JP2006165240A - Protruding electrode for electronic component connection, and manufacturing method thereof - Google Patents

Protruding electrode for electronic component connection, and manufacturing method thereof Download PDF

Info

Publication number
JP2006165240A
JP2006165240A JP2004353920A JP2004353920A JP2006165240A JP 2006165240 A JP2006165240 A JP 2006165240A JP 2004353920 A JP2004353920 A JP 2004353920A JP 2004353920 A JP2004353920 A JP 2004353920A JP 2006165240 A JP2006165240 A JP 2006165240A
Authority
JP
Japan
Prior art keywords
electrode
protruding electrode
electronic component
opening
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353920A
Other languages
Japanese (ja)
Other versions
JP4453533B2 (en
Inventor
Satoshi Horie
聡 堀江
Makoto Imanishi
誠 今西
Tatsuo Sasaoka
達雄 笹岡
Kazuya Atokawa
和也 後川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004353920A priority Critical patent/JP4453533B2/en
Publication of JP2006165240A publication Critical patent/JP2006165240A/en
Application granted granted Critical
Publication of JP4453533B2 publication Critical patent/JP4453533B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protruding electrode for electronic component connection for absorbing stress caused by heating and pressurizing in a bonding process and the warpage of a substrate in mounting an electronic component on the substrate. <P>SOLUTION: The protruding electrode 3 for electronic component connection connects a terminal electrode 2 of the electronic component 1 to a wiring electrode of the substrate corresponding to the terminal electrode 2. The protruding electrode 3 is formed on the terminal electrode 2 of the electronic component 1 or the wiring electrode of the substrate, has a cross sectional shape with a waisted portion 6 on its center portion, and is made of a composite material in which at least one of granular resins 4 and bubbles is dispersed in a metal material. In this configuration, a shape effect and the elastic force of the material can release the stress applied to the protruding electrode 3. <P>COPYRIGHT: (C)2006,JPO&amp;NCIPI

Description

本発明は、電子部品を基板に接続するための突起電極に関り、特に信頼性の高い電子部品接続用突起電極およびその製造方法に関するものである。   The present invention relates to a protruding electrode for connecting an electronic component to a substrate, and more particularly to a protruding electrode for connecting an electronic component with high reliability and a method for manufacturing the same.

近年、携帯型端末に代表される小型・薄型・軽量を要求される電子機器に搭載するために、大面積で、かつ多数の接続電極を有する大規模集積回路素子等の半導体素子をベアチップ構成またはパッケージした構成で基板に実装する例が多くなっている。このような実装方式においては、一般にバンプと呼ばれる突起電極を用いて接合されるが、接合工程における熱応力や半導体素子と基板との熱膨張係数の差等により、突起電極に大きな応力がかかることが多い。これらの応力を緩和するために、例えば、突起電極の断面形状を鼓状にして応力を緩和する等の方法が開発されている(例えば、特許文献1参照)。この従来の方法では、突起電極の材料として半田を用い、実装時の溶融状態あるいは軟化状態で電子部品と基板との間を引き離すようにすることで半田を変形させて鼓状の形状を得ている。   In recent years, a semiconductor device such as a large-scale integrated circuit device having a large area and a large number of connection electrodes has been formed in a bare chip configuration in order to be mounted on an electronic device that is required to be small, thin, and lightweight, typified by a portable terminal. There are many examples of mounting on a substrate in a packaged configuration. In such a mounting method, bonding is generally performed using bump electrodes called bumps. However, a large stress is applied to the bump electrodes due to the thermal stress in the bonding process or the difference in thermal expansion coefficient between the semiconductor element and the substrate. There are many. In order to relieve these stresses, for example, a method has been developed in which the cross-sectional shape of the protruding electrode is reduced to a drum shape to relieve the stress (see, for example, Patent Document 1). In this conventional method, solder is used as a material for the protruding electrode, and the solder is deformed by separating the electronic component from the substrate in a molten state or a softened state at the time of mounting, thereby obtaining a drum shape. Yes.

また、図9に示すように、半導体素子41の端子電極42上に鼓状の突起電極43を形成した構造も示されている(例えば、特許文献2参照)。このような鼓状の突起電極43は、以下のようにして形成される。まず、ポリイミド樹脂膜の両面からエッチングを施して断面が鼓状の開口部を形成する。次に、ポリイミド樹脂膜を半導体基板に貼付し、鼓状の開口部に半田を充填する。次に、ポリイミド樹脂を除去することで、端子電極42上に鼓状の形状を有し、半田からなる突起電極43を得ている。この方法では、半田の充填は半田ペーストまたは溶融半田の充填により行っている。   Further, as shown in FIG. 9, there is also shown a structure in which a drum-like protruding electrode 43 is formed on the terminal electrode 42 of the semiconductor element 41 (see, for example, Patent Document 2). Such a drum-shaped protruding electrode 43 is formed as follows. First, etching is performed from both sides of the polyimide resin film to form an opening having a drum-shaped cross section. Next, a polyimide resin film is attached to the semiconductor substrate, and the drum-shaped opening is filled with solder. Next, by removing the polyimide resin, a protruding electrode 43 having a drum shape on the terminal electrode 42 and made of solder is obtained. In this method, the solder is filled by filling with solder paste or molten solder.

これらの方法により、疲労破壊に強い突起電極を容易に形成することができ、半導体装置としての生産性向上が可能な半導体素子の突起電極形成方法が得られるとしている。   According to these methods, it is possible to easily form a protruding electrode that is resistant to fatigue failure, and to obtain a protruding electrode forming method for a semiconductor element capable of improving productivity as a semiconductor device.

また、形状は従来の円柱状の突起電極でありながら構成する材料自体の弾性力で応力を吸収する方法も示されている(例えば、特許文献3参照)。図10は、この従来の樹脂粒子を分散させた突起電極の断面図である。図10に示すように、半導体素子41に端子電極42が形成されている。なお、半導体素子41には、回路形成面(図示せず)を保護するための保護膜44が形成されている。端子電極42の上に形成された突起電極45には、樹脂粒子46が分散含有されている。   In addition, there is also shown a method of absorbing stress by the elastic force of the material itself, which is a conventional cylindrical protruding electrode (see, for example, Patent Document 3). FIG. 10 is a cross-sectional view of the protruding electrode in which the conventional resin particles are dispersed. As shown in FIG. 10, a terminal electrode 42 is formed on the semiconductor element 41. The semiconductor element 41 is provided with a protective film 44 for protecting a circuit formation surface (not shown). The protruding electrode 45 formed on the terminal electrode 42 contains resin particles 46 in a dispersed manner.

このように樹脂粒子46を含有する突起電極45は、例えば、電解液中に樹脂粒子46を混合、分散させ、攪拌しながら電界メッキを行うことによって形成している。このような構成とすることにより、樹脂粒子46を含む突起電極45の弾性回復力によって、接合時に発生する応力が緩和できるとしている。なお、樹脂粒子46としては、1μm〜5μm程度のアクリル系、スチレン系、シリコン系の樹脂が用いられている。   Thus, the protruding electrode 45 containing the resin particles 46 is formed, for example, by mixing and dispersing the resin particles 46 in the electrolytic solution and performing electroplating while stirring. By adopting such a configuration, it is said that the stress generated during bonding can be relieved by the elastic recovery force of the protruding electrode 45 including the resin particles 46. The resin particles 46 are made of acrylic, styrene, or silicon resin having a size of about 1 μm to 5 μm.

また、内部に一様なボイドを有する半田バンプを形成してスポンジ状として接合時の熱応力を緩和する方法も開発されている(例えば、特許文献4参照)。
特開昭59−5637号公報 特開平9−115912号公報 特開平5−144817号公報 特開平11−214447号公報
In addition, a method has been developed in which solder bumps having uniform voids are formed inside to form a sponge shape to relieve thermal stress during bonding (see, for example, Patent Document 4).
JP 59-5637 A JP-A-9-115912 Japanese Patent Laid-Open No. 5-144817 Japanese Patent Laid-Open No. 11-214447

しかしながら、上記従来の第1の例では、実装時に半田を溶融状態あるいは軟化状態に保持して電子部品と基板との間を引き離すようにして半田を変形させている。このため、引き離す距離や突起電極の形状のばらつき等により鼓状の形状に大きなばらつきを生じやすい。   However, in the first conventional example, the solder is deformed so that the solder is held in a molten state or a softened state during mounting and the electronic component is separated from the substrate. For this reason, a large variation in the drum shape tends to occur due to a separation distance or a variation in the shape of the protruding electrode.

また、上記従来の第2の例では、樹脂膜に形成した鼓状の開口部へ半田ペーストを印刷して充填する場合には、半田を一旦溶融させる必要がある。したがって、この溶融により上面の平坦性が悪くなる。また、溶融半田を充填する場合においても、上面を確実に平坦化することは比較的困難である。さらに、半導体基板の端子電極上に形成した鼓状の突起電極の材料が半田であるため、半導体素子と基板との接合時の加熱により半田が溶融すると形状の維持が困難となる。しかし、充分に溶融させないと接合強度を確保しにくい。すなわち、半田により突起電極を形成した場合、接続作業時に半田を溶融させると鼓状の形状が保持されなくなるため、半田が溶融しない温度で接続することが必要となり、最適な接合条件の範囲が非常に限定されてしまうという課題がある。   In the second conventional example, when the solder paste is printed and filled in the drum-shaped opening formed in the resin film, it is necessary to once melt the solder. Therefore, the flatness of the upper surface is deteriorated by this melting. In addition, even when the molten solder is filled, it is relatively difficult to reliably flatten the upper surface. Further, since the material of the drum-like protruding electrode formed on the terminal electrode of the semiconductor substrate is solder, it is difficult to maintain the shape when the solder is melted by heating at the time of joining the semiconductor element and the substrate. However, it is difficult to ensure the bonding strength unless it is sufficiently melted. In other words, when the protruding electrodes are formed by solder, the drum-shaped shape is not maintained if the solder is melted during the connection work, so it is necessary to connect at a temperature at which the solder does not melt, and the range of optimum joining conditions is extremely There is a problem that it is limited to.

