JP2006165450A - Device and method for forming semiconductor film - Google Patents

Device and method for forming semiconductor film Download PDF

Info

Publication number
JP2006165450A
JP2006165450A JP2004358079A JP2004358079A JP2006165450A JP 2006165450 A JP2006165450 A JP 2006165450A JP 2004358079 A JP2004358079 A JP 2004358079A JP 2004358079 A JP2004358079 A JP 2004358079A JP 2006165450 A JP2006165450 A JP 2006165450A
Authority
JP
Japan
Prior art keywords
support plates
source gas
gap
substrate
crystal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004358079A
Other languages
Japanese (ja)
Inventor
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004358079A priority Critical patent/JP2006165450A/en
Publication of JP2006165450A publication Critical patent/JP2006165450A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor film forming device and a semiconductor film forming method by which a semiconductor crystal film is formed at a constant growth rate without being contaminated with dust or the like and the process efficiency of the crystal film is improved, when the crystal film is formed by supplying a source gas to the surface of a heated substrate to be processed. <P>SOLUTION: Substrates 14 to be processed are supported and fixed on disc-shape susceptors 16 so that they may be spaced and opposed from and to one another. The source gas is introduced to a gap between the opposed susceptors 16 from the center of each of the susceptors. The introduced source gas is flowed from the center of each susceptor 16 toward the edge of its circumference by rotating the disc-shape susceptors 16 and is used for film forming processing on the substrates 14 to be processed which are heated to a high temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板に原料ガスを吹き付けて、基板の表面に所望の結晶膜を形成する半導体成膜装置及び半導体成膜方法に関し、特に窒素化合物の結晶膜を成長させる装置及び方法に関する。   The present invention relates to a semiconductor film forming apparatus and a semiconductor film forming method for forming a desired crystal film on a surface of a substrate by spraying a source gas, and more particularly to an apparatus and method for growing a crystal film of a nitrogen compound.

現在用いられる青色LED発光素子には、窒化ガリウムが好適に用いられる。この窒化ガリウムは、有機金属気相成長法(MOCVD)等によって結晶膜が生成される。その際、発光素子の性能は結晶膜の精度によって左右されるため、結晶膜が一定の成長速度で生成され、しかも生成される結晶膜は格子欠陥のない優れた結晶性を有することが望まれている。また、大量の結晶膜を生成するために、生産性の向上も望まれている。   Gallium nitride is suitably used for currently used blue LED light emitting elements. As for this gallium nitride, a crystal film is generated by metal organic chemical vapor deposition (MOCVD) or the like. At that time, since the performance of the light-emitting element depends on the accuracy of the crystal film, it is desired that the crystal film is generated at a constant growth rate and that the generated crystal film has excellent crystallinity without lattice defects. ing. Further, in order to produce a large amount of crystal film, improvement in productivity is also desired.

窒化ガリウムの結晶膜は、成膜温度が1000℃以上と非常に高いため、熱対流が生じ易く、基板上の成膜表面上に十分な量の原料ガスを供給することが困難となっている。
下記特許文献1では、基板の表面に平行ないし傾斜する方向に反応ガス(原料ガス)を供給し、一方、基板の表面に対して実質的に垂直な方向から不活性ガスを押圧ガスとして供給することで、反応ガスの吹き付け方向を基板表面の方向に変更させて結晶膜を成長させる半導体結晶膜の成長方法について提案している。
この方法では、押圧ガスを用いて反応ガスを基板表面に維持することができるので、高温状態の基板から材料ガスが浮き上がることにより生じる結晶膜の成長速度の低下や成長の停止を抑制することができる。
The crystal film of gallium nitride has a very high film formation temperature of 1000 ° C. or higher, so that heat convection easily occurs and it is difficult to supply a sufficient amount of source gas on the film formation surface on the substrate. .
In the following Patent Document 1, a reactive gas (raw material gas) is supplied in a direction parallel to or inclined with respect to the surface of the substrate, while an inert gas is supplied as a pressing gas from a direction substantially perpendicular to the surface of the substrate. Thus, a semiconductor crystal film growth method is proposed in which the crystal film is grown by changing the spray direction of the reaction gas to the direction of the substrate surface.
In this method, since the reaction gas can be maintained on the substrate surface using the pressure gas, it is possible to suppress the decrease in the growth rate of the crystal film and the stop of the growth caused by the material gas floating from the substrate in the high temperature state. it can.

特許第2628404号公報Japanese Patent No. 2628404

しかし、上記方法においても、必ずしも精度の高い結晶膜を生成することができない場合があった。具体的には、生成された結晶膜に結晶膜と同じ成分の微粒子が塵として結晶膜に混入しあるいは表面に付着するというものである。
このような塵の問題は、結晶膜の生成を反応容器内で行い、反応容器の天井面に付着した原料ガスの結晶膜の一部が剥離して、基板上に落下することにより生じる。
However, even with the above method, there are cases in which a crystal film with high accuracy cannot always be generated. Specifically, fine particles having the same components as the crystal film are mixed into the crystal film as dust or attached to the surface of the generated crystal film.
Such a dust problem occurs when a crystal film is generated in the reaction vessel, and a part of the crystal film of the source gas adhering to the ceiling surface of the reaction vessel is peeled off and dropped onto the substrate.

そこで、本発明は、上記問題点を解決するために、加熱された処理基板の表面に原料ガスを供給して半導体結晶膜を生成する際に、塵等により結晶膜が汚されることなく、結晶膜が一定の成長速度で生成され、しかも生成される結晶膜は格子欠陥のない優れた結晶性を有し、しかも、この結晶膜の処理効率が向上する半導体成膜装置及び半導体成膜方法を提供することを目的とする。   Therefore, in order to solve the above-described problems, the present invention provides a crystal film without being contaminated by dust or the like when supplying a raw material gas to the surface of a heated processing substrate to generate a semiconductor crystal film. A semiconductor film forming apparatus and a semiconductor film forming method in which a film is generated at a constant growth rate, the generated crystal film has excellent crystallinity without lattice defects, and the processing efficiency of the crystal film is improved. The purpose is to provide.

上記目的を達成するために、本発明は、加熱された処理基板の表面に原料ガスを供給して半導体結晶膜を生成する半導体成膜装置であって、処理基板に半導体結晶膜を生成する反応容器と、処理基板の基板面が所定の間隙をあけてお互いに対向するように、前記反応容器内に間隙を設けて対向して配置された、複数の処理基板を支持固定する2つの支持板と、前記2つの支持板のそれぞれの中央部に設けられ、対向する支持板間の前記間隙に、前記反応容器の外側から原料ガスを導入する導入口と、前記間隙に導入された原料ガスを前記導入口から前記2つの支持板の端部に向かって流す流速形成手段と、を有することを特徴とする半導体成膜装置を提供する。   In order to achieve the above object, the present invention provides a semiconductor film forming apparatus for generating a semiconductor crystal film by supplying a raw material gas to the surface of a heated processing substrate, and a reaction for generating a semiconductor crystal film on the processing substrate. Two support plates for supporting and fixing a plurality of processing substrates, which are arranged to face each other with a gap in the reaction vessel so that the container and the substrate surface of the processing substrate face each other with a predetermined gap. And an inlet for introducing a source gas from the outside of the reaction vessel into the gap between the opposing support plates provided in the center of each of the two support plates, and a source gas introduced into the gap And a flow rate forming means for flowing from the introduction port toward the ends of the two support plates.

なお、前記2つの支持板は円板形状を成し、前記導入口はこの円板形状の中心に設けられ、前記流速形成手段は、前記導入口を通り、前記2つの支持板の面に直交する中心軸を回転中心として前記2つの支持板を回転駆動させる回転機構であり、前記2つの支持板を回転することにより原料ガスを前記2つの支持板の円周外側に向かって流すことが好ましい。
その際の、2つの支持板の回転は、例えば100〜1000rpmである。また、前記間隙は、例えば1〜10mmである。
また、前記2つの支持板には、複数の処理基板が同心円状に配置され、前記間隙の外側には、この同心円状に配置された処理基板を加熱するように、前記2つの支持板と別体として基板加熱用ヒータが同心円状に設けられていることが好ましい。
The two support plates have a disc shape, the introduction port is provided at the center of the disc shape, and the flow velocity forming means passes through the introduction port and is orthogonal to the surfaces of the two support plates. It is a rotation mechanism that rotates and drives the two support plates around the center axis that rotates, and it is preferable that the source gas flows toward the outer circumference of the two support plates by rotating the two support plates. .
At that time, the rotation of the two support plates is, for example, 100 to 1000 rpm. Moreover, the said gap | interval is 1-10 mm, for example.
Further, a plurality of processing substrates are concentrically arranged on the two support plates, and separately from the two support plates so as to heat the concentric processing substrates arranged outside the gap. It is preferable that the substrate heater is provided concentrically as the body.

さらに、本発明は、加熱された処理基板の表面に原料ガスを供給して半導体結晶膜を生成する半導体成膜方法であって、処理基板の基板面が所定の間隙をあけてお互いに対向するように、複数の処理基板を2つの支持板に支持固定するステップと、前記2つの支持板のそれぞれの中央部から、対向する支持板間の前記間隙に原料ガスを導入するステップと、前記間隙に導入された原料ガスを前記導入口から前記2つの支持板の端部に向かって流すステップと、を有することを特徴とする半導体成膜方法を提供する。   Furthermore, the present invention is a semiconductor film forming method for generating a semiconductor crystal film by supplying a source gas to the surface of a heated processing substrate, wherein the substrate surfaces of the processing substrate face each other with a predetermined gap therebetween. As described above, a step of supporting and fixing a plurality of processing substrates to two support plates, a step of introducing a source gas into the gap between the opposite support plates from the center of each of the two support plates, and the gap And a step of flowing the source gas introduced to the end of the two support plates from the introduction port.

本発明では、処理基板を所定の間隙をあけてお互いに対向するように支持板上に配置し、支持板のそれぞれの中央部から、支持板間の狭い間隙に原料ガスを導入し、この原料ガスを支持板の縁に向かって流す。原料ガスの流路の両側には処理基板が配置されているので、原料ガスが加熱した処理基板に近づく際、熱対流により原料ガスが一方の処理基板から離れるような動きを受けても、他方の処理基板に近づくことになるので、原料ガスを有効に用いることができ、効率よく結晶膜を生成することができる。
また、原料ガスの流路の両側に処理基板が配置されるので、流路を取り巻く壁面には、原料ガスの結晶膜が付着し、その一部が塵、粒子となって剥離するような天井壁面は存在しない。このため塵等により生成する結晶膜が汚されることはない。
さらに、支持板を円板状とし、この円板の中心を回転中心として支持板を回転するので、
ヒータで加熱されて生じる温度分布及び原料ガスの流速分布は軸対称となり、支持板上に同心円状に配置した処理基板に対して行われる成膜の条件は、いずれの処理基板においても同じとなる。このため、一定の成長速度で結晶膜が生成される。
また、対向する処理基板の間の、原料ガスを流す流路を狭くするので、半導体成膜装置に用いる反応容器自体を小さくすることができる。また、処理基板を支持固定する支持板をお互いに対向させて成膜処理を行うので、従来に比べて成膜処理量が2倍に増える。
In the present invention, the processing substrates are arranged on the support plate so as to face each other with a predetermined gap, and a raw material gas is introduced into the narrow gap between the support plates from each central portion of the support plate. Gas is allowed to flow toward the edge of the support plate. Since the processing substrate is disposed on both sides of the flow path of the source gas, when the source gas approaches the heated processing substrate, even if the source gas is subjected to a movement such that the source gas is separated from one processing substrate, the other Therefore, the source gas can be used effectively, and the crystal film can be generated efficiently.
In addition, since the processing substrates are arranged on both sides of the flow path of the source gas, the ceiling where the crystal film of the source gas adheres to the wall surface surrounding the flow path and a part of it is separated as dust and particles. There are no walls. For this reason, the crystal film produced | generated by dust etc. is not polluted.
Furthermore, the support plate is shaped like a disc, and the support plate is rotated around the center of the disc as the center of rotation.
The temperature distribution generated by heating with the heater and the flow velocity distribution of the source gas are axisymmetric, and the conditions for film formation performed on the processing substrate arranged concentrically on the support plate are the same for all the processing substrates. . For this reason, a crystal film is generated at a constant growth rate.
Further, since the flow path for flowing the source gas between the opposing processing substrates is narrowed, the reaction vessel itself used for the semiconductor film forming apparatus can be made small. In addition, since the film forming process is performed with the support plates that support and fix the processing substrate facing each other, the amount of film forming process is doubled compared to the conventional case.

以下、本発明の半導体成膜装置及び半導体成膜方法について、本発明の一実施形態であり、本発明の半導体成膜方法を好適に行うMOCVD(有機金属気相成長法)装置に基づいて詳細に説明する。   Hereinafter, a semiconductor film forming apparatus and a semiconductor film forming method of the present invention are one embodiment of the present invention, and are described in detail based on an MOCVD (metal organic chemical vapor deposition) apparatus that suitably performs the semiconductor film forming method of the present invention. Explained.

図1は、本発明の半導体成膜装置の一実施形態であるMOCVD(有機金属気相成長法)装置10の概略構成図である。   FIG. 1 is a schematic configuration diagram of a MOCVD (metal organic chemical vapor deposition) apparatus 10 which is an embodiment of a semiconductor film forming apparatus of the present invention.

MOCVD装置10は、反応容器12と、反応容器12内に設けられた処理基板14を所定の位置に支持固定する一対のサセプタ(支持板)16と、このサセプタ16を軸支する円環状の回転シャフト18と、この回転シャフト18内に設けられ、原料ガスを反応容器12の外部から反応容器内に原料ガスを導く導入管20と、サセプタ16の中央部に設けられ、導入管20から導入される原料ガスを一対のサセプタ16の間隙に導入する導入口22と、サセプタ16と別体として設けられ、処理基板14を加熱するヒータ24と、原料ガス等を排気する、図示されない真空ポンプと接続された排気口26と、を有する。回転シャフト18は、モータ28と接続され、回転シャフト18を介してサセプタ16が回転するようになっている。   The MOCVD apparatus 10 includes a reaction vessel 12, a pair of susceptors (support plates) 16 that support and fix a processing substrate 14 provided in the reaction vessel 12 at a predetermined position, and an annular rotation that supports the susceptor 16. A shaft 18, provided in the rotary shaft 18, provided in the central portion of the susceptor 16 and introduced from the introduction pipe 20, provided in the central portion of the susceptor 16, which introduces the raw material gas into the reaction container from the outside of the reaction container 12. Connected to an inlet 22 for introducing the source gas into the gap between the pair of susceptors 16, a heater 24 that is provided separately from the susceptor 16 and that heats the processing substrate 14, and a vacuum pump (not shown) that exhausts the source gas and the like. The exhaust port 26 is provided. The rotating shaft 18 is connected to a motor 28, and the susceptor 16 is rotated via the rotating shaft 18.

反応容器12は、ステンレス製であり、回転シャフト18が反応容器12の外側に延びて、モータ28と接続されている。
処理基板14は、例えばサファイヤの基板であり、この基板にトリメチルガリウム(TMG)やアンモニア(NH3)等の原料ガスを用いて結晶膜が生成される。
一対のサセプタ16は、いずれも図2に示すように円板形状を成し、反応容器12内に垂直に立設し、円板形状の処理基板14がサセプタ16上に同心円状に複数配置されて支持固定されている。すなわち、一対のサセプタ16は、支持固定される処理基板14がサセプタ16の内側を向いて対向するように、お互いに対向するように反応容器12内に設けられている。サセプタ16間の間隙は、1〜10mmとなっている。また、サセプタ16のサイズは、例えば直径が100〜500mmである。
The reaction vessel 12 is made of stainless steel, and the rotary shaft 18 extends outside the reaction vessel 12 and is connected to the motor 28.
The processing substrate 14 is, for example, a sapphire substrate, and a crystal film is generated on the substrate by using a source gas such as trimethylgallium (TMG) or ammonia (NH 3 ).
Each of the pair of susceptors 16 has a disk shape as shown in FIG. 2, and stands vertically in the reaction vessel 12. A plurality of disk-shaped processing substrates 14 are concentrically arranged on the susceptor 16. Supported and fixed. That is, the pair of susceptors 16 are provided in the reaction container 12 so as to face each other such that the processing substrate 14 to be supported and fixed faces the inside of the susceptor 16. The gap between the susceptors 16 is 1 to 10 mm. The size of the susceptor 16 is, for example, 100 to 500 mm in diameter.

一対のサセプタ16は、回転シャフト18に軸支されて所定の速度で回転するように構成されている。ヒータ24は、サセプタ16を介して互いに対抗する処理基板14を加熱するヒータであり、円板状のサセプタ16に対して接触しないように別体として同心円状に設けられている。ヒータ24は、処理基板14を1000℃以上の高温に加熱する。このため、サセプタ16は、高温にさらされても十分に耐久性を有し、しかも反応容器12内の原料ガスを汚染しない、SiCで表面コーティングしたカーボン材が用いられる。   The pair of susceptors 16 are supported by the rotating shaft 18 so as to rotate at a predetermined speed. The heater 24 is a heater that heats the processing substrates 14 that oppose each other via the susceptor 16, and is provided as a separate concentric circle so as not to contact the disc-shaped susceptor 16. The heater 24 heats the processing substrate 14 to a high temperature of 1000 ° C. or higher. For this reason, the susceptor 16 is made of a carbon material whose surface is coated with SiC that is sufficiently durable even when exposed to high temperatures and that does not contaminate the source gas in the reaction vessel 12.

回転シャフト18内に設けられた導入管20は、サセプタ16に設けられた導入口22に接続されるが、この接続部分は、回転シャフト18とともに回転するサセプタ16に対して導入管20が静止するように接続機構が設けられ、しかも真空シールドを保持するように構成されている。導入管20の一方の端は、原料ガス源と接続された図示されない供給管に接続されている。   The introduction pipe 20 provided in the rotation shaft 18 is connected to an introduction port 22 provided in the susceptor 16, and the introduction pipe 20 is stationary with respect to the susceptor 16 that rotates together with the rotation shaft 18. Thus, the connection mechanism is provided, and the vacuum shield is held. One end of the introduction pipe 20 is connected to a supply pipe (not shown) connected to the source gas source.

排気口26は、反応容器12の、サセプタ16間の間隙を延長した部分に設けられ、サセプタ16間の間隙を通過した残余の原料ガスを強制的に排気する部分である。排気口26は、回転するサセプタ16の周上に、複数箇所設けられる。
モータ28は、サセプタ16を所定の速度で回転させるために設けられ、例えば、100〜1000(rpm)で回転するように駆動される。
The exhaust port 26 is provided in a portion of the reaction vessel 12 where the gap between the susceptors 16 is extended, and the remaining source gas that has passed through the gap between the susceptors 16 is forcibly exhausted. A plurality of exhaust ports 26 are provided on the periphery of the rotating susceptor 16.
The motor 28 is provided to rotate the susceptor 16 at a predetermined speed, and is driven to rotate at, for example, 100 to 1000 (rpm).

サセプタ16を回転させて処理基板14を回転させるのは、回転させることにより、導入口22から導入される原料ガスに、円板状のサセプタ16の中央部から外側方向に向かう流速を与えるためである。しかも、処理基板14は回転するため、原料ガスの流れを周上で均等に受けることができる。
なお、図1に示すMOCVD装置10では、サセプタ16は図中上下方向に立設するが、水平方向に設けてもよい。
The reason why the processing substrate 14 is rotated by rotating the susceptor 16 is to rotate the raw material gas introduced from the introduction port 22 to give a flow velocity from the central portion of the disk-shaped susceptor 16 toward the outside. is there. Moreover, since the processing substrate 14 rotates, the flow of the source gas can be evenly received on the circumference.
In the MOCVD apparatus 10 shown in FIG. 1, the susceptor 16 is erected in the vertical direction in the figure, but may be provided in the horizontal direction.

このようなMOCVD装置10では、まず、一対のサセプタ16の双方に処理基板14を同心円状に配置して支持固定する。これにより、処理基板14が間隙を挟んで対向されて配置される。
次に、この状態で原料ガスを導入管20から、一対のサセプタ16の間隙に供給しつつ、モータ28を駆動させて、所定の回転速度でサセプタ16を回転させる。その際、排気口26から残余の原料ガスを排気させ、反応容器12内を所定の圧力に減圧する。
さらに、ヒータ24を発熱させて、処理基板14を1000℃以上に加熱する。
In such an MOCVD apparatus 10, first, the processing substrate 14 is concentrically arranged and supported and fixed to both the pair of susceptors 16. As a result, the processing substrate 14 is arranged to face each other with a gap therebetween.
Next, while supplying the source gas from the introduction pipe 20 to the gap between the pair of susceptors 16 in this state, the motor 28 is driven to rotate the susceptor 16 at a predetermined rotational speed. At that time, the remaining raw material gas is exhausted from the exhaust port 26, and the inside of the reaction vessel 12 is depressurized to a predetermined pressure.
Furthermore, the heater 24 is heated to heat the processing substrate 14 to 1000 ° C. or higher.

サセプタ16の回転速度は100〜1000rpmであり、一対のサセプタ16の間隙は1〜10mmと狭い。このため、導入口22から供給される原料ガスには、サセプタ16の回転に引きずられて回転成分の流速が付与され、図3に示すように、原料ガスは、サセプタ16の円板形状の外周(外側)に向かって流れる。原料ガスの流速は、例えば20〜30(cm/秒)である。処理基板14は、ヒータ24によって高温に加熱されて、一対のサセプタ16間の1〜10mmと狭い間隙を介して対向している。このため、原料ガスの加熱膨張により熱対流が生じて一方の側の処理基板14から遠ざかるように原料ガスが流れても、他方の側の対向する処理基板14に近づくので、原料ガスは、処理基板14の結晶膜の成長に有効に用いることができる。また、間隙は1〜10mmと狭いので、対流による原料ガスの動きも制限される。
従来は、従来原料ガスが高温の処理基板14によって加熱されて膨張し、熱対流により原料ガスが処理基板14の表面を通りにくくなることを防ぐため、原料ガスを処理基板14に押し付けるための押圧ガスを用いていた。
The rotational speed of the susceptor 16 is 100 to 1000 rpm, and the gap between the pair of susceptors 16 is as narrow as 1 to 10 mm. For this reason, the raw material gas supplied from the introduction port 22 is dragged by the rotation of the susceptor 16 to give a flow velocity of the rotational component. As shown in FIG. It flows toward (outside). The flow rate of the source gas is, for example, 20 to 30 (cm / second). The processing substrate 14 is heated to a high temperature by the heater 24 and faces through a narrow gap of 1 to 10 mm between the pair of susceptors 16. For this reason, even if the source gas flows away from the processing substrate 14 on one side due to thermal convection due to the thermal expansion of the source gas, the source gas approaches the opposite processing substrate 14 on the other side. It can be used effectively for the growth of the crystal film of the substrate 14. Further, since the gap is as narrow as 1 to 10 mm, the movement of the raw material gas due to convection is also limited.
Conventionally, in order to prevent the conventional source gas from being heated and expanded by the high-temperature processing substrate 14 and becoming difficult for the source gas to pass through the surface of the processing substrate 14 due to thermal convection, a press for pressing the source gas against the processing substrate 14 is performed. Gas was used.

また、原料ガスの流路となるサセプタ16間の間隙の両側からヒータ24にて処理基板
14を加熱し、この両側に処理基板14を配置するので、従来のような反応容器の天井等に固着した原料ガスの膜やその微粒子が剥離して処理基板14に付着することはない。このため、処理基板14に生成される結晶膜が塵や粒子により汚れることは極めて少ない。
また、回転するサセプタ16の中央部に導入口22を設け、処理基板14をサセプタ16上に同心円状に配置し、ヒータ24も対応して同心円状に配置するので、原料ガスの流れ及び温度分布も軸対称性を有する。このため、回転するサセプタ16上に配置した処理基板14はすべて同じ流速を持つ高温の原料ガスの雰囲気に晒される。これより、処理基板14の成膜条件が同じとなり、均一な結晶膜を生成することができる。
Further, since the processing substrate 14 is heated by the heater 24 from both sides of the gap between the susceptors 16 serving as the raw material gas flow path and the processing substrate 14 is disposed on both sides, the processing substrate 14 is fixed to the ceiling or the like of a conventional reaction vessel. The film of the raw material gas and its fine particles are not peeled off and attached to the processing substrate 14. For this reason, the crystal film produced | generated on the process board | substrate 14 is very rarely contaminated with dust and particles.
In addition, the introduction port 22 is provided at the center of the rotating susceptor 16, the processing substrate 14 is concentrically disposed on the susceptor 16, and the heater 24 is also concentrically disposed so as to correspond to the flow and temperature distribution of the source gas. Also has axial symmetry. For this reason, all the processing substrates 14 arranged on the rotating susceptor 16 are exposed to a high-temperature source gas atmosphere having the same flow rate. Thereby, the film formation conditions of the processing substrate 14 become the same, and a uniform crystal film can be generated.

さらに、一対のサセプタ16間の間隙を狭くするので、反応容器12自体の内容積を小さくすることができる。また、原料ガスの流路の両側に処理基板14を配置して処理を行うので、従来に比べて、処理量が2倍向上する。   Furthermore, since the gap between the pair of susceptors 16 is narrowed, the internal volume of the reaction vessel 12 itself can be reduced. Further, since the processing substrate 14 is disposed on both sides of the flow path of the source gas, the processing amount is improved twice as compared with the conventional case.

以上、本発明の半導体成膜装置及び半導体成膜方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As described above, the semiconductor film forming apparatus and the semiconductor film forming method of the present invention have been described in detail. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the gist of the present invention. Of course it is also good.

本発明の半導体成膜装置の一実施形態であるMOCVD装置の概略構成図である。It is a schematic block diagram of the MOCVD apparatus which is one Embodiment of the semiconductor film-forming apparatus of this invention. 本発明の半導体成膜装置における支持板上の処理基板の配置と、原料ガスの流れを示す図である。It is a figure which shows arrangement | positioning of the process board | substrate on the support plate in the semiconductor film-forming apparatus of this invention, and the flow of source gas. 本発明の半導体成膜装置における原料ガスの流れを示す図である。It is a figure which shows the flow of the source gas in the semiconductor film-forming apparatus of this invention.

符号の説明Explanation of symbols

10 MOCVD装置
12 反応容器
14 処理基板
16 サセプタ
18 回転シャフト
20 導入管
22 導入口
24 ヒータ
26 排気口
28 モータ
DESCRIPTION OF SYMBOLS 10 MOCVD apparatus 12 Reaction container 14 Processing substrate 16 Susceptor 18 Rotating shaft 20 Introducing pipe 22 Introducing port 24 Heater 26 Exhaust port 28 Motor

Claims (4)

加熱された処理基板の表面に原料ガスを供給して半導体結晶膜を生成する半導体成膜装置であって、
処理基板に半導体結晶膜を生成する反応容器と、
処理基板の基板面が所定の間隙をあけてお互いに対向するように、前記反応容器内に間隙を設けて対向して配置された、複数の処理基板を支持固定する2つの支持板と、
前記2つの支持板のそれぞれの中央部に設けられ、対向する支持板間の前記間隙に、前記反応容器の外側から原料ガスを導入する導入口と、
前記間隙に導入された原料ガスを前記導入口から前記2つの支持板の端部に向かって流す流速形成手段と、を有することを特徴とする半導体成膜装置。
A semiconductor film forming apparatus for generating a semiconductor crystal film by supplying a source gas to the surface of a heated processing substrate,
A reaction vessel for producing a semiconductor crystal film on a processing substrate;
Two support plates for supporting and fixing a plurality of processing substrates, which are arranged to face each other with a gap in the reaction vessel so that the substrate surfaces of the processing substrates face each other with a predetermined gap therebetween;
An inlet for introducing a raw material gas from the outside of the reaction vessel into the gap between the opposing support plates provided at the center of each of the two support plates;
And a flow rate forming means for flowing the source gas introduced into the gap from the inlet toward the ends of the two support plates.
前記2つの支持板は円板形状を成し、前記導入口はこの円板形状の中心に設けられ、
前記流速形成手段は、前記導入口を通り、前記2つの支持板の面に直交する中心軸を回転中心として前記2つの支持板を回転駆動させる回転機構であり、前記2つの支持板を回転することにより原料ガスを前記2つの支持板の円周外側に向かって流す請求項1に記載の半導体成膜装置。
The two support plates have a disc shape, and the introduction port is provided at the center of the disc shape,
The flow velocity forming means is a rotation mechanism that rotates the two support plates around the center axis orthogonal to the surfaces of the two support plates through the introduction port, and rotates the two support plates. The semiconductor film forming apparatus according to claim 1, wherein the source gas is caused to flow toward the outer circumference of the two support plates.
前記2つの支持板には、複数の処理基板が同心円状に配置され、
前記間隙の外側には、この同心円状に配置された処理基板を加熱するように、前記2つの支持板と別体として基板加熱用ヒータが同心円状に設けられている請求項2に記載の半導体成膜装置。
A plurality of processing substrates are concentrically arranged on the two support plates,
3. The semiconductor according to claim 2, wherein a heater for heating the substrate is provided concentrically as a separate body from the two support plates so as to heat the processing substrate arranged concentrically outside the gap. Deposition device.
加熱された処理基板の表面に原料ガスを供給して半導体結晶膜を生成する半導体成膜方法であって、
処理基板の基板面が所定の間隙をあけてお互いに対向するように、複数の処理基板を2つの支持板に支持固定するステップと、
前記2つの支持板のそれぞれの中央部から、対向する支持板間の前記間隙に原料ガスを導入するステップと、
前記間隙に導入された原料ガスを前記導入口から前記2つの支持板の端部に向かって流すステップと、を有することを特徴とする半導体成膜方法。
A semiconductor film forming method for generating a semiconductor crystal film by supplying a source gas to the surface of a heated processing substrate,
Supporting and fixing a plurality of processing substrates to two support plates so that the substrate surfaces of the processing substrates face each other with a predetermined gap;
Introducing a source gas into the gap between the opposing support plates from the center of each of the two support plates;
And a step of flowing the source gas introduced into the gap from the inlet toward the ends of the two support plates.
JP2004358079A 2004-12-10 2004-12-10 Device and method for forming semiconductor film Withdrawn JP2006165450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358079A JP2006165450A (en) 2004-12-10 2004-12-10 Device and method for forming semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358079A JP2006165450A (en) 2004-12-10 2004-12-10 Device and method for forming semiconductor film

Publications (1)

Publication Number Publication Date
JP2006165450A true JP2006165450A (en) 2006-06-22

Family

ID=36667096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358079A Withdrawn JP2006165450A (en) 2004-12-10 2004-12-10 Device and method for forming semiconductor film

Country Status (1)

Country Link
JP (1) JP2006165450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147308A (en) * 2007-12-13 2009-07-02 Samsung Electro-Mechanics Co Ltd Metal organic chemical vapor deposition device
CN103320768A (en) * 2012-03-19 2013-09-25 绿种子材料科技股份有限公司 Chemical vapor deposition apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147308A (en) * 2007-12-13 2009-07-02 Samsung Electro-Mechanics Co Ltd Metal organic chemical vapor deposition device
KR100956247B1 (en) * 2007-12-13 2010-05-06 삼성엘이디 주식회사 Metal Organic Chemical Vapor Deposition Apparatus
CN103320768A (en) * 2012-03-19 2013-09-25 绿种子材料科技股份有限公司 Chemical vapor deposition apparatus

Similar Documents

Publication Publication Date Title
JP5394188B2 (en) Chemical vapor deposition equipment
JP2010232624A (en) Vapor phase growth apparatus for group-iii nitride semiconductor
JP2009071210A (en) Susceptor and epitaxial growth system
US20190032244A1 (en) Chemical vapor deposition system
JP5409413B2 (en) III-nitride semiconductor vapor phase growth system
TWI711717B (en) Heating apparatus and chemical vapor deposition system
JP3376809B2 (en) Metal organic chemical vapor deposition equipment
JP2006165450A (en) Device and method for forming semiconductor film
JP2008177187A (en) Vapor phase epitaxial growth device and method
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JP2014207357A (en) Susceptor and vapor phase growth device employing the same
US20130074876A1 (en) Cleaning apparatus and cleaning method for components of metal organic chemical vapor deposition device
JP4341647B2 (en) Chemical vapor deposition equipment
JP5470550B2 (en) Chemical vapor deposition equipment
JPS62235729A (en) Vapor phase epitaxial growth device
JP5426337B2 (en) Vapor phase growth apparatus and film forming method
JP2010219225A (en) Vapor growth apparatus of group iii nitride semiconductor
JP2006032459A (en) Chemical vapor phase growing device
JP2013016549A (en) Vapor phase growth apparatus
JP2013105831A (en) Vapor growth device
JP2006344615A (en) Compound semiconductor manufacturing apparatus and method thereof
JP2011074440A (en) Cvd apparatus and thin film production method
JP2010219116A (en) Vapor phase growth device, gas supply member, and semiconductor manufacturing method
JP2004103708A (en) Jig for fabricating semiconductor device
JP2006222228A (en) Chemical vapor deposition equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304