JP2006164723A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2006164723A
JP2006164723A JP2004353927A JP2004353927A JP2006164723A JP 2006164723 A JP2006164723 A JP 2006164723A JP 2004353927 A JP2004353927 A JP 2004353927A JP 2004353927 A JP2004353927 A JP 2004353927A JP 2006164723 A JP2006164723 A JP 2006164723A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
calcium
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353927A
Other languages
Japanese (ja)
Inventor
Shinichiro Tawara
伸一郎 田原
Yukihiro Gotanda
幸宏 五反田
Shinichi Kawaguchi
真一 川口
Takayuki Tanahashi
隆幸 棚橋
Toshiyuki Shimizu
敏之 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004353927A priority Critical patent/JP2006164723A/en
Publication of JP2006164723A publication Critical patent/JP2006164723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery having stable internal resistance in high-temperature storage, in particular, high-temperature storage after partial discharge. <P>SOLUTION: This nonaqueous electrolyte battery equipped with a negative electrode containing lithium or its alloy as a negative electrode active material, a positive electrode containing graphite fluoride as a positive electrode active material, and a nonaqueous electrolyte. In the nonaqueous electrolyte battery, by adding calcium carbonate or calcium salt in a positive electrode mix or in the electrolyte, free fluorine included in the positive electrode active material and free fluorine generated by discharge are immobilized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は金属リチウムあるいはその合金を負極活物質とし、フッ化黒鉛を正極活物質とする非水電解液電池に関するものである。   The present invention relates to a nonaqueous electrolyte battery using metallic lithium or an alloy thereof as a negative electrode active material and fluorinated graphite as a positive electrode active material.

金属リチウムあるいはこの合金を負極活物質とし、フッ化黒鉛を正極活物質とするフッ化黒鉛リチウム電池は、正極活物質に用いるフッ化黒鉛が864mAh/gという大きな電気容量密度を有し、熱的、化学的にも安定で、電解液にも溶解しないので、長期保存特性の優れた電池系として知られている。このフッ化黒鉛リチウム電池は、常温で10年以上という長期の保存特性に優れていることから、各種メータの主電源やメモリーバックアップ電源として広く用いられている。また、最近では、自動車,産業機器等で高温域から低温域までという幅広い使用温度域を必要とする用途へ要望されている。   A lithium fluoride graphite battery using metallic lithium or an alloy thereof as a negative electrode active material and fluorinated graphite as a positive electrode active material has a large electric capacity density of 864 mAh / g, and the thermal capacity of the fluorinated graphite used as the positive electrode active material is thermal. Since it is chemically stable and does not dissolve in the electrolyte, it is known as a battery system with excellent long-term storage characteristics. This fluorinated graphite lithium battery is widely used as a main power source and a memory backup power source for various meters because of its excellent long-term storage characteristics of 10 years or more at room temperature. Recently, there is a demand for applications that require a wide operating temperature range from a high temperature range to a low temperature range in automobiles, industrial equipment, and the like.

しかし、フッ化黒鉛リチウム電池は、高温保存時、特に部分放電後の高温保存時に電池の内部抵抗が上昇するという問題があった。これはフッ化黒鉛原料中に含まれる遊離フッ素や放電反応に伴い生成される遊離フッ素が電池保存中、特に高温保存中に電解液中に溶出し、負極リチウム上でフッ化リチウムを形成するためである。   However, the graphite fluoride lithium battery has a problem that the internal resistance of the battery increases during high temperature storage, particularly during high temperature storage after partial discharge. This is because the free fluorine contained in the fluorinated graphite raw material and the free fluorine produced by the discharge reaction elute into the electrolyte during battery storage, especially during high temperature storage, and form lithium fluoride on the negative electrode lithium. It is.

そのため、以前から正極にアルミ粉末を添加し、遊離フッ素を固定化させる提案がなされている(例えば特許文献1)。
特開昭58−123663号公報
Therefore, a proposal has been made to immobilize free fluorine by adding aluminum powder to the positive electrode (for example, Patent Document 1).
JP 58-123663 A

しかし、アルミ粉末による添加では、高温保存、特に部分放電後の高温保存において充分な効果を発揮することができない。   However, the addition with aluminum powder cannot exhibit a sufficient effect in high-temperature storage, particularly in high-temperature storage after partial discharge.