また、上記従来の第3の例は、突起電極中に樹脂粒子を分散含有させており、突起電極に弾性力があるため応力緩和に有効ではあるが、中央部にくびれ部がないため外部から応力が加わると、どちらかの接合部分に応力が集中しやすい。そのため、接合部分の剥離あるいは端子電極の剥離等が生じることがある。また、上記従来の第4の例も、第3の例と同様な課題を有している。   In the above third conventional example, resin particles are dispersed and contained in the protruding electrode, and the protruding electrode has an elastic force, which is effective for stress relaxation. However, since there is no constricted portion in the central portion, it is externally applied. When stress is applied, the stress tends to concentrate on either joint. Therefore, peeling of the joint portion or peeling of the terminal electrode may occur. The fourth conventional example has the same problem as the third example.

本発明は、上記の課題を解決するもので、突起電極全体にかかる応力を材料構成とその形状効果により緩和して、電子部品と基板との熱膨張係数差が大きい場合でも高信頼性の実装が可能な電子部品接続用突起電極およびその製造方法を提供することを目的とする。   The present invention solves the above-described problems, and relieves stress applied to the entire protruding electrode by the material configuration and its shape effect, so that even when the difference in thermal expansion coefficient between the electronic component and the substrate is large, highly reliable mounting is achieved. An object of the present invention is to provide a protruding electrode for connecting an electronic component and a method for manufacturing the same.

この目的を達成するために本発明の電子部品接続用突起電極は、電子部品の端子電極とこの端子電極に対応する基板の配線電極との間を接続するための突起電極であって、突起電極は電子部品の端子電極上または基板の配線電極上に形成され、中央部にくびれ部を設けた断面形状を有し、かつ金属材料中に粒状樹脂および気泡のうち少なくとも一つが分散された複合材料からなる構成を有する。   In order to achieve this object, the protruding electrode for connecting an electronic component of the present invention is a protruding electrode for connecting a terminal electrode of an electronic component and a wiring electrode of a substrate corresponding to the terminal electrode. Is a composite material formed on a terminal electrode of an electronic component or a wiring electrode of a substrate, having a cross-sectional shape provided with a constriction at the center, and at least one of granular resin and bubbles dispersed in a metal material It has the composition which consists of.

この構成により、突起電極の中央部のくびれ部と突起電極を構成する複合材料の弾性的な変形力が大きいことによって、接合部に大きな応力が加わっても確実に緩和できる。この結果、熱膨張係数の大きく異なる電子部品と基板とであっても高信頼性の接続構成を実現することができる。   With this configuration, the constricted portion at the center of the protruding electrode and the elastic deformation force of the composite material forming the protruding electrode can reliably relax even if a large stress is applied to the bonded portion. As a result, a highly reliable connection configuration can be realized even with an electronic component and a substrate that have greatly different thermal expansion coefficients.

また、上記構成において、突起電極を構成する金属材料は端子電極と配線電極とをこの突起電極で接合するための温度より融点が高く、接合するための加圧力の印加後においてもその形状を保持する材料としてもよい。この構成とすることによって、接合時の温度による変形を防止でき、かつ接合前後で形状変化のない突起電極とすることができるので熱膨張係数の差等による応力が加わっても、接合部や端子電極の剥離等の発生を抑制でき、高信頼性の接続構成を実現できる。   In the above configuration, the metal material constituting the protruding electrode has a melting point higher than the temperature at which the terminal electrode and the wiring electrode are bonded to each other by the protruding electrode, and retains its shape even after the applied pressure for bonding is applied. It is good also as a material to do. By adopting this configuration, deformation due to temperature during bonding can be prevented, and a protruding electrode that does not change in shape before and after bonding can be obtained, so even if stress due to a difference in thermal expansion coefficient is applied, the bonded portion or terminal Generation | occurrence | production of peeling of an electrode etc. can be suppressed and a highly reliable connection structure is realizable.

また、上記構成において、突起電極の端子電極または配線電極と接合する表面上には接合用金属層が形成されている構成としてもよい。この場合において、接合用金属層は上記金属材料のみからなる構成としてもよい。あるいは、接合用金属層は上記金属材料より融点が低い金属材料を用いてもよい。   In the above structure, a bonding metal layer may be formed on the surface of the protruding electrode that is bonded to the terminal electrode or the wiring electrode. In this case, the bonding metal layer may be composed of only the metal material. Alternatively, a metal material having a melting point lower than that of the metal material may be used for the bonding metal layer.

このような構成とすることにより、突起電極と接続するための電子部品の端子電極または基板の配線電極と突起電極とを確実に、かつ大きな接合強度を有して接合することができる。特に、接合用金属層の融点が突起電極を構成する金属材料の融点よりも低い金属を選択することにより、突起電極の変形を小さくしながら接合条件範囲の広い突起電極を実現することができる。   With such a configuration, the terminal electrode of the electronic component for connection with the protruding electrode or the wiring electrode of the substrate and the protruding electrode can be reliably bonded with high bonding strength. In particular, by selecting a metal whose melting point of the bonding metal layer is lower than the melting point of the metal material constituting the protruding electrode, it is possible to realize a protruding electrode having a wide bonding condition range while reducing deformation of the protruding electrode.

また、本発明の電子部品接続用突起電極の製造方法は、電子部品の端子電極上またはこの端子電極に対応する基板の配線電極上に、中央部にくびれ部を設けた断面形状を有し、かつ金属材料中に粒状樹脂および気泡のうち少なくとも一つが分散された複合材料からなる突起電極をメッキ法により形成する方法からなる。この複合材料は、樹脂分散メッキ法により粒状樹脂を金属材料中に分散含有して形成する方法、または加熱によって気泡を発生する物質を内部に包含した発泡性樹脂を含む樹脂分散メッキ法により発泡性樹脂を分散含有する金属膜を形成した後、この金属膜を加熱して発泡性樹脂から気泡を発生させて形成する方法を用いた方法としてもよい。   In addition, the method for manufacturing a protruding electrode for connecting an electronic component according to the present invention has a cross-sectional shape in which a constricted portion is provided at a central portion on a terminal electrode of an electronic component or a wiring electrode of a substrate corresponding to the terminal electrode. In addition, the method includes a method in which a protruding electrode made of a composite material in which at least one of granular resin and bubbles is dispersed in a metal material is formed by a plating method. This composite material is foamable by a method in which a granular resin is dispersed and contained in a metal material by a resin dispersion plating method, or a resin dispersion plating method including a foamable resin that contains a substance that generates bubbles when heated. A method may be used in which after forming a metal film containing dispersed resin, the metal film is heated to generate bubbles from the foamable resin.

これらの方法により、中央部にくびれ部を有し、かつ金属材料中に粒状樹脂および気泡のうち少なくとも一つを含む複合材料からなる突起電極を容易に形成することができる。   By these methods, it is possible to easily form a protruding electrode made of a composite material having a constricted portion at the center and containing at least one of a granular resin and bubbles in the metal material.

また、上記方法において、電子部品の端子電極上またはこの端子電極に対応する基板の配線電極上に、上記端子電極または配線電極に接する下面部に比べて上面部の開口面積が小さな形状の第1開口部を有する第1レジスト膜を形成する工程と、この第1開口部を充填する第1突起電極を複合材料により形成する第1のメッキ工程と、第1開口部に充填された第1突起電極の表面が露出し、かつその上面部が第1突起電極の表面より大きな断面積を有する形状の第2開口部を設けた第2レジスト膜を第1レジスト膜上に形成する工程と、第1突起電極から連続し第2開口部を充填する第2突起電極を複合材料により形成する第2のメッキ工程と、第1レジスト膜および第2レジスト膜を除去する工程とを含む方法としてもよい。   Further, in the above method, the first opening having a shape in which the opening area of the upper surface portion is smaller on the terminal electrode of the electronic component or on the wiring electrode of the substrate corresponding to the terminal electrode than on the lower surface portion in contact with the terminal electrode or the wiring electrode. A step of forming a first resist film having an opening, a first plating step of forming a first protruding electrode filling the first opening with a composite material, and a first protrusion filled in the first opening. Forming a second resist film on the first resist film in which a second opening having a shape in which the surface of the electrode is exposed and the upper surface of the electrode has a larger cross-sectional area than the surface of the first protruding electrode; A method may include a second plating step of forming a second protruding electrode continuous from one protruding electrode and filling the second opening with a composite material, and a step of removing the first resist film and the second resist film. .

この方法により、粒状樹脂および気泡のうち少なくとも一つが分散され、中央部にくびれ部を有する断面形状の突起電極を容易に形成することができる。   By this method, it is possible to easily form a protruding electrode having a cross-sectional shape in which at least one of the granular resin and bubbles is dispersed and has a constricted portion at the center.

また、上記方法において、電子部品の端子電極上または基板の配線電極上に中央部にくびれ部を有する断面形状の開口部を設けたレジスト膜を形成する工程と、この開口部を充填する突起電極を複合材料により形成するメッキ工程と、レジスト膜を除去する工程とを含む方法としてもよい。   Further, in the above method, a step of forming a resist film provided with a cross-sectional opening having a constricted portion at a central portion on a terminal electrode of an electronic component or a wiring electrode of a substrate, and a protruding electrode filling the opening It is good also as a method including the process of removing the resist film, and the plating process of forming a composite material.

