JP2006164773A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2006164773A
JP2006164773A JP2004355137A JP2004355137A JP2006164773A JP 2006164773 A JP2006164773 A JP 2006164773A JP 2004355137 A JP2004355137 A JP 2004355137A JP 2004355137 A JP2004355137 A JP 2004355137A JP 2006164773 A JP2006164773 A JP 2006164773A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
positive electrode
electrode active
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355137A
Other languages
Japanese (ja)
Inventor
Yutaka Kawadate
裕 川建
Akira Nagasaki
顕 長崎
優 ▲高▼木
Masaru Takagi
Kazunari Kinoshita
一成 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004355137A priority Critical patent/JP2006164773A/en
Publication of JP2006164773A publication Critical patent/JP2006164773A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To structurally prevent the heat generation of a battery when mechanical pressure is applied to the battery toward the inside of the battery, in a nonaqueous secondary battery composed by housing, in an armoring case, an electrode body formed by spirally rolling, by interposing a separator, a positive electrode formed by applying positive electrode active materials to both surfaces of at least a part of a strip-like positive electrode collector, and a negative electrode formed by applying negative electrode active materials to both surfaces of at least a part of a strip-like negative electrode collector and by applying the negative electrode active material on one-side surface of the at least a part continuously to the negative electrode active material both-surface application layers. <P>SOLUTION: This lithium ion secondary battery is so structured that ends of the negative electrode active material both-surface application layers and the end of the negative electrode active material one-side-surface application layer arranged at the peripheral part of the negative electrode 6 in an electrode body A having a rolled structure are so arranged that a relative angle with respect to the center point of the electrode body A at each region is set not smaller than 5° on a cross section of the electrode body A. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐短絡性などの安全性に優れたリチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery excellent in safety such as short circuit resistance.

近年、民生用電子機器のポータブル化、コードレス化が急激に進んでおり、これら電子機器の駆動電源となる二次電池の高エネルギー密度化、小型軽量化の要望が強くなっている。このような状況の下で、高電圧、高容量、軽重量といった特徴を備えている非水系の電解液を用いるリチウムイオン二次電池に対する需要が増大し、その更なる高エネルギー密度化が要望されている。   2. Description of the Related Art In recent years, consumer electronic devices have become increasingly portable and cordless, and there is a strong demand for higher energy density, smaller size, and lighter weight of secondary batteries serving as driving power sources for these electronic devices. Under such circumstances, the demand for lithium ion secondary batteries using non-aqueous electrolytes having characteristics such as high voltage, high capacity, and light weight has increased, and further higher energy density has been demanded. ing.

現在市場に流通しているリチウムイオン二次電池は、正極活物質に高い充放電電圧を示すリチウム複合酸化物(例えばLiCoO2)を用い、負極活物質に炭素材料などのリチウムを保持し得る材料を用い、さらに非水溶媒からなる電解液を用いたものが一般的である。上記活物質は、一般的に、結着剤などとともに有機系や水系の分散媒中に分散させたペーストとされ、このペーストをそれぞれアルミニウムなどの正極集電体、銅などの負極集電体に塗着した帯状の電極板に加工されて用いられている。これらの帯状電極板をセパレータを介して渦巻状に捲回した電極体を、外装ケースに挿入して電池が構成されている。 A lithium ion secondary battery currently on the market uses a lithium composite oxide (for example, LiCoO 2 ) that exhibits a high charge / discharge voltage as a positive electrode active material, and a material that can hold lithium such as a carbon material in the negative electrode active material. In general, an electrolyte using a nonaqueous solvent is used. The active material is generally a paste dispersed in an organic or aqueous dispersion medium together with a binder and the like, and the paste is applied to a positive electrode current collector such as aluminum and a negative electrode current collector such as copper, respectively. It is used after being processed into a coated strip-shaped electrode plate. A battery is constructed by inserting an electrode body obtained by winding these strip electrode plates in a spiral shape with a separator interposed therebetween into an outer case.

高容量化を実現するにあたって、電池の安全性の確保は重要課題であり、これまでに安全性確保に関する様々な取り組みが行われてきた。   Ensuring battery safety is an important issue in achieving higher capacities, and various efforts have been made to ensure safety.

非水系二次電池の安全性に関する課題として、電池が圧壊された際に、電池内において正・負極板が内部短絡し、電池温度が異常に上昇するという問題があった。   As a problem related to the safety of the nonaqueous secondary battery, when the battery is crushed, there is a problem that the positive and negative electrode plates are internally short-circuited in the battery, and the battery temperature rises abnormally.

このような異常な温度上昇の原因は、電池を圧壊した際に局部的に正・負極の活物質部位が直接内部短絡を起こし、発生するジュール熱により活物質が熱分解するためである。   The cause of such an abnormal temperature rise is that when the battery is crushed, the active material portions of the positive and negative electrodes directly cause an internal short circuit, and the active material is thermally decomposed by the generated Joule heat.

この課題を解決するために、電極体の最外周に電池ケースと異なる極の極板を配し、活物質を付与していない集電体部分を露出させる提案がなされている。これは、電池が圧壊された場合、まず電池ケースと電極体最外周の集電体とが短絡状態になり発熱が生じるが、正・負極の活物質が存在しないため前述のような活物質の熱分解反応が生じず、異常発熱を抑制することができるためである(例えば、特許文献1参照)。
特開平09−259926号公報
In order to solve this problem, a proposal has been made to arrange an electrode plate having a pole different from that of the battery case on the outermost periphery of the electrode body to expose a current collector portion to which no active material is applied. This is because when the battery is crushed, the battery case and the current collector on the outermost periphery of the electrode body are short-circuited to generate heat, but there is no active material for the positive and negative electrodes. This is because a thermal decomposition reaction does not occur and abnormal heat generation can be suppressed (for example, see Patent Document 1).
JP 09-259926 A

リチウムイオン二次電池のさらなる高容量化を達成するためには、(1)セパレータの厚み低減、(2)正極、負極活物質を含む合剤塗布層の厚み増大、といった項目が必要となっている。このような状況下、本発明者らの検討によれば、特許文献1のように電極体の最外周に活物質を被覆していない集電体を配置しても、圧壊時の電池の安全性が必ずしも充分に確保できないことがわかった。   In order to achieve further increase in capacity of the lithium ion secondary battery, items such as (1) reducing the thickness of the separator and (2) increasing the thickness of the mixture coating layer including the positive electrode and the negative electrode active material are necessary. Yes. Under such circumstances, according to the study by the present inventors, even if a current collector not coated with an active material is disposed on the outermost periphery of the electrode body as in Patent Document 1, the safety of the battery during crushing It has been found that the property cannot always be sufficiently secured.

