JP2006169921A - Reinforcing member and reinforcing structure of building or structure - Google Patents

Reinforcing member and reinforcing structure of building or structure Download PDF

Info

Publication number
JP2006169921A
JP2006169921A JP2004367765A JP2004367765A JP2006169921A JP 2006169921 A JP2006169921 A JP 2006169921A JP 2004367765 A JP2004367765 A JP 2004367765A JP 2004367765 A JP2004367765 A JP 2004367765A JP 2006169921 A JP2006169921 A JP 2006169921A
Authority
JP
Japan
Prior art keywords
structural material
building
synthetic resin
resin foam
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004367765A
Other languages
Japanese (ja)
Inventor
Takuzo Nakamura
拓造 中村
Kiyotaka Shichima
清孝 七間
Takaaki Eguchi
孝明 江口
Yukio Yoshikawa
幸雄 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Nakamura Bussan Co Ltd
Original Assignee
JSP Corp
Nakamura Bussan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp, Nakamura Bussan Co Ltd filed Critical JSP Corp
Priority to JP2004367765A priority Critical patent/JP2006169921A/en
Publication of JP2006169921A publication Critical patent/JP2006169921A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To absorb and damp force, when compressive force or expansion force is applied between structural materials for particularly constituting a connection, by easily arranging a reinforcing structure in a short time, without requiring a special technology, not only in the connection having a normal angle but also in a part of a deformed angle of the connection, in a connecting structure in a wooden building or structure. <P>SOLUTION: A reinforcing member is composed of a synthetic resin foam body member 2 and an extending member 24 having a belt part 3 and a fixing part 4, and is arranged in the connection formed of a structural material 11 and a structural material 12. When the compressive force is applied between the structural materials, the compressive force is mainly absorbed and damped by the synthetic resin foam body member 2, and when tension force is applied between the structural materials, the tension force is mainly absorbed and damped by the belt part 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明の補強部材及び補強構造は、木造軸組建築物における柱、間柱、土台、梁及び胴差等の構造材、木造枠組壁工法建築物における角材等の構造材に適用して防振性及び耐震性を付与された建築物又は建造物の構築に用いられる。本発明の補強部材は、上記の補強構造の構築に利用される。   The reinforcing member and the reinforcing structure of the present invention are applied to structural materials such as columns, studs, foundations, beams and trunk differences in wooden frame buildings, and structural materials such as square members in wooden frame wall construction buildings. And is used for construction of buildings or buildings with earthquake resistance. The reinforcing member of the present invention is used for constructing the above reinforcing structure.

木造の建築物又は建造物における耐震性の必要性は近年、益々理解が深まり、その関心度も高い。従って、新たに木造の建築物又は建造物(以下、単に建築物と記載する。本発明では建築物と記載した場合、特に断りがない限り建造物の意味も含まれる。)を構築する際に、より優れた耐震性を備える建築物を建設したいという要望が存在する。また既存の建築物においても、耐震性を高めるために補強工事を行う例が増加している。
さらにまた地震や台風等によって被災した建築物に対して早急に補強を行う必要性が生じる場合がある。特に大地震の際には、その後の余震等の影響から建築物が崩壊する恐れがあるため、居住者は不安な生活を送り、或いは避難生活を余儀なくされる場合がある。かかる状況では、迅速に補強を行い、居住者の安全性と日常の生活及び居住者の精神的安定を確保する必要がある。
従って、汎用性があり且つ経済的であって、既存又は新築の木造の建築物に適用できる補強構造及びこれに用いられる補強部材が求められている。
In recent years, the need for earthquake resistance in wooden buildings or structures has become increasingly deeply understood and highly interested. Therefore, when constructing a new wooden building or building (hereinafter simply referred to as a building. In the present invention, the term “building” includes the meaning of a building unless otherwise specified). There is a desire to build buildings with better earthquake resistance. Also, in existing buildings, there are an increasing number of cases where reinforcement work is performed in order to increase earthquake resistance.
Furthermore, there is a case where it is necessary to quickly reinforce a building damaged by an earthquake or a typhoon. In particular, in the event of a major earthquake, the building may collapse due to the effects of subsequent aftershocks, etc., so residents may be forced to live an uneasy life or be evacuated. In such a situation, it is necessary to reinforce quickly to ensure the safety of the resident and the daily life and the mental stability of the resident.
Accordingly, there is a need for a reinforcing structure that is versatile and economical, and that can be applied to existing or newly built wooden buildings, and a reinforcing member used therefor.

これに対し、従来、建築物を補強するための補強構造としては、木造軸組建築物における柱、間柱、土台、梁及び胴差等の構造材、木造枠組壁工法建築物における角材等の構造材、鉄骨建築物における鉄骨等の構造材等の中で互に接している2つの構造材の間において、筋交いや火打梁といった補強材を架け渡した補強構造が公知である。具体的なこのような構造として例えば、図11に示すように、一方の構造材101の途中から、他方の構造材102の途中にかけて、火打梁材等の木製又は金属製の補強部材103を斜めに接続し、両端部を構造材101、102に固定して建築物を補強してなる補強構造がある。   On the other hand, conventionally, as a reinforcing structure for reinforcing a building, there are structural materials such as columns, studs, foundations, beams and trunk differences in a wooden framed building, and square members in a wooden framed wall construction building. 2. Description of the Related Art A reinforcing structure is known in which a reinforcing material such as a brace or a fire beam is bridged between two structural materials that are in contact with each other in a structural material such as a steel frame or a steel frame in a steel building. As a specific such structure, for example, as shown in FIG. 11, a wooden or metal reinforcing member 103 such as a fire striking material is slanted from the middle of one structural material 101 to the middle of the other structural material 102. There is a reinforcing structure in which both ends are fixed to the structural members 101 and 102 and the building is reinforced.

上記補強構造を有する建築物は、補強部材が存在しない建築物の構造に比べ、耐震性が向上する。またこのような補強構造において、さらに制振構造を用いて耐震性能をより高いものとするための補強構造が知られている(例えば特許文献1、2参照)。   The building having the reinforcing structure has improved earthquake resistance as compared with the structure of the building without the reinforcing member. Further, in such a reinforcing structure, a reinforcing structure for further improving the earthquake resistance performance by using a vibration damping structure is known (see, for example, Patent Documents 1 and 2).

上記特許文献1に記載の補強構造は、一方の構造材(構造材A)の途中から他方の構造材(構造材B)の途中にかけてばね鋼からなる補強部材を固定してなるものである。また上記特許文献2に記載の補強構造は、構造材Aと構造材Bと補強部材とで構成される空間内に合成樹脂発泡体を圧縮状態で固定してなるものである。   The reinforcing structure described in Patent Document 1 is formed by fixing a reinforcing member made of spring steel from the middle of one structural material (structural material A) to the middle of the other structural material (structural material B). The reinforcing structure described in Patent Document 2 is obtained by fixing a synthetic resin foam in a compressed state in a space formed by the structural material A, the structural material B, and the reinforcing member.

上記特許文献1、2に記載の補強構造は、地震や強風等の振動や揺れにより仕口を変形させようとする力がかかった際に、ばね鋼や合成樹脂発泡体等からなる補強部材が仕口変形に抵抗する耐力を発揮し、またこれにより上記仕口を変形させようとする力が吸収され減衰される。この結果、仕口の変形が良好に防止され、建築物の耐久性が図られる。   The reinforcing structures described in Patent Documents 1 and 2 are provided with a reinforcing member made of spring steel, synthetic resin foam, or the like when a force is applied to deform the joint by vibration or shaking such as an earthquake or strong wind. The proof stress that resists deformation of the joint is exhibited, and the force to deform the joint is absorbed and attenuated. As a result, the deformation of the joint is prevented well, and the durability of the building is achieved.

また上述とは別の補強構造として、図12に示すように、2つの構造材に複数のばね(ばね104、ばね105)が固定され、且つこれらばね間に空間が形成され、この空間にばね同士を連結し耐力を与えるための金属製部材106が設けられるとともに、該空間が発泡樹脂体107で充填されてなる補強部材が知られている(例えば特許文献3)。特許文献3に記載の補強部材を利用する補強構造であれば、建築物に加わる振動や揺れが大きくなった場合でも、仕口変形に追従するための減衰効果ある。また正常な仕口の角度にあわせて形成された補強部材を設置した後に、仕口の角度を変形させる力が構造材に働いた際には、この力に抵抗して角度の変形を抑制し、又もとの正常な角度に復元する作用が発揮される。   As a reinforcing structure different from the above, as shown in FIG. 12, a plurality of springs (spring 104, spring 105) are fixed to two structural members, and a space is formed between these springs. There is known a reinforcing member in which a metal member 106 is provided for connecting each other and giving strength, and the space is filled with a foamed resin body 107 (for example, Patent Document 3). If it is a reinforcement structure using the reinforcement member of patent document 3, even when the vibration and shaking which are added to a building become large, there exists a damping effect for following a joint deformation. In addition, after a reinforcing member formed to match the normal joint angle is installed, when a force that deforms the joint angle acts on the structural material, it resists this force and suppresses the angle deformation. Also, the effect of restoring the original normal angle is exhibited.

上述した従来の補強構造は、いずれも建築物の2つの構造材間に架け渡してその両端を各構造材に固定されてなる補強部材(例えばばね鋼等)を主構造としている。上記主構造には堅強な部材が用いられており、これによって補強構造の強度を向上させ構造材間の支持を可能とする要素が含まれている。   Each of the conventional reinforcing structures described above has a main structure of a reinforcing member (for example, spring steel or the like) that is bridged between two structural members of a building and both ends thereof are fixed to the respective structural members. A rigid member is used for the main structure, which includes elements that improve the strength of the reinforcing structure and enable support between structural members.

特開2003−96911号公報JP 2003-96911 A 特開2003−20729号公報JP 2003-20729 A 特願2004−171810号公報Japanese Patent Application No. 2004-171810

ところで、大地震や台風等により被災した場合、構造材よりなる木造の建築物の骨組みは、残留変形していることがある。かかる残留変形した建築物においては、2つの構造材により形成される仕口の角度は、設計時に予定された正常な角度(以下、単に「正常な角度」ともいう。)と比較して、変形している箇所が観察される。上記仕口の角度の変形は、正常な角度よりも広がって変形している場合、或いは狭まって変形している場合がある。また被災した建築物以外でも、建築後、数年経過をした建築物では、風雨、軽度の地震又は建築材料自体の重み等の影響によって、程度の差はあるが、上述と同様に2つの構造材により形成される仕口の角度が、建築直後の正常な角度と比較して変形している場合がある。このように、仕口の角度が正常な角度と比較して変形している場合には、垂直方向或いは水平方向の耐力が減少している。従って早急に補強を行うことが必要である。特に、上述したように地震等の被災後においては、その後の余震等に備え、簡易且つ迅速な方法で補強を行うことが望ましい。   By the way, when a disaster is caused by a large earthquake or a typhoon, a framework of a wooden building made of a structural material may be residually deformed. In such a residual deformed building, the angle of the joint formed by the two structural members is deformed as compared with a normal angle planned at the time of design (hereinafter also simply referred to as “normal angle”). A spot is observed. The deformation of the joint angle may be deformed by expanding beyond a normal angle or may be deformed by narrowing. In addition to buildings that have been damaged, buildings that have passed several years after construction have two different structures as described above, although there are differences due to the effects of wind and rain, minor earthquakes, or the weight of the building materials themselves. The angle of the joint formed by the material may be deformed compared to the normal angle immediately after construction. As described above, when the joint angle is deformed as compared with the normal angle, the proof stress in the vertical direction or the horizontal direction is reduced. Therefore, it is necessary to reinforce immediately. In particular, as described above, after a disaster such as an earthquake, it is desirable to reinforce it by a simple and quick method in preparation for a subsequent aftershock or the like.

しかしながら、上述した従来の補強構造はいずれも、構造材間に堅強な部材を架け渡して固定し形成するものである。従って、この堅強な補強部材を人力により簡易な工具でその形状を伸張させたり圧縮させたりして変形させることは容易ではない。それ故、仕口が正常な角度よりも広がって変形している箇所において、正常な仕口の角度にあわせて形成された従来の補強部材を正しい取付け位置まで伸張させて取付けることは容易ではない。或いはまた、仕口が正常な角度よりも狭まって変形している箇所において、正常な仕口の角度にあわせて形成された従来の補強部材を押し込むようにして設置することは容易ではない。以上の理由から、特に、被災後の残留変形が生じた木造の建築物において緊急に補強が必要となった場合には、短時間のうちに特別な技術を要することなく上記従来の補強構造を実施することは困難である。   However, any of the above-described conventional reinforcing structures is formed by fixing a strong member between structural members. Therefore, it is not easy to deform this strong reinforcing member by extending or compressing its shape with a simple tool by human power. Therefore, it is not easy to install the conventional reinforcing member formed in conformity with the angle of the normal joint by extending it to the correct attachment position at the location where the joint is deformed to be wider than the normal angle. . Alternatively, it is not easy to install a conventional reinforcing member that is formed in accordance with the normal joint angle at a location where the joint is deformed narrower than the normal angle. For the reasons described above, the conventional reinforcement structure can be used without requiring special techniques in a short period of time, particularly when urgent reinforcement is required in a wooden building that has undergone residual deformation after a disaster. It is difficult to implement.

さらにまた、従来の補強構造のうち特に金属製の部材を用いる補強構造では、補強部材の重量がかなり重く、運搬或いは設置作業の際に、上記重量が負担となり取扱い性を低下させる場合がある。   Furthermore, in the reinforcement structure using a metal member among the conventional reinforcement structures, the weight of the reinforcement member is considerably heavy, and the weight may be a burden during transportation or installation work, and the handling property may be lowered.

従って、本発明は、建築物の構造を補強し、耐震性を付与するとともに、構造材の仕口角度が変形することを防止し、また変形した仕口の角度を正常な角度に復元する方向に力を付与することができる補強構造であって、仕口の角度が変形した既存の木造建築物においても簡易且つ短時間に形成が可能である補強構造、及び上記補強構造に利用される補強部材を提供することを目的とする。   Therefore, the present invention reinforces the structure of the building, imparts earthquake resistance, prevents the joint angle of the structural material from being deformed, and restores the deformed joint angle to a normal angle. Reinforcing structure that can apply force to the reinforcing structure that can be formed easily and in a short time even in an existing wooden building with a deformed joint angle, and the reinforcement that is used in the reinforcing structure An object is to provide a member.

本発明は、
(1)建築物又は建造物における仕口を形成する構造材A及び構造材B間を補強するための補強部材であって、両端に構造材に対する固定部を有し且つ前記固定部間に繊維から形成される帯部を有して形成される架け渡し部材と、構造材Aに接する側面A、構造材Bに接する側面B及び前記架け渡し部材に接する側面Cとを有して形成される合成樹脂発泡体部材とを備えることを特徴とする建築物又は建造物の補強部材、
(2)少なくとも前記帯部と前記合成樹脂発泡体部材とが接する部分において、前記合成樹脂発泡体部材の側面Cが、側面Aと側面Bとにより形成された角とは反対の方向に凸状に湾曲して形成されていることを特徴とする上記(1)に記載の建築物又は建造物の補強部材、
(3)上記側面Cの凸状に湾曲して形成されている部分が、半径100cm以上2000cm以下で描かれる弧であることを特徴とする上記(2)に記載の建築物又は建造物の補強部材、
(4)前記合成樹脂発泡体部材の側面Aと側面Bとから形成される角が、建築物又は建造物の設計時における構造材Aと構造材Bとから形成される仕口の角度と等しい角度で形成されていることを特徴とする上記(1)から(3)のいずれか1つに記載の建築物又は建造物の補強部材、
(5)前記帯部の引張強度が、980N以上49kN以下であり、且つ伸び率が3%以上20%以下であることを特徴とする上記(1)から(4)のいずれか1つに記載の建築物又は建造物の補強部材、及び
(6)建築物又は建造物における仕口を形成する構造材A及び構造材B間に補強部材を固定してなる補強構造であって、前記補強部材が、両端に構造材に対する固定部を有し且つ前記固定部間に繊維から形成される帯部を有して形成される架け渡し部材と、構造材Aに接する側面A、構造材Bに接する側面B及び前記架け渡し部材に接する側面Cとを有して形成される合成樹脂発泡体部材とを備えており、構造材A及び構造材B間に上記合成樹脂発泡体部材との間が隙間のない状態で設置されており且つ上記合成樹脂発泡体部材の側面Cと上記架け渡し部材とが接した状態で、前記固定部を介して前記架け渡し部材が構造材A及び構造材Bに固定されることにより形成されることを特徴とする建築物又は建造物の補強構造、
を要旨とするものである。
The present invention
(1) A reinforcing member for reinforcing between the structural material A and the structural material B forming a joint in a building or a building, having a fixing portion for the structural material at both ends, and a fiber between the fixing portions A bridge member formed with a belt portion formed from a side surface A in contact with the structural material A, a side surface B in contact with the structural material B, and a side surface C in contact with the bridge member. A reinforcing member for a building or building, comprising a synthetic resin foam member,
(2) At least in a portion where the belt portion and the synthetic resin foam member are in contact, the side surface C of the synthetic resin foam member is convex in the direction opposite to the corner formed by the side surface A and the side surface B. The building or the reinforcing member for a building according to the above (1), characterized by being curved
(3) The reinforcing part of the building or the building according to (2) above, wherein the convexly formed portion of the side surface C is an arc drawn with a radius of 100 cm to 2000 cm. Element,
(4) The angle formed from the side surface A and the side surface B of the synthetic resin foam member is equal to the angle of the joint formed from the structural material A and the structural material B at the time of designing the building or the building. The building or the reinforcing member for a building according to any one of (1) to (3), wherein the reinforcing member is formed at an angle,
(5) The tensile strength of the belt portion is 980N or more and 49kN or less, and the elongation is 3% or more and 20% or less, according to any one of (1) to (4), And (6) a reinforcing structure in which a reinforcing member is fixed between the structural material A and the structural material B that form a joint in the building or building, the reinforcing member However, it has a fixing part for the structural material at both ends and a bridging member formed with a band part formed of fibers between the fixing parts, a side surface A in contact with the structural material A, and a structural material B A synthetic resin foam member having a side surface B and a side surface C in contact with the bridging member, and a gap between the structural material A and the structural material B between the synthetic resin foam member. Side surface of the synthetic resin foam member that is installed without any And the bridge member is in contact with each other, and the bridge member is formed by being fixed to the structural material A and the structural material B via the fixing portion. Reinforcement structure,
Is a summary.

本発明の補強構造は、構造材間に圧縮変形可能な合成樹脂発泡体部材及び伸張可能な帯部を有する架け渡し部材を備える補強部材を、仕口を形成する2つの構造材間に固定してなる構成を採用した。この結果、上記2つの構造材間に圧縮力が加わった際には、上記合成樹脂発泡体が圧縮変形することにより、該圧縮力を吸収して減衰させることができ、一方、上記2つの構造材間に伸張力が加わった際には、上記帯部が伸張することにより該伸張力を吸収して減衰させることができる。その結果、建築物の仕口変形を抑制し、且つ角度の変形した仕口を正常な位置に復元する方向に力を付与することができる。従って、建築物に対して水平方向或いは垂直方向に応力がかかることにより生じる構造材の変位に対し、正常な仕口角度を維持するように抵抗し、且つその変形を素早く元に戻すことが可能である。またこれにより建築物の揺れを速やかに収束させ小さくすることができる。本発明の補強構造は、木造建築物に用いた場合に、大破、倒壊等の大きなダメージを防止できる。   The reinforcing structure of the present invention fixes a reinforcing member including a synthetic resin foam member that can be compressively deformed between structural members and a bridging member that has an extendable band between two structural members that form a joint. The structure which becomes is adopted. As a result, when a compressive force is applied between the two structural members, the synthetic resin foam can be compressed and deformed to absorb and attenuate the compressive force. When an extension force is applied between the materials, the extension of the band portion can absorb and attenuate the extension force. As a result, it is possible to suppress the joint deformation of the building and apply a force in a direction to restore the joint whose shape has been deformed to a normal position. Therefore, it is possible to resist the displacement of the structural material caused by the stress applied to the building in the horizontal direction or the vertical direction so as to maintain the normal joint angle, and to quickly return the deformation to the original state. It is. In addition, this makes it possible to quickly converge and reduce the shaking of the building. When used in a wooden building, the reinforcing structure of the present invention can prevent large damages such as major damage and collapse.

また本発明の補強部材における帯部には、2つの構造材間にかかる伸張力を吸収して減衰させる作用を発揮せしめる部材として、繊維から形成される帯状物が採用されている。従って上記帯部を備える本発明の補強部材であれば、人力で或いは簡易な工具を使用するだけで伸張させることが可能である。その結果、正常な仕口の角度に合わせて製造された本発明の補強部材を、仕口の角度が変形した箇所に用いる場合、金てこ等の簡易な工具を用いるだけで容易に望ましい設置位置に設置することができる。それ故、本発明の補強部材は、新築の木造建築物だけでなく、仕口の角度に変形が生じた木造建築物においても容易に利用することができ、汎用性に優れる。特に、地震や台風等の被災後であって、緊急に補強を必要とする際には、設置容易性及び軽量性に優れる本発明の補強構造及び補強部材であれば、特別な技術、熟練を要さず施工が可能である。   Moreover, the strip | belt-shaped object formed from a fiber is employ | adopted for the strip | belt part in the reinforcement member of this invention as a member which exhibits the effect | action which absorbs and attenuate | damps the extension force concerning two structure materials. Therefore, if it is the reinforcing member of the present invention provided with the above-mentioned belt part, it can be extended by human power or only using a simple tool. As a result, when the reinforcing member of the present invention manufactured according to a normal joint angle is used in a place where the joint angle is deformed, it is easily desirable to use a simple tool such as a metal lever. Can be installed. Therefore, the reinforcing member of the present invention can be easily used not only in a newly-built wooden building, but also in a wooden building in which the joint angle is deformed, and is excellent in versatility. In particular, when urgent reinforcement is required after a disaster such as an earthquake or typhoon, special techniques and skills are required if the reinforcing structure and the reinforcing member of the present invention are excellent in installation ease and light weight. Construction is possible without necessity.

さらにまた上述のとおり本発明の架け渡し部材の主体は、従来のようにばね鋼等の金属製部材ではなく帯部からなるため、従来と比較して非常に軽量である。従って、上記架け渡し部材を備える本発明の補強部材であれば、運搬及び設置作業の際の負担が従来に比べて軽減されおり、取扱い性に優れ設置時間も従来より短縮することが可能である。特に、被災後の建築物を緊急に補強する場合には、ストックされていた補強部材を補強現場まで速やかに輸送することが望まれる。これに対し軽量な本発明の補強部材であれば、輸送環境の悪化した被災地等においても、輸送手段を選ばず二輪車や人力によっても速やかに運搬することができる。   Furthermore, as described above, the main part of the bridging member of the present invention is not a metal member such as spring steel as in the prior art, but is a band, so it is very light compared to the prior art. Therefore, if it is a reinforcing member of the present invention provided with the above-mentioned bridging member, the burden at the time of transportation and installation work is reduced as compared with the conventional one, the handling property is excellent, and the installation time can be shortened as compared with the conventional one. . In particular, when a building after a disaster is urgently reinforced, it is desired to quickly transport the stocked reinforcement members to the reinforcement site. On the other hand, the lightweight reinforcing member of the present invention can be quickly transported by a two-wheeled vehicle or by human power, regardless of transportation means, even in a stricken area where the transportation environment has deteriorated.

更に本発明の補強構造は、部材の耐久性が高く、メンテナンス等が不要である上、取付け条件等の制約がないため、他の補強材(例えば添え柱又は添え木等)を併用して補強部材の強度を確保することができる。また本発明の補強構造は、コスト的にも安価であり将来的な災害に備えストックしておく際にも経済的な負担が少ない。   Furthermore, since the reinforcing structure of the present invention has high durability of the member, maintenance is not required, and there are no restrictions on mounting conditions, etc., the reinforcing member is also used in combination with other reinforcing materials (for example, splints or splints). The strength of the can be ensured. In addition, the reinforcing structure of the present invention is low in cost and has little economic burden when stocking in preparation for a future disaster.

以下、本発明の実施態様について図面に基づき詳細に説明する。図1は、合成樹脂発泡体部材2と、帯部3及び固定部4を有してなる架け渡し部材24とを備える本発明の補強部材を、木造建築物の構造材11(構造材A)及び構造材12(構造材B)間に設置して形成した本発明の補強構造1を示す断面図である。補強構造1は、構造材11の側面と合成樹脂発泡体部材2の側面8(側面A)とを接し、且つ構造材12の側面と合成樹脂発泡体部材2の側面9(側面B)とを接し、又、架け渡し部材24と側面10(側面C)とを接して設置し、固定部4に形成された挿通孔6及び合成樹脂発泡体部材2に形成された挿通孔7を介して、留め具5を構造材11及び構造材12に留めることによって上記構造材11及び構造材12に固定して形成されている。この時、構造材11及び構造材12に予め留め具用穴Sを設けておき、留め具用穴Sと挿通孔6及び挿通孔7を一致させて留め具5を挿入させることが望ましい。合成樹脂発泡体部材2は、構造材11及び構造材12間に加わる圧縮力を吸収可能であり、また帯部3は、構造材11及び構造材12間に加わる伸張力を吸収可能である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 shows a reinforcing member of the present invention comprising a synthetic resin foam member 2 and a bridging member 24 having a band portion 3 and a fixing portion 4, and a structural member 11 (structural member A) of a wooden building. 2 is a cross-sectional view showing a reinforcing structure 1 of the present invention formed by being installed between structural materials 12 (structural materials B). The reinforcing structure 1 is in contact with the side surface of the structural material 11 and the side surface 8 (side surface A) of the synthetic resin foam member 2, and the side surface of the structural material 12 and side surface 9 (side surface B) of the synthetic resin foam member 2. In addition, the bridge member 24 and the side surface 10 (side surface C) are installed in contact with each other through the insertion hole 6 formed in the fixing portion 4 and the insertion hole 7 formed in the synthetic resin foam member 2. The fastener 5 is fixed to the structural material 11 and the structural material 12 by being fastened to the structural material 11 and the structural material 12. At this time, it is desirable to provide the fastener holes S in the structural material 11 and the structural material 12 in advance, and insert the fastener 5 with the fastener holes S and the insertion holes 6 and 7 aligned. The synthetic resin foam member 2 can absorb the compressive force applied between the structural material 11 and the structural material 12, and the band 3 can absorb the stretching force applied between the structural material 11 and the structural material 12.