また、上記方法において、電子部品の端子電極上または基板の配線電極上にネガ型レジスト膜を塗布する工程と、この端子電極上または配線電極上の予め設定した位置のネガ型レジスト膜に端子電極または配線電極に接する面に比べてその上面部の断面積が小さな形状で第2開口部となる未露光部を選択的な露光により形成する工程と、ネガ型レジスト膜の上に遮光性を有する遮光膜を形成する工程と、遮光膜の上にポジ型レジスト膜を塗布する工程と、ネガ型レジスト膜の未露光部の上に位置するポジ型レジスト膜に、その下面部が未露光部の上面部の断面積と同一で、かつその上面部が下面部の断面積より大きな形状で第1開口部となる露光部を選択的な露光により形成する工程と、ポジ型レジスト膜を現像して露光部のポジ型レジストを除去し、第1開口部を形成する工程と、第1開口部の下面部に露出した遮光膜をエッチング除去する工程と、ネガ型レジスト膜を現像して未露光部のネガ型レジストを除去し、第1開口部に連結する第2開口部を形成する工程と、第1開口部および第2開口部内に突起電極を複合材料により形成するメッキ工程とを含む方法としてもよい。   Further, in the above method, a step of applying a negative resist film on the terminal electrode of the electronic component or the wiring electrode of the substrate, and the terminal electrode on the negative resist film at a predetermined position on the terminal electrode or the wiring electrode Alternatively, the step of forming an unexposed portion that becomes the second opening with a smaller cross-sectional area of the upper surface portion than the surface in contact with the wiring electrode by selective exposure, and has a light shielding property on the negative resist film A step of forming a light shielding film, a step of applying a positive resist film on the light shielding film, and a positive resist film located on an unexposed portion of the negative resist film, the lower surface portion of which is an unexposed portion. A step of selectively exposing to form an exposed portion that is the same as the cross-sectional area of the upper surface portion and whose upper surface portion is larger than the cross-sectional area of the lower surface portion and becomes the first opening; and developing the positive resist film Positive resist for exposed areas Removing and forming the first opening; etching removing the light shielding film exposed on the lower surface of the first opening; and developing the negative resist film to remove the negative resist in the unexposed area. The method may include a step of forming a second opening connected to the first opening, and a plating step of forming a protruding electrode with a composite material in the first opening and the second opening.

これらの方法により、中央部にくびれ部を有する断面形状の開口部を設けたレジスト膜を容易に形成し、この開口部を充填するようにメッキ法により複合材料からなる突起電極を形成することができる。また、これらの方法によれば、断面形状として、例えば台形の上面同士を貼り合せた形状、鼓状の形状、あるいは中央部の断面積が小さく、かつ上面部から下面部にかけて連続的に断面積が変化する形状や、中央部の一部が円柱状の形状等、種々の形状の突起電極を容易に作製することができる。なお、本発明の突起電極の断面形状としては、楕円形状、円形状、四角形状等の多角形状、あるいは多角形状の端部を面取りした形状等、種々の形状を選択することができる。   By these methods, it is possible to easily form a resist film having a cross-sectional opening having a constricted portion at the center, and to form a protruding electrode made of a composite material by plating so as to fill the opening. it can. In addition, according to these methods, as the cross-sectional shape, for example, a shape in which trapezoidal upper surfaces are bonded together, a drum shape, or a central cross-sectional area is small, and a cross-sectional area continuously from the upper surface part to the lower surface part. It is possible to easily produce protruding electrodes having various shapes such as a shape in which the angle changes or a shape in which a part of the center is cylindrical. In addition, as the cross-sectional shape of the protruding electrode of the present invention, various shapes such as an elliptical shape, a circular shape, a polygonal shape such as a quadrangular shape, or a shape in which a polygonal end portion is chamfered can be selected.

本発明による電子部品接続用突起電極は、断面形状において中央部にくびれ部を有し、かつ突起電極を構成する金属材料中に粒状樹脂または気泡を分散含有させたものである。これにより、くびれ部による応力の緩和効果に加え、粒状樹脂または気泡を含有した金属材料の大きな弾性変形力によっても応力を緩和できるので、熱膨張係数の異なる基板と電子部品との組合せであっても高信頼性の接続構造を実現できるという大きな効果を奏する。   The protruding electrode for connecting an electronic component according to the present invention has a constricted portion at the center in the cross-sectional shape, and a metallic material constituting the protruding electrode is dispersed and contained in granular resin or bubbles. As a result, in addition to the stress relieving effect due to the constricted portion, the stress can be relieved by the large elastic deformation force of the metal material containing granular resin or bubbles, so that the combination of the substrate and the electronic component having different thermal expansion coefficients is possible. Also has a great effect that a highly reliable connection structure can be realized.

さらに、本発明の電子部品接続用突起電極の製造方法は、断面形状において中央部にくびれ部を有し、かつ粒状樹脂または気泡が分散された突起電極を容易に、かつ形状の再現性よく形成することができるという大きな効果を奏する。   Furthermore, according to the method for manufacturing a protruding electrode for connecting an electronic component of the present invention, a protruding electrode having a constricted portion at the center in a cross-sectional shape and dispersed in granular resin or bubbles is easily formed with good shape reproducibility. There is a great effect that can be done.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、同じ要素については同じ符号を付しており、説明を省略する場合がある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same element and description may be abbreviate | omitted.

(第1の実施の形態)
図1は、本発明の第1の実施の形態にかかる電子部品接続用突起電極の断面図である。図1に示すように本実施の形態では、電子部品1の端子電極2の上に金属材料中に粒状樹脂4が分散された複合材料からなる突起電極3が形成されている構成を例として説明する。突起電極3は高さ方向の中央部にくびれ部6を有しており、その上面は端子電極2に対応する基板(図示せず)の配線電極(図示せず)と接続するための接続面5となっている。
(First embodiment)
FIG. 1 is a cross-sectional view of a protruding electrode for connecting an electronic component according to a first embodiment of the present invention. As shown in FIG. 1, in the present embodiment, a configuration in which a protruding electrode 3 made of a composite material in which a granular resin 4 is dispersed in a metal material is formed on a terminal electrode 2 of an electronic component 1 will be described as an example. To do. The protruding electrode 3 has a constricted portion 6 at the center in the height direction, and the upper surface thereof is a connection surface for connecting to a wiring electrode (not shown) of a substrate (not shown) corresponding to the terminal electrode 2. 5

このような突起電極3は金属材料中に粒状樹脂4が分散された複合材料により形成されているが、その作製は樹脂分散メッキ法による方法が望ましい。複合材料を構成する金属材料としては、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)等を用いることができる。また、粒状樹脂4としては、アクリル系、スチレン系、シリコン系等の樹脂を微粒子化したものを用いることができる。   Such a protruding electrode 3 is formed of a composite material in which a granular resin 4 is dispersed in a metal material, and its production is preferably performed by a resin dispersion plating method. Gold (Au), silver (Ag), copper (Cu), nickel (Ni), or the like can be used as a metal material constituting the composite material. Further, as the granular resin 4, a resin obtained by atomizing an acrylic resin, a styrene resin, a silicon resin, or the like can be used.

このような粒状樹脂4を含む複合材料を突起電極3として用いた場合、基板の配線電極との接合は、例えば超音波接合により行うことができる。超音波接合の場合には、上記の金属材料の融点よりも充分低い温度で、かつ突起電極3が大きな塑性変形を生じない加圧力で接合することができる。したがって、接合後も突起電極3の形状が保持されるので、熱応力や外部からの衝撃等による応力が加わってもその応力を効率よく吸収することができる。   When such a composite material including the granular resin 4 is used as the protruding electrode 3, the bonding with the wiring electrode of the substrate can be performed by, for example, ultrasonic bonding. In the case of ultrasonic bonding, bonding can be performed at a temperature sufficiently lower than the melting point of the metal material and with a pressing force that does not cause the plastic electrode 3 to undergo large plastic deformation. Accordingly, since the shape of the protruding electrode 3 is maintained even after the bonding, even if a thermal stress or a stress due to an external impact is applied, the stress can be efficiently absorbed.

図2は、本実施の形態における電子部品接続用突起電極の製造方法を説明するための工程断面図である。   FIG. 2 is a process cross-sectional view for explaining the method of manufacturing the protruding electrode for connecting an electronic component in the present embodiment.

まず、図2(a)に示すように、電子部品1(例えば、多数個の半導体素子が形成されたウエハ等)の主面に第1レジスト膜7を形成し、端子電極2に接する下面部に比べて上面部の開口面積が小さな第1開口部8を端子電極2の上に形成する。このような逆テーパ状の開口部をレジスト膜に形成するには、ホトレジスト塗布後のプリベーク時間を調整する方法、ホトマスクを用いて露光するときに斜め方向から露光する回転露光法等を用いることができる。   First, as shown in FIG. 2A, the first resist film 7 is formed on the main surface of the electronic component 1 (for example, a wafer on which a large number of semiconductor elements are formed), and the lower surface portion in contact with the terminal electrode 2 The first opening 8 having a smaller opening area on the upper surface is formed on the terminal electrode 2. In order to form such an inversely tapered opening in the resist film, a method of adjusting the pre-bake time after applying the photoresist, a rotary exposure method of exposing from an oblique direction when exposing using a photomask, or the like is used. it can.

次に、図2(b)に示すように、第1開口部8の内部にメッキ法により金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)等の金属による第1突起電極9を形成する。これが第1のメッキ工程となる。この第1突起電極9には粒状樹脂4が分散含有されている。なお、第1突起電極9は、その上面が、第1レジスト膜7の表面と同一面かまたは下にあればよい。すなわち、第1突起電極9の上面が、第1開口部8内にあってもよい。   Next, as shown in FIG. 2B, the first protrusion 8 made of metal such as gold (Au), silver (Ag), copper (Cu), nickel (Ni) is plated inside the first opening 8 by plating. Electrode 9 is formed. This is the first plating step. The first protruding electrode 9 contains the granular resin 4 in a dispersed manner. The upper surface of the first protruding electrode 9 only needs to be on the same plane as or below the surface of the first resist film 7. That is, the upper surface of the first protruding electrode 9 may be in the first opening 8.

次に、図2(c)に示すように、第1レジスト膜7および第1突起電極9を覆って第2レジスト膜10を形成し、露光・現像して第1突起電極9に連結した第2開口部11を形成する。この第2開口部11は、その下面部が第1突起電極9の上面と一致し、かつその上面部の断面積が下面部より大きく形成される。   Next, as shown in FIG. 2C, a second resist film 10 is formed so as to cover the first resist film 7 and the first protruding electrode 9, exposed and developed, and connected to the first protruding electrode 9. Two openings 11 are formed. The second opening 11 is formed such that the lower surface thereof coincides with the upper surface of the first protruding electrode 9 and the cross-sectional area of the upper surface is larger than that of the lower surface.

次に、図2(d)に示すように、第2開口部11内に、メッキ法により金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)等の金属による第2突起電極12を形成する。これが第2のメッキ工程となる。この第2突起電極12にも粒状樹脂4が分散含有されている。   Next, as shown in FIG. 2D, second protrusions made of metal such as gold (Au), silver (Ag), copper (Cu), nickel (Ni), etc. are formed in the second opening 11 by plating. The electrode 12 is formed. This is the second plating step. The second protruding electrode 12 also contains the granular resin 4 in a dispersed manner.

その後、第1レジスト膜7および第2レジスト膜10を除去することによって、図2(e)に示すように中央にくびれ部6を有する鼓状の突起電極3が形成される。   Thereafter, by removing the first resist film 7 and the second resist film 10, the drum-like protruding electrode 3 having the constricted portion 6 at the center is formed as shown in FIG.

なお、図2においては、第1突起電極9および第2突起電極12に粒状樹脂4を分散含有させた例を示したが、第1突起電極9および第2突起電極12の少なくとも一方に粒状樹脂および気泡のうち少なくとも一方を分散含有させておくことによっても同様の効果が得られる。   2 shows an example in which the granular resin 4 is dispersed and contained in the first protruding electrode 9 and the second protruding electrode 12, but the granular resin is included in at least one of the first protruding electrode 9 and the second protruding electrode 12. The same effect can be obtained also by dispersing at least one of the bubbles.

突起電極中に粒状樹脂を分散させる方法としては、アクリル系、スチレン系、シリコン系等の樹脂微粉末を電解液中に分散させ、攪拌しながら電解メッキを行う方法を用いることができる。   As a method of dispersing the granular resin in the protruding electrode, a method of dispersing an acrylic resin, styrene resin, silicon resin or the like in an electrolytic solution and performing electrolytic plating while stirring can be used.

また、突起電極中に気泡を分散含有させる方法としては、加熱により気泡を発生する物質、例えば、重炭酸ソーダや有機溶剤等を樹脂カプセル中に封入したものを電解液中に添加して電解メッキを行う方法を用いることができる。この場合、バンプ形成後に加熱することによって、上記の物質がガス発生または分解して突起電極中に気泡を形成することができる。   In addition, as a method of dispersing and containing bubbles in the protruding electrode, electrolytic plating is performed by adding a substance that generates bubbles by heating, for example, sodium bicarbonate or an organic solvent encapsulated in a resin capsule to the electrolytic solution. The method can be used. In this case, by heating after forming the bumps, the above substances can be generated or decomposed to form bubbles in the protruding electrodes.

また、突起電極3のくびれ部6の位置、突起電極3の上面部および下面部の断面積、くびれ部6の断面積は、図1または図2に示す形状に限定されるものではない。   Further, the position of the constricted portion 6 of the protruding electrode 3, the cross-sectional areas of the upper and lower surface portions of the protruding electrode 3, and the cross-sectional area of the constricted portion 6 are not limited to the shapes shown in FIG.

次に、本実施の形態にかかる電子部品実装用突起電極の第1の変形例について、説明する。   Next, a first modification of the protruding electrode for mounting electronic components according to the present embodiment will be described.

図3は、電子部品実装用突起電極の第1の変形例を示す断面図である。この第1の変形例の突起電極3は、図1に示す突起電極3の上面、すなわち基板(図示せず)の配線電極(図示せず)と接合する面に粒状樹脂4を含まない接合用金属層13を設けていることが特徴である。この場合、接合用金属層13の上面が新たな接続面5となる。   FIG. 3 is a cross-sectional view showing a first modification of the protruding electrode for mounting electronic components. The protruding electrode 3 of the first modification is for bonding that does not include the granular resin 4 on the upper surface of the protruding electrode 3 shown in FIG. 1, that is, the surface bonded to the wiring electrode (not shown) of the substrate (not shown). It is characterized in that the metal layer 13 is provided. In this case, the upper surface of the bonding metal layer 13 becomes the new connection surface 5.

なお、接合用金属層13として、突起電極3を構成する金属材料と同じ材料を用いてもよい。この場合には、接合用金属層13と基板の配線電極との接合強度を大きくすることができる。さらに、接合用金属層13の表面と配線電極の表面とをそれぞれプラズマ処理等で清浄化して接合すれば、常温でも強固な接合が可能となり接合時の熱応力の発生を大幅に抑制することもできる。   Note that the bonding metal layer 13 may be made of the same material as that of the protruding electrode 3. In this case, the bonding strength between the bonding metal layer 13 and the wiring electrode of the substrate can be increased. Furthermore, if the surface of the bonding metal layer 13 and the surface of the wiring electrode are respectively cleaned and bonded by plasma treatment or the like, strong bonding is possible even at room temperature, and the generation of thermal stress during bonding can be greatly suppressed. it can.

また、接合用金属層13として、突起電極3を構成する金属材料よりも低融点の材料を用いてもよい。例えば、比較的低い温度で溶融して接合できる錫(Sn)や半田を用いることができる。なお、突起電極3を構成する材料が金(Au)で接合用金属層13が半田の場合には、接合用金属層13の下にバリアメタル層を設けておくことが望ましい。このような構成とすることによって、接合時に半田と金(Au)との反応を防止することができる。なお、半田として、ほとんどの鉛(Pb)フリー半田を使用することができる。さらに、インジウム(In)等の低融点金属を用いることもできる。   Further, as the bonding metal layer 13, a material having a melting point lower than that of the metal material constituting the protruding electrode 3 may be used. For example, tin (Sn) or solder that can be melted and bonded at a relatively low temperature can be used. When the material constituting the protruding electrode 3 is gold (Au) and the bonding metal layer 13 is solder, it is desirable to provide a barrier metal layer under the bonding metal layer 13. By adopting such a configuration, it is possible to prevent a reaction between solder and gold (Au) during bonding. As the solder, most lead (Pb) free solder can be used. Furthermore, a low melting point metal such as indium (In) can be used.

上記のように複合材料により形成した突起電極3の上面部に接合用金属層13が形成された第1の変形例の突起電極3を用いて電子部品と基板とを接合することにより、応力を緩和することができるだけでなく接合強度も大きくすることができる。   By bonding the electronic component and the substrate using the protruding electrode 3 of the first modified example in which the bonding metal layer 13 is formed on the upper surface portion of the protruding electrode 3 formed of the composite material as described above, the stress is reduced. Not only can it be relaxed, but also the bonding strength can be increased.

図3に示す突起電極3の先端面、すなわち接合用金属層13に関しては、下記に示す方法によって形成することができる。接合用金属層13の第1の形成方法は、所定の厚さに突起電極3を形成した後、別に用意したメッキ槽でメッキすることにより、粒状樹脂または気泡を全く含有せず、かつ、接合に適した材質のメッキ層を形成することができる。また、接合用金属層13の第2の形成方法は、突起電極3を形成するメッキ工程の最終段階、すなわち、ほぼ所定の高さの突起電極を形成した段階で、メッキ槽内の攪拌を停止した状態でメッキを継続することにより、粒状樹脂または気泡をほとんど含まないメッキ層を形成することができる。   The tip surface of the protruding electrode 3 shown in FIG. 3, that is, the bonding metal layer 13 can be formed by the method described below. The first method of forming the bonding metal layer 13 is to form the protruding electrode 3 to a predetermined thickness and then plate it in a separately prepared plating tank, so that it does not contain any granular resin or bubbles and is bonded. A plating layer made of a material suitable for the above can be formed. Further, the second method of forming the bonding metal layer 13 is to stop the stirring in the plating tank at the final stage of the plating process for forming the protruding electrode 3, that is, at the stage where the protruding electrode having a substantially predetermined height is formed. By continuing plating in such a state, a plating layer containing almost no granular resin or bubbles can be formed.

なお、図1から図3においては、電子部品1には一つの端子電極2と、この上に形成された突起電極3のみしか示していないが、一般的には、電子部品1は複数個の端子電極2を有しており、突起電極3も端子電極2の個数に合せて形成される。   In FIGS. 1 to 3, only one terminal electrode 2 and a protruding electrode 3 formed thereon are shown in the electronic component 1, but in general, the electronic component 1 includes a plurality of electronic components 1. The terminal electrode 2 is provided, and the protruding electrodes 3 are formed according to the number of terminal electrodes 2.

例えば、電子部品1がベアチップ構成の半導体素子やパッケージされた半導体装置の場合には、数十個から数百個の端子電極を有することがある。このような電子部品1であっても、その端子電極2上に、中央部にくびれ部6を有し、かつ金属材料中に粒状樹脂4が分散された突起電極3を形成して、基板(図示せず)の配線電極(図示せず)と接続すれば高信頼性の実装構成を実現することができる。すなわち、上記のような半導体素子や半導体装置を樹脂からなる基板に実装する場合、電子部品1である半導体素子や半導体装置と基板との熱膨張係数が大きく異なり、実装時や使用中に大きな熱応力が突起電極およびこの突起電極と端子電極との間あるいは突起電極と配線電極との間に加わる。さらに、熱応力だけでなく、外部からの衝撃等による力を受けて応力が作用する場合もある。しかし、本実施の形態の突起電極であれば、くびれ部を有する形状と粒状樹脂を分散含有する複合材料の大きな弾性的な変形力により、この応力を吸収することができる。したがって、接合部や突起電極での不良発生を抑制することができる。   For example, when the electronic component 1 is a bare-chip semiconductor element or a packaged semiconductor device, it may have several tens to several hundred terminal electrodes. Even in such an electronic component 1, a protruding electrode 3 having a constricted portion 6 in the center and a granular resin 4 dispersed in a metal material is formed on the terminal electrode 2, and a substrate ( If it is connected to a wiring electrode (not shown), a highly reliable mounting configuration can be realized. That is, when a semiconductor element or a semiconductor device as described above is mounted on a substrate made of resin, the thermal expansion coefficients of the semiconductor element or semiconductor device that is the electronic component 1 and the substrate are greatly different, and a large amount of heat is generated during or during use. Stress is applied between the protruding electrode and the protruding electrode and the terminal electrode or between the protruding electrode and the wiring electrode. Furthermore, not only the thermal stress but also a stress may be applied by receiving a force from an external impact or the like. However, with the protruding electrode according to the present embodiment, this stress can be absorbed by the shape having the constricted portion and the large elastic deformation force of the composite material containing the granular resin in a dispersed manner. Therefore, it is possible to suppress the occurrence of defects at the joints and the protruding electrodes.

(第2の実施の形態)
図4は、本発明の第2の実施の形態にかかる電子部品接続用突起電極の断面図である。図4に示すように、本実施の形態では、突起電極3の上面部または下面部とくびれ部6とを結ぶ直線15に対して、突起電極3の側面部の外形線14は内側にあり、かつ円弧状である。
(Second Embodiment)
FIG. 4 is a cross-sectional view of a protruding electrode for connecting an electronic component according to a second embodiment of the present invention. As shown in FIG. 4, in the present embodiment, the outline 14 of the side surface portion of the protruding electrode 3 is on the inner side with respect to the straight line 15 connecting the upper surface portion or the lower surface portion of the protruding electrode 3 and the constricted portion 6. And it is arcuate.

すなわち、電子部品1の端子電極2上に形成された突起電極3の端子電極2に接する突起電極3の下面部および配線電極と接続する接続面5の断面積に比べてくびれ部6の断面積が小さく形成されている。さらに、この突起電極3においても、粒状樹脂4を含む複合材料により形成されている。   That is, the cross-sectional area of the constricted portion 6 is smaller than the cross-sectional area of the lower surface portion of the protruding electrode 3 that is in contact with the terminal electrode 2 of the protruding electrode 3 formed on the terminal electrode 2 of the electronic component 1 and the connection surface 5 that is connected to the wiring electrode. Is formed small. Further, the protruding electrode 3 is also formed of a composite material including the granular resin 4.

このような構成とすることにより、半導体素子や半導体装置を樹脂からなる基板に実装する場合に生じる熱応力や外部からの衝撃等による力を受けて生じる機械的応力が作用しても、円弧状のくびれ部6を有する形状と粒状樹脂4を分散含有する複合材料の大きな弾性的な変形力により、この応力を吸収することができる。したがって、接合部や突起電極での不良発生を抑制することができる。   By adopting such a configuration, even when a semiconductor element or a semiconductor device is mounted on a substrate made of a resin, even if a thermal stress or a mechanical stress generated due to an external impact is applied, an arc shape is applied. This stress can be absorbed by the shape having the constricted portion 6 and the large elastic deformation force of the composite material containing the granular resin 4 in a dispersed manner. Therefore, it is possible to suppress the occurrence of defects at the joints and the protruding electrodes.

次に、本実施の形態における電子部品接続用突起電極の製造方法について、図5を参照しながら説明する。   Next, a method for manufacturing the protruding electrode for connecting an electronic component in the present embodiment will be described with reference to FIG.

まず、図5(a)に示すように、電子部品1(例えば、多数個の半導体素子が形成されたウエハ等)の端子電極2の上に断面が鼓状の鼓状開口部17を有するレジスト膜16を形成する。このようなレジスト膜16は、樹脂膜の両面からエッチングを施すことによって断面が鼓状のシートを形成し、このシートを電子部品1の主面に貼りつけることで形成することができる。   First, as shown in FIG. 5A, a resist having a drum-shaped opening 17 having a drum-shaped cross section on a terminal electrode 2 of an electronic component 1 (for example, a wafer on which a large number of semiconductor elements are formed). A film 16 is formed. Such a resist film 16 can be formed by forming a drum-shaped sheet by etching from both sides of the resin film and affixing this sheet to the main surface of the electronic component 1.

次に、図5(b)に示すように、鼓状開口部17の中にメッキ法により金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)等の金属からなり粒状樹脂4を分散含有させた突起電極3を形成する。次に、図5(c)に示すように、レジスト膜16を除去することによって、中央部にくびれ部6を有し、粒状樹脂4を分散含有させた突起電極3を形成することができる。   Next, as shown in FIG. 5B, a granular resin made of a metal such as gold (Au), silver (Ag), copper (Cu), nickel (Ni) is plated in the drum-shaped opening 17 by plating. The protruding electrode 3 containing 4 in a dispersed manner is formed. Next, as shown in FIG. 5C, by removing the resist film 16, it is possible to form the protruding electrode 3 having the constricted portion 6 in the center portion and containing the granular resin 4 in a dispersed manner.

なお、図5の工程において形成される突起電極3は、粒状樹脂4を分散含有させた例を示したが、粒状樹脂4の代わりに気泡を分散含有させてもよい。   5 shows an example in which the granular resin 4 is dispersedly contained in the protruding electrode 3 formed in the step of FIG. 5, but bubbles may be dispersedly contained instead of the granular resin 4.

突起電極中に粒状樹脂を分散させる方法としては、アクリル系、スチレン系、シリコン系等の樹脂微粉末を電解液中に分散させ、攪拌しながら電解メッキを行う方法を用いることができる。   As a method of dispersing the granular resin in the protruding electrode, a method of dispersing an acrylic resin, styrene resin, silicon resin or the like in an electrolytic solution and performing electrolytic plating while stirring can be used.

また、突起電極中に気泡を分散含有させる方法としては、加熱により気泡を発生する物質、例えば、重炭酸ソーダや有機溶剤等を樹脂カプセル中に封入したものを電解液中に添加して電解メッキを行う方法を用いることができる。この場合、バンプ形成後に加熱することによって、上記の物質がガス発生または分解して突起電極中に気泡を形成することができる。   In addition, as a method of dispersing and containing bubbles in the protruding electrode, electrolytic plating is performed by adding a substance that generates bubbles by heating, for example, sodium bicarbonate or an organic solvent encapsulated in a resin capsule to the electrolytic solution. The method can be used. In this case, by heating after forming the bumps, the above substances can be generated or decomposed to form bubbles in the protruding electrodes.

なお、図4または図5に示すくびれ部6については、それぞれ突起電極3の高さ方向のほぼ中央部にある場合を示しているが、その位置および断面積は適宜必要に応じて変更してもよい。さらには、突起電極3の下面部および上面部の断面積も同一でなくてもよい。   In addition, about the constriction part 6 shown in FIG. 4 or FIG. 5, although the case where it exists in the approximate center part of the height direction of each protrusion electrode 3 is shown, the position and sectional area are changed suitably as needed. Also good. Furthermore, the cross-sectional areas of the lower surface portion and the upper surface portion of the protruding electrode 3 may not be the same.

すなわち、それぞれの突起電極の高さ、底面の面積、くびれ部の面積に関しては、電子部品と基板の材質・形状・厚さ等を考慮して決めることができる。   That is, the height, bottom area, and constriction area of each protruding electrode can be determined in consideration of the material, shape, thickness, etc. of the electronic component and the substrate.

なお、それぞれの突起電極に使用される材料は、第1の実施の形態において説明した材料を用いるものとする。   Note that the material described in the first embodiment is used as the material used for each protruding electrode.

なお、図4および図5において、電子部品1には一つの端子電極2と、この上に形成された突起電極3のみしか示していないが、一般的に電子部品1は複数個の端子電極2を有しており、突起電極3も端子電極2の個数に合せて形成される。   4 and 5, only one terminal electrode 2 and the protruding electrode 3 formed thereon are shown in the electronic component 1, but the electronic component 1 generally has a plurality of terminal electrodes 2. The protruding electrodes 3 are also formed in accordance with the number of terminal electrodes 2.

例えば、電子部品1がベアチップ構成の半導体素子やパッケージされた半導体装置の場合には、数十個から数百個の端子電極を有することがある。このような電子部品1であっても、その端子電極2上に、中央部にくびれ部6を有し、かつ金属材料中に粒状樹脂4が分散された突起電極3を形成して、基板(図示せず)の配線電極(図示せず)と接続すれば高信頼性の実装構成を実現することができる。すなわち、上記のような半導体素子や半導体装置を樹脂からなる基板に実装する場合、電子部品1である半導体素子や半導体装置と基板との熱膨張係数が大きく異なり、実装時や使用中に大きな熱応力が突起電極およびこの突起電極と端子電極との間あるいは突起電極と配線電極との間に加わる。さらに、熱応力だけでなく、外部からの衝撃等による力を受けて応力が作用する場合もある。しかし、本実施の形態の突起電極であれば、くびれ部を有する形状と粒状樹脂を分散含有する複合材料の大きな弾性的な変形力により、この応力を吸収することができる。したがって、接合部や突起電極での不良発生を抑制することができる。   For example, when the electronic component 1 is a bare-chip semiconductor element or a packaged semiconductor device, it may have several tens to several hundred terminal electrodes. Even in such an electronic component 1, a protruding electrode 3 having a constricted portion 6 in the center and a granular resin 4 dispersed in a metal material is formed on the terminal electrode 2, and a substrate ( If it is connected to a wiring electrode (not shown), a highly reliable mounting configuration can be realized. That is, when a semiconductor element or a semiconductor device as described above is mounted on a substrate made of resin, the thermal expansion coefficients of the semiconductor element or semiconductor device that is the electronic component 1 and the substrate are greatly different, and a large amount of heat is generated during mounting or during use. Stress is applied between the protruding electrode and the protruding electrode and the terminal electrode or between the protruding electrode and the wiring electrode. Furthermore, not only the thermal stress but also a stress may be applied by receiving a force from an external impact or the like. However, with the protruding electrode according to the present embodiment, this stress can be absorbed by the shape having the constricted portion and the large elastic deformation force of the composite material containing the granular resin in a dispersed manner. Therefore, it is possible to suppress the occurrence of defects at the joints and the protruding electrodes.

なお、本実施の形態においては、接続面5が突起電極3の上面である場合について説明したが、突起電極3の上面に図3に示すのと同様の接合用金属層13を設けてもよい。   In the present embodiment, the case where the connection surface 5 is the upper surface of the protruding electrode 3 has been described. However, a bonding metal layer 13 similar to that shown in FIG. 3 may be provided on the upper surface of the protruding electrode 3. .

(第3の実施の形態)
図6は、本発明の第3の実施の形態にかかる電子部品接続用突起電極の断面図である。図6に示すように、本実施の形態では、突起電極3は高さ方向の中間に筒状くびれ部18を有している。この場合、突起電極3にかかる応力は筒状くびれ部18で受け止められる。すなわち、第1の実施の形態に示す突起電極では、鼓の斜め部分が直線でかつ1点で交差しているのに対して、図6に示す構造では、斜め部分がいったん筒状くびれ部18と交わり、さらに斜め部分になっている。そのために、直線部分の交差する角度がより緩やかになることから、応力がさらに分散されることになる。
(Third embodiment)
FIG. 6 is a cross-sectional view of a protruding electrode for connecting an electronic component according to a third embodiment of the present invention. As shown in FIG. 6, in the present embodiment, the protruding electrode 3 has a cylindrical constricted portion 18 in the middle in the height direction. In this case, the stress applied to the protruding electrode 3 is received by the cylindrical constricted portion 18. That is, in the protruding electrode shown in the first embodiment, the oblique portion of the drum is a straight line and intersects at one point, whereas in the structure shown in FIG. 6, the oblique portion is once cylindrical constricted portion 18. Intersects with a diagonal part. For this reason, the angle at which the straight portions intersect is more gentle, so that the stress is further dispersed.

次に、本実施の形態にかかる電子部品接続用突起電極の製造方法について、図7および図8を参照しながら説明する。   Next, a method for manufacturing the protruding electrode for connecting an electronic component according to the present embodiment will be described with reference to FIGS.

図7は、同製造方法の前半工程を説明するための工程断面図、図8は、同製造方法の後半工程を説明するための工程断面図である。   FIG. 7 is a process cross-sectional view for explaining the first half of the manufacturing method, and FIG. 8 is a process cross-sectional view for explaining the second half of the manufacturing method.

まず、図7(a)に示すように、端子電極2を備えた電子部品1(例えば、多数個の半導体素子が形成されたウエハ等)の主面にネガ型の第1ホトレジスト膜19を形成する。次に、第1ホトレジスト膜19をプリベークするが、そのときのプリベーク時間を標準より短くする。   First, as shown in FIG. 7A, a negative first photoresist film 19 is formed on the main surface of an electronic component 1 having a terminal electrode 2 (for example, a wafer on which a large number of semiconductor elements are formed). To do. Next, the first photoresist film 19 is pre-baked, but the pre-bake time at that time is shorter than the standard.

次に、図7(b)に示すように、端子電極2に対応する部分に第1不透明領域21を有する第1ホトマスク20を用いて露光する。なお、矢印は露光に用いる紫外線光22を示している。なお、第1不透明領域21の下の第1ホトレジスト膜19は未露光領域である。   Next, as shown in FIG. 7B, exposure is performed using a first photomask 20 having a first opaque region 21 in a portion corresponding to the terminal electrode 2. The arrow indicates the ultraviolet light 22 used for exposure. Note that the first photoresist film 19 under the first opaque region 21 is an unexposed region.

このようにして、図7(c)に示すように、電子部品1の上に第1露光領域23と第1未露光領域24が形成される。なお、第1未露光領域24は上面部の断面積が下面部より小さい、いわゆる逆テーパ状となっている。すなわち、第1ホトレジスト膜19はプリベーク時間を標準より短くしているために、深さ方向にしたがって光硬化が進まないことになる。なお、露光領域と未露光領域は、光学的に直接観察することはできないが、図7(c)は、この状態を模式的に示したものである。   In this way, as shown in FIG. 7C, the first exposed region 23 and the first unexposed region 24 are formed on the electronic component 1. The first unexposed region 24 has a so-called reverse taper shape in which the cross-sectional area of the upper surface portion is smaller than the lower surface portion. That is, since the first photoresist film 19 has a pre-bake time shorter than the standard, photocuring does not proceed in the depth direction. The exposed area and the unexposed area cannot be directly observed optically, but FIG. 7 (c) schematically shows this state.

次に、図7(d)に示すように、第1未露光領域24および第1露光領域23を覆って全面に、次の露光工程で使用する光を遮断するための遮光性膜、例えば金属膜25を形成する。次に図7(e)に示すように、金属膜25の全面にポジ型の第2ホトレジスト膜26を形成する。   Next, as shown in FIG. 7 (d), a light-shielding film for covering the first unexposed area 24 and the first exposed area 23 and blocking light used in the next exposure process, for example, metal A film 25 is formed. Next, as shown in FIG. 7E, a positive type second photoresist film 26 is formed on the entire surface of the metal film 25.

次に、図8(a)に示すように、電子部品1の端子電極2に対応する部分に第1透明領域28を有する第2ホトマスク27を用いて露光する。このことによって、第2ホトレジスト膜26に第2露光領域29が形成される。   Next, as shown in FIG. 8A, exposure is performed using a second photomask 27 having a first transparent region 28 in a portion corresponding to the terminal electrode 2 of the electronic component 1. As a result, a second exposure region 29 is formed in the second photoresist film 26.

第2ホトレジスト膜26としてポジ型レジストを用いており、プリベーク時間を標準より短くすることによって、図8(b)に示すように、現像後に順テーパの第1開口部30が得られる。   A positive resist is used as the second photoresist film 26, and by making the pre-bake time shorter than the standard, a first opening 30 with a forward taper is obtained after development as shown in FIG. 8B.

次に、図8(c)に示すように、第2ホトレジスト膜26をマスクにして、第1開口部30内の金属膜25をエッチング除去する。次に第1ホトレジスト膜19の現像液を用いて現像することによって、断面が鼓状の開口部31が形成される。   Next, as shown in FIG. 8C, the metal film 25 in the first opening 30 is removed by etching using the second photoresist film 26 as a mask. Next, development is performed using a developer for the first photoresist film 19 to form an opening 31 having a drum-shaped cross section.

このようにして形成された鼓状の開口部31内にメッキ法等により、図8(d)に示すように粒状樹脂4を分散含有させた鼓状の突起電極3を形成する。その後、図8(e)に示すように第2ホトレジスト膜26、金属膜25および第1ホトレジスト膜19を除去することによって、端子電極2上に鼓状の端子電極3が形成される。なお、金属膜25は突起電極3とはエッチング液が異なる材料で形成しておく。   As shown in FIG. 8D, the drum-shaped protruding electrode 3 in which the granular resin 4 is dispersed and formed is formed in the drum-shaped opening 31 formed in this manner by plating or the like. Thereafter, as shown in FIG. 8E, the second photoresist film 26, the metal film 25, and the first photoresist film 19 are removed, whereby the drum-like terminal electrode 3 is formed on the terminal electrode 2. Note that the metal film 25 is formed of a material having a different etchant from the bump electrode 3.

なお、図7ないし図8の工程においては、突起電極3が粒状樹脂4を分散含有させた例を示しているが、粒状樹脂4の代わりに気泡を分散含有させてもよい。   7 to 8 show an example in which the protruding electrodes 3 contain the granular resin 4 in a dispersed manner, but air bubbles may be dispersed and contained in place of the granular resin 4.

また、図7(d)に示す工程で形成する金属膜25の厚さを厚くすることによって、図6に示す筒状くびれ部18を有する突起電極3を容易に形成することができる。   Further, by increasing the thickness of the metal film 25 formed in the step shown in FIG. 7D, the protruding electrode 3 having the cylindrical constricted portion 18 shown in FIG. 6 can be easily formed.

突起電極中に粒状樹脂を分散させる方法としては、アクリル系、スチレン系、シリコン系等の樹脂微粉末を電解液中に分散させ、攪拌しながら電解メッキを行う方法を用いることができる。   As a method of dispersing the granular resin in the protruding electrode, a method of dispersing an acrylic resin, styrene resin, silicon resin or the like in an electrolytic solution and performing electrolytic plating while stirring can be used.

また、突起電極中に気泡を分散含有させる方法としては、加熱により気泡を発生する物質、例えば、重炭酸ソーダや有機溶剤等を樹脂カプセル中に封入したものを電解液中に添加して電解メッキを行う方法を用いることができる。この場合、バンプ形成後に加熱することによって、上記の物質がガス発生または分解して突起電極中に気泡を形成することができる。   In addition, as a method of dispersing and containing bubbles in the protruding electrode, electrolytic plating is performed by adding a substance that generates bubbles by heating, for example, sodium bicarbonate or an organic solvent encapsulated in a resin capsule to the electrolytic solution. The method can be used. In this case, by heating after forming the bumps, the above substances can be generated or decomposed to form bubbles in the protruding electrodes.

なお、図6および図8に示す筒状くびれ部18については、それぞれ突起電極3の高さ方向のほぼ中央部にある場合を示しているが、その位置および断面積は適宜必要に応じて変更してもよい。さらには、突起電極3の下面部および上面部の断面積も同一でなくてもよい。   6 and FIG. 8, the cylindrical constricted portion 18 is shown in the substantially central portion in the height direction of the protruding electrode 3, but the position and the cross-sectional area can be changed as necessary. May be. Furthermore, the cross-sectional areas of the lower surface portion and the upper surface portion of the protruding electrode 3 may not be the same.

すなわち、それぞれの突起電極の高さ、底面の面積、くびれ部の面積に関しては、電子部品と基板の材質・形状・厚さ等を考慮して決めるべきものである。   That is, the height, the bottom surface area, and the constriction area of each protruding electrode should be determined in consideration of the material, shape, thickness, etc. of the electronic component and the substrate.

なお、それぞれの突起電極に使用される材料は、第1の実施の形態において説明した材料を用いるものとする。   Note that the material described in the first embodiment is used as the material used for each protruding electrode.

なお、図6から図8において、電子部品1には一つの端子電極2と、この上に形成された突起電極3のみしか示していないが、一般的には、電子部品1は複数個の端子電極2を有しており、突起電極3も端子電極2の個数に合せて形成される。   6 to 8, the electronic component 1 shows only one terminal electrode 2 and the protruding electrode 3 formed thereon, but in general, the electronic component 1 includes a plurality of terminals. The electrode 2 is provided, and the protruding electrodes 3 are formed in accordance with the number of terminal electrodes 2.

例えば、電子部品1がベアチップ構成の半導体素子やパッケージされた半導体装置の場合には、数十個から数百個の端子電極を有することがある。このような電子部品1であっても、その端子電極2上に、中央部に筒状くびれ部18を有し、かつ金属材料中に粒状樹脂4が分散された突起電極3を形成して、基板(図示せず)の配線電極(図示せず)と接続すれば高信頼性の実装構成を実現することができる。すなわち、上記のような半導体素子や半導体装置を樹脂からなる基板に実装する場合、電子部品1である半導体素子や半導体装置と基板との熱膨張係数が大きく異なり、実装時や使用中に大きな熱応力が突起電極およびこの突起電極と端子電極との間あるいは突起電極と配線電極との間に加わる。さらに、熱応力だけでなく、外部からの衝撃等による力を受けて応力が作用する場合もある。しかし、本実施の形態の突起電極であれば、筒状くびれ部を有する形状と粒状樹脂を分散含有する複合材料の大きな弾性的な変形力により、この応力を吸収することができる。したがって、接合部や突起電極での不良発生を抑制することができる。   For example, when the electronic component 1 is a bare-chip semiconductor element or a packaged semiconductor device, it may have several tens to several hundred terminal electrodes. Even in such an electronic component 1, on the terminal electrode 2, a protruding electrode 3 having a cylindrical constricted portion 18 at the center and in which a granular resin 4 is dispersed in a metal material is formed. If it is connected to a wiring electrode (not shown) of a substrate (not shown), a highly reliable mounting configuration can be realized. That is, when a semiconductor element or a semiconductor device as described above is mounted on a substrate made of resin, the thermal expansion coefficients of the semiconductor element or semiconductor device that is the electronic component 1 and the substrate are greatly different, and a large amount of heat is generated during or during use. Stress is applied between the protruding electrode and the protruding electrode and the terminal electrode or between the protruding electrode and the wiring electrode. Furthermore, not only the thermal stress but also a stress may be applied by receiving a force from an external impact or the like. However, with the protruding electrode of the present embodiment, this stress can be absorbed by the shape having the cylindrical constricted portion and the large elastic deformation force of the composite material containing the granular resin in a dispersed manner. Therefore, it is possible to suppress the occurrence of defects at the joints and the protruding electrodes.

なお、本実施の形態においては、接続面5が突起電極3の上面である場合について説明したが、突起電極3の上面に図3に示すのと同様の接合用金属層13を設けてもよい。   In the present embodiment, the case where the connection surface 5 is the upper surface of the protruding electrode 3 has been described. However, a bonding metal layer 13 similar to that shown in FIG. 3 may be provided on the upper surface of the protruding electrode 3. .

なお、上記第1の実施の形態から第3の実施の形態において、突起電極が電子部品の端子電極上に形成された例を用いて説明したが、同様の方法を用いて基板側に突起電極を形成することもできる。   In the first to third embodiments, the description has been given using the example in which the protruding electrode is formed on the terminal electrode of the electronic component. However, the protruding electrode is formed on the substrate side using the same method. Can also be formed.

本発明の電子部品接続用突起電極は、大規模集積化回路や撮像素子等に代表される大面積の半導体素子、またはそれらを搭載したパッケージ等を基板に実装する半導体実装分野において有用である。   The protruding electrode for connecting an electronic component according to the present invention is useful in the field of semiconductor mounting in which a large-area semiconductor element typified by a large-scale integrated circuit or an image pickup element or a package on which a semiconductor element is mounted is mounted on a substrate.

本発明の第1の実施の形態にかかる電子部品接続用突起電極の断面図Sectional drawing of the protruding electrode for electronic component connection concerning the 1st Embodiment of this invention 同実施の形態の電子部品接続用突起電極の製造方法を説明するための工程断面図Process sectional drawing for demonstrating the manufacturing method of the projection electrode for electronic component connection of the embodiment 同実施の形態にかかる電子部品実装用突起電極の第1の変形例を示す断面図Sectional drawing which shows the 1st modification of the protrusion electrode for electronic component mounting concerning the embodiment 本発明の第2の実施の形態にかかる電子部品接続用突起電極の断面図Sectional drawing of the protruding electrode for electronic component connection concerning the 2nd Embodiment of this invention 同実施の形態の電子部品接続用突起電極の製造方法を説明するための工程断面図Process sectional drawing for demonstrating the manufacturing method of the projection electrode for electronic component connection of the embodiment 本発明の第3の実施の形態にかかる電子部品接続用突起電極の断面図Sectional drawing of the projection electrode for electronic component connection concerning the 3rd Embodiment of this invention 同実施の形態における電子部品接続用突起電極の製造方法の前半工程を説明するための工程断面図Process sectional drawing for demonstrating the first half process of the manufacturing method of the projection electrode for electronic component connection in the embodiment 同実施の形態における電子部品接続用突起電極の製造方法の後半工程を説明するための工程断面図Process sectional drawing for demonstrating the latter half process of the manufacturing method of the projection electrode for electronic component connection in the embodiment 従来の鼓状突起電極を説明するための断面図Sectional drawing for demonstrating the conventional drum-like projection electrode 従来の樹脂粒子を分散させた突起電極の断面図Sectional view of bump electrode with conventional resin particles dispersed

符号の説明Explanation of symbols

1 電子部品
2,42 端子電極
3,43,45 突起電極
4 粒状樹脂
5 接続面
6 くびれ部
7 第1レジスト膜
8,30 第1開口部
9 第1突起電極
10 第2レジスト膜
11 第2開口部
12 第2突起電極
13 接合用金属層
14 外形線
15 直線
16 レジスト膜
17 鼓状開口部
18 筒状くびれ部
19 第1ホトレジスト膜
20 第1ホトマスク
21 第1不透明領域
22 紫外線光
23 第1露光領域
24 第1未露光領域
25 金属膜
26 第2ホトレジスト膜
27 第2ホトマスク
28 第1透明領域
29 第2露光領域
31 鼓状の開口部
41 半導体素子
44 保護膜
46 樹脂粒子
DESCRIPTION OF SYMBOLS 1 Electronic component 2,42 Terminal electrode 3,43,45 Projection electrode 4 Granular resin 5 Connection surface 6 Constriction part 7 1st resist film 8,30 1st opening part 9 1st projection electrode 10 2nd resist film 11 2nd opening Part 12 Second protruding electrode 13 Bonding metal layer 14 Outline line 15 Straight line 16 Resist film 17 Drum-shaped opening 18 Tubular constriction part 19 First photoresist film 20 First photomask 21 First opaque area 22 Ultraviolet light 23 First exposure Area 24 first unexposed area 25 metal film 26 second photoresist film 27 second photomask 28 first transparent area 29 second exposed area 31 drum-shaped opening 41 semiconductor element 44 protective film 46 resin particles

Claims (10)

電子部品の端子電極と前記端子電極に対応する基板の配線電極との間を接続するための突起電極であって、
前記突起電極は、前記電子部品の前記端子電極上または前記基板の前記配線電極上に形成され、中央部にくびれ部を設けた断面形状を有し、かつ金属材料中に粒状樹脂および気泡のうち少なくとも一つが分散された複合材料からなることを特徴とする電子部品接続用突起電極。
A protruding electrode for connecting between a terminal electrode of an electronic component and a wiring electrode of a substrate corresponding to the terminal electrode,
The protruding electrode is formed on the terminal electrode of the electronic component or the wiring electrode of the substrate, and has a cross-sectional shape provided with a constricted portion at the center, and among the granular resin and bubbles in the metal material A protruding electrode for connecting electronic parts, wherein at least one is made of a composite material dispersed.
前記突起電極を構成する前記金属材料は、前記端子電極と前記配線電極とを前記突起電極で接合するための温度より融点が高く、接合するための加圧力の印加後においてもその形状を保持することを特徴とする請求項1に記載の電子部品接続用突起電極。 The metal material constituting the protruding electrode has a melting point higher than the temperature for bonding the terminal electrode and the wiring electrode with the protruding electrode, and retains its shape even after application of pressure for bonding. The protruding electrode for connecting an electronic component according to claim 1. 前記突起電極の前記端子電極または前記配線電極と接合する表面上には接合用金属層が形成されていることを特徴とする請求項1または請求項2に記載の電子部品接続用突起電極。 The protruding electrode for connecting an electronic component according to claim 1, wherein a bonding metal layer is formed on a surface of the protruding electrode bonded to the terminal electrode or the wiring electrode. 前記接合用金属層は、前記金属材料のみからなることを特徴とする請求項3に記載の電子部品接続用突起電極。 4. The protruding electrode for connecting an electronic component according to claim 3, wherein the bonding metal layer is made of only the metal material. 前記接合用金属層は、前記金属材料より融点が低い金属材料からなることを特徴とする請求項3に記載の電子部品接続用突起電極。 The protruding electrode for connecting an electronic component according to claim 3, wherein the bonding metal layer is made of a metal material having a melting point lower than that of the metal material. 電子部品の端子電極上または前記端子電極に対応する基板の配線電極上に、中央部にくびれ部を設けた断面形状を有し、かつ金属材料中に粒状樹脂および気泡のうち少なくとも一つが分散された複合材料からなる突起電極をメッキ法により形成することを特徴とする電子部品接続用突起電極の製造方法。 On the terminal electrode of the electronic component or on the wiring electrode of the substrate corresponding to the terminal electrode, it has a cross-sectional shape with a constricted portion at the center, and at least one of granular resin and bubbles is dispersed in the metal material A method for producing a protruding electrode for connecting electronic components, comprising forming a protruding electrode made of a composite material by plating. 前記複合材料は、樹脂分散メッキ法により粒状樹脂を金属材料中に分散含有して形成する方法、または加熱によって気泡を発生する物質を内部に包含した発泡性樹脂を含む樹脂分散メッキ法により前記発泡性樹脂を分散含有する金属膜を形成した後、前記金属膜を加熱して前記発泡性樹脂から気泡を発生させて形成する方法を用いたことを特徴とする請求項6に記載の電子部品接続用突起電極の製造方法。 The composite material is foamed by a resin dispersion plating method in which a granular resin is dispersedly contained in a metal material or a resin dispersion plating method including a foamable resin containing a substance that generates bubbles when heated. The electronic component connection according to claim 6, wherein a method is used in which after forming a metal film containing a dispersible resin, the metal film is heated to generate bubbles from the foamable resin. For producing a protruding electrode for an automobile. 前記電子部品の前記端子電極上または前記端子電極に対応する前記基板の前記配線電極上に、前記端子電極または前記配線電極に接する下面部に比べて上面部の開口面積が小さな形状の第1開口部を有する第1レジスト膜を形成する工程と、
前記第1開口部を充填する第1突起電極を前記複合材料により形成する第1のメッキ工程と、
前記第1開口部に充填された前記第1突起電極の表面が露出し、かつその上面部が前記第1突起電極の表面より大きな断面積を有する形状の第2開口部を設けた第2レジスト膜を前記第1レジスト膜上に形成する工程と、
前記第1突起電極から連続し、前記第2開口部を充填する第2突起電極を前記複合材料により形成する第2のメッキ工程と、
前記第1レジスト膜および前記第2レジスト膜を除去する工程とを含むことを特徴とする請求項6または請求項7に記載の電子部品接続用突起電極の製造方法。
A first opening having an opening area on the upper surface portion smaller than the lower surface portion contacting the terminal electrode or the wiring electrode on the terminal electrode of the electronic component or on the wiring electrode of the substrate corresponding to the terminal electrode. Forming a first resist film having a portion;
A first plating step of forming a first protruding electrode filling the first opening with the composite material;
A second resist provided with a second opening having a shape in which the surface of the first protruding electrode filled in the first opening is exposed and the upper surface of the first protruding electrode has a larger cross-sectional area than the surface of the first protruding electrode Forming a film on the first resist film;
A second plating step of forming, from the composite material, a second protruding electrode that is continuous from the first protruding electrode and fills the second opening;
The method for manufacturing a protruding electrode for connecting an electronic component according to claim 6, further comprising a step of removing the first resist film and the second resist film.
前記電子部品の前記端子電極上または前記基板の前記配線電極上に中央部にくびれ部を有する断面形状の開口部を設けたレジスト膜を形成する工程と、
前記開口部を充填する突起電極を前記複合材料により形成するメッキ工程と、
前記レジスト膜を除去する工程とを含むことを特徴とする請求項6または請求項7に記載の電子部品接続用突起電極の製造方法。
Forming a resist film having a cross-sectional opening having a constricted portion at the center on the terminal electrode of the electronic component or the wiring electrode of the substrate;
A plating step of forming the protruding electrode filling the opening with the composite material;
The method for manufacturing a protruding electrode for connecting an electronic component according to claim 6, further comprising a step of removing the resist film.
前記電子部品の前記端子電極上または前記基板の前記配線電極上にネガ型レジスト膜を塗布する工程と、
前記端子電極上または前記配線電極上の予め設定した位置の前記ネガ型レジスト膜に、前記端子電極または前記配線電極に接する下面部に比べてその上面部の断面積が小さな形状で第2開口部となる未露光部を選択的な露光により形成する工程と、
前記ネガ型レジスト膜の上に遮光性を有する遮光膜を形成する工程と、
前記遮光膜の上にポジ型レジスト膜を塗布する工程と、
前記ネガ型レジスト膜の前記未露光部の上に位置する前記ポジ型レジスト膜に、その下面部が前記未露光部の上面部の断面積と同一で、かつその上面部が前記下面部の断面積より大きな形状で第1開口部となる露光部を選択的な露光により形成する工程と、
前記ポジ型レジスト膜を現像して前記露光部の前記ポジ型レジスト膜を除去し、前記第1開口部を形成する工程と、
前記第1開口部の下面部に露出した前記遮光膜をエッチング除去する工程と、
前記ネガ型レジスト膜を現像して前記未露光部の前記ネガ型レジスト膜を除去し、前記第1開口部に連結する前記第2開口部を形成する工程と、
前記第1開口部内および前記第2開口部内に突起電極を前記複合材料により形成するメッキ工程とを含むことを特徴とする請求項6または請求項7に記載の電子部品接続用突起電極の製造方法。
Applying a negative resist film on the terminal electrode of the electronic component or the wiring electrode of the substrate;
The negative resist film at a predetermined position on the terminal electrode or the wiring electrode has a shape in which the cross-sectional area of the upper surface portion is smaller than the lower surface portion in contact with the terminal electrode or the wiring electrode, and the second opening portion. Forming an unexposed portion to be selectively exposed,
Forming a light shielding film having a light shielding property on the negative resist film;
Applying a positive resist film on the light shielding film;
The positive resist film located above the unexposed portion of the negative resist film has a lower surface portion that is the same as the cross-sectional area of the upper surface portion of the unexposed portion, and the upper surface portion is a section of the lower surface portion. Forming an exposure portion that becomes a first opening with a shape larger than an area by selective exposure;
Developing the positive resist film to remove the positive resist film in the exposed portion and forming the first opening;
Etching the light shielding film exposed on the lower surface of the first opening; and
Developing the negative resist film to remove the negative resist film in the unexposed portion and forming the second opening connected to the first opening;
The method for manufacturing a protruding electrode for connecting an electronic component according to claim 6, further comprising: a plating step of forming a protruding electrode in the first opening and in the second opening with the composite material. .
JP2004353920A 2004-12-07 2004-12-07 Protruding electrode for connecting electronic parts and method for manufacturing the same Expired - Fee Related JP4453533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353920A JP4453533B2 (en) 2004-12-07 2004-12-07 Protruding electrode for connecting electronic parts and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353920A JP4453533B2 (en) 2004-12-07 2004-12-07 Protruding electrode for connecting electronic parts and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006165240A true JP2006165240A (en) 2006-06-22
JP4453533B2 JP4453533B2 (en) 2010-04-21

Family

ID=36666913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353920A Expired - Fee Related JP4453533B2 (en) 2004-12-07 2004-12-07 Protruding electrode for connecting electronic parts and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4453533B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165241A (en) * 2004-12-07 2006-06-22 Matsushita Electric Ind Co Ltd Electronic component mounting structure and manufacturing method thereof
JP2012253396A (en) * 2008-09-03 2012-12-20 Samsung Electro-Mechanics Co Ltd Wafer level package, and method of manufacturing the same
JP2016188773A (en) * 2015-03-30 2016-11-04 日立金属株式会社 Magnetic sensor and magnetic encoder using the same, lens barrel and camera

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165241A (en) * 2004-12-07 2006-06-22 Matsushita Electric Ind Co Ltd Electronic component mounting structure and manufacturing method thereof
JP4492330B2 (en) * 2004-12-07 2010-06-30 パナソニック株式会社 Electronic component mounting structure and manufacturing method thereof
JP2012253396A (en) * 2008-09-03 2012-12-20 Samsung Electro-Mechanics Co Ltd Wafer level package, and method of manufacturing the same
JP2016188773A (en) * 2015-03-30 2016-11-04 日立金属株式会社 Magnetic sensor and magnetic encoder using the same, lens barrel and camera

Also Published As

Publication number Publication date
JP4453533B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP5113114B2 (en) Wiring board manufacturing method and wiring board
JP4219951B2 (en) Solder ball mounting method and solder ball mounting substrate manufacturing method
JP5152177B2 (en) Conductive bump, manufacturing method thereof, and electronic component mounting structure
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
TW477043B (en) Flip-chip type semiconductor device with stress-absorbing layer made of thermosetting resin and its manufacturing method
JP2002261190A (en) Semiconductor device, method for manufacturing the same and electronic equipment
JP4142041B2 (en) Manufacturing method of semiconductor device
JP2010141055A (en) Semiconductor module, method of manufacturing semiconductor module, and portable equipment
JP2012160500A (en) Circuit board, semiconductor component, semiconductor device, circuit board manufacturing method, semiconductor component manufacturing method and semiconductor device manufacturing method
TW201417196A (en) Package substrate, package structure and methods for manufacturing same
JP2003031724A (en) Semiconductor module
US8274150B2 (en) Chip bump structure and method for forming the same
JP4453533B2 (en) Protruding electrode for connecting electronic parts and method for manufacturing the same
US20050285277A1 (en) Circuit film with bump, film package using the same, and related fabrication methods
JP7351107B2 (en) Wiring board and wiring board manufacturing method
JP3671999B2 (en) Semiconductor device, manufacturing method thereof, and semiconductor mounting apparatus
JP4736762B2 (en) BGA type semiconductor device and manufacturing method thereof
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP2008204968A (en) Semiconductor package substrate and manufacturing method thereof
JP2005150417A (en) Substrate for semiconductor device, its manufacturing method, and semiconductor device
JP4492330B2 (en) Electronic component mounting structure and manufacturing method thereof
JP2007110114A (en) Package board, semiconductor package, and method of manufacturing the same
JP5169071B2 (en) Electronic component, electronic device, mounting structure for electronic component, and method for manufacturing mounting structure for electronic component
JP2005129756A (en) Method of joining semiconductor element
JP2001168224A (en) Semiconductor device, electronic circuit device, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees