JP2006167562A - Blending deciding method of impervious liner material - Google Patents

Blending deciding method of impervious liner material Download PDF

Info

Publication number
JP2006167562A
JP2006167562A JP2004362248A JP2004362248A JP2006167562A JP 2006167562 A JP2006167562 A JP 2006167562A JP 2004362248 A JP2004362248 A JP 2004362248A JP 2004362248 A JP2004362248 A JP 2004362248A JP 2006167562 A JP2006167562 A JP 2006167562A
Authority
JP
Japan
Prior art keywords
target
water
shielding material
test sample
water shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004362248A
Other languages
Japanese (ja)
Other versions
JP4505319B2 (en
Inventor
Yoshio Mitarai
義夫 御手洗
Hiroyuki Kawai
弘之 川合
Hitoshi Kawashima
仁 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP2004362248A priority Critical patent/JP4505319B2/en
Publication of JP2006167562A publication Critical patent/JP2006167562A/en
Application granted granted Critical
Publication of JP4505319B2 publication Critical patent/JP4505319B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blending deciding method of an impervious liner material placed along wall faces of piling section shore protection, formed by blending at least earth, solidifying material, and rubber chips, having good construction property, impervious performance, and deformation followability to the piling section shore protection. <P>SOLUTION: A target flow value of the impervious liner material, a target permeation factor, and a target allowable deformation amount are set (step 1), and test samples of the impervious liner material satisfying the target flow value for every predetermined strength by combination of the blending ratio of at least solidifying material to rubber chips added to earth (step 2). Water permeation test is performed by applying deformation to the formed test samples to acquire a relation of deformation amount to the permeation factor using the strength and blend ratio as parameters (step 3), and the blend ratio of the solidifying material to rubber chips added to earth is decided so as to satisfy the target permeation factor and the target allowable deformation amount from the acquired relation (step 4). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、遮水材の配合決定方法に関し、さらに詳しくは、矢板護岸の壁面に沿って打設される少なくとも土と、固化材と、ゴムチップとを配合して、施工性がよく、遮水性能および矢板護岸に対する変形追従性に優れた遮水材の配合決定方法に関するものである。   The present invention relates to a method for determining the composition of a water shielding material, and more specifically, blends at least soil placed along the wall surface of a sheet pile revetment, a solidifying material, and a rubber chip, has good workability, and has a water shielding property. The present invention relates to a method for determining the composition of a water shielding material that is excellent in performance and deformation followability to a sheet pile revetment.

海面等に設置される管理型廃棄物最終処分場の護岸の縦断面は、例えば、図7に示す構造となっている。この護岸は、鋼管矢板2を離間して地盤Bに打込んで、両鋼管矢板2の間に中詰砂Sを充填して二重締切りとし、廃棄物Dが収容される側には、鋼管矢板2に沿って遮水材保護鋼板が4設置され、盛土材Mが配置されている。この廃棄物Dが収容される側の横断面は、図8に示すように、打込まれた鋼管矢板2のすき間を継手3で塞いでおり、鋼管矢板2に沿って鉛直方向に遮水材1が打設される。   For example, the longitudinal section of the revetment of the management-type waste final disposal site installed on the sea surface has the structure shown in FIG. In this revetment, the steel pipe sheet pile 2 is separated and driven into the ground B, and the inside sand S is filled between the two steel pipe sheet piles 2 to form a double cut-off. Four water-blocking material protection steel plates are installed along the sheet pile 2, and the embankment material M is arranged. As shown in FIG. 8, the cross section on the side where the waste D is stored has a gap between the driven steel pipe sheet piles 2 closed with a joint 3, and a water shielding material in the vertical direction along the steel pipe sheet piles 2. 1 is placed.

このような構造の処分場においては、鋼管矢板2等の矢板護岸は、廃棄物Dの埋立による外力によって変形し、また、地震時においても変形するため、これらの変形に追従して遮水性を維持し、収容した廃棄物Dの成分を外部に漏出しないようにするため、使用される遮水材1には、優れた施工性とともに、低透水性および変形追従性が求められる。   In the disposal site with such a structure, the sheet pile revetment such as the steel pipe sheet pile 2 is deformed by the external force due to the reclamation of the waste D, and also deforms even during an earthquake. In order to maintain and prevent the components of the stored waste D from leaking to the outside, the water shielding material 1 to be used is required to have low water permeability and deformation followability as well as excellent workability.