上記圧縮力とは、構造材11及び構造材12が交叉する部分の仕口の角度が設計時に予定された正常な角度より狭まる方向に働く力である。上記圧縮力には、構造材自体、特に構造材間の結合部分における構造材自体を圧縮変形させ仕口を正常な角度より狭まる方向に変形させる力、或いは構造材を曲げて(即ち撓んだ状態にさせ)仕口を正常な角度より狭まる方向に変形させる力を含む。
また上記伸長力とは、構造材11及び構造材12が交叉する部分の仕口の角度が設計時に予定された正常な角度より広がる方向に働く力である。上記伸張力には、構造材自体、特に構造材間の結合部分における構造材自体を圧縮変形させて仕口を正常な角度より広がる方向に変形させる力、或いは構造材を曲げて(即ち撓んだ状態にさせ)仕口を正常な角度より広がる方向に変形させる力を含む。
より具体的には、例えば構造材11が木造建築物における柱であり、且つ構造材12が木造建築物における土台である場合は、上記柱と上記土台により構成される仕口の正常な角度は90°であることが一般的である。これに対し、上記角度が90°より小さくなる方向に働く力を圧縮力、90°より大きくなる方向に働く力を伸張力という。
The compression force is a force that acts in a direction in which the angle of the joint at the intersection of the structural material 11 and the structural material 12 is narrower than the normal angle planned at the time of design. The compression force includes a force that compresses and deforms the structural material itself, particularly at the joint portion between the structural materials, and deforms the joint in a direction narrower than a normal angle, or the structural material is bent (that is, bent). Including the force to deform the joint in a direction narrower than the normal angle.
The extension force is a force that acts in a direction in which the angle of the joint at the intersection of the structural material 11 and the structural material 12 is wider than the normal angle planned at the time of design. The extension force includes a force that compresses and deforms the structural material itself, particularly at the joint portion between the structural materials, and deforms the joint in a direction wider than a normal angle, or a bending of the structural material (that is, bending). It includes a force that deforms the joint in a direction that expands from a normal angle.
More specifically, for example, when the structural material 11 is a pillar in a wooden building and the structural material 12 is a foundation in a wooden building, the normal angle of the joint composed of the pillar and the foundation is Generally 90 degrees. On the other hand, the force acting in the direction in which the angle is smaller than 90 ° is referred to as compression force, and the force acting in the direction in which the angle is greater than 90 ° is referred to as extension force.

また本発明において、構造材11、12が交叉する部分の仕口の角度が正常な角度よりも広がる方向に変形するのに追随して引っ張られる方向を帯部3の「伸長方向」と言う。また、伸長方向とは反対に、構造材11、12が交叉する部分の仕口の角度が正常な角度よりも狭まる方向に構造材が変形するのに追随して圧縮される方向を合成樹脂発泡体部材2の「圧縮方向」と言う。
尚、本発明において、「仕口」というときは、2つの木造の構造材が直角またはある角度をなして結合された場合の結合部分であって、特に本発明の補強部材の設置が予定される側の結合箇所を意味する。また本発明において「仕口の角度」とは、上記2つの構造材により形成される仕口において、本発明の補強構造の設置が予定される側に形成される角の角度を指す。
Further, in the present invention, the direction in which the angle of the joint at the portion where the structural members 11 and 12 intersect is deformed in a direction wider than the normal angle is referred to as the “extension direction” of the band portion 3. Contrary to the extension direction, the direction in which the structure material is deformed and deformed in a direction in which the joint angle of the portion where the structure materials 11 and 12 intersect is narrower than the normal angle is compressed with a synthetic resin foam. This is referred to as the “compression direction” of the body member 2.
In the present invention, the term “joint” refers to a joint portion when two wooden structural members are joined at a right angle or at an angle, and the reinforcement member of the present invention is particularly planned to be installed. This means the connecting part on the other side. Further, in the present invention, the “joint angle” refers to the angle of the corner formed on the side on which the reinforcing structure of the present invention is planned to be installed in the joint formed by the two structural members.

構造材間に圧縮力がかかった際の補強構造1の作用を、図2を用いて例示的に説明する。構造材11と構造材12との間に圧縮力が働き、構造材11が仕口の角度を狭める方向に傾斜した場合、合成樹脂発泡体部材2が圧縮変形し、上記圧縮力が吸収されて減衰される。これと同時に、上記圧縮力に対する合成樹脂発泡体部材2の反発力により、構造材11が元の位置に戻る方向に力が付与される。この結果、構造材11及び構造材12が交叉する部分の仕口の角度が正常な角度よりも狭まる方向に変形することが防止される。   The operation of the reinforcing structure 1 when a compressive force is applied between the structural materials will be described with reference to FIG. When a compressive force acts between the structural material 11 and the structural material 12 and the structural material 11 is inclined in a direction that narrows the angle of the joint, the synthetic resin foam member 2 is compressed and deformed, and the compressive force is absorbed. Attenuated. At the same time, due to the repulsive force of the synthetic resin foam member 2 with respect to the compression force, a force is applied in the direction in which the structural material 11 returns to the original position. As a result, it is possible to prevent the joint angle of the portion where the structural material 11 and the structural material 12 intersect from being deformed in a direction narrower than a normal angle.

また、既に構造材間に圧縮力がかかり仕口の角度が正常な角度よりも狭まって変形した箇所において、本発明の補強構造を実施した際の作用を以下に説明する。かかる場合には、側面8及び側面9により形成される角の角度が仕口の正常な角度と等しい角度で形成された合成樹脂発泡体部材2と、これにあわせて製造された架け渡し部材24とを用い、角度の狭まった仕口部分に上記合成樹脂発泡体2を押し込めるようにして設置し、本発明の補強構造を形成する。この結果、設置された際に、合成樹脂発泡体部材2は圧縮状態にあり、該合成樹脂発泡体2に反発力が生じる。そして該反発力により、角度の変形した仕口が正常な角度に復元する方向に力が付与される。   Further, the operation when the reinforcing structure of the present invention is implemented in a place where the compressive force has already been applied between the structural materials and the joint angle has been narrowed and deformed from a normal angle will be described below. In such a case, the synthetic resin foam member 2 formed with the angle of the angle formed by the side surface 8 and the side surface 9 being equal to the normal angle of the joint, and the bridging member 24 manufactured in accordance therewith. And the synthetic resin foam 2 is installed so as to be pushed into the narrowed joint portion, thereby forming the reinforcing structure of the present invention. As a result, when installed, the synthetic resin foam member 2 is in a compressed state, and a repulsive force is generated in the synthetic resin foam 2. And by this repulsive force, force is given in the direction where the joint whose angle is deformed is restored to a normal angle.

次に、構造材間に伸張力がかかった際の補強構造1の作用を、図3を用いて例示的に説明する。図3に示すように構造材11と構造材12との間に伸張力が働き構造材11が仕口の角度が広がる方向に傾斜した場合、帯部3が伸張し、上記伸張力が吸収されて減衰される。またこのとき、帯部3は、伸張すると同時に仕口方向に向って移動しようとする力が生じる。そして帯部3と接する合成樹脂発泡体部材2の側面10が、帯部3から圧力を受け圧縮変形するとともに帯部3に対して反発力を与える。上記合成樹脂発泡体部材2の作用によっても、上記伸張力が吸収され減衰される。この結果、構造材11及び構造材12が交叉する部分の仕口の角度が正常な角度よりも広がる方向に変形することを防止することができる。   Next, the operation of the reinforcing structure 1 when an extension force is applied between the structural materials will be described with reference to FIG. As shown in FIG. 3, when a stretching force acts between the structural material 11 and the structural material 12 and the structural material 11 is inclined in a direction in which the joint angle is widened, the band portion 3 is stretched and the stretching force is absorbed. Is attenuated. At this time, the belt 3 is stretched, and at the same time, a force is generated to move toward the closing direction. Then, the side surface 10 of the synthetic resin foam member 2 in contact with the band portion 3 receives a pressure from the band portion 3 and compressively deforms and gives a repulsive force to the band portion 3. The stretching force is also absorbed and attenuated by the action of the synthetic resin foam member 2. As a result, it is possible to prevent the joint angle of the portion where the structural material 11 and the structural material 12 intersect from being deformed in a direction wider than a normal angle.

また、既に構造材間に伸張力がかかり仕口の角度が正常な角度よりも広がって変形した箇所において、本発明の補強構造を実施した際の作用を以下に説明する。かかる場合には、側面8及び側面9により形成される角の角度が仕口の正常な角度と等しい角度で形成された合成樹脂発泡体部材2と、これにあわせて製造された架け渡し部材24とを用い、角度の広がった仕口部分に上記合成樹脂発泡体2を載置し、挿通孔6、挿通孔7及び留め具用穴Sを一致させて留め具を挿入し、本発明の補強構造を形成する。この結果、設置された際に、架け渡し部材24における帯部3は伸張した状態にある。そして帯部3が元の長さに戻ろうとする力により、角度の変形した仕口が正常な角度に復元する方向に力が付与される。   In addition, the operation when the reinforcing structure of the present invention is implemented in a place where an extension force has already been applied between the structural members and the joint angle has been expanded and deformed from a normal angle will be described below. In such a case, the synthetic resin foam member 2 formed with the angle of the angle formed by the side surface 8 and the side surface 9 being equal to the normal angle of the joint, and the bridging member 24 manufactured in accordance therewith. , The synthetic resin foam 2 is placed on the joint portion having a wide angle, and the fastener is inserted with the insertion hole 6, the insertion hole 7 and the fastener hole S being aligned with each other, thereby reinforcing the present invention. Form a structure. As a result, when installed, the band 3 in the bridging member 24 is in an extended state. A force is applied in a direction in which the joint with the deformed angle is restored to a normal angle by the force with which the belt portion 3 tries to return to the original length.

また特に、少なくとも帯部3と合成樹脂発泡体部材2とが接する部分において、合成樹脂発泡体部材2の側面10を、側面8と側面9とにより形成された角とは反対の方向に凸状に湾曲して形成することにより、上記伸張力を吸収して減衰する作用をより良好に発揮させることができる。即ち、上述のように側面10において凸状に湾曲して形成された部分が存在することにより、帯部3に伸張力が伝達されると、帯部3の両端に位置する2つの固定部4と、合成樹脂発泡体部材2における凸状の形状の頂点との3点が帯部3の支点となる。一方、側面10が直線形状に成形された合成樹脂発泡体部材2では、帯部3の支点は両端の2点だけである。ここで、2点の支点を有する帯部3と、3点の支点を有する帯部3とに、同じ程度の伸張力が伝達された場合には、3点の支点を有する帯部3の方が良好に伸張する。また帯部3は、伸張と同時に仕口方向に移動しようとし、この時、上記凸状の形状の頂点を中心に合成樹脂発泡体部材2に対し強い圧力を与えることができる。帯部3から強い圧力を受けた合成樹脂発泡体部材2は、圧縮変形し、且つ圧縮変形した部分において該圧力に対する反発力が発生する。上記帯部3の良好な伸張及び合成樹脂発泡体部材2の発する反発力における一連の作用から、伸張力のより優れた吸収、減衰作用が発揮される。   In particular, at least in a portion where the belt portion 3 and the synthetic resin foam member 2 are in contact with each other, the side surface 10 of the synthetic resin foam member 2 is convex in the direction opposite to the corner formed by the side surface 8 and the side surface 9. By being curved in the shape, the action of absorbing and attenuating the stretching force can be exhibited more satisfactorily. That is, when the extension force is transmitted to the band portion 3 due to the presence of the convexly curved portion on the side surface 10 as described above, the two fixing portions 4 positioned at both ends of the band portion 3 are transmitted. And the three points of the top of the convex shape in the synthetic resin foam member 2 are the fulcrums of the band portion 3. On the other hand, in the synthetic resin foam member 2 in which the side surface 10 is formed in a linear shape, the fulcrum of the band portion 3 is only two points at both ends. Here, when the same extension force is transmitted to the belt 3 having two fulcrums and the belt 3 having three fulcrums, the belt 3 having three fulcrums Stretches well. Further, the band portion 3 tends to move in the closing direction simultaneously with expansion, and at this time, a strong pressure can be applied to the synthetic resin foam member 2 around the vertex of the convex shape. The synthetic resin foam member 2 that has received a strong pressure from the band portion 3 is compressed and deformed, and a repulsive force against the pressure is generated in the compressed and deformed portion. From the series of actions in the stretch of the belt portion 3 and the repulsive force generated by the synthetic resin foam member 2, the absorption and damping action more excellent in the stretch force is exhibited.

従って、本発明の補強部材を用いて形成される本発明の補強構造であれば、上述のとおり構造材間に圧縮力又は伸張力が働いても、合成樹脂発泡体部材2及び/又は帯部3の作用により、繰り返し上記圧縮力又は伸長力を吸収して減衰する作用が働き、仕口の正常な角度を維持しようとする作用が生じる。   Therefore, if the reinforcing structure of the present invention is formed using the reinforcing member of the present invention, the synthetic resin foam member 2 and / or the belt portion even if a compression force or an extension force acts between the structural materials as described above. By the action of 3, the action of repeatedly absorbing and attenuating the compression force or the extension force works, and the action of maintaining the normal angle of the joint occurs.

次に、側面8と側面9とから形成される角が構造材11及び構造材12により形成される仕口の正常な角度と同じ角度に設けて形成された合成樹脂発泡体部材2を用いた場合の、本発明の補強構造1を形成する方法について説明する。
構造材11及び構造材12の交叉する部分の仕口の角度が正常な角度を示す箇所に本発明の補強構造を形成する場合には、合成樹脂発泡体部材2を上記仕口に隙間が生じないように押し当て、挿通孔6、挿通孔7及び留め具用穴Sを一致させ、ここにスクリューねじ等の留め具5を挿入して構造材に固定せしめることにより容易に形成することができる。
一方、構造材11及び構造材12により形成される仕口の角度が正常な角度より狭まる方向に変形している場合は、図4aに示すように、まず構造材12の水平面において構造材11と構造材12とから形成される仕口から側面9の長さよりやや遠い位置に添え木13を固定する。次いで合成樹脂発泡体部材2と架け渡し部材24とを重ね合わせた状態で構造材11及び構造材12間に置き、側面10の端部において矢印14の方向に力を加え、構造材11と構造材12との間に本発明の補強部材を押し込むようにして設置する。このとき金てこ等の簡易な工具を用いると容易に補強部材に力を加えることができる。その後、図4bに示すとおり、挿通孔6、挿通孔7及び留め具用穴Sを一致させて、ここに留め具5を挿入し上記補強部材を、構造材11及び構造材12に固定せしめることにより、本発明の補強構造1を形成することができる。ただし、本発明の補強構造1の形成方法は、上述に限定されるものではない。本発明の補強構造1は、構造材11と構造材12との間において本発明の構造材における側面8と構造材11、及び側面9と構造材12との間に隙間のない状態で設置され固定されていること、及び固定部4を介して架け渡し部材24が構造材に固定されていることが重要である。従ってかかる状態に本発明の構造材を固定ならしめる方法であれば、いずれの方法でも、本発明の補強構造1の形成方法として採用し得る。尚、補強構造1を形成後、添え木13は除去してよい。またさらに固定部に接して構造材11及び構造材12に留め木15を設置してもよい。留め木15の設置により、構造材に圧縮力又は伸張力がかかった際に、固定部4の位置がずれ、又は留め具5がはずれ若しくは変形することを良好に防止することができるため好ましい。
Next, the synthetic resin foam member 2 formed by providing the corner formed by the side surface 8 and the side surface 9 at the same angle as the normal angle of the joint formed by the structural material 11 and the structural material 12 was used. A method of forming the reinforcing structure 1 of the present invention in the case will be described.
When the reinforcing structure of the present invention is formed at a location where the angle of the joint of the structural material 11 and the structural material 12 shows a normal angle, a gap is formed in the synthetic resin foam member 2 in the above-mentioned joint. It can be easily formed by pressing so that the insertion hole 6, the insertion hole 7, and the fastener hole S are aligned, and a fastener 5 such as a screw screw is inserted and fixed to the structural material. .
On the other hand, when the joint formed by the structural material 11 and the structural material 12 is deformed in a direction narrower than a normal angle, first, as shown in FIG. The splint 13 is fixed at a position slightly farther from the length of the side surface 9 than the joint formed from the structural material 12. Next, the synthetic resin foam member 2 and the bridging member 24 are placed between the structural material 11 and the structural material 12 in an overlapped state, and a force is applied in the direction of the arrow 14 at the end of the side surface 10 to The reinforcing member of the present invention is installed so as to be pushed between the members 12. At this time, if a simple tool such as a gold lever is used, a force can be easily applied to the reinforcing member. After that, as shown in FIG. 4 b, the insertion hole 6, the insertion hole 7, and the fastener hole S are made to coincide, and the fastener 5 is inserted therein to fix the reinforcing member to the structural material 11 and the structural material 12. Thus, the reinforcing structure 1 of the present invention can be formed. However, the method of forming the reinforcing structure 1 of the present invention is not limited to the above. The reinforcing structure 1 of the present invention is installed between the structural material 11 and the structural material 12 with no gap between the side surface 8 and the structural material 11 and between the side surface 9 and the structural material 12 in the structural material of the present invention. It is important that the bridging member 24 is fixed to the structural material through the fixing portion 4. Therefore, any method can be employed as the method for forming the reinforcing structure 1 of the present invention as long as the structural material of the present invention is fixed in such a state. The splint 13 may be removed after the reinforcing structure 1 is formed. Further, the clasp 15 may be installed on the structural material 11 and the structural material 12 in contact with the fixed portion. The installation of the clasp 15 is preferable because it is possible to satisfactorily prevent the fixing portion 4 from being displaced or the fastener 5 from being detached or deformed when a compressive force or an expansion force is applied to the structural material.

上述に基づき形成される本発明の補強構造1において、帯部3に伸張力を良好に吸収させるためには、補強構造1において、帯部3が撓みのない状態で設置されていることが重要である。特に帯部3に147N以上の張力がかかった状態で設置されることが好ましく、245N以上の張力がかかった状態であることがより好ましく、294N以上の張力がかかった状態であることがさらに好ましい。一定の張力がかかった状態で帯部3を設置することにより、構造材間にかかる伸張力が帯部3に良好に伝達され、帯部3が良好に伸張し、上記伸張力を良好に吸収して減衰することができるので好ましい。また帯部3の長期耐力だけを考えれば147N以上1.96kN以下の張力を有した状態で設置することが可能である。ただし、補強構造1を簡易な工具を用いて人力だけで容易且つ迅速に設置可能とするためには、帯部3に392N以下の張力がかかった状態で設置することが望ましい。   In the reinforcing structure 1 of the present invention formed on the basis of the above, it is important that the band part 3 is installed in the reinforcing structure 1 without bending in order to allow the band part 3 to absorb the stretching force satisfactorily. It is. In particular, the belt 3 is preferably installed with a tension of 147N or more, more preferably a tension of 245N or more, and even more preferably a tension of 294N or more. . By installing the belt portion 3 in a state where a certain tension is applied, the stretching force applied between the structural materials is transmitted well to the belt portion 3, the belt portion 3 stretches well, and the stretching force is absorbed well. It is preferable because it can be attenuated. If only the long-term proof stress of the belt part 3 is considered, it can be installed with a tension of 147N or more and 1.96kN or less. However, it is desirable to install the reinforcing structure 1 in a state where a tension of 392 N or less is applied to the belt portion 3 so that the reinforcing structure 1 can be easily and quickly installed using only a simple tool.

上記帯部3の設置時の好ましい張力を得るためには、設置前の帯部の長さをsとし、合成樹脂発泡体部材2の側面Cにおいて帯部と接する部分の長手方向の距離をtとしたとき、上記sが上記tに対して90%以上99%以下になるよう(即ちtよりsを若干短めにして)予め製造しておくことが望ましい。そして構造材間に設置する際に、上記帯部3を備える架け渡し部材24の一端を先ず構造材に固定し、次いで他の一端を引っ張るようにして合成樹脂発泡体部材2とともに構造材に固定することにより、上記望ましい張力がかかった状態で帯部3を設置することが可能である。従って、上記s及び上記tを予め調整することにより、設置時の帯部3の張力を設定することができる。このように帯部3に好ましい張力がかかった状態で設置される補強構造1では、構造材間にかかる伸張力が、良好に帯部3に伝達され、これにより上述において説明した伸張力の吸収、減衰作用が良好に発揮される。   In order to obtain a preferable tension at the time of installation of the band part 3, the length of the band part before installation is set to s, and the longitudinal distance of the portion in contact with the band part on the side surface C of the synthetic resin foam member 2 is set to t. In this case, it is desirable to manufacture in advance such that s is 90% or more and 99% or less with respect to t (that is, s is slightly shorter than t). When installing between the structural materials, one end of the bridging member 24 provided with the band 3 is first fixed to the structural material, and then the other end is pulled and fixed to the structural material together with the synthetic resin foam member 2 By doing so, it is possible to install the band 3 in a state where the desired tension is applied. Therefore, the tension of the band 3 at the time of installation can be set by adjusting the s and the t in advance. As described above, in the reinforcing structure 1 that is installed in a state in which a preferable tension is applied to the belt portion 3, the stretching force applied between the structural members is well transmitted to the belt portion 3, thereby absorbing the stretching force described above. The damping effect is exhibited well.

本発明において構造材というときは、木造軸組建築物における柱、間柱、土台、梁及び胴差等の構造材、または木造枠組壁工法建築物における角材等の構造材等(地面に対し、垂直又は平行に設けられた構造材だけではなく、例えば小屋裏に見られる傾斜角度を有して設けられた構造材等も含められる)を意味する。従って本発明の補強構造は、上記いずれか2つの構造材が接する部分の仕口において形成することができる。例えば、図5に示すように柱16、柱17、梁18及び土台19それぞれにより形成される仕口に本発明の補強構造1を形成することができる。また別の態様として図6に示すように小屋裏の構造において垂木20及び小屋束21により形成される仕口において本発明の補強構造を形成することができる。また本発明の補強構造1は、壁面などの垂直面だけでなく、床面或いは天井面などの水平面や、傾斜面における仕口にも形成することができる。   In the present invention, the term “structural material” refers to structural materials such as columns, studs, foundations, beams, and trunk differences in wooden frame buildings, or structural materials such as square members in wooden frame wall construction buildings (perpendicular to the ground). In addition, it means not only a structural material provided in parallel, but also a structural material provided with an inclination angle found in the back of a hut, for example. Therefore, the reinforcing structure of the present invention can be formed at the joint at the portion where any two of the structural materials are in contact. For example, as shown in FIG. 5, the reinforcing structure 1 of the present invention can be formed at the joint formed by the pillar 16, the pillar 17, the beam 18, and the base 19. As another embodiment, as shown in FIG. 6, the reinforcing structure of the present invention can be formed at the joint formed by the rafter 20 and the shed bundle 21 in the structure of the shed. Further, the reinforcing structure 1 of the present invention can be formed not only on a vertical surface such as a wall surface but also on a horizontal surface such as a floor surface or a ceiling surface or a joint on an inclined surface.

上記構成を有する本発明の補強構造1であれば、圧縮力を吸収して減衰する作用と伸張力を吸収して減衰する作用とが発揮される。また仕口の角度の変形に対し、元の正常な角度を示す方向に復元する力が付与することができる。さらに特別な熟練技術を要することなく簡易且つ迅速に設置、形成することができる。従って本発明の補強構造1であれば、特に緊急災害時等において早急に建築物の補強を必要とする際には、その効果が非常に有効に発揮される。例えば、地震や台風等により被災し、残留変形が生じた木造建築物において、任意に1つ或いは複数の部屋を選択し(地盤に面する部屋が望ましい。)、上記選択された部屋を構成する土台、柱、張り等の各構造材により形成される仕口に本発明の補強構造を形成することによって、上記選択された部屋を架設のシェルターとして使用することが可能である。   With the reinforcing structure 1 of the present invention having the above-described configuration, an action of absorbing and damping a compressive force and an action of absorbing and dampening an extension force are exhibited. Moreover, the force which restores in the direction which shows the original normal angle with respect to the deformation | transformation of the angle of a joint can be provided. Furthermore, it can be installed and formed easily and quickly without requiring special skill. Therefore, with the reinforcing structure 1 of the present invention, the effect is very effectively exhibited particularly when the building needs to be reinforced immediately in an emergency disaster or the like. For example, in a wooden building damaged by an earthquake, a typhoon, or the like and having undergone residual deformation, one or a plurality of rooms are arbitrarily selected (a room facing the ground is preferable), and the selected room is configured. By forming the reinforcing structure of the present invention in the joint formed by each structural material such as a base, a pillar, and a tension, it is possible to use the selected room as an erection shelter.

以下に、本発明の補強構造1に用いられる補強部材23の構成についてより詳しく説明する。図7に示すように、本発明の補強部材23は、合成樹脂発泡体部材2及びこれと独立した架け渡し部材24を備えて構成されている。合成樹脂発泡体部材2は、構造材と接する側面8(側面A)及び側面9(側面B)並びに架け渡し部材24と接する側面10(側面C)を有して形成される。側面8と側面9とから形成される角度は、設置する2つの構造材間における仕口の正常な角度と同じ角度で形成されることが望ましい。一方、架け渡し部材24は、帯部3と、帯部3の両端に位置する固定部4とを有して形成される。帯部3と固定部4との結合方法は、伸張力に耐え得る結合部26を形成することができる方法であればいずれの方法を採用してもよい。例えば、図7に示すように固定部4に帯部通し穴25を設け、これに帯部3の端部を通して折り返し、該折り返し部分を帯部3の本体と縫製することによって結合部26を形成することができる。また他の方法としては、帯部3の上記折り返した部分を帯部3本体と接着する方法、或いは融着する方法等が挙げられる。ただし強度の信頼性や、長期間の良好な結合状態の維持効果の点からは、縫製により結合部26を形成する方法が望ましい。
本発明の補強部材23を用いて本発明の補強構造1を形成する際には、合成樹脂発泡体部材2と架け渡し部材24とを重ね合わせて、2つの構造材間に設置すればよい。従って、固定部4とこれに接する側面10との接触面は、同形状で形成されていることが望ましい。また図7に示すように、合成樹脂発泡体部材2と架け渡し部材24とは独立しているが、構造材間に設置する際には、粘着テープ等で予め一体化させておいてもよい。
Below, the structure of the reinforcement member 23 used for the reinforcement structure 1 of this invention is demonstrated in detail. As shown in FIG. 7, the reinforcing member 23 of the present invention includes the synthetic resin foam member 2 and a bridging member 24 independent of the synthetic resin foam member 2. The synthetic resin foam member 2 has a side surface 8 (side surface A) and a side surface 9 (side surface B) in contact with the structural material, and a side surface 10 (side surface C) in contact with the bridging member 24. It is desirable that the angle formed from the side surface 8 and the side surface 9 is the same angle as the normal angle of the joint between the two structural members to be installed. On the other hand, the bridging member 24 is formed to have the band part 3 and the fixing parts 4 positioned at both ends of the band part 3. Any method may be adopted as a method of connecting the band portion 3 and the fixing portion 4 as long as the connecting portion 26 capable of withstanding an extension force can be formed. For example, as shown in FIG. 7, the band portion through hole 25 is provided in the fixing portion 4, the end portion of the band portion 3 is folded back to this, and the folded portion is sewn to the main body of the band portion 3 to form the coupling portion 26. can do. Other methods include a method of bonding the folded portion of the band 3 to the band 3 main body, a method of fusing, and the like. However, from the viewpoint of the reliability of strength and the effect of maintaining a good bonded state for a long period of time, a method of forming the connecting portion 26 by sewing is desirable.
When forming the reinforcing structure 1 of the present invention using the reinforcing member 23 of the present invention, the synthetic resin foam member 2 and the bridging member 24 may be overlapped and installed between the two structural members. Therefore, it is desirable that the contact surface between the fixed portion 4 and the side surface 10 in contact with the fixed portion 4 is formed in the same shape. Further, as shown in FIG. 7, the synthetic resin foam member 2 and the bridging member 24 are independent, but when installed between the structural materials, they may be integrated in advance with an adhesive tape or the like. .

本発明の補強部材は、補強部材23として図7に示す形状に限定されるものではない。例えば図8aに示す補強部材23(図7と同態様)以外にも、図8b、図8c又は図8dに示す形状の補強部材23を採用して実施し得る。特に、補強部材23を構成する合成樹脂発泡体部材2の側面10において、図8a、図8b又は図8cに示される合成樹脂発泡体部材2の如く、帯部3と接する面を、側面8及び側面9から形成される角とは反対の方向に凸状に湾曲する湾曲面cとして形成することができる。これによれば本補強構造を構造材間に設置した後、伸張力がかかった際に、帯部3が湾曲面cと接して良好に伸張し、該伸張力が良好に吸収されるので望ましい。   The reinforcing member of the present invention is not limited to the shape shown in FIG. For example, in addition to the reinforcing member 23 shown in FIG. 8a (the same mode as FIG. 7), the reinforcing member 23 having the shape shown in FIG. 8b, FIG. 8c, or FIG. In particular, on the side surface 10 of the synthetic resin foam member 2 constituting the reinforcing member 23, the surface in contact with the band portion 3, as in the synthetic resin foam member 2 shown in FIG. 8 a, FIG. 8 b, or FIG. It can be formed as a curved surface c that curves convexly in a direction opposite to the angle formed from the side surface 9. According to this, when the reinforcing force is applied after the reinforcing structure is installed between the structural members, the belt portion 3 is in good contact with the curved surface c and stretches favorably, and the stretching force is favorably absorbed. .

上記側面10における湾曲面cは、100cm以上2000cm以下の半径Rを示す弧を描いて形成されることが好ましく、200cm以上1000cm以下の半径Rを示す弧であることがより好ましく、300cm以上700cmである半径Rを示す弧であることがさらに好ましい。上記好ましい範囲の半径Rを有して合成樹脂発泡体部材が形成されることにより、構造材間に伸張力がかかった際に、帯部3が良好に伸張し、また上記伸張力の吸収が良好に行われる。上記側面10における半径Rは、本発明の補強構造1の実施箇所の構造や木造建築物の規模、及び合成樹脂発泡体部材2の寸法により適宜決定することができる。ただし上記半径Rが100cm未満とすると、湾曲面cのカーブがきつくなりすぎて、3つの支点に力がかかりすぎ、固定部材4が強く引張られて浮いたり、外れたりする恐れがある。一方、半径Rが2000cmを越える場合には、湾曲面cのカーブが緩くなり過ぎて、伸張力が生じた材に、凸状の頂点に帯部3の圧力が良好にかかり難く合成樹脂発泡体部材2を適度に圧縮変形させてその反発力を得ることが難しい。   The curved surface c in the side surface 10 is preferably formed by drawing an arc showing a radius R of 100 cm or more and 2000 cm or less, more preferably an arc showing a radius R of 200 cm or more and 1000 cm or less, and 300 cm or more and 700 cm. It is more preferable that the arc has a certain radius R. By forming the synthetic resin foam member having the radius R in the preferred range, the belt portion 3 can be satisfactorily stretched when the stretching force is applied between the structural members, and the stretching force can be absorbed. Done well. The radius R in the side surface 10 can be appropriately determined according to the structure of the place where the reinforcing structure 1 of the present invention is implemented, the scale of the wooden building, and the dimensions of the synthetic resin foam member 2. However, if the radius R is less than 100 cm, the curve of the curved surface c becomes too tight, too much force is applied to the three fulcrums, and the fixing member 4 is strongly pulled and may float or come off. On the other hand, when the radius R exceeds 2000 cm, the curve of the curved surface c becomes too loose, and it is difficult to apply the pressure of the band 3 to the convex apex well on the material in which the stretching force is generated. It is difficult to obtain a repulsive force by appropriately compressing and deforming the member 2.

また図8a及び図8bに示される合成樹脂発泡体部材2のように、側面10の端部において、本補強部材が構造材間に設置された際に、構造材11及び構造材12から垂直に起立する垂直面aを形成することができる。これにより、図4aを用いて上述したとおり、構造材間に補強部材を嵌め込んで設置する際に、補強部材を押す力がかかり易く、また金てこ等の工具を安定してあてがうことができるため望ましい。また図4aに示す場合に限らず、本発明の補強部材における合成樹脂発泡体を適度に圧縮させた状態で構造材間に設置させるためにも、上記垂直面aが形成されていることにより、合成樹脂発泡体に圧力をかけ易く望ましい。   Further, like the synthetic resin foam member 2 shown in FIGS. 8 a and 8 b, when the reinforcing member is installed between the structural members at the end of the side surface 10, it is perpendicular to the structural members 11 and 12. An upright vertical surface a can be formed. Accordingly, as described above with reference to FIG. 4A, when the reinforcing member is fitted and installed between the structural members, it is easy to apply a force pushing the reinforcing member, and a tool such as a metal lever can be stably applied. This is desirable. Moreover, not only in the case shown in FIG. 4a, in order to install the synthetic resin foam in the reinforcing member of the present invention between the structural materials in a properly compressed state, the vertical surface a is formed, It is desirable to easily apply pressure to the synthetic resin foam.

合成樹脂発泡体部材2における側面8及び側面9の長手方向の寸法は、本発明の実施される箇所、建築物の規模等にあわせて適宜決定することができる。好ましい側面8及び側面9の長手方向の寸法としては25cm以上90cm以下、より好ましくは30cm以上50cm以下である。上記側面の長さが25cm未満であると、補強構造全体の寸法が小さくなり過ぎ、これを用いて形成された補強構造では充分な補強効果を得られない場合がある。また上記側面の寸法が90cm以上である合成樹脂発泡体部材2を用いた補強構造1では、より大きい補強効果が得られ得る。ただし各部材が大きくなるため運搬及び設置時における取扱い性が低下し、特に被災後において緊急に設置が必要とされる場合においては望ましくない。尚、本発明において、上記側面8及び/又は側面9に予め高減衰ゴムシートを貼り付けておくこともできる。上記高減衰ゴムシートを貼り付けた合成樹脂発泡体部材2を構造材間に設置することにより、より高い振動減衰効果を発揮することができる。高減衰ゴムシートの厚みは1〜5mm程度、好ましくは2〜3mm程度である。上記厚みを1mm以上とすることで、高い減衰効果が期待でき好ましい。また上記厚みが5mm以下であれば、ゴムシートの面積が側面8又は側面9の面積より小さくても、上記ゴムシートを備える合成樹脂発泡体部材2を構造材間に設置した際に、該合成樹脂発泡体部材2と構造材との間に実質的に隙間を発生させることがなく設置、固定することができるので好ましい。   The dimensions in the longitudinal direction of the side surface 8 and the side surface 9 in the synthetic resin foam member 2 can be appropriately determined according to the place where the present invention is implemented, the scale of the building, and the like. The dimension in the longitudinal direction of the side surface 8 and the side surface 9 is preferably 25 cm or more and 90 cm or less, more preferably 30 cm or more and 50 cm or less. If the length of the side surface is less than 25 cm, the overall size of the reinforcing structure becomes too small, and a reinforcing structure formed using this may not provide a sufficient reinforcing effect. In the reinforcing structure 1 using the synthetic resin foam member 2 having a side dimension of 90 cm or more, a greater reinforcing effect can be obtained. However, since each member becomes large, handling property at the time of transportation and installation is lowered, and this is not desirable particularly when the installation is urgently required after a disaster. In the present invention, a high-attenuation rubber sheet can be attached to the side surface 8 and / or the side surface 9 in advance. A higher vibration damping effect can be exhibited by installing the synthetic resin foam member 2 to which the high damping rubber sheet is attached between the structural members. The thickness of the high damping rubber sheet is about 1 to 5 mm, preferably about 2 to 3 mm. A thickness of 1 mm or more is preferable because a high damping effect can be expected. Further, when the thickness is 5 mm or less, the synthetic resin foam member 2 having the rubber sheet is placed between the structural materials even when the area of the rubber sheet is smaller than the area of the side surface 8 or the side surface 9. This is preferable because the resin foam member 2 and the structural material can be installed and fixed without substantially generating a gap.

本発明の補強部材を構造材に固定するために、図8a及び図8bに示すように固定部に挿通孔6を、また合成樹脂発泡体部材に挿通孔7を設けて形成することができる。また別の実施態様としては、図8c及び図8dに示すように固定部に挿通孔6を設け、合成樹脂発泡体部材には挿通孔を設けずに形成することもできる。上記挿通孔6及び挿通孔7に留め具5を挿入させて、本補強部材を構造材に固定するためには、構造材に対して留め具5が垂直な角度で留められていることが望ましい。従って、挿通孔6及び挿通孔7は、構造材間に設置された際に構造材と平行に位置する部材の面に設けられることが望ましい。また上記挿通孔6、挿通孔7に対応して、構造材11及び構造材12にも予め留め具用穴Sを設けておくことが望ましい。留め具用穴Sが予め構造材上に存在することにより、挿通孔6及び挿通孔7の位置合わせが容易である。また径の太い留め具を木造の構造材に直接挿入すると、構造材が割れる危険性があるが、予め留め具用穴Sを設けておけば、かかる危険性を回避することができる。
特に図8a及び図8bに示すように、挿通孔6及び挿通孔7を介して留め具5が構造材に留められることにより、合成樹脂発泡体部材2をより安定し且つ密接して構造材間に設置することができる。この結果、圧縮力が合成樹脂発泡体部材2に良好に伝達されるため望ましい。
In order to fix the reinforcing member of the present invention to the structural material, as shown in FIGS. 8a and 8b, an insertion hole 6 can be formed in the fixing portion, and an insertion hole 7 can be formed in the synthetic resin foam member. As another embodiment, as shown in FIGS. 8c and 8d, the insertion hole 6 can be provided in the fixing portion, and the synthetic resin foam member can be formed without the insertion hole. In order to insert the fastener 5 into the insertion hole 6 and the insertion hole 7 and fix the reinforcing member to the structural material, it is desirable that the fastener 5 is secured at an angle perpendicular to the structural material. . Therefore, it is desirable that the insertion hole 6 and the insertion hole 7 be provided on the surface of a member positioned in parallel with the structural material when installed between the structural materials. In addition, it is desirable that a fastener hole S is provided in advance in the structural material 11 and the structural material 12 corresponding to the insertion hole 6 and the insertion hole 7. The presence of the fastener hole S on the structural material in advance facilitates the alignment of the insertion hole 6 and the insertion hole 7. Further, if a fastener having a large diameter is directly inserted into a wooden structural material, there is a risk that the structural material will break, but if the fastener hole S is provided in advance, this risk can be avoided.
In particular, as shown in FIGS. 8a and 8b, the fastener 5 is fastened to the structural material via the insertion hole 6 and the insertion hole 7, so that the synthetic resin foam member 2 is more stably and closely connected between the structural materials. Can be installed. As a result, the compressive force is preferably transmitted to the synthetic resin foam member 2, which is desirable.

またさらに、図8aに示すように、側面10において、構造材から垂直に起立する垂直面aと、該垂直面に連続し且つ構造材と平行に形成された平行面bと湾曲面cとの間に、構造材に対して任意の角度で形成される傾斜面dを形成することができる。これによれば、構造材間に設置された補強構造に伸張力がかかり、帯部3が伸張する際に、固定部4及び留め具5にかかる荷重負担を緩和することができ、留め具5が変形し、或いは引き抜かれることが防止されるため望ましい。   Furthermore, as shown in FIG. 8a, on the side surface 10, a vertical surface a that stands vertically from the structural material, a parallel surface b that is continuous with the vertical surface and is formed in parallel with the structural material, and a curved surface c. In the meantime, an inclined surface d formed at an arbitrary angle with respect to the structural material can be formed. According to this, an extension force is applied to the reinforcing structure installed between the structural members, and when the belt portion 3 extends, the load applied to the fixing portion 4 and the fastener 5 can be reduced, and the fastener 5 Is desirable because it is prevented from being deformed or pulled out.

合成樹脂発泡体部材2を形成する樹脂としては、以下の合成樹脂が用いられる。スチレンの単独重合体樹脂、スチレンと他のモノマーとから製造されたスチレン系共重合体樹脂、スチレンの単独重合体樹脂又は/及びスチレン系共重合体樹脂とスチレン−ブタジエンブロック共重合体との混合物、ゴム状重合体の存在下でスチレン系モノマーを重合することによって得られるゴム変性スチレン系樹脂(耐衝撃性ポリスチレン)、或いは上記したスチレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、スチレン成分比率が50重量%以上であるポリスチレン系樹脂或いはポリスチレン系樹脂組成物;エチレンの単独重合体樹脂、エチレンと他のモノマーとから製造されたエチレン系共重合体樹脂、エチレンの単独重合体樹脂又は/及びエチレン系共重合体樹脂にスチレン系モノマー等のビニルモノマーを含浸させて重合してなるグラフト変性エチレン系樹脂、或いは上記エチレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、エチレン成分比率が50重量%以上であるポリエチレン系樹脂或いはポリエチレン系樹脂組成物;プロピレンの単独重合体樹脂、プロピレンと他のモノマーとから製造されたプロピレン系共重合体樹脂、プロピレンの単独重合体樹脂又は/及びプロピレン系共重合体樹脂にスチレン系モノマー等のビニルモノマーを含浸させて重合してなるグラフト変性プロピレン系樹脂、或いは上記プロピレン系の樹脂と他の樹脂又は/及びゴム状重合体との混合物等の、プロピレン成分比率が50重量%以上であるポリプロピレン系樹脂或いはポリプロピレン系樹脂組成物;熱可塑性ポリエステル樹脂;ポリカーボネート樹脂;ポリアミド樹脂;ポリフェニレンエーテル樹脂;或いは上記した樹脂の2以上の混合物等が挙げられる。合成樹脂発泡体は、上記樹脂を公知の発泡手段により発泡させることで得られる。   As the resin forming the synthetic resin foam member 2, the following synthetic resins are used. Styrene homopolymer resin, styrene copolymer resin produced from styrene and other monomers, styrene homopolymer resin or / and mixture of styrene copolymer resin and styrene-butadiene block copolymer A rubber-modified styrene resin (impact polystyrene) obtained by polymerizing a styrene monomer in the presence of a rubber-like polymer, or the above-mentioned styrenic resin and other resin or / and a rubber-like polymer A polystyrene-based resin or polystyrene-based resin composition having a styrene component ratio of 50% by weight or more, such as a mixture of ethylene, an ethylene homopolymer resin, an ethylene copolymer resin produced from ethylene and another monomer, ethylene Homopolymer resin and / or ethylene copolymer resin impregnated with vinyl monomer such as styrene monomer A polyethylene-based resin or polyethylene having an ethylene component ratio of 50% by weight or more, such as a graft-modified ethylene resin obtained by polymerization, or a mixture of the above-mentioned ethylene-based resin with another resin or / and a rubber-like polymer Propylene homopolymer resin, propylene copolymer resin produced from propylene and other monomers, propylene homopolymer resin or / and propylene copolymer resin such as styrene monomer Polypropylene having a propylene component ratio of 50% by weight or more, such as a graft-modified propylene resin obtained by impregnating a vinyl monomer and polymerizing, or a mixture of the propylene resin and another resin or / and a rubbery polymer. Resin or polypropylene resin composition; thermoplastic polyester resin; polycarbonate Fats; polyamide resin; polyphenylene ether resin; or a mixture of two or more resins mentioned above, and the like. The synthetic resin foam is obtained by foaming the above resin by a known foaming means.

本発明の補強部材に用いられる合成樹脂発泡体部材2の厚みは、建築物の構造に応じて適宜変更可能である。合成樹脂発泡体部材2の厚み(図9の符号50の方向の寸法)は、取り付けられる構造材の厚み(図9の符号50の方向の寸法)に対して20%以上120%以下であることが好ましく、30%以上100%以下であることがより好ましく、且つまたその厚みは50〜200mmであることが好ましい。構造材の厚みに対して合成樹脂発泡体部材2の厚みが20%未満であると、構造材に設置した際に、良好に圧縮力を吸収することができず、一方、120%以下にすることにより効率よく圧縮力を吸収することができ、経済的不利益が発生しないので好ましい。尚、上記合成樹脂発泡体部材2の厚みを構造材の厚みの50%以下に形成し、これを複数並列させて構造材に設置することもできる。   The thickness of the synthetic resin foam member 2 used for the reinforcing member of the present invention can be appropriately changed according to the structure of the building. The thickness of the synthetic resin foam member 2 (the dimension in the direction of reference numeral 50 in FIG. 9) is 20% or more and 120% or less with respect to the thickness of the structural material to be attached (the dimension in the direction of reference numeral 50 in FIG. 9). It is more preferable that it is 30% or more and 100% or less, and the thickness is preferably 50 to 200 mm. When the thickness of the synthetic resin foam member 2 is less than 20% with respect to the thickness of the structural material, the compressive force cannot be favorably absorbed when installed on the structural material, and on the other hand, the thickness is set to 120% or less. Therefore, it is preferable because the compression force can be absorbed efficiently and no economic disadvantage occurs. In addition, the thickness of the synthetic resin foam member 2 can be formed to be 50% or less of the thickness of the structural material, and a plurality of them can be arranged in parallel to be installed on the structural material.

合成樹脂発泡体部材2は、2つの構造材間に設置された際に、圧縮状態で固定されていることが望ましい。圧縮状態の合成樹脂発泡体部材2であれば、構造材間にかかる圧縮力が、合成樹脂発泡体部材2に効率よく伝達され、該圧縮力を良好に吸収し減衰することができる。また建築物が応力を受けた際に建築物の揺れを小さくする働きと、建築物の揺れを吸収して早期に揺れを小さくする効果が良好に発揮される。更に、構造材である柱や梁等の木材が痩せた場合に、合成樹脂発泡体部材2と構造材との間に隙間ができないという利点がある。
従って、仕口が正常な角度を示す部分、或いは仕口の角度の変形が微量である部分に本発明の補強構造を形成する際には、架け渡し部材24を構造材間に固定した際に形成される空間体積より、合成樹脂発泡体部材2の体積を若干大きく形成し、設置の際に圧縮変形させ設置させてもよい。例えば、構造材上に設けられた留め具用穴Sと仕口に形成される角の頂点までの距離をxとし、合成樹脂発泡体部材2の側面において挿通孔7から側面8及び側面9により形成される角の頂点までの距離をyとしたとき、yがxより2〜10%程度長くなるよう形成し、設置の際に上記留め具用穴Sと挿通孔6、挿通孔7とを一致させて固定すれば、合成樹脂発泡体部材2を圧縮状態で設置することができる。一方、仕口の角度が広がる方向に変形している部分、或いは狭まる方向に変形している部分に本補強部材を用いる際には、側面8及び側面9により形成される角を設置する仕口の正常な角度と同じ角度で形成し、上記x及び上記yの距離を等しく設定して上記留め具用穴Sと挿通孔6、挿通孔7とを一致せさて固定すれば、合成樹脂発泡体部材2を適度な圧縮状態で設置することができる。
The synthetic resin foam member 2 is desirably fixed in a compressed state when installed between two structural members. If it is the synthetic resin foam member 2 in a compressed state, the compressive force applied between the structural materials is efficiently transmitted to the synthetic resin foam member 2, and the compressive force can be absorbed and attenuated satisfactorily. Moreover, when the building receives stress, the effect of reducing the shaking of the building and the effect of absorbing the shaking of the building and reducing the shaking early are exhibited well. Furthermore, there is an advantage that there is no gap between the synthetic resin foam member 2 and the structural material when the structural material such as pillars or beams is thin.
Accordingly, when the reinforcing structure of the present invention is formed in a portion where the joint has a normal angle or a portion in which the deformation of the joint has a small amount of deformation, the bridging member 24 is fixed between the structural members. The volume of the synthetic resin foam member 2 may be formed to be slightly larger than the space volume to be formed, and may be compressed and deformed during installation. For example, the distance from the fastener hole S provided on the structural material to the apex of the corner formed in the joint is x, and the side surface of the synthetic resin foam member 2 is inserted into the insertion hole 7 through the side surface 8 and the side surface 9. When the distance to the apex of the corner to be formed is y, y is formed so as to be about 2 to 10% longer than x, and the fastener hole S, the insertion hole 6, and the insertion hole 7 are set at the time of installation. If they are matched and fixed, the synthetic resin foam member 2 can be installed in a compressed state. On the other hand, when the reinforcing member is used in a portion that is deformed in the direction in which the angle of the joint is widened or in a portion that is deformed in the narrowing direction, the joint in which the corner formed by the side surface 8 and the side surface 9 is installed. If the distance between x and y is set equal to each other and the fastener hole S, the insertion hole 6 and the insertion hole 7 are aligned and fixed, the synthetic resin foam is formed. The member 2 can be installed in an appropriate compressed state.

本発明の合成樹脂発泡体部材2に用いられる圧縮変形可能な合成樹脂発泡体としては、5%圧縮時の圧縮応力が2000kPa以下であることが好ましく、1500kPa以下であることがより好ましい。また圧縮時の圧縮応力の下限値は、50kPa以上であることが好ましく、80kPa以上であることがより好ましい。5%圧縮時の圧縮応力があまりにも小さくなりすぎると建築物が応力を受けた際に、揺れを小さくする働きと、揺れを吸収して早期に揺れを小さくする働きとが乏しくなる虞がある。   The compressible and deformable synthetic resin foam used for the synthetic resin foam member 2 of the present invention preferably has a compressive stress at 5% compression of 2000 kPa or less, more preferably 1500 kPa or less. Further, the lower limit value of the compressive stress during compression is preferably 50 kPa or more, and more preferably 80 kPa or more. If the compressive stress at the time of 5% compression is too small, there is a risk that the function of reducing the shaking and the function of absorbing the shaking and reducing the shaking early will be poor when the building receives stress. .

また、上記合成樹脂発泡体部材2が圧縮状態で固定されて補強構造1が形成されると、長期間にわたってその圧縮状態が維持されることになる為、合成樹脂発泡体部材2の圧縮永久歪が12%以下であることが好ましく、10%以下であることがより好ましい。   Further, when the synthetic resin foam member 2 is fixed in a compressed state and the reinforcing structure 1 is formed, the compression state of the synthetic resin foam member 2 is maintained because the compressed state is maintained over a long period of time. Is preferably 12% or less, and more preferably 10% or less.

上記の合成樹脂発泡体部材2の圧縮永久歪は、JIS K 6767−1977に従って測定された値である。但し、試験片の厚さの25%圧縮する際の圧縮スピードは10mm/分とする。また、上記5%圧縮時の圧縮応力は、JIS K 6767−1977における圧縮硬さの測定方法に従って、試験片を試験開始時の厚さより10%圧縮して得られた圧縮応力−歪曲線から5%圧縮時の圧縮応力を読み取ったものである。   The compression set of the synthetic resin foam member 2 is a value measured according to JIS K 6767-1977. However, the compression speed when compressing 25% of the thickness of the test piece is 10 mm / min. The compression stress at the time of 5% compression is 5 from the compression stress-strain curve obtained by compressing the test piece by 10% from the thickness at the start of the test according to the compression hardness measurement method in JIS K 6767-1977. This is a reading of compressive stress at% compression.

ポリプロピレン系樹脂(ポリプロピレン系樹脂組成物も含む)発泡体は、軽量な上に5%圧縮時の圧縮応力及び圧縮永久歪を上記した特定数値範囲内にすることが容易であるので、圧縮変形可能な合成樹脂発泡体として最も好ましいものの一つである。5%圧縮時の圧縮応力及び圧縮永久歪が上記特定範囲内のポリプロピレン系樹脂発泡体は、例えば、株式会社ジェイエスピーから商品名「ピーブロック」として市販されている商品の中で、発泡倍率(=基材樹脂の密度/発泡体の見かけ密度)が5〜30倍のものがある。   Polypropylene resin foam (including polypropylene resin composition) is lightweight and can easily be compressed and deformed because the compression stress and compression set at the time of 5% compression are within the specified numerical range. It is one of the most preferable as a synthetic resin foam. Polypropylene resin foams having a compression stress and compression set at the time of 5% compression within the above specified range are, for example, the expansion ratio (J.P. = Density of base resin / apparent density of foam) is 5 to 30 times.

架け渡し部材24を構成する帯部3は、天然繊維或いは合成繊維を用いた織物或いは編物を主体として形成されているものを用いることができる。帯部3は、補強構造1に用いられた際に、伸張力を吸収する作用が発揮されることが求められる。またさらに伸張方向に伸張した際に元の長さに戻ろうとする力が発揮されることが望ましい。従って帯部3の引張強度は、980N以上49kN以下であることが好ましく、より好ましくは4.9kN以上24.5kN以下であり、更に好ましくは4.9kN以上19.6kN以下である。引張強度が980N未満であると、構造材間に伸張力がかかった際に、帯部が切れる等の破損が生じ易いため望ましくない。一方、49kNを越える引張強度を示す帯部3であっても、強度面からは問題がない。但し、構造材間に24.5kNを越える引張強度が必要とされる程度に強い伸張力がかかった際には、帯部3が破損する前に留め具5の引き抜きや変形が発生する可能性があるので、この観点からは帯部3の引張強度の上限としては24.5kN程度が適当である。   As the belt portion 3 constituting the bridging member 24, one formed mainly of a woven fabric or a knitted fabric using natural fibers or synthetic fibers can be used. When the belt part 3 is used for the reinforcing structure 1, it is required to exhibit an action of absorbing the extension force. Further, it is desirable that a force to return to the original length when exerted in the stretching direction is exhibited. Accordingly, the tensile strength of the belt part 3 is preferably 980 N or more and 49 kN or less, more preferably 4.9 kN or more and 24.5 kN or less, and further preferably 4.9 kN or more and 19.6 kN or less. When the tensile strength is less than 980 N, it is not desirable because damage such as cutting of the band portion is likely to occur when an extension force is applied between the structural materials. On the other hand, even if it is the belt | band | zone part 3 which shows the tensile strength over 49 kN, there is no problem from an intensity | strength surface. However, when a tensile force strong enough to require a tensile strength exceeding 24.5 kN is applied between the structural members, the fastener 5 may be pulled out or deformed before the band portion 3 is damaged. Therefore, from this viewpoint, the upper limit of the tensile strength of the belt portion 3 is appropriately about 24.5 kN.

上記該帯部3の伸び率は、3%以上20%以下であることが好ましく、より好ましくは3%以上10%以下であり、さらに好ましくは3%以上5%以下である。伸び率が3%未満であると、構造材間に伸張力がかかった際に帯部3の伸び量が少なく、良好に伸張力を吸収することができないため好ましくない。一方、伸び率が20%を越えると、伸張力がかかった際の初期伸び量が大きく、これにより仕口の角度の初期変形量が大きくなるため、元の角度に復元させることが困難となり好ましくない。   The elongation percentage of the strip 3 is preferably 3% or more and 20% or less, more preferably 3% or more and 10% or less, and further preferably 3% or more and 5% or less. If the elongation is less than 3%, the elongation of the belt portion 3 is small when an extension force is applied between the structural members, and the extension force cannot be absorbed well. On the other hand, if the elongation exceeds 20%, the initial elongation when the stretching force is applied is large, which increases the initial deformation of the joint angle, which makes it difficult to restore the original angle, which is preferable. Absent.

上記の帯部3の引張強度は、JIS D 4604−1995 7.4ウェビング試験(1.1)に従って測定された値である。詳しくは、試験片をクランプ間距離が220±20mmとなるように引張試験機に取付け、引張速度毎分約100mmで荷重を加え、試験片が破断した時の荷重を測定することにより得られた荷重値を引張強度とした。   The tensile strength of the band 3 is a value measured according to JIS D 4604-1995 7.4 webbing test (1.1). Specifically, the test piece was obtained by attaching the test piece to a tensile tester so that the distance between the clamps was 220 ± 20 mm, applying a load at a pulling speed of about 100 mm per minute, and measuring the load when the test piece broke. The load value was taken as the tensile strength.

また帯部3の伸び率は、JIS D 4604−1995 7.4ウェビング試験(1.3)に従って測定された値である。詳しい測定方法は、まず試験片をクランプ間距離が220±20mmとなるように引張試験機に取付け、試験片が緊張するように200Nの初期荷重を加える。その距離内に標点距離200mmの目盛り線を引き、引張りを開始し、引張強度毎分約100mmで荷重を与え、荷重が11.1kNに達したとき、標点距離を測定する。標点距離をL(mm)とし、伸び率をδ(%)としたとき、δ=(L−200)÷200×100により算出される値δを伸び率とした。   The elongation percentage of the belt part 3 is a value measured according to JIS D 4604-1995 7.4 webbing test (1.3). As a detailed measurement method, first, a test piece is attached to a tensile tester so that a distance between clamps is 220 ± 20 mm, and an initial load of 200 N is applied so that the test piece is tensioned. Within that distance, a graduation line with a mark distance of 200 mm is drawn, pulling is started, a load is applied at a tensile strength of about 100 mm per minute, and when the load reaches 11.1 kN, the mark distance is measured. When the gauge distance is L (mm) and the elongation is δ (%), the value δ calculated by δ = (L−200) ÷ 200 × 100 is defined as the elongation.

帯部3の両端に設けられる固定部4は、補強構造1において用いられた際に、圧縮力及び伸張力によっても容易に変形しない部材で形成されることが好ましく、例えば金属製素材、特に、鉄、鋼等によって形成することができる。固定部4の厚みは、補強する建築物の規模、構造材の規格等によって適宜変更することができるが、好ましくは、2mm以上 5mm以下、より好ましくは、3mm以上5mm以下である。また固定部4の幅(図9の符号50の方向の寸法)は、合成樹脂発泡体部材2の厚み(図9の符号50の方向の寸法)に対し、80%以上110%以下であることが好ましく、約100%、即ち、略同等の幅に形成することにより、経済的不利益がなく安定して補強部材を構造材に固定することが可能である。   The fixing portions 4 provided at both ends of the belt portion 3 are preferably formed of a member that is not easily deformed even by a compressive force and an extension force when used in the reinforcing structure 1, for example, a metal material, in particular, It can be formed of iron, steel or the like. Although the thickness of the fixing | fixed part 4 can be suitably changed with the scale of the building to reinforce, the specification of a structural material, etc., Preferably they are 2 mm or more and 5 mm or less, More preferably, they are 3 mm or more and 5 mm or less. Further, the width of the fixing portion 4 (dimension in the direction of reference numeral 50 in FIG. 9) is 80% to 110% with respect to the thickness of the synthetic resin foam member 2 (dimension in the direction of reference numeral 50 in FIG. 9). It is preferable that the reinforcing member is stably fixed to the structural material without any economic disadvantage by forming the width to about 100%, that is, approximately the same width.

また固定部4の形状は、設置された際に、少なくとも、その内側面において合成樹脂発泡体部材2或いはさらに構造材と密接に接するように形成されおり、且つ構造材に対して平行に位置する面を有して形成されていればよい。尚、図8a及び図8bに示される垂直面aを有する態様の補強部材に用いられる固定部4は、垂直面aに接する面の下端部を、図8a或いは図8bに示すように構造材に接するよう形成してもよいし、或いは、図1に示すように上記下端部と構造材との間に隙間ができるよう形成してもよい。特に、垂直面aと接する固定部4の面の下端部と構造材との間に隙間が形成されていると、構造材間に圧縮力がかかった際に、上記隙間部分において合成樹脂発泡体部材2が圧縮されやすい。この結果、該圧縮力が良好に合成樹脂発泡体部材2に吸収されるので好ましい。上記固定部4は、構造材間に2N以上10Nの範囲の伸張力がかかった際にも、本発明の補強部材が安定して構造材間に設置された状態を維持できる程度の支持力を示すことを前提に、その寸法及び形状を決定することが望ましい。   Further, the shape of the fixing portion 4 is formed so as to be in intimate contact with the synthetic resin foam member 2 or further the structural material at least on the inner surface thereof when installed, and is positioned parallel to the structural material. What is necessary is just to form with a surface. In addition, the fixing | fixed part 4 used for the reinforcement member of the aspect which has the perpendicular | vertical surface a shown by FIG. 8a and FIG. 8b uses the lower end part of the surface which touches the perpendicular | vertical surface a as a structural material as shown to FIG. 8a or 8b. You may form so that it may contact | connect, or as shown in FIG. 1, you may form so that a clearance gap may be made between the said lower end part and a structural material. In particular, when a gap is formed between the lower end portion of the surface of the fixing portion 4 in contact with the vertical surface a and the structural material, when a compressive force is applied between the structural materials, the synthetic resin foam in the gap portion. The member 2 is easily compressed. As a result, the compressive force is favorably absorbed by the synthetic resin foam member 2, which is preferable. The fixing portion 4 has a supporting force enough to maintain the state in which the reinforcing member of the present invention is stably installed between the structural materials even when an extension force in the range of 2N to 10N is applied between the structural materials. It is desirable to determine the size and shape on the assumption that it is shown.

本発明に用いられる留め具5としては、挿通孔6或いはさらに挿通孔7を介して、本発明の架け渡し部材24及び合成樹脂発泡体部材2を構造材に固定することが可能なものであれば、いずれのものでも用いることができる。例えば、先端にスクリュー部が形成されているスクリューねじを用いることができる。また構造材に予め貫通した留め具用穴Sを形成すれば、ボルト及びナットを留め具5として用いることもできる。例えば、上記スクリューねじとしては、金属製部材として、JIS G 3505の軟鋼線材SWRM10を用い、これにJIS H8610に基づき電気亜鉛めっきにより表面処理したものを用いて製造されたものを使用することができる。またスクリューねじの径及び長さは、住宅金融公庫規格M10〜M16を基準とし適宜変更して製造されたものを用いることができる。例えば、図8aに示す補強構造1を形成する際には、固定部4及び合成樹脂発泡体部材2の高さ(図9の符号51の方向の寸法)を勘案して、スクリューねじの長さを適宜決定することができる。   As the fastener 5 used in the present invention, the bridging member 24 and the synthetic resin foam member 2 of the present invention can be fixed to the structural material through the insertion hole 6 or the insertion hole 7. Any of them can be used. For example, a screw screw having a screw part formed at the tip can be used. Further, if a fastener hole S penetrating in advance in the structural material is formed, a bolt and a nut can be used as the fastener 5. For example, as the screw screw, a metal member manufactured using a JIS G 3505 mild steel wire SWRM10 and a surface treated by electrogalvanizing based on JIS H8610 can be used. . Moreover, what was manufactured by changing suitably the diameter and length of a screw screw on the basis of Housing Finance Corporation Standard M10-M16 can be used. For example, when the reinforcing structure 1 shown in FIG. 8a is formed, the length of the screw screw in consideration of the height of the fixing portion 4 and the synthetic resin foam member 2 (the dimension in the direction of reference numeral 51 in FIG. 9). Can be appropriately determined.

以上の構成を有する本発明の補強部材であれば、構造材間に設置された際に、圧縮力及び伸張力を良好に、吸収し減衰することができる。さらに固定部のみが硬質の部材により形成されているため、全体に軽量であり、運搬又は設置の際の取扱い性に優れる。   If it is the reinforcement member of this invention which has the above structure, when it installs between structural materials, it can absorb and attenuate a compression force and an extension force satisfactorily. Furthermore, since only the fixed part is formed of a hard member, it is lightweight as a whole, and has excellent handleability during transportation or installation.

実施例1
上述に説明した本発明の補強部材23を用いて図9に示す補強構造1を形成し、その耐力について試験した。合成樹脂発泡体部材2は、株式会社ジェイエスピー製「ピーブロック」(発泡倍率15倍)を用いた。合成樹脂発泡体部材2は、符号50=60mm、符号51=55mm、符号52=40mm、符号53=30mm、符号54=300.6mm、符号55=350mm、符号56(半径R)=500cm、θ1=90°、及びθ2=135℃の寸法に形成した。合成樹脂発泡体部材2の側面8及び側面9には、側面8と側面9とから形成される角から33cmの部分に挿通孔7を形成した。また構造材11及び構造材12の正常な角度90°にあわせて、側面8及び側面9から形成される角度を90°に形成した。架け渡し部材を構成する固定部4は、JIS SS41の鉄材料を用い、厚み3.2mmとして形成した。また固定部4は、構造材に対し垂直に位置する面58の下端縁と構造材との間に隙間が生じるように、符号57=50mmの寸法で形成した。その他の固定部4の寸法は、その内側面において、これに接する合成樹脂発泡体部材2の寸法と同等の寸法で形成した。また固定部4において構造材と平行に位置する面に挿通孔6を設けた。帯部3には、引張強度23.5kN、伸び率15%のウェビングを用いた。帯部3と固定部4との結合は、固定部に予め形成した通し穴に帯部3を固定部4の下側面(合成樹脂発泡体部材2と接する面)から上側面方向に通して5cm折り返し、ビニロン5番の糸を用いて縫製して結合した。これにより補強部材を完成した。
次いで、幅105mm×105mmの角材を構造材11及び構造材12として用い、これら構造材同士が結合する箇所にほぞを作って嵌め込み、さらに接合金物27により構造材11及び構造材12を結合させ90°の角度の仕口を形成した。接合金物27には、(株)タナカの15A04−1「スーパーシャトルプレート」を用いた。構造材11において、構造材12と接する地点から136cmの部分を試験の際の加圧部28とした。上記構造材11及び構造材12において、これらが接する地点から33cmの部分に、留め具用穴Sを形成した。上記構造材11及び構造材12の間に、上記架け渡し部材と、上記合成樹脂発泡体部材とを設置した。そして補強部材を金てこで構造材に挿通孔6、挿通孔7及び留め具用穴Sを一致させて、これにスクリューねじ5を挿入し、構造材に合成樹脂発泡体部材2及び架け渡し部材24を固定して、本発明の補強構造を完成した。尚、スクリューねじ5は、住宅金融公庫規格M12を基本とし、その長さを150mm、ボルトの径を8.6mmに設計し製造したものを用いた。
Example 1
The reinforcing structure 1 shown in FIG. 9 was formed using the reinforcing member 23 of the present invention described above, and the proof stress was tested. As the synthetic resin foam member 2, “P-Block” (expansion ratio of 15 times) manufactured by JSP Co., Ltd. was used. The synthetic resin foam member 2 has a code 50 = 60 mm, a code 51 = 55 mm, a code 52 = 40 mm, a code 53 = 30 mm, a code 54 = 300.6 mm, a code 55 = 350 mm, a code 56 (radius R) = 500 cm, θ1. = 90 °, and θ2 = 135 ° C. On the side surface 8 and the side surface 9 of the synthetic resin foam member 2, an insertion hole 7 was formed in a portion 33 cm from the corner formed by the side surface 8 and the side surface 9. In addition, the angle formed from the side surface 8 and the side surface 9 was set to 90 ° in accordance with the normal angle 90 ° of the structural material 11 and the structural material 12. The fixing part 4 constituting the bridging member was formed with a thickness of 3.2 mm using an iron material of JIS SS41. The fixing portion 4 is formed with a size of 57 = 50 mm so that a gap is generated between the lower end edge of the surface 58 positioned perpendicular to the structural material and the structural material. The other fixed portions 4 were formed on the inner surface with the same dimensions as the dimensions of the synthetic resin foam member 2 in contact therewith. Further, an insertion hole 6 is provided in a surface of the fixing portion 4 that is positioned in parallel with the structural material. For the band 3, webbing having a tensile strength of 23.5 kN and an elongation of 15% was used. The band part 3 and the fixing part 4 are joined together by passing the band part 3 from the lower surface of the fixing part 4 (the surface in contact with the synthetic resin foam member 2) to the upper side through a through-hole formed in the fixing part in advance. Folded and sewed using a vinylon No. 5 thread and joined. Thereby, the reinforcing member was completed.
Next, a square member having a width of 105 mm × 105 mm is used as the structural member 11 and the structural member 12, and a tenon is formed and fitted in a place where these structural members are coupled to each other, and the structural member 11 and the structural member 12 are coupled by the joint hardware 27. A joint with an angle of ° was formed. As the bonding hardware 27, 15A04-1 “Super Shuttle Plate” of Tanaka Co., Ltd. was used. In the structural material 11, a 136 cm portion from the point in contact with the structural material 12 was used as the pressurizing unit 28 in the test. In the structural material 11 and the structural material 12, a fastener hole S was formed in a portion 33 cm from a point where they contact. The bridge member and the synthetic resin foam member were installed between the structural material 11 and the structural material 12. Then, the reinforcing member is made of a metal lever, the insertion hole 6, the insertion hole 7 and the fastener hole S are made to coincide with the structural material, and the screw screw 5 is inserted into the structural material, and the synthetic resin foam member 2 and the bridging member are inserted into the structural material. 24 was fixed to complete the reinforcing structure of the present invention. The screw 5 was designed and manufactured based on the Housing Finance Corporation Standard M12, with a length of 150 mm and a bolt diameter of 8.6 mm.

比較例1
一方、本発明の補強構造を用いず、構造材11及び構造材12により90°の仕口を形成した状態を比較例1とした。
Comparative Example 1
On the other hand, a state in which a 90 ° joint was formed by the structural material 11 and the structural material 12 without using the reinforcing structure of the present invention was defined as Comparative Example 1.

上記実施例1として形成した本発明の補強構造の圧縮力に対する耐力を測定するために、まず構造材11の加圧部28を構造材間を圧縮する方向29に毎秒1mmの速度で除々に荷重に掛け、その変位量が約3mmになったところで、荷重を毎秒1mmの速度で除々に弱めた。続いて上記実施例1の伸張力に対する耐力を測定するために、加圧部28を構造材間を伸張する方向30に毎秒1mmの速度で荷重を除々に掛け、その変位距離が約−3mmになったところで、荷重を毎秒1mmの速度で除々に弱め、これを3回繰り返した。さらに続いて、上述と同様の方法で順に、変位量約5mmから約−5mm、約7mmから約−7mm、約9mmから約−9mm、約11mmから約−11mm、約14mmから約−14mm、約19mmから約−19mm、約28mmから約−28mm、及び約46mmから約−46mmまで3回繰り返して変位させた。最後に、変位量約90mmから−90mmまで大変位させて試験を終了した。上記試験において掛けられた荷重と変位距離の関係を表したグラフから、特に最後に行った大変位(±90mmの変位)の結果を抜粋して図10に示した。尚、構造材間を圧縮する方向に掛けられた荷重を+の値で示し、そのときの変位距離を+の値で示した。また、構造材間を伸張する方向に掛けられた荷重を−の値で示し、そのときの変位距離を−の値で示した。
一方、比較例1においても上述と同様に、構造材11の加圧部を構造材間を圧縮する方向及び構造材間を伸張する方向に加圧して、そのときの変位距離との関係を測定し、最後に行った大変位(±90mmの変位)の結果を抜粋して図10に示した。
In order to measure the proof strength against the compressive force of the reinforcing structure of the present invention formed as Example 1 above, first, the pressure portion 28 of the structural material 11 is gradually loaded at a speed of 1 mm per second in the direction 29 in which the space between the structural materials is compressed. When the displacement amount was about 3 mm, the load was gradually weakened at a speed of 1 mm per second. Subsequently, in order to measure the proof strength against the stretching force of the first embodiment, the load is gradually applied to the pressurizing unit 28 in the direction 30 for stretching between the structural members at a speed of 1 mm per second, and the displacement distance is about -3 mm. Then, the load was gradually weakened at a speed of 1 mm per second, and this was repeated three times. Further, in the same manner as described above, the displacement amount is about 5 mm to about −5 mm, about 7 mm to about −7 mm, about 9 mm to about −9 mm, about 11 mm to about −11 mm, about 14 mm to about −14 mm, about The displacement was repeated three times from 19 mm to about −19 mm, from about 28 mm to about −28 mm, and from about 46 mm to about −46 mm. Finally, the test was completed after a large displacement from about 90 mm to −90 mm. From the graph showing the relationship between the load applied in the above test and the displacement distance, the results of the last large displacement (± 90 mm displacement) are shown in FIG. In addition, the load applied in the direction which compresses between structural materials was shown by + value, and the displacement distance at that time was shown by + value. Further, a load applied in the direction of extending between the structural members is indicated by a minus value, and a displacement distance at that time is indicated by a minus value.
On the other hand, in the first comparative example as well, the pressure portion of the structural material 11 is pressurized in the direction in which the structural material is compressed and the direction in which the structural material is expanded, and the relationship with the displacement distance is measured. The results of the last large displacement (± 90 mm displacement) are shown in FIG.

上記測定の結果、実施例1では、比較例1と比較して、圧縮力及び伸張力に対し充分な耐力が発生しており構造材11及び構造材12間に用いられる補強構造として良好に作用することが確認された。   As a result of the above measurement, in Example 1, compared with Comparative Example 1, sufficient proof stress was generated with respect to the compressive force and the stretching force, and it works well as a reinforcing structure used between the structural material 11 and the structural material 12. Confirmed to do.

本発明の補強構造の一実施態様を示す断面図Sectional drawing which shows one embodiment of the reinforcement structure of this invention 本発明の補強構造の一実施態様において圧縮力がかけられた際の状態を示す断面図Sectional drawing which shows the state at the time of compressive force being applied in one embodiment of the reinforcement structure of this invention 本発明の補強構造の一実施態様において伸張力がかけられた際の状態を示す断面図Sectional drawing which shows the state when tensile force is applied in one embodiment of the reinforcement structure of this invention 仕口角度が変形した構造材間に本発明の補強構造を形成する方法の一例を示す説明図Explanatory drawing which shows an example of the method of forming the reinforcement structure of this invention between the structural materials in which the joint angle was deformed 2本の柱、梁及び土台により形成される枠組みに形成される4つの仕口に本発明の補強構造を実施した際の断面略図Schematic cross-section when the reinforcement structure of the present invention is applied to four joints formed in a frame formed by two columns, beams and a base. 小屋裏における垂木及び小屋束により形成される仕口に本発明の補強構造を実施した際の示す断面略図Schematic cross-sectional view when the reinforcing structure of the present invention is applied to a joint formed by rafters and a bundle of sheds on the back of the shed 本発明の補強部材の一実施態様を示す斜面図The slope view which shows one embodiment of the reinforcement member of this invention 本発明の補強部材の実施態様を示す断面図Sectional drawing which shows the embodiment of the reinforcement member of this invention 本発明の実施例を示す斜視図The perspective view which shows the Example of this invention 本発明の補強部材の耐力試験の結果を示すグラフ図The graph which shows the result of the yield strength test of the reinforcement member of this invention 従来の補強構造の一例を示す斜視図A perspective view showing an example of a conventional reinforcing structure 従来の補強構造の一例を示す断面図Sectional drawing which shows an example of the conventional reinforcement structure

符号の説明Explanation of symbols

1 本発明の補強構造
2 合成樹脂発泡体部材
3 帯部
4 固定部
5 留め具
6 挿通孔
7 挿通孔
8 側面(側面A)
9 側面(側面B)
10 側面(側面C)
11 構造材(構造材A)
12 構造材(構造材B)
23 本発明の補強部材
24 架け渡し部材
25 帯部通し穴
26 結合部
DESCRIPTION OF SYMBOLS 1 Reinforcing structure of the present invention 2 Synthetic resin foam member 3 Band portion 4 Fixing portion 5 Fastener 6 Insertion hole 7 Insertion hole 8 Side surface (side surface A)
9 Side (side B)
10 Side (side C)
11 Structural material (Structural material A)
12 Structural material (Structural material B)
23 Reinforcing member of the present invention 24 Crossing member 25 Band portion through hole 26 Coupling portion

Claims (6)

建築物又は建造物における仕口を形成する構造材A及び構造材B間を補強するための補強部材であって、両端に構造材に対する固定部を有し且つ前記固定部間に繊維から形成される帯部を有して形成される架け渡し部材と、構造材Aに接する側面A、構造材Bに接する側面B及び前記架け渡し部材に接する側面Cとを有して形成される合成樹脂発泡体部材とを備えることを特徴とする建築物又は建造物の補強部材。   A reinforcing member for reinforcing a structural material A and a structural material B forming a joint in a building or a building, having a fixing portion for the structural material at both ends, and formed from a fiber between the fixing portions. A synthetic resin foam formed by having a bridging member formed with a belt portion, a side surface A in contact with the structural material A, a side surface B in contact with the structural material B, and a side surface C in contact with the bridging member A building or a reinforcing member for a building comprising a body member. 少なくとも前記帯部と前記合成樹脂発泡体部材とが接する部分において、前記合成樹脂発泡体部材の側面Cが、側面Aと側面Bとにより形成された角とは反対の方向に凸状に湾曲して形成されていることを特徴とする請求項1に記載の建築物又は建造物の補強部材。   At least in a portion where the belt portion and the synthetic resin foam member are in contact, the side surface C of the synthetic resin foam member is curved in a convex shape in a direction opposite to the corner formed by the side surface A and the side surface B. The building or the reinforcing member for a building according to claim 1, wherein the reinforcing member is formed. 上記側面Cの凸状に湾曲して形成されている部分が、半径100cm以上2000cm以下で描かれる弧であることを特徴とする請求項2に記載の建築物又は建造物の補強部材。   3. The building or building reinforcing member according to claim 2, wherein the portion of the side surface C that is curved in a convex shape is an arc drawn with a radius of 100 cm or more and 2000 cm or less. 前記合成樹脂発泡体部材の側面Aと側面Bとから形成される角が、建築物又は建造物の設計時における構造材Aと構造材Bとから形成される仕口の角度と等しい角度で形成されていることを特徴とする請求項1〜請求項3のいずれか1項に記載の建築物又は建造物の補強部材。   The angle formed from the side surface A and the side surface B of the synthetic resin foam member is formed at an angle equal to the angle of the joint formed from the structural material A and the structural material B at the time of designing the building or the building. The building or the reinforcing member for a building according to any one of claims 1 to 3, wherein the reinforcing member is a building. 前記帯部の引張強度が、980N以上49kN以下であり、且つ伸び率が3%以上20%以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載の建築物又は建造物の補強部材。   The tensile strength of the said belt | band | zone part is 980N or more and 49kN or less, and elongation rate is 3% or more and 20% or less, The building of any one of Claims 1-4 characterized by the above-mentioned. Reinforcing members for buildings. 建築物又は建造物における仕口を形成する構造材A及び構造材B間に補強部材を固定してなる補強構造であって、前記補強部材が、両端に構造材に対する固定部を有し且つ前記固定部間に繊維から形成される帯部を有して形成される架け渡し部材と、構造材Aに接する側面A、構造材Bに接する側面B及び前記架け渡し部材に接する側面Cとを有して形成される合成樹脂発泡体部材とを備えており、構造材A及び構造材B間に上記合成樹脂発泡体部材との間が隙間のない状態で設置されており且つ上記合成樹脂発泡体部材の側面Cと上記架け渡し部材とが接した状態で、前記固定部を介して前記架け渡し部材が構造材A及び構造材Bに固定されることにより形成されることを特徴とする建築物又は建造物の補強構造。
A reinforcing structure in which a reinforcing member is fixed between a structural material A and a structural material B forming a joint in a building or a building, wherein the reinforcing member has fixing portions for the structural material at both ends, and It has a bridging member formed with a band portion formed of fibers between the fixing parts, a side surface A in contact with the structural material A, a side surface B in contact with the structural material B, and a side surface C in contact with the bridging member. And the synthetic resin foam member formed between the structural material A and the structural material B with no gap between the synthetic resin foam member and the synthetic resin foam member. The building is formed by fixing the bridge member to the structural material A and the structural material B through the fixing portion in a state where the side surface C of the member is in contact with the bridge member. Or the reinforcement structure of a building.
JP2004367765A 2004-12-20 2004-12-20 Reinforcing member and reinforcing structure of building or structure Pending JP2006169921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367765A JP2006169921A (en) 2004-12-20 2004-12-20 Reinforcing member and reinforcing structure of building or structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367765A JP2006169921A (en) 2004-12-20 2004-12-20 Reinforcing member and reinforcing structure of building or structure

Publications (1)

Publication Number Publication Date
JP2006169921A true JP2006169921A (en) 2006-06-29

Family

ID=36670963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367765A Pending JP2006169921A (en) 2004-12-20 2004-12-20 Reinforcing member and reinforcing structure of building or structure

Country Status (1)

Country Link
JP (1) JP2006169921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643914B1 (en) * 2013-09-24 2014-12-17 株式会社ちくま建設工業 Seismic reinforcement structure using seismic reinforcement with wood and fiber sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316624A (en) * 1991-09-25 1994-11-15 Kumagai Gumi Co Ltd Epoxy resin composition for high tensile material made of frp
JP2002256708A (en) * 2001-02-27 2002-09-11 Haneda Concrete Industrial Co Ltd Reinforcing structure for concrete construction
WO2004051015A1 (en) * 2002-12-02 2004-06-17 Nakamura Bussan Co., Ltd. Reinforcing structure for building and reinforcing member for the structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316624A (en) * 1991-09-25 1994-11-15 Kumagai Gumi Co Ltd Epoxy resin composition for high tensile material made of frp
JP2002256708A (en) * 2001-02-27 2002-09-11 Haneda Concrete Industrial Co Ltd Reinforcing structure for concrete construction
WO2004051015A1 (en) * 2002-12-02 2004-06-17 Nakamura Bussan Co., Ltd. Reinforcing structure for building and reinforcing member for the structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643914B1 (en) * 2013-09-24 2014-12-17 株式会社ちくま建設工業 Seismic reinforcement structure using seismic reinforcement with wood and fiber sheet

Similar Documents

Publication Publication Date Title
JP4861067B2 (en) Steel frame
JP2005330802A (en) Frame with buckling-restrained brace
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
US7647733B2 (en) Reinforcing structure for building
KR101319698B1 (en) Steel damper using cantilever behavior
Essa et al. Behavior of roof deck diaphragms under quasistatic cyclic loading
KR101994893B1 (en) Self restoring type brace damper
KR101403125B1 (en) Seismic control device and strengthen method for steel frame structure using thereof
JP2010216611A (en) Seismic response control metallic plate
JP4070117B2 (en) Vibration control device
JP2008050820A (en) Base isolation device
JP5037031B2 (en) Wall panel fixing structure and building
KR20190091131A (en) Automatic Restoration and Self-Healing Damper System Utilizing Smart Material
JP2006169921A (en) Reinforcing member and reinforcing structure of building or structure
JP4902239B2 (en) Wall structure of building and vibration control panel used for this wall structure
US20190360196A1 (en) Self-centering damping column and damping brace
JP2007040045A (en) Wooden building, or reinforcement structure and reinforcement method of wooden building
JP6031291B2 (en) Damping wall
JP4167627B2 (en) Reinforcement structure and reinforcement member of building or building
JP2005290753A (en) Energy absorbing brace vibration damping device and energy absorbing device
KR101931537B1 (en) Rod bar with outrigger and tension cable
JPH10280727A (en) Damping frame by composite type damper and damping method
JP2020090812A (en) Vibration control structure
JP2006307508A (en) Reinforcement structure for wooden building or steel building
TWM580607U (en) Compression brace frame

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100802

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A02 Decision of refusal

Effective date: 20110111

Free format text: JAPANESE INTERMEDIATE CODE: A02