JP2006167756A - Laser beam welding apparatus, and method for manufacturing welded structure - Google Patents

Laser beam welding apparatus, and method for manufacturing welded structure Download PDF

Info

Publication number
JP2006167756A
JP2006167756A JP2004363446A JP2004363446A JP2006167756A JP 2006167756 A JP2006167756 A JP 2006167756A JP 2004363446 A JP2004363446 A JP 2004363446A JP 2004363446 A JP2004363446 A JP 2004363446A JP 2006167756 A JP2006167756 A JP 2006167756A
Authority
JP
Japan
Prior art keywords
welding
sealed container
laser
welded
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363446A
Other languages
Japanese (ja)
Inventor
Keiki Tsuzuki
圭紀 都築
Hiromoto Akamatsu
弘基 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004363446A priority Critical patent/JP2006167756A/en
Publication of JP2006167756A publication Critical patent/JP2006167756A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding apparatus capable of performing a fusion welding while observing an object to be welded under inert atmosphere controlled in temperature and pressure, and to provide a method for manufacturing a welded structure by which the welded structure, which is excellent in the flexibility of working and has excellent mechanical characteristics without causing weld crack, can be obtained. <P>SOLUTION: The welding apparatus is provided with: a closed vessel 1, which is provided with a laser beam transmissive member 4 for transmitting the laser beam and can house the object to be welded; and a laser beam emitting part 15, which is arranged at the outer part of the closed vessel 1 and can emit the laser beam to the object housed in the inner part of the closed vessel 1 from the outer part of the closed vessel 1 through the laser beam transmissive member 4. The welded structure is manufactured by using the apparatus. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザ溶接装置および溶接構造物の製造方法に関するものである。   The present invention relates to a laser welding apparatus and a method for manufacturing a welded structure.

TiAl鍛造材をはじめとする金属間化合物材料を用いた製品の開発においては、部材の大型化及び歩留まり向上が実現可能な接合技術が求められている。   In the development of products using an intermetallic compound material such as a TiAl forged material, a joining technique capable of realizing an increase in the size of members and an improvement in yield is required.

TiAl鍛造材等の金属間化合物材料は、優れた高温比強度特性を持つ材料であるが、常温での延性が極めて小さく、金属間化合物材料に対してレーザ溶接などの溶融溶接を行った場合、溶接後に溶接部分が凝固して収縮すると、収縮応力に素材が追従できず、溶接割れを起こすという問題があった。   Intermetallic compound materials such as TiAl forgings are materials with excellent high temperature specific strength characteristics, but ductility at room temperature is extremely small, and when performing fusion welding such as laser welding on intermetallic compound materials, When the welded portion solidifies and shrinks after welding, there is a problem that the material cannot follow the shrinkage stress and causes a weld crack.

また、例えばTiAl鍛造材は活性元素のTiおよびAlから構成されるため、接合時の雰囲気によって溶接部組織や組成が変化し易く、継手特性もその組織形態に左右され易い。従ってTiAl鍛造材を大気中で溶接すると、TiおよびAlが酸素、窒素と反応して脆い化合物(酸化物、窒化物)を形成し、これが異物として材料中に残存するため、継手の機械的特性を劣化させるという問題があった。   Further, for example, since TiAl forging is composed of active elements Ti and Al, the welded portion structure and composition are likely to change depending on the atmosphere during joining, and the joint characteristics are also easily affected by the structure form. Therefore, when TiAl forging is welded in the atmosphere, Ti and Al react with oxygen and nitrogen to form brittle compounds (oxides and nitrides), which remain in the material as foreign matter. There was a problem of deteriorating.

そこで、開先温度および雰囲気を制御して金属間化合物を接合する方法として、完全密封した炉内で、高温高圧で拡散接合やロウ付けを行う方法が一般的に採用されていた。   Therefore, as a method for bonding intermetallic compounds by controlling the groove temperature and atmosphere, a method of performing diffusion bonding or brazing at a high temperature and high pressure in a completely sealed furnace has been generally employed.

また、不活性ガスを噴出することによって形成したシールド内に溶接対象物を置くことで雰囲気制御を行い、かつ溶接対象物を溶接熱源とは別の熱源で加熱することによって温度制御を行いながら、レーザ溶接を行う方法が提案されている(特許文献1および特許文献2参照)。   In addition, while controlling the atmosphere by placing the welding object in the shield formed by blowing out the inert gas, and performing the temperature control by heating the welding object with a heat source different from the welding heat source, A method of performing laser welding has been proposed (see Patent Document 1 and Patent Document 2).

特開2004−237327号公報JP 2004-237327 A 特開2002−219589号公報JP 2002-219589 A

しかし、完全密封した炉内で拡散接合やロウ付けを行う場合、接合対象物を炉の中に入れ、所定の温度・圧力プログラムが終了し、炉の蓋を開放するまでその出来上がり状況が確認できない。従って、接合を行っている際は接合対象物の状態を逐次観察できず、接合工程で異常がおきたときに、オペレータが手動でパラメータ変更を行うなどの適切な処置を行うことができないという不都合があった。また、これら接合方法は接合部品質も設備やプロセスに大きく依存するために、作業者が状況に応じて細かく対処できる溶融溶接に比べて加工上のフレキシビリティに劣っている。
また、不活性ガスでシールドを形成してレーザ溶接を行ったとしても、溶接部の窒素含有量は1%位までにしか低減することはできず、溶接部の実用的な強度を得ることはできない。
However, when diffusion bonding or brazing is performed in a completely sealed furnace, the state of completion cannot be confirmed until the objects to be joined are put into the furnace, the prescribed temperature and pressure program is completed, and the furnace lid is opened. . Therefore, it is not possible to sequentially observe the state of the objects to be joined during joining, and when an abnormality occurs in the joining process, the operator cannot perform appropriate measures such as manually changing parameters. was there. In addition, these joining methods are also inferior in processing flexibility compared to fusion welding, which can be dealt with finely depending on the situation, because the quality of the joint part greatly depends on equipment and processes.
Moreover, even if laser welding is performed with a shield formed of an inert gas, the nitrogen content of the welded part can only be reduced to about 1%, and a practical strength of the welded part can be obtained. Can not.

本発明は、このような事情に鑑みてなされたものであって、温度および圧力が制御された不活性雰囲気中で、溶接対象物を観察しながら溶融溶接を行うことが可能なレーザ溶接装置、および加工上のフレキシビリティに優れ、溶接割れがなく機械的特性に優れた溶接構造物が得られる溶接構造物の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a laser welding apparatus capable of performing fusion welding while observing a welding object in an inert atmosphere in which temperature and pressure are controlled, Another object of the present invention is to provide a method for producing a welded structure that is excellent in processing flexibility, has no weld cracking, and has excellent mechanical properties.

上記課題を解決するために、本発明のレーザ溶接装置および溶接構造物の製造方法は、以下の手段を採用する。
すなわち、本発明にかかるレーザ溶接装置は、レーザ光を透過するレーザ光透過部材を備え、溶接対象物を収容可能な密封容器と、この密封容器の外部に配置され、前記レーザ光透過部材を介して前記密封容器の外部からこの密封容器の内部に収容した前記溶接対象物にレーザ光を照射可能なレーザ光出射部とを備える。
この装置により、温度および圧力が制御された不活性雰囲気中で、溶接対象物を観察しながら溶融溶接を行うことができる。
In order to solve the above problems, the laser welding apparatus and the method for manufacturing a welded structure according to the present invention employ the following means.
That is, a laser welding apparatus according to the present invention includes a laser light transmitting member that transmits laser light, and is disposed outside a sealed container that can accommodate an object to be welded, via the laser light transmitting member. And a laser beam emitting unit capable of irradiating the welding object accommodated in the sealed container from the outside of the sealed container.
With this apparatus, it is possible to perform fusion welding while observing the welding object in an inert atmosphere in which the temperature and pressure are controlled.

前記レーザ溶接装置に、前記溶接対象物を加熱する加熱装置を設けてもよい。
加熱装置を設けることにより、溶接対象物が常温で延性の低いTiAl等の金属間化合物材料であっても、加熱して延性を増大させて溶接を行うことができるので、溶接割れを防ぐことができる。
You may provide the heating apparatus which heats the said welding target object in the said laser welding apparatus.
By providing a heating device, even if the welding object is an intermetallic compound material such as TiAl having low ductility at room temperature, welding can be performed by increasing the ductility by heating, thus preventing weld cracking. it can.

前記レーザ溶接装置は、前記密封容器の内部に連通し、この密封容器内部を真空排気する真空排気装置を備えていることが好ましい。
真空排気装置により、密封容器内の大気を除去し、溶接対象物中の金属元素が大気中の酸素や窒素と反応して脆い酸化物や窒化物を形成するのを防ぐことができる。
The laser welding apparatus preferably includes a vacuum exhaust device that communicates with the inside of the sealed container and evacuates the inside of the sealed container.
The vacuum evacuation apparatus can remove the atmosphere in the sealed container and prevent the metal element in the welding target from reacting with oxygen or nitrogen in the atmosphere to form brittle oxides or nitrides.

前記レーザ溶接装置は、前記密封容器の内部に連通し、この密封容器内部に不活性ガスを供給する不活性ガス供給装置を備えていてもよい。
この不活性ガス供給装置により、密封容器内に溶接対象物と反応しない不活性ガスを供給し、密封容器内の圧力を溶接対象物の性状に合わせて調節することができる。
The laser welding apparatus may include an inert gas supply device that communicates with the inside of the sealed container and supplies an inert gas into the sealed container.
By this inert gas supply device, an inert gas that does not react with the welding object can be supplied into the sealed container, and the pressure in the sealed container can be adjusted in accordance with the properties of the welding object.

さらに、前記レーザ溶接装置は、前記密封容器の内部に連通し、この密封容器内部を加圧する加圧装置を備えていてもよい。
この加圧装置により密封容器を加圧することで、溶接対象物にマンガンやアルミニウムなどの蒸気圧の高い金属元素が含まれる場合でも、その金属元素が溶接の際に気化するのを防ぐことができる。
Furthermore, the laser welding apparatus may include a pressurizing device that communicates with the inside of the sealed container and pressurizes the inside of the sealed container.
By pressurizing the sealed container with this pressurizing device, it is possible to prevent the metal element from being vaporized during welding even when the metal to be welded contains a metal element having a high vapor pressure such as manganese or aluminum. .

前記レーザ光出射部はYAGレーザ出射部とすることができる。
YAGレーザ光を用いることにより、加工上のフレキシビリティを持たせることができ、品質保証も比較的し易くなる。
The laser beam emitting unit can be a YAG laser emitting unit.
By using a YAG laser beam, processing flexibility can be provided, and quality assurance is relatively easy.

前記レーザ光透過部材の材料としては、石英ガラスが好ましい。
石英ガラスをレーザ光透過部材の材料として用いることにより、レーザ光のエネルギー損失を低く抑えることができる。
As a material for the laser beam transmitting member, quartz glass is preferable.
By using quartz glass as the material for the laser beam transmitting member, the energy loss of the laser beam can be kept low.

また本発明の溶接構造物の製造方法は、溶接対象物をレーザ光を透過するレーザ光透過部材を備えた密封容器内に収容する工程と、前記レーザ光透過部材を介して前記密封容器の外部から前記溶接対象物にレーザ光を照射して溶接を行う工程とを含んでいる。
この方法により、密封容器内の温度および圧力が制御しながら溶融溶接を行うことができるので、溶接割れがなく機械的特性に優れた溶接構造物を製造することができる。また、溶接対象物を観察しなら確実に溶接することができる。
The method for manufacturing a welded structure according to the present invention includes a step of accommodating a welding object in a sealed container provided with a laser light transmitting member that transmits laser light, and an outside of the sealed container via the laser light transmitting member. To welding by irradiating the welding object with laser light.
By this method, since fusion welding can be performed while the temperature and pressure in the sealed container are controlled, a welded structure having no weld cracking and excellent mechanical properties can be produced. Further, if the welding object is observed, welding can be surely performed.

前記溶接構造物の製造方法において、前記溶接対象物を加熱して溶接を行ってもよい。
溶接対象物がTiAl等の常温で延性が低い金属間化合物の場合には、溶接対象物を加熱することにより延性が増大するので、凝固収縮応力に追随することができる。従って、溶接割れを防ぐことができる。
In the method for manufacturing a welded structure, the welding object may be heated to perform welding.
When the welding object is an intermetallic compound having low ductility at room temperature such as TiAl, the ductility is increased by heating the welding object, so that the solidification shrinkage stress can be followed. Therefore, weld cracking can be prevented.

前記溶接構造物の製造方法において、前記密封容器内を真空排気する工程を設けても良い。
密封容器内を真空排気することにより、密封容器内の大気が除去されるので、溶接対象物中の金属元素が大気中の酸素や窒素と反応して脆い酸化物や窒化物を形成するのを防ぐことができる。従って、継手の機械的特性に優れた溶接構造物を製造することができる。
In the method for manufacturing a welded structure, a step of evacuating the sealed container may be provided.
By evacuating the sealed container, the atmosphere in the sealed container is removed, so that the metal elements in the welding object react with oxygen and nitrogen in the atmosphere to form brittle oxides and nitrides. Can be prevented. Therefore, it is possible to manufacture a welded structure excellent in mechanical characteristics of the joint.

前記溶接構造物の製造方法において、前記密封容器内に不活性ガスを充填する工程を設けてもよい。
密封容器内に不活性ガスを充填することにより、密封容器内に溶接対象物と反応しない不活性ガスが供給され、密封容器内の圧力は溶接対象物の性状に合わせて調節される。
In the method for manufacturing the welded structure, a step of filling the sealed container with an inert gas may be provided.
By filling the sealed container with an inert gas, an inert gas that does not react with the welding object is supplied into the sealed container, and the pressure in the sealed container is adjusted in accordance with the properties of the welding object.

前記溶接構造物の製造方法において、前記密封容器内を加圧する工程を設けてもよい。
密封容器内を加圧することにより、溶接対象物にマンガンやアルミニウムなどの蒸気圧の高い金属元素が含まれる場合でも、その金属元素が溶接の際に気化するのを防ぐことができる。
In the method for manufacturing the welded structure, a step of pressurizing the inside of the sealed container may be provided.
By pressurizing the inside of the sealed container, even when a metal object having a high vapor pressure such as manganese or aluminum is contained in the welding object, the metal element can be prevented from being vaporized during welding.

本発明によれば、温度および圧力が制御された不活性雰囲気中で、溶接対象物を観察しながら加工上のフレキシビリティに優れた溶融溶接を行うことが可能になる。また、溶接割れがなく機械的特性に優れた溶接構造物が得られる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to perform the fusion welding excellent in the flexibility on a process, observing a welding target object in the inert atmosphere where temperature and pressure were controlled. Further, a welded structure having no weld cracking and excellent mechanical properties can be obtained.

以下に、本発明のレーザ溶接装置および溶接構造物の製造方法にかかる実施形態について、図面を参照して説明する。   Embodiments according to a laser welding apparatus and a welded structure manufacturing method of the present invention will be described below with reference to the drawings.

図1は、本実施形態のレーザ溶接装置の概略構成図である。
このレーザ溶接装置は、溶接対象物を収容するための密封容器1を有している。密封容器1は略円柱状のチャンバであり、底部が閉止され上部が開口した筒状の胴部2と、胴部2の上部開口を閉じる蓋部3とから構成されている。胴部2上部の開口は縁部がフランジ形状になっており、開閉できるように蓋部3がボルトによって取り付けられている。
FIG. 1 is a schematic configuration diagram of the laser welding apparatus of the present embodiment.
This laser welding apparatus has a sealed container 1 for accommodating an object to be welded. The sealed container 1 is a substantially columnar chamber, and includes a cylindrical body portion 2 whose bottom portion is closed and whose upper portion is opened, and a lid portion 3 that closes the upper opening of the body portion 2. The opening of the upper part of the body part 2 has a flange shape at the edge, and the lid part 3 is attached by bolts so that it can be opened and closed.

胴部2の側部には、窓状のレーザ光透過部材4が設けられている。このレーザ光透過部材4を介して密封容器外部から内部の溶接対象物に向けてレーザ光が照射される。レーザ光透過部材4の材料としては、溶接の際の温度や圧力等の環境に耐え得る材料であり、かつレーザ光のエネルギーを吸収しない材料が用いられる。これらの条件から、レーザ光透過部材4の材料としては、石英ガラスを好適に用いることができる。   A window-shaped laser light transmitting member 4 is provided on the side of the body 2. Laser light is irradiated from the outside of the sealed container toward the internal welding object via the laser light transmitting member 4. As a material of the laser beam transmitting member 4, a material that can withstand an environment such as temperature and pressure during welding and that does not absorb the energy of the laser beam is used. From these conditions, quartz glass can be suitably used as the material of the laser light transmitting member 4.

密封容器1の内部には、溶接対象物を加熱するための加熱装置10が設けられている。加熱装置10は、ヒータおよびヒータブロック等から構成することができる。TiAl鍛造材等の金属間化合物材料は常温では延性が低いが、600℃以上では20〜100%位の延性示す。従って、金属間化合物材料を溶接する場合は、加熱装置10で溶接対象物を加熱して、開先温度を調節しながら溶接を行うことにより、凝固収縮応力に追随できるので、溶接割れを防ぐことができる。
但し、十分な延性を有する材料を溶接する場合は、加熱装置10は設けなくてもよい。
Inside the sealed container 1, a heating device 10 for heating the welding object is provided. The heating device 10 can be composed of a heater, a heater block, and the like. Intermetallic compound materials such as TiAl forged materials have low ductility at room temperature, but exhibit ductility of about 20 to 100% at 600 ° C. or higher. Therefore, when welding an intermetallic compound material, it is possible to follow the solidification shrinkage stress by heating the object to be welded with the heating device 10 and adjusting the groove temperature, thereby preventing weld cracking. Can do.
However, when welding a material having sufficient ductility, the heating device 10 may not be provided.

密封容器1の外部には、レーザ光透過部材4を介して密封容器1の内部に収容した溶接対象物にレーザ光を照射可能な位置に、レーザヘッド(レーザ光出射部)15が配置されている。レーザヘッド15は、光ファイバ(図示略)によってレーザ光源(図示略)と光学的に接続されている。
レーザ光源としては、加工上のフレキシビリティを持たせることができ、品質保証も比較的し易いYAGレーザ光が好ましい。
A laser head (laser light emitting portion) 15 is disposed outside the sealed container 1 at a position where a laser beam can be applied to the welding object accommodated inside the sealed container 1 via the laser light transmitting member 4. Yes. The laser head 15 is optically connected to a laser light source (not shown) by an optical fiber (not shown).
As the laser light source, YAG laser light that can have processing flexibility and is relatively easy to assure quality is preferable.

また、前記密封容器1の外部には、密封容器内部に連通する真空ポンプ(真空排気装置)25が設けられている。この真空ポンプ25により密封容器1内の大気を除去することにより、溶接対象物中の金属元素が大気中の酸素や窒素と反応して脆い酸化物や窒化物を形成するのを防ぐことができる。   Further, a vacuum pump (vacuum exhaust device) 25 communicating with the inside of the sealed container is provided outside the sealed container 1. By removing the atmosphere in the sealed container 1 with the vacuum pump 25, it is possible to prevent the metal element in the welding object from reacting with oxygen and nitrogen in the atmosphere to form brittle oxides and nitrides. .

また、前記密封容器1の外部には、密封容器内部に連通する不活性ガスボンベ(不活性ガス供給装置)20が設けられている。この不活性ガスボンベ20で密封容器1内部に不活性ガスを供給することにより、溶接対象物の性状に応じて中・低圧で溶接を行うことが可能となる。不活性ガスボンベ中の不活性ガスとしては、アルゴンを好適に用いることができる。   In addition, an inert gas cylinder (inert gas supply device) 20 communicating with the inside of the sealed container is provided outside the sealed container 1. By supplying an inert gas into the sealed container 1 with the inert gas cylinder 20, welding can be performed at medium and low pressures according to the properties of the object to be welded. Argon can be suitably used as the inert gas in the inert gas cylinder.

また、前記密封容器1の外部に、密封容器内部に連通する加圧装置(図示略)を設けてもよい。溶接対象物にマンガンやアルミニウムなどの蒸気圧の高い元素が含まれる場合は、加圧装置により密封容器1内を加圧状態にして溶接を行うことにより、これら蒸気圧の高い元素が気化するのを防ぐことができる。   Further, a pressurizing device (not shown) communicating with the inside of the sealed container may be provided outside the sealed container 1. When the welding object contains an element having a high vapor pressure such as manganese or aluminum, the element having a high vapor pressure is vaporized by performing the welding while the sealed container 1 is pressurized with a pressurizing device. Can be prevented.

本実施形態のレーザ溶接装置を用いて溶接構造物を製造するには、まず蓋部3を開いた状態で加熱装置10に接するか若しくは近接するように溶接対象物を配置する。次に、蓋部3で胴部2の上部開口を閉止することにより密封容器1内部を密閉状態とする。ついで、真空ポンプ25により密封容器1内部の大気を除去し、不活性ガスボンベ20および加圧装置(図示略)により密封容器1内部の圧力を適宜調整する。必要に応じて加熱装置10により溶接対象物を加熱して開先温度を調節する。そして、レーザヘッド15からレーザ光を出射し、レーザ光透過部材4を介して溶接対象物に照射することにより溶接を行い、溶接構造物を製造する。   In order to manufacture a welded structure using the laser welding apparatus of the present embodiment, first, the welding object is arranged so as to be in contact with or close to the heating device 10 with the lid 3 opened. Next, the inside of the sealed container 1 is sealed by closing the upper opening of the body 2 with the lid 3. Next, the atmosphere inside the sealed container 1 is removed by the vacuum pump 25, and the pressure inside the sealed container 1 is appropriately adjusted by the inert gas cylinder 20 and a pressurizing device (not shown). The welding object is heated by the heating device 10 as necessary to adjust the groove temperature. Then, laser light is emitted from the laser head 15, and welding is performed by irradiating the object to be welded through the laser light transmitting member 4 to manufacture a welded structure.

なお、本発明の溶接装置および溶接構造物の製造方法は、溶接の際に雰囲気および温度の制御が必要な、金属間化合物材料や比較的炭素量の多い鉄鋼材料溶接等に好適に採用される。中でも、活性元素から構成されるTiAl鍛造材の溶接には特に好適に採用される。しかし、本発明の溶接装置および溶接構造物の製造方法の適用は金属間化合物材料や鉄鋼材料に限定されず、通常溶接法で接合される他の金属材料にも適用される。   The welding apparatus and welded structure manufacturing method of the present invention are suitably employed for welding intermetallic compound materials, steel materials having a relatively large amount of carbon, etc. that require control of the atmosphere and temperature during welding. . Especially, it is employ | adopted especially suitably for welding of the TiAl forging material comprised from an active element. However, application of the welding apparatus and welded structure manufacturing method of the present invention is not limited to intermetallic compound materials and steel materials, and is also applied to other metal materials that are usually joined by a welding method.

以下、実施例により本発明をさらに詳述する。
(実施例)
供試材料および試験方法:
Ti−28.6Al−6.9Mn鍛造材(200×50×4mm)2枚を突合せて溶接を行った。継手形状はI型とした。鍛造材をチャンバ内に設置する前に、開先面及び開先近傍の表裏面はワイヤーブラッシングによる清浄化処理を行った。また開先部拘束のため、純Ti溶接棒を用いて開先線上の両端をGTAW(Gas Tungsten Arc Welding)による仮付け溶接を行った。
Hereinafter, the present invention will be described in more detail by way of examples.
(Example)
Test materials and test methods:
Two pieces of Ti-28.6Al-6.9Mn forged material (200 L × 50 W × 4 t mm) were butted and welded. The joint shape was an I type. Before installing the forging material in the chamber, the groove surface and the front and back surfaces near the groove were cleaned by wire brushing. Further, for constraining the groove portion, both ends on the groove line were tack-welded by GTAW (Gas Tungsten Arc Welding) using a pure Ti welding rod.

溶接試験には、図1に示したレーザ溶接装置を用いた。レーザ溶接機として、定格出力10kWのYAGレーザ溶接機(ファイバー種:SI型ファイバー、ファイバー径:0.8mm、光学系:Bf200mm)を用いた。密封容器1には、供試体を加熱する加熱装置(ヒータ及びヒータブロック)10を内部に設け、真空排気及び不活性ガス導入の雰囲気制御ができるように不活性ガスボンベ20および真空ポンプ25を接続した。レーザ光は、不活性雰囲気を確保するための密封容器1の外から、YAGレーザ用両面単層コートを施した石英ガラス(レーザ光透過部材)4を介して供試体開先部に照射して溶接した。供試体は縦置きとした。溶接施工は、安定した溶融池形状が確保でき、高品質溶接施工が可能で、アンダーフィル、アンダーカット等の凹凸が生じにくいために溶接部の研削加工等の溶接後の仕上げ加工が極力低減可能な立向き上進施工とした。尚、供試体の加熱は、供試体開先を拘束するための治具を兼ねたヒータブロックで行い、供試体の温度管理は開先表面に直接取付けた熱電対にて行った。開先上への溶込み溶接前には、ギャップ、ミスマッチ量を極力低減し、開先の位置拘束のための点付け溶接(開先上3点)及びシール溶接(部分溶込み溶接)を行った。点付け溶接、シール溶接及び溶込み溶接(本溶接)は、ヒータブロックにて供試体を加熱しながら行った。   The laser welding apparatus shown in FIG. 1 was used for the welding test. As a laser welding machine, a YAG laser welding machine (fiber type: SI type fiber, fiber diameter: 0.8 mm, optical system: Bf 200 mm) with a rated output of 10 kW was used. The sealed container 1 is provided with a heating device (heater and heater block) 10 for heating the specimen, and an inert gas cylinder 20 and a vacuum pump 25 are connected so as to control the atmosphere for evacuation and introduction of inert gas. . Laser light is irradiated from the outside of the sealed container 1 for ensuring an inert atmosphere to a specimen groove portion through quartz glass (laser light transmitting member) 4 having a double-sided single layer coating for YAG laser. Welded. The specimen was placed vertically. Welding construction can ensure a stable molten pool shape, high quality welding construction is possible, and unevenness such as underfill and undercut is unlikely to occur, so finishing work after welding such as grinding of the welded part can be reduced as much as possible It was assumed that the construction work was upward. The specimen was heated with a heater block that also served as a jig for restraining the specimen groove, and the temperature of the specimen was controlled with a thermocouple attached directly to the groove surface. Before penetration welding on the groove, the gap and mismatch amount are reduced as much as possible, and spot welding (3 points on the groove) and seal welding (partial penetration welding) are performed to restrain the position of the groove. It was. Spot welding, seal welding, and penetration welding (main welding) were performed while heating the specimen with a heater block.

適用した溶接条件を表1にまとめる。スポット径、加工点出力、溶接速度等の溶接部寸法に直接影響を与える基本的な溶接条件については、供試体の板厚4mmを考慮して開先溶接が可能な最適な溶接条件をあらかじめ設定しておき、素材構成成分のうちMn、Alの蒸気圧の高い成分が素材と溶接部とでどの程度変化するのか、あるいは構成成分が変化した継手部の冶金的及び機械的特性変化を把握するために、溶接雰囲気を高真空(10−3Torr)と低真空(10−1Torr)に変化させて継手の形成を行った。 The applied welding conditions are summarized in Table 1. For basic welding conditions that directly affect the weld dimensions such as spot diameter, machining point output, and welding speed, optimum welding conditions that allow groove welding are set in advance, taking into account the specimen thickness of 4 mm. In addition, grasp how much the components with high vapor pressure of Mn and Al change between the material and the welded part, or the metallurgical and mechanical property change of the joint part where the component has changed. Therefore, the joint was formed by changing the welding atmosphere to high vacuum (10 −3 Torr) and low vacuum (10 −1 Torr).

Figure 2006167756
Figure 2006167756

試験結果および考察:
(YAGレーザ溶接試験)
溶接供試体は、密封容器1上面の蓋部3をクレーンで吊って開放し、密封容器1内のヒータブロック間に挿入して拘束している。溶接姿勢には立向き姿勢を採用し、かつ開先表面からの反射光がレーザヘッド15内の集光レンズ及びその先の光ファイバーまで達して損傷させないよう溶接進行方向に15°倒した。従って、溶接ヘッドを上進移動させた場合には、溶接供試体に対して後進角での溶接施工となる。下向き溶接及び立向き水平溶接施工時には、開先部の予熱並びに溶融池の安定化を図るために前進角での溶接施工を採用するのが一般的であるが、立向き上進溶接の場合、前進角での溶接施工を採用すると、特に電子ビーム溶接やレーザ溶接等のようにキーホール型の溶融形態を示す溶接法においては、一旦溶融した金属が重力の影響により垂れ落ちて、再度その溶融金属が照射ビームに当って溶融池挙動を不安定なものにし、それにより蒸発金属や素材からの発生ガスを溶融池内に巻き込みやすくなってポロシティ等の内部欠陥の発生要因となり得るため、本試験では後進角での溶接施工を採用した。
Test results and discussion:
(YAG laser welding test)
In the welded specimen, the lid 3 on the upper surface of the sealed container 1 is opened with a crane, and is inserted between the heater blocks in the sealed container 1 to be restrained. A standing posture was adopted as the welding posture, and the reflected light from the groove surface was tilted by 15 ° in the welding progress direction so as not to reach the condensing lens in the laser head 15 and the optical fiber ahead of the condensing lens. Therefore, when the welding head is moved upward, welding is performed at a backward angle with respect to the weld specimen. At the time of downward welding and vertical horizontal welding construction, it is common to employ welding construction at the advance angle in order to preheat the groove and stabilize the molten pool, but in the case of vertical upward welding, When welding at advancing angle is adopted, especially in welding methods that show keyhole-type melting, such as electron beam welding or laser welding, once molten metal sags under the influence of gravity, it is melted again. In this test, the metal is exposed to the irradiation beam and makes the behavior of the molten pool unstable, which can easily cause the gas generated from the evaporated metal and the material to get into the molten pool and cause internal defects such as porosity. Adopting reverse welding.

高真空雰囲気及び低真空雰囲気でレーザ溶接した溶接供試体(溶接したまま)の外観から、両雰囲気で溶接した溶接供試体のビード表面性状は、アンダーカットやアンダーフィル等による凹みがほとんどなく、酸化・窒化による変色もほとんど観られず金属白色を呈していた。また浸透探傷検査の結果、表面ポロシティや溶接割れの存在を示唆するような点状及び線状インディケーションは認められなかった。また放射線透過検査の結果、両雰囲気で溶接した全ての溶接供試体の溶接部には、ポロシティや異物の巻き込み等の内部欠陥は全く認められず、例えば航空機・宇宙機器の溶接部品の組立に一般的に適用される溶接スペックAWS D17.1(旧AMS−STD−2219)に規定される溶接部内部品質要求を満足していた。   Due to the appearance of the welded specimens laser welded in high and low vacuum atmospheres (as welded), the bead surface properties of the welded specimens welded in both atmospheres are almost free of dents due to undercut and underfill, etc. -Almost no discoloration due to nitriding was observed, and the metal was white. As a result of the penetrant inspection, no dot-like or linear indications suggesting the presence of surface porosity or weld cracks were found. In addition, as a result of the radiographic inspection, no internal defects such as porosity and foreign material entrainment were found in the welds of all the weld specimens welded in both atmospheres. The weld internal quality requirements specified in the welding specification AWS D17.1 (formerly AMS-STD-2219) applied in this way were satisfied.

(成分分析試験)
表2に鍛造材、高真空雰囲気及び低真空雰囲気でレーザ溶接した供試体溶接部の成分分析結果を示す。高真空雰囲気及び低真空雰囲気で溶接した溶接部共に、Al、Mn量が鍛造材のそれらに比べて約1wt%程度減少していたが、両者の間に構成成分の大きな差は認められなかった。C、N、Hのガス成分量も溶接部と鍛造材間並びに高真空雰囲気と低真空雰囲気との間で差は認められずほぼ同等で素材規格値内に入っていたが、溶接部及び鍛造材共にO含有量が規格値に比べて若干高めであった。本試験結果より、高真空雰囲気並びに低真空雰囲気でレーザ溶接した供試体溶接部の構成成分は、鍛造材のそれと比べて著しく変化していないことが明らかになった。
(Component analysis test)
Table 2 shows the component analysis results of the specimen welds laser welded in the forging, high vacuum atmosphere and low vacuum atmosphere. In both welds welded in a high-vacuum atmosphere and a low-vacuum atmosphere, the amount of Al and Mn was reduced by about 1 wt% compared to those of the forged material, but there was no significant difference in constituent components between them. . The gas component amounts of C, N, and H were also almost equal and within the material standard value between the welded part and the forged material and between the high vacuum atmosphere and the low vacuum atmosphere. In both materials, the O content was slightly higher than the standard value. From the results of this test, it became clear that the constituent components of the specimen welded portion laser-welded in a high-vacuum atmosphere and a low-vacuum atmosphere did not change significantly compared to that of the forged material.

Figure 2006167756
Figure 2006167756

本発明の実施形態のレーザ溶接装置の概略構成図である。It is a schematic block diagram of the laser welding apparatus of embodiment of this invention.

符号の説明Explanation of symbols

1 密封容器
2 胴部
3 蓋部
4 石英ガラス(レーザ光透過部材)
10 加熱装置
15 レーザヘッド(レーザ光出射部)
20 不活性ガスボンベ(不活性ガス供給装置)
25 真空ポンプ(真空排気装置)
1 Sealed container 2 Body 3 Lid 4 Quartz glass (laser light transmitting member)
10 Heating device 15 Laser head (laser beam emitting part)
20 Inert gas cylinder (inert gas supply device)
25 Vacuum pump (evacuation device)

Claims (12)

レーザ光を透過するレーザ光透過部材を備え、溶接対象物を収容可能な密封容器と、
該密封容器の外部に配置され、前記レーザ光透過部材を介して前記密封容器の外部から該密封容器の内部に収容した前記溶接対象物にレーザ光を照射可能なレーザ光出射部とを備えたレーザ溶接装置。
A sealed container that includes a laser light transmitting member that transmits laser light and can accommodate a welding object;
A laser light emitting portion disposed outside the sealed container and capable of irradiating the welding object accommodated in the sealed container from the outside of the sealed container via the laser light transmitting member; Laser welding equipment.
前記溶接対象物を加熱する加熱装置を備えた請求項1に記載のレーザ溶接装置。   The laser welding apparatus of Claim 1 provided with the heating apparatus which heats the said welding target object. 前記密封容器の内部に連通し、該密封容器内部を真空排気する真空排気装置を備えた請求項1または2に記載のレーザ溶接装置。   The laser welding apparatus according to claim 1, further comprising an evacuation device that communicates with the inside of the sealed container and evacuates the inside of the sealed container. 前記密封容器の内部に連通し、該密封容器内部に不活性ガスを供給する不活性ガス供給装置を備えた請求項1から3のいずれか一項に記載のレーザ溶接装置。   The laser welding apparatus according to any one of claims 1 to 3, further comprising an inert gas supply device that communicates with the inside of the sealed container and supplies an inert gas to the inside of the sealed container. 前記密封容器の内部に連通し、該密封容器内部を加圧する加圧装置を備えた請求項1から4のいずれか一項に記載のレーザ溶接装置。   The laser welding apparatus according to any one of claims 1 to 4, further comprising a pressurizing device that communicates with the inside of the sealed container and pressurizes the inside of the sealed container. 前記レーザ光出射部がYAGレーザ出射部である請求項1から5のいずれか一項に記載のレーザ溶接装置。   The laser welding apparatus according to any one of claims 1 to 5, wherein the laser beam emitting unit is a YAG laser emitting unit. 前記レーザ光透過部材が石英ガラスからなる請求項1から6のいずれか一項に記載のレーザ溶接装置。   The laser welding apparatus according to claim 1, wherein the laser light transmitting member is made of quartz glass. 溶接対象物を、レーザ光を透過するレーザ光透過部材を備えた密封容器内に収容する工程と、
前記レーザ光透過部材を介して前記密封容器の外部から前記溶接対象物にレーザ光を照射して溶接を行う工程とを含む溶接構造物の製造方法。
Storing the welding object in a sealed container provided with a laser beam transmitting member that transmits the laser beam;
And a step of performing welding by irradiating the welding object with laser light from the outside of the sealed container through the laser light transmitting member.
前記溶接対象物を加熱する工程を含む請求項8に記載の溶接構造物の製造方法。   The method for manufacturing a welded structure according to claim 8, comprising a step of heating the welding object. 前記密封容器内を真空排気する工程を含む請求項8または9に記載の溶接構造物の製造方法。   The method for manufacturing a welded structure according to claim 8, comprising a step of evacuating the inside of the sealed container. 前記密封容器内に不活性ガスを充填する工程を含む請求項8から10のいずれか一項に記載の溶接構造物の製造方法。   The method for manufacturing a welded structure according to any one of claims 8 to 10, further comprising a step of filling the sealed container with an inert gas. 前記密封容器内を加圧する工程を含む請求項8から11のいずれか一項に記載の溶接構造物の製造方法。   The method for manufacturing a welded structure according to any one of claims 8 to 11, further comprising a step of pressurizing the inside of the sealed container.
JP2004363446A 2004-12-15 2004-12-15 Laser beam welding apparatus, and method for manufacturing welded structure Pending JP2006167756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363446A JP2006167756A (en) 2004-12-15 2004-12-15 Laser beam welding apparatus, and method for manufacturing welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363446A JP2006167756A (en) 2004-12-15 2004-12-15 Laser beam welding apparatus, and method for manufacturing welded structure

Publications (1)

Publication Number Publication Date
JP2006167756A true JP2006167756A (en) 2006-06-29

Family

ID=36669050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363446A Pending JP2006167756A (en) 2004-12-15 2004-12-15 Laser beam welding apparatus, and method for manufacturing welded structure

Country Status (1)

Country Link
JP (1) JP2006167756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059893A1 (en) * 2006-11-15 2008-05-22 Pioneer Corporation Laser welding device and laser welding method
KR20150066990A (en) * 2013-12-06 2015-06-17 신흥에스이씨주식회사 Laser welding apparatus and laser welding method for manufacturing lithium-ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231937A (en) * 1975-09-05 1977-03-10 Mitsubishi Electric Corp Vertical position electron beam welding process
JPH01306094A (en) * 1988-05-31 1989-12-11 Mitsubishi Nuclear Fuel Co Ltd Laser beam welding equipment
JPH02290690A (en) * 1989-04-28 1990-11-30 Nissan Motor Co Ltd Apparatus for causing laser beam to irradiate in vacuum
JP2000015475A (en) * 1998-06-30 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd Welding method and its equipment
JP2000164095A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Hydrogen gas encapsulated sealing device
JP2001353589A (en) * 2000-06-09 2001-12-25 Aomori Prefecture Method and equipment of laser beam welding
JP2004283852A (en) * 2003-03-20 2004-10-14 Ishikawajima Harima Heavy Ind Co Ltd Method for build-up welding thin-walled part

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231937A (en) * 1975-09-05 1977-03-10 Mitsubishi Electric Corp Vertical position electron beam welding process
JPH01306094A (en) * 1988-05-31 1989-12-11 Mitsubishi Nuclear Fuel Co Ltd Laser beam welding equipment
JPH02290690A (en) * 1989-04-28 1990-11-30 Nissan Motor Co Ltd Apparatus for causing laser beam to irradiate in vacuum
JP2000015475A (en) * 1998-06-30 2000-01-18 Ishikawajima Harima Heavy Ind Co Ltd Welding method and its equipment
JP2000164095A (en) * 1998-11-25 2000-06-16 Matsushita Electric Works Ltd Hydrogen gas encapsulated sealing device
JP2001353589A (en) * 2000-06-09 2001-12-25 Aomori Prefecture Method and equipment of laser beam welding
JP2004283852A (en) * 2003-03-20 2004-10-14 Ishikawajima Harima Heavy Ind Co Ltd Method for build-up welding thin-walled part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059893A1 (en) * 2006-11-15 2008-05-22 Pioneer Corporation Laser welding device and laser welding method
JPWO2008059893A1 (en) * 2006-11-15 2010-03-04 パイオニア株式会社 Laser welding apparatus and laser welding method
KR20150066990A (en) * 2013-12-06 2015-06-17 신흥에스이씨주식회사 Laser welding apparatus and laser welding method for manufacturing lithium-ion secondary battery
KR101583408B1 (en) * 2013-12-06 2016-01-11 신흥에스이씨주식회사 Laser welding apparatus and laser welding method for manufacturing lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
CN107034459B (en) System and method for laser cladding in a controlled environment
JP5941252B2 (en) Hybrid laser arc welding process and apparatus
US9283593B2 (en) Selective laser melting / sintering using powdered flux
KR101791113B1 (en) Deposition of superalloys using powdered flux and metal
JP5725723B2 (en) High power laser beam welding and its assembly
US8022330B2 (en) Method and device for welding structural components
Caiazzo et al. Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb: YAG disk laser
JP2016516580A (en) Method of remelting and repairing superalloy by laser using flux
CN104384674B (en) The motor-driven tungsten argon arc welding method of main pump motor rotor shielding sleeve and rotor end bell
JP2008114290A (en) High temperature electron beam welding
CN105081574B (en) A kind of layering pulse laser reduces the method that invar steel welds hot cracking tendency
EP3034224B1 (en) Method of and system for brazing metal components
JP2006167756A (en) Laser beam welding apparatus, and method for manufacturing welded structure
US10363631B2 (en) Neutron irradiated material repair
CN106064278B (en) A kind of galvanized steel plain sheet laser lap welding method based on parital vacuum atmosphere
Aman et al. Influence of an oxygen-free atmosphere on laser beam brazing of aluminium with prior surface deoxidation by pulsed laser radiation
JP2001252780A (en) Method of joining by laser beam for cylinders of different kinds of metals
US20220281041A1 (en) Electron-beam welding of nickel-based superalloys, and device
JP2009148794A (en) Laser welding method and laser welding system
Kalaiselvan et al. Studies on Ti/Al Sheet Joint Using Laser Beam Welding–A Review
CN110560867A (en) Vacuum electron beam welding method for aluminum alloy water-cooled joint
CN105414904A (en) Welding method for low-alloy ultrahigh-strength steel
CN111618434A (en) Narrow-gap thick plate wire filling welding method based on laser scanning
Jones et al. Laser hot-wire welding for minimizing defects
CN110280902A (en) A kind of laser welding process of 6 line aluminium alloy cylinder longitudinal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703