したがって、固化材によって固結する遮水材であると、鋼管矢板2の変形に追従できずにひび割れやすき間が生じて遮水性を維持することが困難となる。一方で、遮水材1にゴムチップを添加して追従性を持たせることも提案されているが、添加するゴムチップや固化材の量によって、施工性、透水性、変形追従性が大きく影響を受けるためその配合率を決定するのは、困難であるという問題があった。   Therefore, if the water shielding material is solidified by the solidifying material, it is difficult to follow the deformation of the steel pipe sheet pile 2 and cracks and gaps are generated, making it difficult to maintain water shielding. On the other hand, it has also been proposed to add rubber chips to the water shielding material 1 so as to have followability, but the workability, water permeability, and deformation followability are greatly affected by the amount of the rubber chips and the solidifying material to be added. Therefore, there is a problem that it is difficult to determine the blending ratio.

このような護岸に使用する別の変形追従型遮水材としては、海成粘土懸濁液に粘土鉱物を添加してゲル状に改質した材料が提案されている(特許文献1参照)。   As another deformation follow-up type water shielding material used for such a revetment, a material obtained by adding a clay mineral to a marine clay suspension and modifying it into a gel shape has been proposed (see Patent Document 1).

しかしながら、この材料は、流動体なので完全な漏出防止対策を施す必要があり、自重によって圧密沈下するので定期的に補充しなければならないという問題があり、さらに、荷重を負担することができないので、底面の遮水材として使用できないという問題があった。
特開2002−336811号公報
However, since this material is a fluid, it is necessary to take complete measures to prevent leakage, and there is a problem that it must be replenished periodically because it is consolidated by its own weight, and furthermore, it cannot bear the load, There was a problem that it could not be used as a water shielding material on the bottom.
JP 2002-336811 A

本発明の目的は、矢板護岸の壁面に沿って打設される少なくとも土と、固化材と、ゴムチップとを配合して、施工性がよく、遮水性能および矢板護岸に対する変形追従性に優れた遮水材の配合決定方法を提供することにある。   The object of the present invention is to combine at least soil to be cast along the wall of the sheet pile revetment, a solidifying material, and a rubber chip, has good workability, and has excellent water shielding performance and deformation followability to the sheet pile revetment. The object is to provide a method for determining the formulation of a water shielding material.

上記目的を達成するため本発明の遮水材の配合決定方法は、矢板護岸の壁面に沿って打設される少なくとも土と、固化材と、ゴムチップとを配合してなる遮水材の配合決定方法であって、前記遮水材の目標フロー値と、目標透水係数と、目標許容変形量とを設定するステップと、土に添加する少なくとも固化材と、ゴムチップと配合率の組合せによって、目標フロー値を満足する遮水材の試験サンプルを複数の所定強度毎に作成するステップと、該作成した試験サンプルに変形を与えて透水試験を実施して強度とゴムチップの配合率とをパラメータとして変形量と透水係数との関係を取得するステップと、該取得した関係から目標透水係数および目標許容変形量を満足する土に添加する固化材と、ゴムチップとの配合率を決定するステップとを含むことを特徴とするものである。   In order to achieve the above object, the method for determining the composition of a water-shielding material according to the present invention is to determine the formulation of a water-shielding material comprising at least soil placed along the wall of a sheet pile revetment, a solidifying material, and a rubber chip. A method of setting a target flow value by a combination of a step of setting a target flow value, a target hydraulic conductivity, and a target allowable deformation amount of the water shielding material, at least a solidifying material added to soil, a rubber chip, and a compounding ratio. A step of creating a test sample of a water shielding material satisfying the value for each of a plurality of predetermined strengths, a deformation test is performed on the created test sample, and a water permeability test is performed. Obtaining the relationship between the water permeability and the coefficient of permeability, and determining the blending ratio of the rubber chips and the solidified material to be added to the soil satisfying the target permeability coefficient and the target allowable deformation amount from the acquired relationship; It is characterized in that comprises.

本発明の遮水材の配合決定方法によれば、矢板護岸の壁面に沿って打設される少なくとも土と、固化材と、ゴムチップとを配合してなる遮水材の配合決定方法であって、前記遮水材の目標フロー値と、目標透水係数と、目標許容変形量とを設定するステップと、土に添加する少なくとも固化材と、ゴムチップと配合率の組合せによって、目標フロー値を満足する遮水材の試験サンプルを複数の所定強度毎に作成するステップと、この作成した試験サンプルに変形を与えて透水試験を実施して強度とゴムチップの配合率とをパラメータとして変形量と透水係数との関係を取得するステップと、この取得した関係から目標透水係数および目標許容変形量を満足する土に添加する固化材と、ゴムチップとの配合率を決定するステップとを含むので、目標となるフロー値と、透水係数と、許容変形量とを満足する土に添加する固化材と、ゴムチップとの配合率を試験サンプルの試験結果によって、適切に決定することができ、施工性がよく、遮水性能および矢板護岸に対する変形追従性に優れた遮水材の配合を決定することができる。   According to the method for determining the composition of a water shielding material according to the present invention, it is a method for determining the composition of a water shielding material, comprising at least soil placed along the wall surface of a sheet pile revetment, a solidifying material, and a rubber chip. The target flow value is satisfied by a combination of the step of setting the target flow value, the target hydraulic conductivity, and the target allowable deformation amount of the water shielding material, at least the solidifying material added to the soil, the rubber chip, and the blending ratio. A step of creating a test sample of a water shielding material for each of a plurality of predetermined strengths, a deformation test is performed on the created test sample, a water permeability test is performed, and a deformation amount and a water permeability coefficient are set with the strength and the mixing ratio of rubber chips as parameters. And the step of determining the compounding ratio of the solidified material added to the soil satisfying the target hydraulic conductivity and the target allowable deformation amount and the rubber chip from the acquired relationship, The blending ratio of the solidified material added to the soil that satisfies the standard flow value, hydraulic conductivity, and allowable deformation amount, and rubber chips can be determined appropriately according to the test results of the test sample, and workability is improved. Well, it is possible to determine the composition of the water shielding material excellent in the water shielding performance and the deformation followability to the sheet pile revetment.