これは上述のように、(1)セパレータの厚みを低減することで、その物理的強度が低下していることと、(2)正極、負極活物質を含む合剤塗布層の厚みを増大することで電極体中での正極、負極活物質を含む合剤塗布層がセパレータへ与える応力が増大することによって、特許文献1に示されている意図とは別で、最外周の活物質が被覆されていない集電体部よりも先に正極活物質もしくは負極活物質を含む合剤塗布層で短絡が生じ、活物質の熱分解反応による電池の異常発熱が生じるためであると考えられる。本発明者らのさらなる検討の結果、このような短絡は、ほぼ合剤塗布層端部で発生することがわかった。これは、もともと構造的に外部からの応力を集中的に受けやすい合剤塗布層端部同士が、電極体中で近接することにより、電極体が受けるひずみ応力が1点に集中増幅され、セパレータの破断を招くためであると考えられる。   As described above, (1) by reducing the thickness of the separator, the physical strength is lowered, and (2) the thickness of the mixture coating layer containing the positive electrode and the negative electrode active material is increased. By increasing the stress applied to the separator by the mixture coating layer containing the positive electrode and the negative electrode active material in the electrode body, the outermost active material is coated separately from the intention shown in Patent Document 1. This is probably because a short circuit occurs in the mixture coating layer containing the positive electrode active material or the negative electrode active material before the current collector portion that is not formed, and abnormal heat generation of the battery due to a thermal decomposition reaction of the active material occurs. As a result of further studies by the present inventors, it has been found that such a short circuit occurs almost at the end of the mixture coating layer. This is due to the fact that the end portions of the mixture coating layer that are structurally susceptible to concentrated stress from the outside are close to each other in the electrode body, so that the strain stress received by the electrode body is concentrated and amplified at one point. This is considered to cause breakage.

つまり、合剤塗布層がセパレータへ与える応力がより顕著になる高エネルギー密度リチウムイオン二次電池においては、合剤塗布層の配置を制御することで特異的な応力ひずみを緩和して、合剤塗布層の優先的な短絡を抑制する必要がある。   In other words, in a high energy density lithium ion secondary battery in which the stress applied to the separator by the mixture application layer becomes more pronounced, the specific stress strain is alleviated by controlling the arrangement of the mixture application layer. It is necessary to suppress the preferential short circuit of the coating layer.

上記の課題を解決するために、本発明は、帯状の正極集電体の少なくとも一部は両面に正極活物質が塗布されてなる正極電極と、帯状の負極集電体の少なくとも一部は両面に負極活物質が塗布され、また、この負極活物質両面塗布層に連続して少なくとも一部は片面に負極活物質が塗布されてなる負極電極をセパレータを介して渦巻状に捲回した電極体を外装ケースに収容してなる非水二次電池において、図1に断面形状を示すように、電極体Aにおける負極電極の外周部に配置される負極活物質両面塗布層端部Xと負極活物質片面塗布層端部X’の電極体Aの中心点Oに対する相対角度θが5°以上180°以下となるように配置されることを特徴とする非水二次電池である。上述のように、負極活物質塗布層端部2点間の距離を制御することで、電極体が受けるひずみ応力の集中増幅作用が回避され、合剤塗布層の優先的な短絡が抑制されるものである。   In order to solve the above-described problems, the present invention provides a positive electrode in which at least a part of a strip-shaped positive electrode current collector is coated with a positive electrode active material on both surfaces, and at least a part of the strip-shaped negative electrode current collector on both surfaces. An electrode body in which a negative electrode active material is coated on the negative electrode electrode, and a negative electrode having at least a part of the negative electrode active material coated on one side of the negative electrode active material double-sided coating layer is wound in a spiral shape through a separator. In the non-aqueous secondary battery in which the outer casing is housed, the negative electrode active material double-side coated layer end X and the negative electrode active material disposed on the outer periphery of the negative electrode in the electrode body A are shown in FIG. The non-aqueous secondary battery is characterized in that the relative angle θ with respect to the center point O of the electrode body A of the material single-side coated layer end X ′ is 5 ° or more and 180 ° or less. As described above, by controlling the distance between the two ends of the negative electrode active material coating layer, the concentrated amplification effect of the strain stress received by the electrode body is avoided, and the preferential short circuit of the mixture coating layer is suppressed. Is.

また、本発明は、帯状の負極集電体の少なくとも一部は両面に負極活物質が塗布されてなる負極電極と、帯状の正極集電体の少なくとも一部は両面に正極活物質が塗布され、また、この正極活物質両面塗布層に連続して少なくとも一部は片面に正極活物質が塗布されてなる正極電極をセパレータを介して渦巻状に巻回した電極体を外装ケースに収容してなる非水二次電池において、図2に断面形状を示すように、電極体Bにおける正極電極の外周部に配置される正極活物質両面塗布層端部Yと正極活物質片面塗布層端部Y’の、電極体Bの中心点O’に対する相対角度θ’が5°以上180°以下となるように配置されることを特徴とする非水二次電池である。上述のように、正極活物質塗布層端部2点の距離を制御することで、電極体が受けるひずみ応力の集中増幅作用が回避され、合剤塗布層の優先的な短絡が抑制されるものである。   The present invention also provides a negative electrode in which at least a part of a strip-like negative electrode current collector is coated with a negative electrode active material on both sides, and at least a part of a belt-like positive electrode current collector is coated with a positive electrode active material on both sides. In addition, an electrode body in which a positive electrode having at least part of a positive electrode active material coated on one side of the positive electrode active material double-sided coating layer is wound in a spiral shape through a separator is accommodated in an outer case. In the non-aqueous secondary battery, the positive electrode active material double-sided coating layer end Y and the positive electrode active material single-sided coated layer end Y disposed on the outer periphery of the positive electrode in the electrode body B as shown in FIG. The non-aqueous secondary battery is arranged such that the relative angle θ ′ to the center point O ′ of the electrode body B is 5 ° or more and 180 ° or less. As described above, by controlling the distance between the two ends of the positive electrode active material coating layer, the concentrated amplification effect of the strain stress received by the electrode body is avoided, and the preferential short circuit of the mixture coating layer is suppressed. It is.

本発明による非水二次電池は、合剤塗布層の配置を制御することで、圧壊試験など外部からの応力を受けた場合に電極体の内部で発生する特異的な応力ひずみが緩和され、正・負極活物質を含む合剤塗布層の短絡を防止し、電池の異常発熱を防ぐことができる。したがって、本発明によって、高品質で高安全性のリチウムイオン二次電池を提供することできる。   In the non-aqueous secondary battery according to the present invention, by controlling the arrangement of the mixture coating layer, the specific stress strain generated inside the electrode body when subjected to external stress such as a crush test is alleviated, The short circuit of the mixture coating layer containing the positive and negative electrode active materials can be prevented, and abnormal heat generation of the battery can be prevented. Therefore, according to the present invention, a high quality and high safety lithium ion secondary battery can be provided.

本発明の非水二次電池は、図1に示すように、帯状の正極集電体の少なくとも一部は両面に正極活物質が塗布されてなる正極電極と、帯状の負極集電体の少なくとも一部は両面に負極活物質が塗布され、また、この負極活物質両面塗布層に連続して少なくとも一部は片面に負極活物質が塗布されてなる負極電極をセパレータを介して渦巻状に捲回した電極体Aを外装ケースに収容してなる非水二次電池であり、上記捲回構造の電極体Aにおける負極電極の外周部に配置される負極活物質両面塗布層端部Xと負極活物質片面塗布層端部X’の、電極体Aの中心点Oに対する相対角度θが5°以上180°以下となるように配置されている。このように負極活物質塗布層の配置を制御することで、圧壊試験など外部からの応力を受けた場合に電極体の内部で発生する特異的な応力ひずみが緩和され、局部的な正・負極活物質部位の内部短絡を防止し、電池の異常発熱を防ぐことができる。   As shown in FIG. 1, the non-aqueous secondary battery of the present invention comprises at least part of a strip-shaped positive electrode current collector, a positive electrode having a positive electrode active material applied on both sides, and at least a strip-shaped negative electrode current collector. Part of the negative electrode active material is coated on both sides, and the negative electrode made of at least part of the negative electrode active material coated on one side of the negative electrode active material double-sided coating layer is spirally wound through a separator. A non-aqueous secondary battery in which the rotated electrode body A is housed in an outer case, and the negative electrode active material double-side coated layer end X and the negative electrode disposed on the outer periphery of the negative electrode in the wound electrode body A It arrange | positions so that the relative angle (theta) with respect to the center point O of the electrode body A may be 5 to 180 degree | times. By controlling the arrangement of the negative electrode active material coating layer in this way, the specific stress strain generated inside the electrode body when subjected to external stress such as a crush test is alleviated, and the local positive and negative electrodes An internal short circuit of the active material portion can be prevented, and abnormal heat generation of the battery can be prevented.

上記相対角度θは25°以上、45°以下の範囲がさらに好ましい。θが25°未満の場合は、圧壊試験など外部からの応力を受けた場合に電極体の内部で発生する特異的な応力ひずみが十分に緩和されない為、局部的な正・負極活物質部位の内部短絡が生じ、電池の異常発熱を防ぐことができない場合があるので好ましくない。逆に、θが45°を超えると、特異的な応力ひずみの緩和限界に達し、電池容量が減少するので好ましくない。   The relative angle θ is more preferably in the range of 25 ° to 45 °. When θ is less than 25 °, the specific stress strain generated inside the electrode body when subjected to external stress such as a crush test is not sufficiently relaxed. An internal short circuit occurs, and abnormal heat generation of the battery may not be prevented. Conversely, when θ exceeds 45 °, it is not preferable because a specific stress strain relaxation limit is reached and the battery capacity decreases.

また、本発明の非水二次電池は、図2に示すように、帯状の負極集電体の少なくとも一部は両面に負極活物質が塗布されてなる負極電極と、帯状の正極集電体の少なくとも一部は両面に正極活物質が塗布され、また、この正極活物質両面塗布層に連続して少なくとも一部は片面に正極活物質が塗布されてなる正極電極をセパレータを介して渦巻状に捲回した電極体Bを外装ケースに収容してなる非水二次電池であり、上記捲回構造の電極体Bにおける正極電極の外周部に配置される正極活物質両面塗布層端部Yと正極活物質片面塗布層端部Y’の電極体Bの中心点O’に対する相対角度θ’が5°以上180°以下となるように配置されている。このように正極活物質塗布層の配置を制御することで、上記同様に、圧壊試験など外部からの応力を受けた場合に電極体の内部で発生する特異的な応力ひずみが緩和され、局部的な正・負極活物質部位の内部短絡を防止し、電池の異常発熱を防ぐことができる。   In addition, as shown in FIG. 2, the non-aqueous secondary battery of the present invention includes a negative electrode in which at least a part of a strip-shaped negative electrode current collector is coated with a negative electrode active material on both sides, and a strip-shaped positive electrode current collector. The positive electrode active material is applied on both sides of the positive electrode active material on both sides, and the positive electrode formed by applying at least a part of the positive electrode active material on one side of the positive electrode active material double-sided coating layer is spirally formed through a separator. A non-aqueous secondary battery in which the wound electrode body B is housed in an outer case, and the positive electrode active material double-sided coating layer end Y disposed on the outer periphery of the positive electrode in the wound electrode body B And the relative angle θ ′ of the positive electrode active material single-side coated layer end Y ′ with respect to the center point O ′ of the electrode body B is 5 ° or more and 180 ° or less. By controlling the arrangement of the positive electrode active material coating layer in this way, as described above, the specific stress strain generated inside the electrode body when subjected to external stress such as a crush test is alleviated and localized. It is possible to prevent internal short circuit of the positive and negative electrode active material parts, and to prevent abnormal heat generation of the battery.

本発明の好ましい実施の形態において、正極は、少なくとも正極活物質と結着剤と導電剤を含む。正極活物質としては、Lixy1-y2 (x:1.05≧x≧0.95、M≠N、M,NはCo,Ni,Mn,Cr,Mg,Al,Znのいずれか1種類以上、y:1≧y≧0(で示される複合酸化物を挙げることができる。具体的には、コバルト酸リチウム、コバルト酸リチウムの変性体、ニッケル酸リチウム、ニッケル酸リチウムの変性体、マンガン酸リチウム、マンガン酸リチウムの変性体などが好ましい。各変性体には、アルミニウム、マグネシウムなどの元素を含むものを用いることができる。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものを用いても良い。 In a preferred embodiment of the present invention, the positive electrode includes at least a positive electrode active material, a binder, and a conductive agent. As the positive electrode active material, Li x M y N 1- y O 2 (x: 1.05 ≧ x ≧ 0.95, M ≠ N, M, N are Co, Ni, Mn, Cr, Mg, Al, Zn Or a composite oxide represented by y: 1 ≧ y ≧ 0 (specifically, lithium cobaltate, modified lithium cobaltate, lithium nickelate, lithium nickelate) Preferred is a modified product of the above, lithium manganate, a modified product of lithium manganate, etc. Each modified product may contain an element such as aluminum or magnesium, and at least two of cobalt, nickel and manganese. You may use what contains.

xが1.05を超えると、Li2OやLi2CO3などが生成し、これらが分解して、O2やCO2などのガスを発生させる。逆に、xが0.95未満のでは、結晶構造の安定化が不十分となり、サイクル特性が低下する。 When x exceeds 1.05, Li 2 O, Li 2 CO 3 and the like are generated and decomposed to generate gases such as O 2 and CO 2 . Conversely, when x is less than 0.95, the crystal structure is not sufficiently stabilized, and the cycle characteristics are deteriorated.

Mとして、Cr、Mg、Al、Znを用い、その割合を増やすと、結晶構造を強化することができるが、容量が低下する為、yは0.01〜0.2の範囲が好ましく、M(M≠N)として、Co、Ni、Mnを用い、その割合を増やすとNの一部を置換することができ、全部置換しても良い。   When Cr, Mg, Al, Zn is used as M and the proportion thereof is increased, the crystal structure can be strengthened, but since the capacity is reduced, y is preferably in the range of 0.01 to 0.2. When Co, Ni, and Mn are used as (M ≠ N) and the ratio is increased, a part of N can be replaced, or all may be replaced.

正極電極に用いる結着剤は、特に限定されず、ポリテトラフルオロエチレン、変性アクリロニトリルゴム粒子、ポリフッ化ビニリデンなどを用いることができる。ポリテトラフルオロエチレンや変性アクリロニトリルゴム粒子は、正極合剤層の原料ペーストの増粘剤となるカルボキシメチルセルロース、ポリエチレンオキシド、変性アクリロニトリルゴムなどと組み合わせて用いることが好ましい。ポリフッ化ビニリデンは、単一で結着剤と増粘剤の双方の機能を有する。   The binder used for the positive electrode is not particularly limited, and polytetrafluoroethylene, modified acrylonitrile rubber particles, polyvinylidene fluoride, and the like can be used. The polytetrafluoroethylene and modified acrylonitrile rubber particles are preferably used in combination with carboxymethyl cellulose, polyethylene oxide, modified acrylonitrile rubber and the like that serve as a thickener for the raw material paste of the positive electrode mixture layer. Polyvinylidene fluoride has a single function as both a binder and a thickener.

導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。   As the conductive agent, acetylene black, ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.

負極電極は、少なくとも負極活物質と結着剤を含む。負極活物質としては、各種天然黒鉛、各種人造黒鉛、シリサイドなどのシリコン含有複合材料、各種合金材料を用いることができる。結着剤としては、ポリフッ化ビニリデンおよびその変性体を始め各種バインダーを用いることができる。   The negative electrode includes at least a negative electrode active material and a binder. As the negative electrode active material, various natural graphites, various artificial graphites, silicon-containing composite materials such as silicide, and various alloy materials can be used. As the binder, various binders such as polyvinylidene fluoride and modified products thereof can be used.

非水電解液には、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などの各種リチウム塩を溶質として用いることができる。非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを用いることが好ましいが、これらに限定されない。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましい。また、添加剤としては、ビニレンカーボネート、シクロヘキシルベンゼン、ジフェニルエーテルなどを用いることもできる。 Various lithium salts such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) can be used as the solute in the non-aqueous electrolyte. As the non-aqueous solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like are preferably used, but are not limited thereto. Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination. Moreover, as an additive, vinylene carbonate, cyclohexylbenzene, diphenyl ether, etc. can also be used.

セパレータは、リチウムイオン二次電池の使用環境に耐え得る材料からなるものであれば、特に限定されないが、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂からなる微多孔フィルムを用いることが一般的である。微多孔フィルムは、1種のポリオレフィン系樹脂からなる単層膜であってもよく、2種以上のポリオレフィン系樹脂からなる多層膜であってもよい。セパレータの厚みは、物理的強度と電池容量の観点から5μm〜30μmの範囲が好ましい。   The separator is not particularly limited as long as it is made of a material that can withstand the use environment of the lithium ion secondary battery, but a microporous film made of a polyolefin-based resin such as polyethylene or polypropylene is generally used. The microporous film may be a single layer film made of one kind of polyolefin resin or a multilayer film made of two or more kinds of polyolefin resin. The thickness of the separator is preferably in the range of 5 μm to 30 μm from the viewpoint of physical strength and battery capacity.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

図3に本発明の一実施例である円筒形リチウムイオン二次電池の縦断面概略図を示す。図3に示すように、正極電極5と負極電極6とがセパレータ7を介在して渦巻状に捲回された極板群が、有底筒状の電池ケース8に収容されており、負極電極6から連接する負極リード9が下部絶縁板10を介して、前記電池ケース8と電気的に接続され、正極電極5から連接する正極リード3が上部絶縁板4を介して、封口板1の内部端子に電気的に接続されており、非水電解液(図示せず)を注液し、封口板1と電池ケース8とが絶縁ガスケット2を介してかしめ封口されている。   FIG. 3 shows a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery which is an embodiment of the present invention. As shown in FIG. 3, an electrode plate group in which a positive electrode 5 and a negative electrode 6 are wound in a spiral shape with a separator 7 interposed therebetween is housed in a bottomed cylindrical battery case 8, and the negative electrode 6 is connected to the battery case 8 via the lower insulating plate 10, and the positive electrode lead 3 connected to the positive electrode 5 is connected to the inside of the sealing plate 1 via the upper insulating plate 4. It is electrically connected to a terminal, a nonaqueous electrolyte (not shown) is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed via the insulating gasket 2.

以下に正極電極5の作製法について詳しく説明する。まず、コバルト酸リチウム3kgと、結着剤としてポリフッ化ビニリデン((固形分12重量%のN−メチル−2−ピロリドン(以下、NMPと略す)溶液))を1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製する。このペーストを0.015mm厚のアルミニウム箔の両面もしくは片面に塗布し、乾燥後圧延して正極合剤層を形成する。この際、アルミニウム箔および正極合剤両面塗布層からなる極板の厚みを0.150mmとする。この極板は、円筒形電池φ18mm、高さ65mmサイズの電池ケース8に挿入可能な幅に裁断し、正極電極5を得る。   Hereinafter, a method for producing the positive electrode 5 will be described in detail. First, 3 kg of lithium cobaltate, 1 kg of polyvinylidene fluoride ((N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) solution having a solid content of 12% by weight)) as a binder, 90 g of acetylene black, and an appropriate amount Of NMP is stirred with a double-arm kneader to prepare a positive electrode mixture paste. This paste is applied to both sides or one side of a 0.015 mm thick aluminum foil, dried and rolled to form a positive electrode mixture layer. Under the present circumstances, the thickness of the electrode plate which consists of an aluminum foil and a positive electrode mixture double-sided coating layer shall be 0.150 mm. This electrode plate is cut into a width that can be inserted into a battery case 8 having a cylindrical battery diameter of 18 mm and a height of 65 mm to obtain the positive electrode 5.

以下に負極電極6の作製法について詳しく説明する。まず、人造黒鉛3kgと、結着剤としてスチレン−ブタジエン共重合体(固形分40重量%の水性分散液)75gと、増粘剤としてのカルボキシメチルセルロース30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製する。このペーストを10μm厚の銅箔の両面もしくは片面に塗布し、乾燥後圧延して負極合剤層を形成する。この際、銅箔および負極合剤両面塗布層からなる極板の厚みを0.180mmとする。その後、その極板は、前記電池ケース8に挿入可能な幅に裁断し、負極電極6を得る。   Hereinafter, a method for producing the negative electrode 6 will be described in detail. First, 3 kg of artificial graphite, 75 g of a styrene-butadiene copolymer (an aqueous dispersion having a solid content of 40% by weight) as a binder, 30 g of carboxymethyl cellulose as a thickener, and an appropriate amount of water, Stir in a kneader to prepare a negative electrode mixture paste. This paste is applied to both sides or one side of a 10 μm thick copper foil, dried and rolled to form a negative electrode mixture layer. Under the present circumstances, the thickness of the electrode plate which consists of copper foil and a negative electrode mixture double-sided coating layer shall be 0.180 mm. Thereafter, the electrode plate is cut into a width that can be inserted into the battery case 8 to obtain the negative electrode 6.

以下に電解液の調製法について詳しく説明する。エチレンカーボネートと、ジメチルカーボネートと、メチルエチルカーボネートとを体積比2:3:3で混合した混合溶媒に、六フッ化リン酸リチウム(LiPF6)を1mol/Lの濃度で溶解し、さらに添加剤として、ビニレンカーボネートを3重量%加え、電解液を調製した。 Hereinafter, the method for preparing the electrolytic solution will be described in detail. Lithium hexafluorophosphate (LiPF 6 ) is dissolved at a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate are mixed at a volume ratio of 2: 3: 3. As a result, 3% by weight of vinylene carbonate was added to prepare an electrolytic solution.

以下に電池の組立法について詳しく説明する。正極電極5と、負極電極6とを、厚み20μmのポリエチレン製微多孔フィルムからなるセパレータ7を介して捲回し、電池ケース8内に挿入する。次いで、前記の電解液を5.5g秤量して、電池ケース8内に注液し、電池ケース8の開口部を封口板1とともに封口する。こうして、円筒形リチウムイオン二次電池を作製する。   The battery assembly method will be described in detail below. The positive electrode 5 and the negative electrode 6 are wound through a separator 7 made of a polyethylene microporous film having a thickness of 20 μm and inserted into the battery case 8. Next, 5.5 g of the electrolytic solution is weighed and poured into the battery case 8, and the opening of the battery case 8 is sealed together with the sealing plate 1. In this way, a cylindrical lithium ion secondary battery is produced.

以下に、極板群の断面上の構造に関して具体的に説明する。   Below, the structure on the cross section of an electrode group is demonstrated concretely.

《実施例1〜7》
先に述べた作製法に従って正極電極5を作製する際に、正極合剤層をアルミニウム箔の両面にのみ形成した正極電極5と、先に述べた作製法に従って負極電極6を作製する際に、負極合剤層を銅箔の両面と、それに連続して片面に形成した負極電極6を、セパレータ7を介して捲回し、図1に示されるような断面構造を有する電極体Aを構成した。この際、負極合剤塗布層の長さを調節することにより、電極体Aにおける負極電極6の外周部に配置される負極活物質両面塗布層端部Xと負極活物質片面塗布層端部X’の、上記電極体中心点Oに対する相対角度θを、以下で説明する表1に示すような範囲(5°≦θ≦180°)で調節して実施例1〜7の円筒形リチウムイオン二次電池を作製した。
<< Examples 1-7 >>
When producing the positive electrode 5 according to the production method described above, when producing the positive electrode 5 having the positive electrode mixture layer formed only on both surfaces of the aluminum foil and the negative electrode 6 according to the production method described above, A negative electrode 6 having a negative electrode mixture layer formed on both sides of a copper foil and continuously on one side was wound through a separator 7 to form an electrode body A having a cross-sectional structure as shown in FIG. At this time, by adjusting the length of the negative electrode mixture coating layer, the negative electrode active material double-sided coating layer end X and the negative electrode active material single-sided coating layer end X arranged on the outer periphery of the negative electrode 6 in the electrode body A The relative angle θ of ′ with respect to the electrode body center point O is adjusted within a range (5 ° ≦ θ ≦ 180 °) as shown in Table 1 to be described below, and the cylindrical lithium ion two of Examples 1-7 A secondary battery was produced.

《比較例1〜2》
実施例1〜7と同様の方法で電極体Aを構成する際、負極合剤塗布層の長さを調節することにより、電極体Aにおける負極電極6の外周部に配置される負極活物質両面塗布層端部Xと負極活物質片面塗布層端部X’の、上記電極体中心点Oに対する相対角度θを、以下で説明する表1に示すような範囲(θ<5°)で調節して比較例1〜2の円筒形リチウムイオン二次電池を作製した。
<< Comparative Examples 1-2 >>
When constructing the electrode body A in the same manner as in Examples 1 to 7, both sides of the negative electrode active material disposed on the outer periphery of the negative electrode 6 in the electrode body A by adjusting the length of the negative electrode mixture coating layer The relative angle θ between the coating layer end X and the negative electrode active material single-side coating layer end X ′ with respect to the electrode body center point O is adjusted within a range (θ <5 °) as shown in Table 1 described below. Thus, cylindrical lithium ion secondary batteries of Comparative Examples 1 and 2 were produced.

《実施例8〜14》
先に述べた作製法に従って負極電極6を作製する際に、負極合剤層を銅箔の両面にのみ形成した負極電極と、先に述べた作製法に従って正極電極5を作製する際に、正極合剤層をアルミニウム箔の両面と、それに連続して片面に形成した正極電極5を、セパレータ7を介して捲回し、図2に示されるような断面構造を有する電極体Bを構成した。この際、正極合剤塗布層の長さを調節することにより、電極体Bにおける正極電極5の外周部に配置される正極活物質両面塗布層端部Yと正極活物質片面塗布層端部Y’の、上記電極体中心点O’に対する相対角度θ’を、以下で説明する表1に示すような範囲(5°≦θ’≦180°)で調節して実施例8〜14の円筒形リチウムイオン二次電池を作製した。
<< Examples 8 to 14 >>
When the negative electrode 6 is produced according to the production method described above, the negative electrode in which the negative electrode mixture layer is formed only on both surfaces of the copper foil, and when the positive electrode 5 is produced according to the production method described above, the positive electrode The positive electrode 5 in which the mixture layer was formed on both sides of the aluminum foil and continuously on one side thereof was wound through a separator 7 to form an electrode body B having a cross-sectional structure as shown in FIG. At this time, by adjusting the length of the positive electrode mixture coating layer, the positive electrode active material double-sided coating layer end Y and the positive electrode active material single-sided coating layer end Y arranged on the outer periphery of the positive electrode 5 in the electrode body B The relative angle θ ′ with respect to the electrode body center point O ′ is adjusted within a range (5 ° ≦ θ ′ ≦ 180 °) as shown in Table 1 described below, and the cylindrical shapes of Examples 8-14 A lithium ion secondary battery was produced.

《比較例3〜4》
実施例8〜14と同様の方法で電極体Bを構成する際、正極合剤塗布層の長さを調節することにより、電極体Bにおける正極電極5の外周部に配置される正極活物質両面塗布層端部Yと正極活物質片面塗布層端部Y’の、上記電極体中心点O’に対する相対角度θ’を、以下で説明する表1に示すような範囲(θ’<5°)で調節して比較例3〜4の円筒形リチウムイオン二次電池を作製した。
<< Comparative Examples 3-4 >>
When the electrode body B is configured in the same manner as in Examples 8 to 14, both sides of the positive electrode active material disposed on the outer peripheral portion of the positive electrode 5 in the electrode body B by adjusting the length of the positive electrode mixture coating layer. The relative angle θ ′ of the coating layer end Y and the positive electrode active material single-sided coating layer end Y ′ with respect to the electrode body center point O ′ is within the range shown in Table 1 described below (θ ′ <5 °). The cylindrical lithium ion secondary batteries of Comparative Examples 3 to 4 were prepared by adjusting the above.

試験電池はそれぞれ100個ずつ作製し以下の条件下で圧壊試験を行った。   100 test batteries were prepared, respectively, and a crush test was performed under the following conditions.

20℃の環境下で400mAで4.2Vまで充電した後、圧壊試験を行った。圧壊試験は直径4mmの金属製の円柱の丸棒を用いて、この丸棒が電池の外寸がもっとも長くなる方向に対して垂直な方向と平行になるように電池の中央部に押し付けて、電池の厚みが半分になるまで圧壊した。   After charging to 4.2 V at 400 mA in an environment of 20 ° C., a crush test was performed. In the crushing test, a metal cylindrical round bar with a diameter of 4 mm was used, and this round bar was pressed against the center of the battery so that it was parallel to the direction perpendicular to the direction in which the outer dimension of the battery was the longest, The battery was crushed until the thickness was halved.

以下の、表1に圧壊試験の結果を示す。表1中において結果を示す数値の分母は試験に供した電池個数であり、分子は異常発熱した電池個数である。この異常発熱とは、電池表面温度が100℃以上になった場合を示す。   Table 1 below shows the results of the crush test. In Table 1, the denominator of the numerical value indicating the result is the number of batteries subjected to the test, and the numerator is the number of batteries that have abnormally heated. This abnormal heat generation indicates a case where the battery surface temperature is 100 ° C. or higher.

Figure 2006164773
Figure 2006164773

表1の結果より、本発明の実施例1〜14の電池を比較例1〜4の電池とを比較すると明らかに電池の異常発熱頻度が低く、安全であることがわかる。   From the results of Table 1, it can be seen that when the batteries of Examples 1 to 14 of the present invention are compared with the batteries of Comparative Examples 1 to 4, the abnormal heat generation frequency of the batteries is clearly low and it is safe.

これは、図1に示す電極体Aの場合は、負極活物質両面塗布層端部Xや負極活物質片面塗布層端部X’は構造的な変化点であるためもともと外部からの応力を集中的に受けやすく、この2点が近接するほど電極体が受けるひずみ応力が1点に集中増幅され、セパレータが破断しやすくなり、実施例1〜7及び比較例1〜2の結果となったものである。表1の結果より、相対角度θが5°以上180°以下あれば、ひずみ応力の集中増幅によるセパレータの破断はおこらず、安全性が保持されることがわかる。さらに、試験後の電池を分解して、セパレータのダメージを観察したところ、実施例2〜7の電池ではセパレータのダメージがほとんど認められなかったのに対し、実施例1の電池ではわずかながらダメージが観察された。この結果より、ひずみ応力の緩和という観点からは、相対角度θ(0°≦θ≦180°)は25°以上であることがさらに望ましいと考えられる。   This is because, in the case of the electrode body A shown in FIG. 1, the negative electrode active material double-sided coating layer end X and the negative electrode active material single-sided coating layer end X ′ are structural change points, so that stress from the outside is originally concentrated. As the two points approach each other, the strain stress received by the electrode body is concentrated and amplified at one point, and the separator is easily broken, resulting in the results of Examples 1 to 7 and Comparative Examples 1 and 2. It is. From the results of Table 1, it can be seen that if the relative angle θ is 5 ° or more and 180 ° or less, the separator is not broken by concentrated amplification of strain stress, and safety is maintained. Furthermore, when the battery after the test was disassembled and the separator was observed for damage, the battery of Examples 2 to 7 showed almost no damage to the separator, whereas the battery of Example 1 was slightly damaged. Observed. From this result, it is considered that the relative angle θ (0 ° ≦ θ ≦ 180 °) is more preferably 25 ° or more from the viewpoint of relaxation of strain stress.

また、図2に示す電極体Bの場合は、正極活物質両面塗布層端部Yや正極活物質片面塗布層端部Y’は構造的な変化点であるためもともと外部からの応力を集中的に受けやすく、この2点が近接するほど電極体が受けるひずみ応力が1点に集中増幅され、セパレータが破断しやすくなり、実施例8〜14及び比較例3〜4の結果となったものである。表1の結果より、相対角度θ’(0°≦θ’≦180°)が5°以上180°以下あれば、ひずみ応力の集中増幅によるセパレータの破断はおこらず、安全性が保持されることがわかる。さらに、試験後の電池を分解して、セパレータのダメージを観察したところ、実施例9〜14の電池ではセパレータのダメージがほとんど認められなかったのに対し、実施例8の電池ではわずかながらダメージが観察された。この結果より、ひずみ応力の緩和という観点からは、相対角度θ’は25°以上であることがさらに望ましいと考えられる。   In the case of the electrode body B shown in FIG. 2, the positive electrode active material double-sided coating layer end Y and the positive electrode active material single-sided coating layer end Y ′ are structural change points, so that stress from the outside is concentrated. As the two points approach each other, the strain stress received by the electrode body is concentrated and amplified at one point, and the separator easily breaks, resulting in the results of Examples 8 to 14 and Comparative Examples 3 to 4. is there. From the results of Table 1, if the relative angle θ ′ (0 ° ≦ θ ′ ≦ 180 °) is 5 ° or more and 180 ° or less, the separator is not broken due to concentrated amplification of strain stress, and safety is maintained. I understand. Furthermore, when the battery after the test was disassembled and the separator was observed for damage, the battery of Examples 9 to 14 showed almost no damage to the separator, whereas the battery of Example 8 was slightly damaged. Observed. From this result, it is considered that the relative angle θ ′ is more preferably 25 ° or more from the viewpoint of relaxation of strain stress.

上記実施例においては円筒形の電池をもちいて評価を行ったが、角型など電池形状が異なっても同様の効果が得られる。   In the above example, evaluation was performed using a cylindrical battery, but the same effect can be obtained even if the battery shape is different, such as a square battery.

本発明による構成要素を用いれば、高品質で高安全性のリチウムイオン二次電池を提供することができる。このリチウムイオン二次電池は、ノートパソコン、携帯電話、デジタルスチルカメラなどの電子機器の駆動電源として有用である。   If the component by this invention is used, a high quality and highly safe lithium ion secondary battery can be provided. This lithium ion secondary battery is useful as a drive power source for electronic devices such as notebook computers, mobile phones, and digital still cameras.

本発明の円筒形電池の渦巻状電極体Aの断面構成概略図Cross-sectional schematic diagram of a spiral electrode body A of a cylindrical battery of the present invention 本発明の円筒形電池の渦巻状電極体Bの断面構成概略図Cross-sectional schematic diagram of spiral electrode body B of cylindrical battery of the present invention 本発明の一実施形態である円筒形リチウムイオン二次電池の縦断面概略図1 is a schematic longitudinal sectional view of a cylindrical lithium ion secondary battery according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 封口板
2 絶縁ガスケット
3 正極リード
4 上部絶縁板
5 正極電極
6 負極電極
7 セパレータ
8 電池ケース
9 負極リード
10 下部絶縁板
A、B 電極体
X 負極活物質両面塗布層端部
X’ 負極活物質片面塗布層端部
O 電極体Aの中心点
θ 負極活物質両面塗布層端部Xと負極活物質片面塗布層端部X’の中心点Oに対する相対角度
Y 正極活物質両面塗布層端部
Y’ 正極活物質片面塗布層端部
O’ 電極体Bの中心点
θ’ 正極活物質両面塗布層端部Yと正極活物質片面塗布層端部Y’の中心点O’に対する相対角度
DESCRIPTION OF SYMBOLS 1 Sealing plate 2 Insulating gasket 3 Positive electrode lead 4 Upper insulating plate 5 Positive electrode 6 Negative electrode 7 Separator 8 Battery case 9 Negative electrode lead 10 Lower insulating plate A, B Electrode body X Negative electrode active material double-sided coating layer end X 'Negative electrode active material End of single-sided coating layer O Center point of electrode body A θ Relative angle of negative electrode active material double-sided coating layer end X and negative electrode active material single-sided coating layer end X ′ with respect to central point O Y Positive electrode active material double-sided coating layer end Y 'Positive electrode active material single-sided coating layer end O' center point of electrode body B θ 'Relative angle of positive electrode active material double-sided coating layer end Y and positive electrode active material single-sided coating layer end Y' with respect to central point O '

Claims (4)

帯状の正極集電体の少なくとも一部は両面に正極活物質が塗布されてなる正極電極と、帯状の負極集電体の少なくとも一部は両面に負極活物質が塗布され、また、この負極活物質両面塗布層に連続して少なくとも一部は片面に負極活物質が塗布されてなる負極電極とを、セパレータを介して渦巻状に捲回した電極体を外装ケースに収容してなる二次電池において、上記捲回構造の電極体における負極電極の外周部に配置される負極活物質両面塗布層端部と負極活物質片面塗布層端部が、上記電極体の断面上で、それぞれの部位の上記電極体中心点に対する相対角度が5°以上180°以下となるように配置されていることを特徴とするリチウムイオン二次電池。 At least a part of the strip-shaped positive electrode current collector is coated with a positive electrode active material on both surfaces, and at least a part of the strip-shaped negative electrode current collector is coated with a negative electrode active material on both surfaces. A secondary battery in which an electrode case obtained by spirally winding a negative electrode having a negative electrode active material coated on at least a part of one side continuously with a substance double-sided coating layer is interposed in a case. The negative electrode active material double-sided coating layer end and the negative electrode active material single-sided coating layer end arranged on the outer periphery of the negative electrode in the wound structure electrode body are each in a cross section of the electrode body. The lithium ion secondary battery is disposed so that a relative angle with respect to the center point of the electrode body is 5 ° or more and 180 ° or less. 帯状の負極集電体の少なくとも一部は両面に負極活物質が塗布されてなる負極電極と、帯状の正極集電体の少なくとも一部は両面に正極活物質が塗布され、また、この正極活物質両面塗布層に連続して少なくとも一部は片面に正極活物質が塗布されてなる正極電極とを、セパレータを介して渦巻状に捲回した電極体を外装ケースに収容してなる二次電池において、上記捲回構造の電極体における正極電極の外周部に配置される正極活物質両面塗布層端部と正極活物質片面塗布層端部が、上記電極体の断面上で、それぞれの部位の上記電極体中心点に対する相対角度が5°以上180°以下となるように配置されていることを特徴とするリチウムイオン二次電池。 At least a part of the strip-shaped negative electrode current collector is coated with a negative electrode active material on both surfaces, and at least a part of the strip-shaped positive electrode current collector is coated with a positive electrode active material on both surfaces. A secondary battery in which an electrode body obtained by spirally winding a positive electrode having a positive electrode active material coated on at least a part of one side thereof continuously with a substance double-sided coating layer via a separator is accommodated in an outer case. In the electrode structure having the wound structure, the positive electrode active material double-sided coating layer end and the positive electrode active material single-sided coating layer end arranged on the outer periphery of the positive electrode are arranged on the cross-section of the electrode body. The lithium ion secondary battery is disposed so that a relative angle with respect to the center point of the electrode body is 5 ° or more and 180 ° or less. 前記相対角度が25°以上45°以下であることを特徴とする請求項1または請求項2のいずれかに記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1, wherein the relative angle is 25 ° or more and 45 ° or less. 前記正極電極は、Lixy1-y2 (x:1.05≧x≧0.95、M≠N、M,Nは、Co,Ni,Mn,Cr,Mg,Al,Znのいずれか1種類以上、y:1≧y≧0)で示される活物質を主とする正極合剤が正極集電体上に塗布されたものであることを特徴とする請求項1または請求項2のいずれかに記載のリチウムイオン二次電池。 The positive electrode is, Li x M y N 1- y O 2 (x: 1.05 ≧ x ≧ 0.95, M ≠ N, M, N are, Co, Ni, Mn, Cr , Mg, Al, Zn Any one or more of the above, wherein a positive electrode mixture mainly composed of an active material represented by y: 1 ≧ y ≧ 0) is applied on a positive electrode current collector. Item 3. A lithium ion secondary battery according to any one of Items 2 to 3.
JP2004355137A 2004-12-08 2004-12-08 Lithium ion secondary battery Pending JP2006164773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355137A JP2006164773A (en) 2004-12-08 2004-12-08 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355137A JP2006164773A (en) 2004-12-08 2004-12-08 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006164773A true JP2006164773A (en) 2006-06-22

Family

ID=36666537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355137A Pending JP2006164773A (en) 2004-12-08 2004-12-08 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006164773A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156866A (en) * 2007-12-07 2009-07-16 Ntt Docomo Inc Cell testing device and cell testing method
WO2018106054A1 (en) * 2016-12-09 2018-06-14 삼성에스디아이 주식회사 Secondary battery
WO2024019552A1 (en) * 2022-07-19 2024-01-25 주식회사 엘지에너지솔루션 Cylindrical battery, battery pack and vehicle
KR20240011650A (en) * 2022-07-19 2024-01-26 주식회사 엘지에너지솔루션 Cylindrical battery, battery pack and vehicle including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156866A (en) * 2007-12-07 2009-07-16 Ntt Docomo Inc Cell testing device and cell testing method
WO2018106054A1 (en) * 2016-12-09 2018-06-14 삼성에스디아이 주식회사 Secondary battery
CN109983609A (en) * 2016-12-09 2019-07-05 三星Sdi株式会社 Rechargeable battery
CN109983609B (en) * 2016-12-09 2023-03-28 三星Sdi株式会社 Rechargeable battery
US11721829B2 (en) 2016-12-09 2023-08-08 Samsung Sdi Co., Ltd. Rechargeable battery
WO2024019552A1 (en) * 2022-07-19 2024-01-25 주식회사 엘지에너지솔루션 Cylindrical battery, battery pack and vehicle
KR20240011650A (en) * 2022-07-19 2024-01-26 주식회사 엘지에너지솔루션 Cylindrical battery, battery pack and vehicle including the same
KR102646837B1 (en) 2022-07-19 2024-03-12 주식회사 엘지에너지솔루션 Cylindrical battery, battery pack and vehicle including the same

Similar Documents

Publication Publication Date Title
JP5257700B2 (en) Lithium secondary battery
WO2009144919A1 (en) Cylindrical nonaqueous electrolytic secondary battery
WO2010125755A1 (en) Assembled sealing body and battery using same
JP2008277207A (en) Wound nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2009048876A (en) Nonaqueous secondary battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
KR20080079607A (en) Non-aqueous electrolyte secondary battery
JP5441143B2 (en) Lithium secondary battery for mobile devices
JP2009129553A (en) Battery
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2010108679A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2009259749A (en) Nonaqueous electrolyte secondary battery
JP6379573B2 (en) Nonaqueous electrolyte secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2006164773A (en) Lithium ion secondary battery
JP2002015720A (en) Nonaqueous electrolyte secondary battery
JP2003282143A (en) Nonaqueous electrolyte secondary battery
JP2008077996A (en) Wound battery
JP4272657B2 (en) Non-aqueous secondary battery
JP2017027837A (en) Lithium ion secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP4045627B2 (en) Explosion-proof non-aqueous secondary battery
CN112335091A (en) Lithium ion secondary battery