exchangers are coolers, and one of the two indoor heat exchangers is used as a cooler and the other is heated. In an air conditioner that can be switched to a dehumidification cycle
In the dehumidifying operation mode, when the controller switches from the cooling cycle to the dehumidifying cycle after a stop time, the control device controls the rotation speed of the compressor controlled according to the indoor temperature and the indoor set temperature by the cooling cycle. An air conditioner characterized by controlling the water reduction operation at a low speed of the compressor so as to reach a stop time after a predetermined time.
請求項5記載の空気調和機において、前記制御装置は、前記減水運転時の所定時間を前記冷房サイクルから前記除湿サイクルに切り替える際の停止時間より短くしたことを特徴とする空気調和機。   6. The air conditioner according to claim 5, wherein the control device makes a predetermined time during the water reduction operation shorter than a stop time when switching from the cooling cycle to the dehumidification cycle. 請求項5記載の空気調和機において、前記制御装置は、前記減水運転時に、前記冷房サイクルによる室内温度及び室内湿度と室内設定温度及び室内設定湿度とに応じて制御される前記圧縮機の回転数より前記圧縮機を低速に制御することを特徴とする空気調和機。   6. The air conditioner according to claim 5, wherein the control device controls the number of revolutions of the compressor controlled in accordance with an indoor temperature, an indoor humidity, an indoor set temperature, and an indoor set humidity by the cooling cycle during the water reduction operation. The air conditioner is characterized in that the compressor is controlled at a low speed. 請求項1または5記載の空気調和機において、前記室内熱交換器に表面を親水化処理したアルミ製フィンを使用したことを特徴とする空気調和機。
6. The air conditioner according to claim 1, wherein aluminum fins having a hydrophilic surface are used for the indoor heat exchanger.
JP2004362356A 2004-12-15 2004-12-15 Air conditioner Withdrawn JP2006170503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362356A JP2006170503A (en) 2004-12-15 2004-12-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362356A JP2006170503A (en) 2004-12-15 2004-12-15 Air conditioner

Publications (1)

Publication Number Publication Date
JP2006170503A true JP2006170503A (en) 2006-06-29

Family

ID=36671451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362356A Withdrawn JP2006170503A (en) 2004-12-15 2004-12-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP2006170503A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461365A (en) * 2008-07-03 2010-01-06 Stephen Patrick Lester Heat pump control based on a determined dew point
JP2011144967A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Indoor unit for air conditioner
WO2013157405A1 (en) * 2012-04-16 2013-10-24 ダイキン工業株式会社 Air conditioner
JP2014062680A (en) * 2012-09-21 2014-04-10 Sharp Corp Radiation type air conditioner
CN106288237A (en) * 2016-10-10 2017-01-04 芜湖美智空调设备有限公司 The halt control method of a kind of air-conditioner, control device and air-conditioner
WO2017179192A1 (en) * 2016-04-15 2017-10-19 三菱電機株式会社 Air conditioner
CN107355960A (en) * 2017-09-12 2017-11-17 中国铁塔股份有限公司 A kind of control method of air-conditioning, device and base station air conditioner
CN107525226A (en) * 2017-08-03 2017-12-29 青岛海尔空调器有限总公司 For controlling the method and device of air-conditioning
CN107676921A (en) * 2017-09-12 2018-02-09 广东美的制冷设备有限公司 Air conditioner and its humidity control method, device
CN107869826A (en) * 2017-11-29 2018-04-03 广东美的制冷设备有限公司 Air conditioner and its control method and device
CN108917117A (en) * 2018-09-26 2018-11-30 美的集团股份有限公司 Air-conditioning and its control method, device
CN111102729A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102725A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102711A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102723A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102726A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102724A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102717A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102714A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102722A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102716A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102710A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102720A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102708A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102721A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102715A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102713A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102728A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102727A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102709A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102712A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102719A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111503738A (en) * 2020-05-08 2020-08-07 广东美的制冷设备有限公司 Air conditioner, operation control method, and computer-readable storage medium
CN111720971A (en) * 2020-06-18 2020-09-29 海信(山东)空调有限公司 Variable frequency air conditioner and anti-condensation control method thereof
WO2020138978A3 (en) * 2018-12-28 2020-12-17 윤명혁 Thermo-hygrostat
US11168908B2 (en) 2017-11-29 2021-11-09 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and control method and apparatus therefor
WO2023226501A1 (en) * 2022-05-25 2023-11-30 广东美的制冷设备有限公司 Control method for air conditioner, controller, air conditioner and storage medium

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461365A (en) * 2008-07-03 2010-01-06 Stephen Patrick Lester Heat pump control based on a determined dew point
JP2011144967A (en) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp Indoor unit for air conditioner
WO2013157405A1 (en) * 2012-04-16 2013-10-24 ダイキン工業株式会社 Air conditioner
JP2013221671A (en) * 2012-04-16 2013-10-28 Daikin Industries Ltd Air conditioner
AU2013250425B2 (en) * 2012-04-16 2015-09-03 Daikin Industries, Ltd. Air conditioner
US9513041B2 (en) 2012-04-16 2016-12-06 Daikin Industries, Ltd. Air conditioner
JP2014062680A (en) * 2012-09-21 2014-04-10 Sharp Corp Radiation type air conditioner
JPWO2017179192A1 (en) * 2016-04-15 2018-11-08 三菱電機株式会社 Air conditioner
WO2017179192A1 (en) * 2016-04-15 2017-10-19 三菱電機株式会社 Air conditioner
CN106288237B (en) * 2016-10-10 2019-04-23 芜湖美智空调设备有限公司 A kind of halt control method of air conditioner, control device and air conditioner
CN106288237A (en) * 2016-10-10 2017-01-04 芜湖美智空调设备有限公司 The halt control method of a kind of air-conditioner, control device and air-conditioner
CN107525226A (en) * 2017-08-03 2017-12-29 青岛海尔空调器有限总公司 For controlling the method and device of air-conditioning
CN107525226B (en) * 2017-08-03 2020-11-03 青岛海尔空调器有限总公司 Method and device for controlling air conditioner
CN107676921A (en) * 2017-09-12 2018-02-09 广东美的制冷设备有限公司 Air conditioner and its humidity control method, device
CN107355960A (en) * 2017-09-12 2017-11-17 中国铁塔股份有限公司 A kind of control method of air-conditioning, device and base station air conditioner
CN107676921B (en) * 2017-09-12 2020-02-04 广东美的制冷设备有限公司 Air conditioner and humidity control method and device thereof
CN107869826A (en) * 2017-11-29 2018-04-03 广东美的制冷设备有限公司 Air conditioner and its control method and device
CN107869826B (en) * 2017-11-29 2019-08-30 广东美的制冷设备有限公司 Air conditioner and its control method and device
US11168908B2 (en) 2017-11-29 2021-11-09 Gd Midea Air-Conditioning Equipment Co., Ltd. Air conditioner, and control method and apparatus therefor
CN108917117A (en) * 2018-09-26 2018-11-30 美的集团股份有限公司 Air-conditioning and its control method, device
CN111102708A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102725A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102726A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102724A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102717A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102714A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102722A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102716A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102710A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102720A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102711A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102721A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102715A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102713A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102728A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102727A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102709A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102712A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102719A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102729A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102727B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102723A (en) * 2018-10-26 2020-05-05 青岛海尔空调器有限总公司 Air conditioner and condensation preventing method thereof
CN111102715B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102722B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102712B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102719B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102713B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102728B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102726B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102716B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102724B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102709B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102714B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102725B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102708B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102729B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
CN111102723B (en) * 2018-10-26 2021-09-21 重庆海尔空调器有限公司 Air conditioner and condensation preventing method thereof
WO2020138978A3 (en) * 2018-12-28 2020-12-17 윤명혁 Thermo-hygrostat
CN111503738B (en) * 2020-05-08 2021-06-15 广东美的制冷设备有限公司 Air conditioner, operation control method, and computer-readable storage medium
CN111503738A (en) * 2020-05-08 2020-08-07 广东美的制冷设备有限公司 Air conditioner, operation control method, and computer-readable storage medium
CN111720971A (en) * 2020-06-18 2020-09-29 海信(山东)空调有限公司 Variable frequency air conditioner and anti-condensation control method thereof
WO2023226501A1 (en) * 2022-05-25 2023-11-30 广东美的制冷设备有限公司 Control method for air conditioner, controller, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP2006170503A (en) Air conditioner
AU2015258183B2 (en) Clothes treating apparatus with heat pump cycle and method for controlling the same
JP5012777B2 (en) Air conditioner
US20100300123A1 (en) Hybrid desiccant dehumidifying apparatus and control method thereof
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
JP4835688B2 (en) Air conditioner, air conditioning system
CN101509682B (en) Dehumidifier
JP2004218853A (en) Air conditioner
JP2008175490A (en) Air conditioner
JP2008082589A (en) Air conditioner
JP2005147623A (en) Air conditioner, and operating method for air conditioner
GB2545114A (en) Dehumidifying device
JP2010071587A (en) Air conditioning system
CN108332449B (en) Heat pump dehumidification unit and control method thereof
JP2006300392A (en) Air-conditioning heat source facility for clean room
US20070157660A1 (en) Air conditioner capable of selectively dehumidifying separate areas
KR101624173B1 (en) Dehumidifying system with refrigerator using the waste heat of outdoor condensor
JP2018077167A (en) Environmental test device and air conditioner
JP5537832B2 (en) External air conditioner and external air conditioning system
JP2006204548A (en) Drying device
JP2004020085A (en) Hot water supply/air conditioner
JP2008039279A (en) Air conditioner
JP3936345B2 (en) Air conditioner
JP2002106913A (en) Method for controlling automatic operation of air conditioner
KR100614280B1 (en) A cooling dehumidification system for low dew point case and cooling dehumidification method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060911

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304