以下、本発明の遮水材の配合決定方法を、図7〜8に示す海上に建造される管理型廃棄物最終処分場の矢板護岸に打設される遮水材1を対象として実施形態として説明する。この管理型廃棄物最終処理場の構造は既述したとおりである。   Hereinafter, the blending determination method of the water shielding material of the present invention is an embodiment for the water shielding material 1 placed on the sheet pile revetment of the management-type waste final disposal site constructed on the sea shown in FIGS. explain. The structure of this managed waste final treatment plant is as described above.

尚、矢板護岸とは、鋼矢板、プレストレストコンクリート矢板または鋼管矢板を一重または二重に設置した護岸を意味する。   In addition, a sheet pile revetment means the revetment which installed the steel sheet pile, the prestressed concrete sheet pile, or the steel pipe sheet pile in single or double.

遮水材1には少なくとも、土と、固化材と、ゴムチップとが配合され、必要により水が添加される。土としては、浚渫土、建設発生土等を、固化材としては、セメント、石灰等を使用することができる。また、ゴムチップとしては、例えば、古タイヤを小さく破砕したものを使用することができ、その粒径は、例えば、10mm以下のゴムチップを用いる。粒径が10mm以下とは、10mmの網目のフルイを通過するものを指す。   The water shielding material 1 contains at least soil, a solidifying material, and a rubber chip, and water is added as necessary. As the soil, dredged soil, construction generated soil and the like can be used, and as the solidifying material, cement, lime and the like can be used. In addition, as the rubber chip, for example, a small crushed old tire can be used, and a rubber chip having a particle size of, for example, 10 mm or less is used. The particle size of 10 mm or less refers to a material that passes through a 10 mm mesh sieve.

図1は、実施形態の一例を示すフロー図である。まず、遮水材の目標フロー値、目標透水係数、目標許容変形量を設定する(ステップ1)。ここで、フロー値とは、日本道路公団規格JHS A313−1992「エアモルタル及びエアミルクの試験方法」のシリンダー法によるものである。   FIG. 1 is a flowchart illustrating an example of the embodiment. First, a target flow value, a target hydraulic conductivity, and a target allowable deformation amount of the water shielding material are set (step 1). Here, the flow value is based on the cylinder method of the Japan Highway Public Corporation Standard JHS A313-1992 “Testing Method for Air Mortar and Air Milk”.

本実施形態において遮水材1は、スラリー状で水中に打設されるので、固化するまでに水中を流動して堆積するが、その流動過程において品質に変動が生じる材料分離特性についての問題が生じる。このため、水中打設の際には、遮水材1の流動距離を極力、小さくするように打ち込む必要がある。   In this embodiment, since the water shielding material 1 is placed in water in a slurry state, the water shielding material 1 flows and accumulates in the water until it solidifies. However, there is a problem with respect to material separation characteristics in which quality varies in the flow process. Arise. For this reason, when placing in water, it is necessary to drive in such a way that the flow distance of the water shielding material 1 is as small as possible.

また、流動距離は、遮水材1のフロー値と密接に関連し、フロー値が大きいと流動距離が大きくなり、圧送性は良好となるが、品質がばらつき易くなる。一方、フロー値が小さいと流動距離が小さくなり、圧送性が悪くなるが、品質のばらつきが小さくなる。   In addition, the flow distance is closely related to the flow value of the water shielding material 1, and if the flow value is large, the flow distance becomes large and the pumpability becomes good, but the quality tends to vary. On the other hand, when the flow value is small, the flow distance becomes small and the pumpability deteriorates, but the quality variation becomes small.

フロー値は、ゴムチップの配合率が外割で20〜25%(体積比率)を超えると著しく低下する傾向になるので、ゴムチップの配合率は外割で25%(体積比率)程度以下に抑える必要がある。   Since the flow value tends to decrease significantly when the blending ratio of rubber chips exceeds 20-25% (volume ratio), it is necessary to keep the blending ratio of rubber chips below about 25% (volume ratio). There is.

このように、施工性等を考慮してゴムチップの配合率をこの上限の範囲内として、フロー値を適切な所定範囲とする必要があり、例えば、12cm〜18cm程度を目標フロー値に設定する。   Thus, considering the workability and the like, it is necessary to set the blending ratio of the rubber chips within the upper limit range and to set the flow value to an appropriate predetermined range. For example, about 12 cm to 18 cm is set as the target flow value.

透水係数は、収容した廃棄物Dから放出される成分を外部に漏出することを防ぐために法規制等に基づいて所定水準以上の係数を目標値として設定して、遮水性能を確保する。例えば、1×10−6cm/s以下に設定する。 In order to prevent the component released from the stored waste D from leaking to the outside, the water permeability coefficient is set to a coefficient of a predetermined level or more as a target value based on laws and regulations and the like to ensure water shielding performance. For example, it is set to 1 × 10 −6 cm / s or less.

目標許容変形量とは、この実施形態では矢板護岸となる鋼管矢板2が変形した際に、この変形に追従して、ひび割れやすき間等を生じさせずに遮水性を確保するために必要な変形量である。この目標値は、例えば、鋼管矢板2が最大変形をする際の変形推定量に基づいて設定する。   In this embodiment, the target allowable deformation amount is a deformation necessary for ensuring water shielding without causing cracks or gaps when the steel pipe sheet pile 2 serving as a sheet pile revetment is deformed, following the deformation. It is a quantity. This target value is set based on, for example, a deformation estimation amount when the steel pipe sheet pile 2 undergoes maximum deformation.

図2に示すように、廃棄物Dを収容した際の鋼管矢板2が地震の際に、基点BPを固定点として上端TPの水平方向変形量が例えば、24.7cmとなって、最大変形すると計算した推定曲線Sに基づいて、基点BPと上端TPとを直線で結んだ近似直線Cを作成する。この曲線Sと直線Cとから、曲線S上の最大曲率発生位置である最大曲げモーメント発生点MPと直線Cとの距離を目標許容変形量δmaxとして設定する。ここで、点MPから直線Cへの直交線と直線Cとの交点Fと、基点BPとの距離をLとして、せん断ひずみγ1をδmax/Lと定義する。例えば、δmax=100mm、L=14×10mmの場合は、せん断ひずみγ1=0.71%となる。 As shown in FIG. 2, when the steel pipe sheet pile 2 when the waste D is accommodated in the earthquake, the horizontal direction deformation amount of the upper end TP becomes 24.7 cm, for example, with the base point BP as a fixed point, and the maximum deformation occurs. Based on the calculated estimated curve S, an approximate straight line C is created by connecting the base point BP and the upper end TP with a straight line. From this curve S and straight line C, the distance between the maximum bending moment generation point MP, which is the maximum curvature generation position on the curve S, and the straight line C is set as the target allowable deformation amount δmax. Here, the distance between the intersection F of the orthogonal line from the point MP to the straight line C and the straight line C and the base point BP is defined as L, and the shear strain γ1 is defined as δmax / L. For example, when δmax = 100 mm and L = 14 × 10 3 mm, the shear strain γ1 = 0.71%.

次に、遮水材1に用いる土に添加する少なくとも固化材と、ゴムチップと配合率の組合せによって、目標フロー値を満足する試験サンプルを複数の所定強度毎に作成する(ステップ2)。ここで、所定強度の強度とは、各材料を配合して混練した後の所定時間経過後の強度であり、この強度として、材令28日の一軸圧縮強度を用いると容易であり、かつ、適切な配合決定をすることができる。   Next, a test sample that satisfies the target flow value is created for each of a plurality of predetermined strengths by a combination of at least a solidifying material added to the soil used for the water shielding material 1, a rubber chip, and a compounding ratio (step 2). Here, the strength of the predetermined strength is the strength after the lapse of a predetermined time after mixing and kneading each material, and as this strength, it is easy to use the uniaxial compressive strength of the material age 28 days, and Appropriate formulation decisions can be made.

例えば、材令28日の一軸圧縮強度がおおよそ、200kN/m、400kN/m、600kN/mとなるように、水量と固化材量の配合率(質量)を決定し、このそれぞれの配合に対して、配合率を様々に変えてゴムチップを添加して、3種類の一軸圧縮強度を有する試験サンプルを作成する。 For example, the approximate uniaxial compressive strength of wood age 28 days, so as to 200kN / m 2, 400kN / m 2, 600kN / m 2, determined blending ratio of water and the solidifying material amount (mass), the respective For the blending, rubber chips are added at various blending ratios to prepare test samples having three types of uniaxial compressive strength.

尚、一軸圧縮強度は、予め水量と固化材量の配合率(質量)とを変えた別サンプルで強度試験を実施しておき、一軸圧縮強度に対する水量と固化材量の配合率(質量)との関係を確認しておくことで、この関係データに基づいて容易に所定強度の試験サンプルを作成することができる。ここで、水量は自然状態の土に含まれる水量と加水した水量の和であり、加水する場合と加水しない場合がある。   In addition, the uniaxial compressive strength has carried out the strength test with another sample in which the mixing amount (mass) of the amount of water and the amount of solidified material is changed in advance, By confirming the relationship, it is possible to easily create a test sample having a predetermined strength based on the relationship data. Here, the amount of water is the sum of the amount of water contained in the soil in the natural state and the amount of water added, and there are cases where it is added or not added.

次に、作成した試験サンプルに変形を与えて透水試験を実施して強度とゴムチップの配合率とをパラメータとして変形量と透水係数との関係を取得する(ステップ3)。   Next, the created test sample is deformed and a water permeability test is performed to obtain the relationship between the deformation amount and the water permeability coefficient using the strength and the blending ratio of the rubber chips as parameters (step 3).

透水試験は、例えば、図3(a)に示すように、内径20cmの有底の円筒容器5の底部には、ポーラスストーン8を配置し、その上部に厚さ5cmの飽和した豊浦標準砂を用いた砂層7を形成し、その上部に厚さ5cmの試験サンプル6を打設、養生する。まず、試験サンプル6に変形を与える前に円筒容器5と試験サンプル6との境界部に止水を施して、試験サンプル6上面に所定水圧を載荷して、砂層7とポーラスストーン8を透過する水Wの量を測定する。   In the water permeability test, for example, as shown in FIG. 3 (a), a porous stone 8 is arranged at the bottom of a bottomed cylindrical container 5 having an inner diameter of 20 cm, and saturated Toyoura standard sand having a thickness of 5 cm is placed on the top. The used sand layer 7 is formed, and a test sample 6 having a thickness of 5 cm is placed thereon and cured. First, water is applied to the boundary between the cylindrical container 5 and the test sample 6 before the test sample 6 is deformed, a predetermined water pressure is loaded on the upper surface of the test sample 6, and the sand layer 7 and the porous stone 8 are permeated. Measure the amount of water W.

その後、図3(b)に示すように、試験サンプル6の上面中央部に、例えば、外径4cmの載荷板9で荷重Fを負荷して所定量(所定沈下量)の変形を与え、除荷後に上記と同様に所定水圧を載荷して、砂層7とポーラスストーン8を透過する水Wの量を測定する。   Thereafter, as shown in FIG. 3 (b), a load F is applied to the central portion of the upper surface of the test sample 6 by a loading plate 9 having an outer diameter of 4 cm, for example, to give a predetermined amount (predetermined amount of subsidence) and remove it. After loading, a predetermined water pressure is loaded in the same manner as described above, and the amount of water W that passes through the sand layer 7 and the porous stone 8 is measured.

この変形を与える際には、試験サンプル6を等体積状態(非排水状態)となるようにせん断変形を付与するのが好ましい。これによって、試験サンプル6に含まれる水分の流出を抑制して、適切な変形量データを取得することができる。この変形を与える載荷速度は、例えば、15mm/min程度とする。   When applying this deformation, it is preferable to apply shear deformation so that the test sample 6 is in an equal volume state (non-drainage state). Thereby, the outflow of moisture contained in the test sample 6 can be suppressed, and appropriate deformation amount data can be acquired. The loading speed that gives this deformation is, for example, about 15 mm / min.

この載荷板9で所定量の変形を与えることによって、図3(b)に点線で示すように試験サンプル6は底面をやや膨出した形状に変形する。この変形は、例えば、載荷板9が沈下した体積の所定割合(約80%)によって生じた円錐形状と仮定すると、試験サンプル6の底面から円錐形状の頂点までの距離Hが算出される。   By applying a predetermined amount of deformation on the loading plate 9, the test sample 6 is deformed into a shape in which the bottom surface is slightly bulged as shown by a dotted line in FIG. Assuming that this deformation is, for example, a conical shape caused by a predetermined ratio (about 80%) of the volume in which the loading plate 9 has sunk, the distance H from the bottom surface of the test sample 6 to the apex of the conical shape is calculated.