本発明は、高温保存時、特に部分放電後の高温保存時でも安定した内部抵抗を有する電池を提供することを目的とする。   An object of the present invention is to provide a battery having a stable internal resistance during high-temperature storage, particularly during high-temperature storage after partial discharge.

前記目的を達成するために、本発明の非水電解液電池は、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、炭酸カルシウム等のカルシウム塩が正極合剤中あるいは電解液中に添加されていることを特徴とする。   In order to achieve the above object, a non-aqueous electrolyte battery of the present invention includes a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte. In the non-aqueous electrolyte battery, a calcium salt such as calcium carbonate is added in the positive electrode mixture or the electrolyte.

また、本発明は、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、前記カルシウム塩がフッ化黒鉛に対し、0.1〜2.0wt%添加されていることを特徴とする。   The present invention also provides a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte. It is characterized by being added in an amount of 0.1 to 2.0 wt% with respect to fluorinated graphite.

また、本発明は、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、前記カルシウム塩が、炭酸カルシウム、硫酸カルシウム、硝酸カルシウム、リン酸カルシウム、酢酸カルシウム、および水酸化カルシウムからなる群より選ばれる少なくとも一つが添加されていること特徴とする。   The present invention also provides a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte. And at least one selected from the group consisting of calcium carbonate, calcium sulfate, calcium nitrate, calcium phosphate, calcium acetate, and calcium hydroxide.

金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、正極合剤中あるいは電解液中に添加されたカルシウム塩により正極中に存在する遊離フッ素が固定化される。その結果、高温保存特性、特に部分放電後の高温保存特性が改善される。   In a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte, added to the positive electrode mixture or electrolyte Free fluorine existing in the positive electrode is fixed by the calcium salt thus formed. As a result, high temperature storage characteristics, particularly high temperature storage characteristics after partial discharge are improved.

本発明によれば、金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池中の遊離フッ素をカルシウム塩の作用により、フッ化カルシウムとして正極中に固定化することができる。したがって、これらの遊離フッ素が電解液中に溶出し、負極リチウム上にフッ化リチウムを形成することを抑制することができるため、非水電解液電池の高温保存特性、特に部分放電後の高温保存を改善することができる。   According to the present invention, free fluorine in a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte solution is calcium. Due to the action of the salt, calcium fluoride can be immobilized in the positive electrode. Therefore, it is possible to suppress the release of these free fluorine into the electrolyte and the formation of lithium fluoride on the negative electrode lithium. Therefore, the high-temperature storage characteristics of non-aqueous electrolyte batteries, particularly high-temperature storage after partial discharge Can be improved.

本発明は炭酸カルシウム等のカルシウム塩を正極合剤中あるいは電解液中に添加すると、正極中に存在する遊離フッ素が固定化されることを見出したものである。   The present invention has been found that when a calcium salt such as calcium carbonate is added to a positive electrode mixture or an electrolyte solution, free fluorine present in the positive electrode is fixed.

またその際、カルシウム塩がフッ化黒鉛に対し、0.1〜2.0wt%であると、電池の放電容量に影響を与えることなく遊離フッ素を固定化することができるため好ましい。0.1wt%未満では遊離フッ素の量に対して充分でないため効果が得られず、2.0wt%より大きい場合は、放電容量が低下する為好ましくない。   Further, at that time, it is preferable that the calcium salt is 0.1 to 2.0 wt% with respect to the graphite fluoride because free fluorine can be immobilized without affecting the discharge capacity of the battery. If it is less than 0.1 wt%, the effect is not obtained because it is not sufficient with respect to the amount of free fluorine.

本発明の正極には、フッ化黒鉛が用いられる。フッ化黒鉛は、コークスや黒鉛などの炭素材料とフッ素ガスとを250〜650℃程度の温度で反応させることにより得ることができる。フッ素化処理に応じて、(CFxn(但し、x=0.5〜1)、(C2F)nあるいはこれらの混合物を得ることができる。このとき、フッ化黒鉛中には、数十〜数百ppmの遊離フッ素が存在する。また、正極を構成するにあたって、公知の導電助剤やフッ素樹脂などの結着剤を使用することができる。円筒形や角形などの電池用電極を構成する際には、前述の正極材料を練合した正極合剤を支持体(芯材)に充填圧延することによって正極板が作製される。 Fluorinated graphite is used for the positive electrode of the present invention. Fluorinated graphite can be obtained by reacting a carbon material such as coke or graphite with fluorine gas at a temperature of about 250 to 650 ° C. Depending on the fluorination treatment, (CF x ) n (where x = 0.5 to 1), (C 2 F) n or a mixture thereof can be obtained. At this time, several tens to several hundred ppm of free fluorine is present in the fluorinated graphite. Moreover, in constituting the positive electrode, a known conductive aid or a binder such as a fluororesin can be used. When a battery electrode having a cylindrical shape or a square shape is configured, a positive electrode plate is produced by filling and rolling a positive electrode mixture obtained by kneading the positive electrode material described above on a support (core material).

負極は、金属リチウム、Li−Al、Li−Sn、Li−NiSi、Li−Pbなどのリチウム合金である。   The negative electrode is a lithium alloy such as metallic lithium, Li—Al, Li—Sn, Li—NiSi, or Li—Pb.

非水電解液に用いる溶媒としては、γ−ブチルラクトン、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタンなどを使用することができる。好ましくは、γ−ブチルラクトンである。   As a solvent used for the nonaqueous electrolytic solution, γ-butyllactone, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, and the like can be used. Preferred is γ-butyllactone.

非水電解液を構成する支持電解質には、ホウフッ化リチウム、リチウム六フッ化リン、トリフルオロメタンスルホン酸リチウム、および分子構造内にイミド結合を有するLiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)などを用いることができる。中でもホウフッ化リチウムはフッ化黒鉛との相性もよく、安定した放電特性を発揮することができるため好ましい。 The supporting electrolyte constituting the non-aqueous electrolyte includes lithium borofluoride, lithium phosphorus hexafluoride, lithium trifluoromethanesulfonate, LiN (CF 3 SO 2 ) 2 having a imide bond in the molecular structure, LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), or the like can be used. Among these, lithium borofluoride is preferable because it has good compatibility with graphite fluoride and can exhibit stable discharge characteristics.

その他電池を構成するにあたり、セパレータ、正極缶、負極缶、ガスケットなどは公知の材料を使用することができ、その形状や寸法には限定されないが、正極缶としてより好ましいのはステンレス鋼SUS444である。また電池形状はコイン形、ピン形、円筒形、角形などの形状を採用でき、その形状に限定されるものではない。   In configuring other batteries, known materials can be used for the separator, the positive electrode can, the negative electrode can, the gasket, and the like, and the shape and dimensions thereof are not limited, but stainless steel SUS444 is more preferable as the positive electrode can. . The battery shape may be a coin shape, pin shape, cylindrical shape, square shape, or the like, and is not limited to that shape.

(実施例1)
以下、本発明の実施の形態について、図面を参照しながら説明する。
Example 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例にかかる非水電解液電池の断面図であり、この非水電解液電池を下記のように作成した。   FIG. 1 is a cross-sectional view of a non-aqueous electrolyte battery according to an embodiment of the present invention. This non-aqueous electrolyte battery was prepared as follows.

(i)正極の作製
正極活物質となるフッ化黒鉛は、炭素粉末をフッ素化処理したものを用いた。このフッ化黒鉛100重量部と、導電剤としてのカーボン粉末10重量部と結着剤としてのポリテトラフルオロエチレン15重量部、さらにフッ化黒鉛に対し、炭酸カルシウムを0.1wt%添加させ、これらを高速撹拌型ミキサで乾式混合し、これに、純水50重量部を加えて混練し、湿潤状態の正極合剤を作製した。この湿潤状態の正極合剤を厚み0.4mmのSUS444製エキスパンドメタルとともに等速回転を行う2本の回転ロール間を通して、正極合剤をSUS444製エキスパンドメタルに充填後、乾燥、圧延してシートを作製した。得られたシートを、一定寸法に裁断し、中央部には合剤剥離部分を設け、SUS444製リードを溶接し、正極1とした。
(I) Production of positive electrode The fluorinated graphite used as the positive electrode active material was obtained by fluorinating carbon powder. 100 parts by weight of this graphite fluoride, 10 parts by weight of carbon powder as a conductive agent, 15 parts by weight of polytetrafluoroethylene as a binder, and 0.1 wt% of calcium carbonate are added to the graphite fluoride. Was mixed by dry mixing with a high-speed stirring mixer, and 50 parts by weight of pure water was added thereto and kneaded to prepare a wet cathode mixture. This wet positive electrode mixture is passed through two rotating rolls that rotate at a constant speed together with a 0.4 mm thick SUS444 expanded metal. Produced. The obtained sheet was cut into a certain size, a mixture peeling portion was provided at the center, and a SUS444 lead was welded to obtain the positive electrode 1.

(ii)負極の作製
金属リチウムにエンボス加工を行ったFe−Niクラッドリードを圧着し、負極2とした。
(Ii) Production of negative electrode An Fe-Ni clad lead embossed on metallic lithium was pressure-bonded to form negative electrode 2.

(iii)2/3Aサイズのフッ化黒鉛リチウム電池の作製
前記正極1、負極2をポリプロピレン製の微多孔膜セパレータ3を介して渦巻き状に巻き取り、これを2/3Aサイズの負極缶4に装入した。そして、前記負極缶4に、γーブチルラクトンにホウフッ化リチウムを1mol/l溶解させた非水電解液を注液し、その後封口して円筒形電池を作製し実施例1の電池とした。
(Iii) Manufacture of 2 / 3A size fluorinated graphite lithium battery The positive electrode 1 and the negative electrode 2 are wound in a spiral shape via a polypropylene microporous membrane separator 3, and this is wound into a 2 / 3A size negative electrode can 4 I was charged. Then, a non-aqueous electrolyte solution in which 1 mol / l of lithium borofluoride was dissolved in γ-butyllactone was poured into the negative electrode can 4, and then sealed to produce a cylindrical battery, whereby a battery of Example 1 was obtained.

(実施例2)
炭酸カルシウムを1.0wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例2の電池とした。
(Example 2)
A battery was produced in the same manner as the battery of Example 1, except that 1.0 wt% of calcium carbonate was added.

(実施例3)
炭酸カルシウムを2.0wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例3の電池とした。
(Example 3)
A battery was produced in the same manner as the battery of Example 1 except that 2.0 wt% of calcium carbonate was added.

(実施例4)
炭酸カルシウムを3.0wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例4の電池とした。
Example 4
A battery was produced in the same manner as the battery of Example 1, except that 3.0 wt% of calcium carbonate was added.

(比較例1)
炭酸カルシウムを添加しない以外は、実施例1の電池と同様にして電池を作製し、これを比較例1の電池とした。
(Comparative Example 1)
A battery was produced in the same manner as the battery of Example 1 except that calcium carbonate was not added, and this was used as the battery of Comparative Example 1.

(電池の評価)
以上のようにして作製した各電池について、負荷抵抗1kΩで放電深度75%まで放電後、100℃−2週間の保存試験を行い、この保存試験の前後で電池の内部抵抗を測定し、その結果を表1に示す。
(Battery evaluation)
Each battery produced as described above was subjected to a storage test at 100 ° C. for 2 weeks after discharging to a discharge depth of 75% at a load resistance of 1 kΩ, and the internal resistance of the battery was measured before and after this storage test. Is shown in Table 1.

Figure 2006164723
Figure 2006164723

表1からわかるように、本発明の実施例にかかる電池はいずれも、比較例の電池に比べて保存試験後の内部抵抗が安定しており、部分放電後の高温保存特性の向上が見られる。これは、フッ化黒鉛原料中に含まれる遊離フッ素や放電後に生成する遊離フッ素が炭酸カルシウムと反応しフッ化カルシウムとして正極中に固定化されるため、遊離フッ素が電解液中に溶出せず負極上にフッ化リチウムを形成しないことによるものと推察される。   As can be seen from Table 1, in all the batteries according to the examples of the present invention, the internal resistance after the storage test is more stable than the battery of the comparative example, and the high-temperature storage characteristics after partial discharge are improved. . This is because free fluorine contained in the fluorinated graphite raw material and free fluorine generated after discharge reacts with calcium carbonate and is fixed in the positive electrode as calcium fluoride, so that the free fluorine does not elute into the electrolyte and the negative electrode This is presumably due to the fact that lithium fluoride is not formed thereon.

本発明のカルシウム塩の量は、フッ化黒鉛に対して0.1〜2.0 wt%含むようにするとより好ましい効果が得られた。3.0wt%添加した場合、カルシウム塩自体が抵抗体となり、保存試験前の内部抵抗が高くなる傾向がある。また、保存後の内部抵抗上昇も大きいため、保存前の添加量としては2.0wt%以下が望ましい。   A more preferable effect was obtained when the amount of the calcium salt of the present invention was 0.1 to 2.0 wt% with respect to the fluorinated graphite. When 3.0 wt% is added, the calcium salt itself becomes a resistor, and the internal resistance before the storage test tends to increase. In addition, since the increase in internal resistance after storage is large, the addition amount before storage is preferably 2.0 wt% or less.

(実施例5)
炭酸カルシウムの代わりに硫酸カルシウムを0.1wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例5の電池とした。
(Example 5)
A battery was produced in the same manner as the battery of Example 1 except that 0.1 wt% of calcium sulfate was added instead of calcium carbonate, and this was used as the battery of Example 5.

(実施例6)
炭酸カルシウムの代わりに硝酸カルシウムを0.1wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例6の電池とした。
(Example 6)
A battery was made in the same manner as the battery of Example 1, except that 0.1 wt% of calcium nitrate was added instead of calcium carbonate, and this was used as the battery of Example 6.

(実施例7)
炭酸カルシウムの代わりにリン酸カルシウムを0.1wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例7の電池とした。
(Example 7)
A battery was produced in the same manner as the battery of Example 1 except that 0.1 wt% of calcium phosphate was added instead of calcium carbonate, and this was used as the battery of Example 7.

(実施例8)
炭酸カルシウムの代わりに酢酸カルシウムを0.1wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例8の電池とした。
(Example 8)
A battery was made in the same manner as the battery of Example 1 except that 0.1 wt% of calcium acetate was added instead of calcium carbonate, and this was used as the battery of Example 8.

(実施例9)
炭酸カルシウムの代わりに水酸化カルシウムを0.1wt%添加する以外は、実施例1の電池と同様にして電池を作製し、これを実施例9の電池とした。
Example 9
A battery was made in the same manner as the battery of Example 1 except that 0.1 wt% of calcium hydroxide was added instead of calcium carbonate, and this was made the battery of Example 9.

以上のようにして作製した実施例5〜実施例9の電池について、負荷抵抗1kΩで放電深度75%まで放電後、100℃−2週間の保存試験を行い、この保存試験の前後で電池の内部抵抗を測定し、その結果を表2に示す。   The batteries of Examples 5 to 9 produced as described above were subjected to a storage test at 100 ° C. for 2 weeks after discharging to a discharge depth of 75% with a load resistance of 1 kΩ, and before and after this storage test, Resistance was measured and the results are shown in Table 2.

Figure 2006164723
Figure 2006164723

表2からわかるように、本発明の実施例にかかる電池はいずれも、比較例1の電池に比べて保存試験後の内部抵抗が安定しており、実施例1の炭酸カルシウムと同様に、部分放電後の高温保存特性の向上が見られる。したがって、硫酸カルシウム等でも同様の効果が得られることが分かる。   As can be seen from Table 2, all of the batteries according to the examples of the present invention have a stable internal resistance after the storage test as compared with the battery of Comparative Example 1, and are similar to the calcium carbonate of Example 1 in part. Improvement in high-temperature storage characteristics after discharge is observed. Therefore, it can be seen that the same effect can be obtained with calcium sulfate or the like.

また、カルシウム塩を電解液中に添加した場合も、正極合剤中に添加した場合と同様に、部分放電後の高温保存結果が良好であった。   In addition, when calcium salt was added to the electrolyte, the result of high-temperature storage after partial discharge was good as in the case of adding it to the positive electrode mixture.

本発明の非水電解液電池は、自動車,産業機器等で高温域で使用される用途に用いられる電池として有用である。   The non-aqueous electrolyte battery of the present invention is useful as a battery for use in a high temperature range in automobiles, industrial equipment and the like.

本発明の実施例にかかる非水電解液電池の断面図Sectional drawing of the non-aqueous electrolyte battery concerning the Example of this invention

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 負極缶
1 Positive electrode 2 Negative electrode 3 Separator 4 Negative electrode can

Claims (3)

金属リチウムあるいはその合金を負極活物質とする負極と、フッ化黒鉛を正極活物質とする正極と、非水電解液を備えた非水電解液電池において、カルシウム塩が正極合剤中あるいは電解液中の少なくとも一方に添加されていることを特徴とする非水電解液電池。 In a non-aqueous electrolyte battery comprising a negative electrode using metallic lithium or an alloy thereof as a negative electrode active material, a positive electrode using fluorinated graphite as a positive electrode active material, and a non-aqueous electrolyte, the calcium salt is contained in the positive electrode mixture or the electrolyte. A nonaqueous electrolyte battery characterized by being added to at least one of them. 前記カルシウム塩がフッ化黒鉛に対し、0.1〜2.0wt%添加されていることを特徴とする請求項1記載の非水電解液電池。 2. The nonaqueous electrolyte battery according to claim 1, wherein the calcium salt is added in an amount of 0.1 to 2.0 wt% with respect to the fluorinated graphite. 前記カルシウム塩が、炭酸カルシウム、硫酸カルシウム、硝酸カルシウム、リン酸カルシウム、酢酸カルシウム、および水酸化カルシウムからなる群より選ばれる少なくとも一つが添加されていることを特徴とする請求項1記載の非水電解液電池。 2. The nonaqueous electrolytic solution according to claim 1, wherein at least one selected from the group consisting of calcium carbonate, calcium sulfate, calcium nitrate, calcium phosphate, calcium acetate, and calcium hydroxide is added to the calcium salt. battery.
JP2004353927A 2004-12-07 2004-12-07 Nonaqueous electrolyte battery Pending JP2006164723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353927A JP2006164723A (en) 2004-12-07 2004-12-07 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353927A JP2006164723A (en) 2004-12-07 2004-12-07 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2006164723A true JP2006164723A (en) 2006-06-22

Family

ID=36666492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353927A Pending JP2006164723A (en) 2004-12-07 2004-12-07 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2006164723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200681A (en) * 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd Positive electrode for lithium primary battery and lithium primary battery using it
JP2009146847A (en) * 2007-12-18 2009-07-02 Panasonic Corp Graphite fluoride lithium primary battery
JP2009170287A (en) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018125210A (en) * 2017-02-02 2018-08-09 株式会社Gsユアサ Nonaqueous electrolyte storage device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200681A (en) * 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd Positive electrode for lithium primary battery and lithium primary battery using it
JP2009146847A (en) * 2007-12-18 2009-07-02 Panasonic Corp Graphite fluoride lithium primary battery
JP2009170287A (en) * 2008-01-17 2009-07-30 Mitsubishi Chemicals Corp Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2018125210A (en) * 2017-02-02 2018-08-09 株式会社Gsユアサ Nonaqueous electrolyte storage device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP4068796B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2011181427A (en) Lithium secondary battery
WO2018163485A1 (en) Alkaline dry-cell battery
JP5777870B2 (en) Method for producing anode material for lithium secondary battery
JP5583270B2 (en) Lithium primary battery
WO2018168995A1 (en) Electrode provided with alloy layer of magnesium and bismuth, and magnesium secondary battery
JP5533110B2 (en) Lithium primary battery
JP2003077459A (en) Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery
JP2006073259A (en) Positive electrode active material and water dissolving lithium secondary battery
JP2006164723A (en) Nonaqueous electrolyte battery
JP4867145B2 (en) Non-aqueous electrolyte battery
JP2005216502A (en) Lithium ion secondary battery
JP6986710B2 (en) Lithium primary battery and smart meter
JP2003217579A (en) Lithium primary battery
JP5278332B2 (en) Electrolytic manganese dioxide for lithium primary battery, production method thereof and lithium primary battery using the same
JP2009176598A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JP2004127545A (en) Lithium battery
JP2009152093A (en) Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the positive electrode
JP2006172991A (en) Negative electrode active material, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP5002933B2 (en) Method for producing non-aqueous electrolyte battery
JP2005085526A (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JPH08287906A (en) Hydrogen storage alloy electrode