ここで、円筒容器5の半径Rとこの頂点までの距離Hの関係から、試験サンプル6に生じたせん断ひずみγ2をH/Rとして定義する。この試験サンプル6のせん断ひずみγ2(=H/R)とせん断ひずみγ1(=δmax/L)とによって目標許容変形量と等価の試験サンプル6における変形量Xを算出する。例えば、せん断ひずみγ1が0.71%、せん断ひずみγ2が0.23%、載荷板9の沈下量を24mmとすると、試験サンプル6の変形量X=24mm×(0.23%/0.71%)=7.4mmとなる。   Here, from the relationship between the radius R of the cylindrical container 5 and the distance H to this apex, the shear strain γ2 generated in the test sample 6 is defined as H / R. A deformation amount X in the test sample 6 equivalent to the target allowable deformation amount is calculated from the shear strain γ2 (= H / R) and the shear strain γ1 (= δmax / L) of the test sample 6. For example, assuming that the shear strain γ1 is 0.71%, the shear strain γ2 is 0.23%, and the settlement amount of the loading plate 9 is 24 mm, the deformation amount X of the test sample 6 is X = 24 mm × (0.23% / 0.71). %) = 7.4 mm.

以上の試験によって、強度とゴムチップの配合率とをパラメータとして変形量Xと透水係数との関係を図4〜図6に例示するように取得することができる。   Through the above test, the relationship between the deformation amount X and the water permeability can be obtained as exemplified in FIGS. 4 to 6 with the strength and the blending ratio of the rubber chips as parameters.

図4、図5、図6は、それぞれ一軸圧縮強度が約200kN/m、400kN/m、600kN/mの試験サンプル6に対する変形量Xと透水係数との関係を示している。図中の黒丸を通過するグラフ線はゴムチップの配合率が0%、ひし形マークを通過するグラフ線はゴムチップの配合率が外割で7.5%(体積比率)、四角マークを通過するグラフ線はゴムチップの配合率が外割で10%(体積比率)、三角マークを通過するグラフ線はゴムチップの配合率が外割で15%(体積比率)を示している。 4, 5, 6, respectively uniaxial compressive strength indicates the relationship between about 200kN / m 2, 400kN / m 2, deformation X and permeability to the test sample 6 of 600 kN / m 2. In the figure, the graph line that passes through the black circle is 0% rubber compounding ratio, the graph line that passes through the diamond mark is 7.5% (volume ratio) with the rubber chip compounding ratio, and the graph line that passes through the square mark. Indicates that the blending ratio of rubber chips is 10% (volume ratio) as an outer percentage, and the graph line passing through the triangle mark indicates that the blending ratio of rubber chips is 15% (volume ratio) as an outer percentage.

次に、取得した変形量Xと透水係数との関係から目標透水係数および目標許容変形量を満足する土に添加する固化材と、ゴムチップとの配合率を決定する(ステップ4)。   Next, the blending ratio of the solidified material added to the soil satisfying the target hydraulic conductivity and the target allowable deformation amount and the rubber chip is determined from the relationship between the obtained deformation amount X and the hydraulic conductivity (step 4).

目標透水係数が1×10−6cm/s以下および目標許容変形量の試験サンプル6における等価変形量Xが7.4mmの場合は、図4においてはこの条件を満たす配合がない。図5および図6においては、ゴムチップの配合率が7.5%、10%、15%の場合にこの条件を満たす。図5および図6においては、固化材の配合率が決定しているので、土に添加する固化材と、ゴムチップとの配合率が決定されることとなる。 When the target hydraulic conductivity is 1 × 10 −6 cm / s or less and the equivalent deformation amount X in the test sample 6 having the target allowable deformation amount is 7.4 mm, there is no blend satisfying this condition in FIG. In FIG. 5 and FIG. 6, this condition is satisfied when the blending ratio of the rubber chips is 7.5%, 10%, and 15%. In FIGS. 5 and 6, since the blending ratio of the solidifying material is determined, the blending ratio of the solidifying material added to the soil and the rubber chip is determined.

このように、試験サンプル6を用いて、目標フロー値、目標透水係数、目標許容変形量のすべての条件を満たす、土、固化材、ゴムチップ、必要によっては水の配合を決定することができる。   As described above, the test sample 6 can be used to determine the composition of the soil, the solidified material, the rubber chip, and, if necessary, the water satisfying all of the target flow value, the target hydraulic conductivity, and the target allowable deformation amount.

すべての条件を満たす配合が複数ある場合には、コスト試算によって、最も低コストの配合に決定することもでき、また、より必要な性能を重視して配合を決定することができる。   When there are a plurality of blends that satisfy all of the conditions, it is possible to determine the blend with the lowest cost by cost estimation, and it is possible to determine the blend with emphasis on more necessary performance.

各目標値は、施工条件等によって適宜、安全率や割増係数を考慮して設定する。例えば、目標許容変形量の安全率を2とした場合には、目標許容変形量の試験サンプル6における等価変形量Xが14.8mmとなる。この場合は、図4〜図6において変形量Xが14.8mmにおいて透水係数が1×10−6cm/s以下を満足する固化材とゴムチップの配合が適切な配合として決定される。 Each target value is set in consideration of a safety factor and an additional factor as appropriate according to construction conditions and the like. For example, when the safety factor of the target allowable deformation amount is 2, the equivalent deformation amount X in the test sample 6 of the target allowable deformation amount is 14.8 mm. In this case, the combination of the solidified material and the rubber chip that satisfies the water permeability of 1 × 10 −6 cm / s or less when the deformation amount X is 14.8 mm in FIGS.

本発明の遮水材の配合決定方法の一例を示すフロー図である。It is a flowchart which shows an example of the mixing | blending determination method of the water shielding material of this invention. 本発明における遮水材の許容変形量を算出する一例を示すグラフ図である。It is a graph which shows an example which calculates the allowable deformation amount of the water shielding material in this invention. 本発明における透水試験方法の一例を示す説明図であり、(a)は変形前、(b)は変形後の透水試験を示す。It is explanatory drawing which shows an example of the water permeability test method in this invention, (a) is before a deformation | transformation, (b) shows the water permeability test after a deformation | transformation. 一軸圧縮強度が200kN/mの試験サンプルの透水係数と変形量との関係を示すグラフ図である。It is a graph which shows the relationship between the water permeability coefficient and deformation amount of a test sample whose uniaxial compressive strength is 200 kN / m 2 . 一軸圧縮強度が400kN/mの試験サンプルの透水係数と変形量との関係を示すグラフ図である。It is a graph which shows the relationship between the water permeability coefficient and deformation amount of a test sample whose uniaxial compressive strength is 400 kN / m 2 . 一軸圧縮強度が600kN/mの試験サンプルの透水係数と変形量との関係を示すグラフ図である。It is a graph which shows the relationship between the water permeability coefficient and deformation amount of a test sample whose uniaxial compressive strength is 600 kN / m 2 . 遮水材が打設される管理型廃棄物最終処分場の護岸の縦断面図である。It is a longitudinal cross-sectional view of the revetment of the management-type waste final disposal site where a water shielding material is placed. 図7のA―A断面一部拡大図である。FIG. 8 is a partially enlarged view of the AA cross section of FIG. 7.

符号の説明Explanation of symbols

1 遮水材
2 鋼管矢板(矢板護岸)
3 継手
4 遮水材保護鋼板
5 円筒容器
6 試験サンプル
7 豊浦標準砂
8 ポーラスストーン
9 載荷板
1 Water shielding material 2 Steel pipe sheet pile (sheet pile revetment)
3 Joint 4 Water shielding material protection steel plate 5 Cylindrical container 6 Test sample 7 Toyoura standard sand 8 Porous stone 9 Loading plate

Claims (5)

矢板護岸の壁面に沿って打設される少なくとも土と、固化材と、ゴムチップとを配合してなる遮水材の配合決定方法であって、前記遮水材の目標フロー値と、目標透水係数と、目標許容変形量とを設定するステップと、土に添加する少なくとも固化材と、ゴムチップと配合率の組合せによって、目標フロー値を満足する遮水材の試験サンプルを複数の所定強度毎に作成するステップと、該作成した試験サンプルに変形を与えて透水試験を実施して強度とゴムチップの配合率とをパラメータとして変形量と透水係数との関係を取得するステップと、該取得した関係から目標透水係数および目標許容変形量を満足する土に添加する固化材と、ゴムチップとの配合率を決定するステップとを含む遮水材の配合決定方法。   A method for determining the composition of a water shielding material comprising at least soil placed along a wall of a sheet pile revetment, a solidifying material, and a rubber chip, the target flow value of the water shielding material and a target permeability coefficient And a step of setting the target allowable deformation amount, and at least a solidified material to be added to the soil, and a test sample of a water shielding material that satisfies the target flow value is created for each of a plurality of predetermined strengths by a combination of rubber chips and a compounding ratio Performing a water permeability test by deforming the created test sample and obtaining a relationship between the amount of deformation and the water permeability coefficient using the strength and the blending ratio of the rubber chips as parameters, and a target from the obtained relationship. A blending determination method for a water shielding material, comprising: a solidifying material added to soil satisfying a water permeability coefficient and a target allowable deformation amount; and a step of determining a blending ratio of rubber chips. 前記許容変形量は、前記矢板護岸の変形推定量に基づいて設定される請求項1に記載の遮水材の配合決定方法。   The method according to claim 1, wherein the allowable deformation amount is set based on an estimated deformation amount of the sheet pile revetment. 前記強度が一軸圧縮強度である請求項1または2に記載の遮水材の配合決定方法。   The method for determining the formulation of a water shielding material according to claim 1 or 2, wherein the strength is uniaxial compressive strength. 前記試験サンプルを所定強度とする固化材の配合率は、予め水量と固化材量の配合率(質量)と強度との関係から確認されている強度データに基づくものである請求項1〜3のいずれかに記載の遮水材の配合決定方法。   The blending ratio of the solidified material with the test sample having a predetermined strength is based on strength data previously confirmed from the relationship between the amount of water and the blending ratio (mass) of the solidified material amount and the strength. A method for determining the formulation of the water shielding material according to any one of the above. 前記透水試験において試験サンプルに与える変形は、試験サンプルを等体積状態として変形を与えるものである請求項1〜4のいずれかに記載の遮水材の配合決定方法。
The method for determining the formulation of a water shielding material according to any one of claims 1 to 4, wherein the deformation applied to the test sample in the water permeability test is performed with the test sample as an equal volume state.
JP2004362248A 2004-12-15 2004-12-15 Determination method of water shielding material Expired - Fee Related JP4505319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004362248A JP4505319B2 (en) 2004-12-15 2004-12-15 Determination method of water shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004362248A JP4505319B2 (en) 2004-12-15 2004-12-15 Determination method of water shielding material

Publications (2)

Publication Number Publication Date
JP2006167562A true JP2006167562A (en) 2006-06-29
JP4505319B2 JP4505319B2 (en) 2010-07-21

Family

ID=36668863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004362248A Expired - Fee Related JP4505319B2 (en) 2004-12-15 2004-12-15 Determination method of water shielding material

Country Status (1)

Country Link
JP (1) JP4505319B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002159A (en) * 2011-06-17 2013-01-07 Toa Harbor Works Co Ltd Method for manufacturing water sealing material
JP2013087512A (en) * 2011-10-19 2013-05-13 Masaya Inazumi Water shut-off purification system of sea surface waste disposal site

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024915A (en) * 2001-07-19 2003-01-28 Yokohama City Filler using lime sewage sludge incineration ash and method for selecting blend of filler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024915A (en) * 2001-07-19 2003-01-28 Yokohama City Filler using lime sewage sludge incineration ash and method for selecting blend of filler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002159A (en) * 2011-06-17 2013-01-07 Toa Harbor Works Co Ltd Method for manufacturing water sealing material
JP2013087512A (en) * 2011-10-19 2013-05-13 Masaya Inazumi Water shut-off purification system of sea surface waste disposal site

Also Published As

Publication number Publication date
JP4505319B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
Han Recent research and development of ground column technologies
CN108797557A (en) A kind of lime-soil compaction pile constructing process in Collapsible Loess District end of the bridge section
KR101115950B1 (en) Controlled low strength materials compound and its manufacturing method
CN106149751A (en) Utilize the method that quick lime brick quarrel compaction pile reinforces building construction ground
Beckhaus et al. Design concept for sustainable cut-off walls made of highly deformable filling materials
JP4505319B2 (en) Determination method of water shielding material
JP4976073B2 (en) Repair method for underground filler and earth structure
JP2007239443A (en) Suck-out preventive injection method
US11486110B2 (en) Porous displacement piles meeting filter design criteria for rapid consolidation and densification of subsurface soils and intermediate geomaterials
Simon General report S5: Rigid inclusions and stone columns
JP6241167B2 (en) Seismic reinforcement method for jetty
Brown Zen and the art of drilled shaft construction: The pursuit of quality
Khayat Underwater repair of concrete damaged by abrasion-erosion
Costello A Theoretical and Practical Analysis of the Effect of Drilling Fluid on Rebar Bond Strength
Khatri Laboratory and field performance of buried steel-reinforced high density polyethylene (SRHDPE) pipes in a ditch condition under a shallow cover
CN208251134U (en) A kind of foundation structure of acid-resistance infiltration
JP6873823B2 (en) How to check the effect of the foundation structure for measures against expansive ground
Ameratunga et al. Ground improvement for a large above ground storage tank using cutter soil mix columns
KR20090114167A (en) Method for Improving Drenched Ground by Mixing Coal Ash and Dredged Soil
Vanga Durability studies of controlled low strength material using native soils as fine aggregates
Khatri et al. Establishing a design procedure for buried steel-reinforced high density polyethylene (SRHDPE) pipes.
RU2442856C1 (en) Liquid industrial waste storage unit
MCGrath et al. Field tests of concrete pipe performance during backfilling
Costello Full scale evaluation of organic soil mixing
Solomon Engineering Properties of Clay: Cement Concrete for Anti-seepage Barrier Construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Ref document number: 4505319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees