JP2003077459A - Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery - Google Patents

Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery

Info

Publication number
JP2003077459A
JP2003077459A JP2001261722A JP2001261722A JP2003077459A JP 2003077459 A JP2003077459 A JP 2003077459A JP 2001261722 A JP2001261722 A JP 2001261722A JP 2001261722 A JP2001261722 A JP 2001261722A JP 2003077459 A JP2003077459 A JP 2003077459A
Authority
JP
Japan
Prior art keywords
positive electrode
particle size
lithium secondary
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001261722A
Other languages
Japanese (ja)
Inventor
Kenichi Kizu
賢一 木津
Takeshi Moriuchi
健 森内
Shunichiro Ose
俊一郎 大瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2001261722A priority Critical patent/JP2003077459A/en
Publication of JP2003077459A publication Critical patent/JP2003077459A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a lithium secondary battery that can realize a lithium secondary battery that shows excellent cold temperature and rate characteristics and has a large capacity, and is superior in safety. SOLUTION: This is a positive electrode active material for a lithium secondary battery that is made of 60-95 wt.% of LiCoO2 having an average particle size in the range of 10-30 μm and 5-40 wt.% of LiNiO2 , LiNi1-x Cox O2 (0<x<1) or LiNi1-x-y Cox Aly O2 (0<x<1-y, 0<y<0.2) that has a smaller average particle size than the average particle size of LiCoO2 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
の正極活物質および正極、並びにリチウム二次電池に関
する。
TECHNICAL FIELD The present invention relates to a positive electrode active material and a positive electrode for a lithium secondary battery, and a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は起電力、電池容量の
点で優れ、また、ニッカド電池等に比べて高エネルギー
密度、高電圧である等有利な点が多く、近年、益々注目
されている。特に、携帯電話やノート型パソコンといっ
た携帯機器の駆動源としてリチウム二次電池の採用が急
速に進んでいる。このため、斯界ではより高性能の製品
を開発すべく、その構成材料についての研究が盛んに行
われている。
2. Description of the Related Art Lithium secondary batteries are excellent in electromotive force and battery capacity, and have many advantages such as higher energy density and higher voltage than nickel-cadmium batteries. . In particular, the adoption of lithium secondary batteries as a drive source for mobile devices such as mobile phones and laptop computers is rapidly advancing. For this reason, in the field, in order to develop higher performance products, researches on their constituent materials are actively conducted.

【0003】リチウム二次電池の正極に用いる活物質と
しては、他のリチウム−遷移金属複合酸化物に比べて化
学的に安定で、取り扱いが容易である点から、LiCo
2が最も多く実用に供されている。なかでも、粒径の
大きなLiCoO2は異常反応を起こしにくく、電池の
安全性の点から、好ましいとされている。しかし、活物
質の粒径を大きくすると、反応面積が小さくなり、活物
質内でのイオンの移動距離も長くなるので、電池の低温
でのレート特性(以下、低温/レート特性とも称する)
が低下するという問題点がある。そこで、本発明者等
は、平均粒径が10μm以上の大きなLiCoO2を熱
処理したり、当該LiCoO2とともに使用する導電材
を改良したり、また、正極(電極)の作成方法を改良し
たりすることで、低温/レート特性を改善する対策を図
ってきた。しかし、リチウム二次電池の普及に伴い、近
時の電池の高容量化の要求は止まるところがなく、その
ために活物質の充填密度を高める(すなわち、集電体上
に設ける活物質、導電材および結着剤を含む合材の層の
充填密度を高める)ことによって正極の高容量化を図っ
ているが、正極の活物質の充填密度を高くしていくと、
低温/レート特性が低下するので(特に、低温での放電
開始初期に急激に電圧が落ち込むという現象が生じ
る。)、電池の高容量化と低温/レート特性を両立する
ための新たな対策が必要になっている。
As an active material used for the positive electrode of a lithium secondary battery, LiCo is more stable than other lithium-transition metal composite oxides because it is chemically stable and easy to handle.
O 2 is most practically used. Among them, LiCoO 2 having a large particle size is considered to be preferable from the viewpoint of battery safety because it hardly causes an abnormal reaction. However, when the particle size of the active material is increased, the reaction area is decreased and the migration distance of ions within the active material is also increased. Therefore, the rate characteristic at low temperature of the battery (hereinafter, also referred to as low temperature / rate characteristic)
There is a problem in that Therefore, the inventors of the present invention heat-treat large LiCoO 2 having an average particle size of 10 μm or more, improve the conductive material used with the LiCoO 2 and improve the method for producing the positive electrode (electrode). Therefore, measures have been taken to improve the low temperature / rate characteristics. However, with the widespread use of lithium secondary batteries, the demand for higher capacity of batteries in recent years has never stopped, and therefore the packing density of the active material is increased (that is, the active material provided on the current collector, the conductive material, and The packing capacity of the positive electrode is increased by increasing the packing density of the layer of the mixture containing the binder). However, when the packing density of the positive electrode active material is increased,
Since the low temperature / rate characteristics deteriorate (especially, the phenomenon that the voltage drops sharply at the beginning of discharge at low temperatures), new measures are required to achieve both high battery capacity and low temperature / rate characteristics. It has become.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記事情に
鑑み、高容量で、安全性に優れ、しかも、良好な低温/
レート特性を示すリチウム二次電池を実現し得るリチウ
ム二次電池用の正極活物質および正極を提供することを
目的とする。また、本発明は、高容量で、安全性に優
れ、しかも、良好な低温/レート特性を示すリチウム二
次電池を提供することを目的とする。
In view of the above circumstances, the present invention has a high capacity, excellent safety, and excellent low temperature / temperature.
An object of the present invention is to provide a positive electrode active material for a lithium secondary battery and a positive electrode that can realize a lithium secondary battery exhibiting rate characteristics. It is another object of the present invention to provide a lithium secondary battery having a high capacity, excellent safety, and good low temperature / rate characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、鋭意研究した結果、正極活物質として、
比較的大粒径のLiCoO2に、比較的小粒径のLiN
iO2、LiNi1-xCox2(0<x<1)またはLi
Ni1-x-yCoxAly2(0<x<1−y、0<y<
0.2)を特定量配合することにより、正極(電池)を
高容量化しても、低温/レート特性の低下が生じにくく
なることを知見し、該知見に基づいて、本発明を完成さ
せた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, as a positive electrode active material,
LiCoO 2 with a relatively large particle size and LiN with a relatively small particle size
iO 2 , LiNi 1-x Co x O 2 (0 <x <1) or Li
Ni 1-xy Co x Al y O 2 (0 <x <1-y, 0 <y <
It was found that even if the positive electrode (battery) has a high capacity, the low temperature / rate characteristics are less likely to be deteriorated by adding 0.2) in a specific amount, and the present invention has been completed based on the finding. .

【0006】すなわち、本発明の構成は以下の通りであ
る。 (1)平均粒径が10〜30μmの範囲内にあるLiC
oO260〜95重量%と、当該LiCoO2の平均粒径
よりも平均粒径が小さいLiNiO2、LiNi 1-xCo
x2(0<x<1)またはLiNi1-x-yCoxAly2
(0<x<1−y、0<y<0.2)5〜40重量%と
からなるリチウム二次電池用の正極活物質。 (2)LiCoO2の平均粒径と、LiNiO2、LiN
1-xCox2(0<x<1)またはLiNi1-x-yCo
xAly2(0<x<1−y、0<y<0.2)の平均
粒径との差が5μm以上である上記(1)記載のリチウ
ム二次電池用の正極活物質。 (3)LiNiO2、LiNi1-xCox2(0<x<
1)またはLiNi1-x-yCoxAly2(0<x<1−
y、0<y<0.2)の平均粒径が0.1μm以上であ
る上記(1)または(2)記載のリチウム二次電池用の
正極活物質。 (4)上記(1)〜(3)のいずれかに記載の正極活物
質を含むリチウム二次電池用の正極。 (5)上記(4)記載の正極を有するリチウム二次電
池。
That is, the structure of the present invention is as follows.
It (1) LiC having an average particle size within the range of 10 to 30 μm
oO260 to 95 wt% and the LiCoO2Average particle size of
LiNiO with smaller average particle size2, LiNi 1-xCo
xO2(0 <x <1) or LiNi1-xyCoxAlyO2
(0 <x <1-y, 0 <y <0.2) 5 to 40% by weight
A positive electrode active material for a lithium secondary battery. (2) LiCoO2Average particle size of LiNiO2, LiN
i1-xCoxO2(0 <x <1) or LiNi1-xyCo
xAlyO2Average of (0 <x <1-y, 0 <y <0.2)
Lithiu according to the above (1), wherein the difference from the particle size is 5 μm or more.
Positive electrode active material for secondary batteries. (3) LiNiO2, LiNi1-xCoxO2(0 <x <
1) or LiNi1-xyCoxAlyO2(0 <x <1-
The average particle size of y, 0 <y <0.2) is 0.1 μm or more.
For the lithium secondary battery according to (1) or (2) above
Positive electrode active material. (4) The positive electrode active material according to any one of (1) to (3) above.
Positive electrode for lithium secondary battery including quality. (5) Lithium secondary battery having the positive electrode described in (4) above.
pond.

【0007】[0007]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明のリチウム二次電池用の正極活物質は、平均粒径
が10〜30μmの範囲内にあるLiCoO260〜9
5重量%と、当該LiCoO2の平均粒径よりもその平
均粒径が小さいLiNiO2、LiNi1-xCox2(0
<x<1)またはLiNi1-x-yCoxAly2(0<x
<1−y、0<y<0.2)5〜40重量%とからなる
ことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The positive electrode active material for a lithium secondary battery according to the present invention has an average particle diameter of 10 to 30 μm, LiCoO 2 60 to 9
5% by weight, the average particle size of which is smaller than that of LiCoO 2 , LiNiO 2 , LiNi 1-x Co x O 2 (0
<X <1) or LiNi 1-xy Co x Al y O 2 (0 <x
<1-y, 0 <y <0.2) 5 to 40% by weight.

【0008】かかる特徴を有する本発明の正極活物質を
用いた正極をリチウム二次電池に組み込むことで、低温
での放電開始初期に急激に電圧が落ち込むという現象を
生じることなく、その後も良好な放電が継続され得るリ
チウム二次電池が得られる。また、このようにして得ら
れる電池は優れた安全性を有する。
By incorporating a positive electrode using the positive electrode active material of the present invention having the above characteristics into a lithium secondary battery, a phenomenon in which the voltage suddenly drops at the beginning of discharge at a low temperature does not occur, and good results are obtained thereafter. A lithium secondary battery that can be continuously discharged is obtained. In addition, the battery thus obtained has excellent safety.

【0009】本発明の正極活物質を使用することで、良
好な低温/レート特性を示すリチウム二次電池が得られ
るのは、本発明者等による多くの実験によって見出した
ことであるが、その理由は以下のように考えている。
It has been found by many experiments by the present inventors that a lithium secondary battery exhibiting good low temperature / rate characteristics can be obtained by using the positive electrode active material of the present invention. The reason is as follows.

【0010】正極は、通常、集電体上に、活物質と導電
材と結着剤とを含む合材の層(以下、合材層ともいう)
を形成することによって形成される。かかる合材層内に
おいて、平均粒径が10〜30μmの範囲内にあるLi
CoO2は比較的大粒径であるため、反応面積が小さい
上、当該物質内でのイオンの移動距離も長くなり、大電
流が流れると、イオンの濃度勾配が形成されて見かけ上
の電位が低くなってしまう。しかし、この時に、かかる
平均粒径が10〜30μmのLiCoO2の周囲に、当
該LiCoO2よりもその平均粒径が小さいLiNi
2、LiNi1-xCox2(0<x<1)またはLiN
1-x-yCoxAly2(0<x<1−y、0<y<0.
2)が存在していることにより、当該LiNiO2、L
iNi1-xCox2またはLiNi1-x-yCoxAly2
は粒径が小さく、それ自体の反応性が高いことから、こ
れから積極的にイオンの挿入が行われ、正極の電圧低下
を防止することができる。この後、長時間放電を行え
ば、LiNiO2、LiNi1-xCox2またはLiNi
1-x-yCoxAly2の電位低下が生じることとなるが、
そのころには、正極の内部抵抗による発熱で電解液やL
iCoO2中におけるイオンの移動が活発になるため、
放電を支障なく継続することができる。また、放電を途
中で打ち切った場合に、LiCoO2とLiNiO2、L
iNi1-xCox2またはLiNi1-x-yCoxAly2
との電位差によって、大粒径のLiCoO2が小粒径の
LiNiO2、LiNi1-xCox2またはLiNi
1-x-yCoxAly2を充電して、かかる小粒径のLiN
iO2、LiNi1-xCox2またはLiNi1-x-yCox
Aly2の電位が回復するため、再び放電を開始した際
にも満充電のときと同様の機構で良好な低温/レート特
性が得られる。
The positive electrode is usually a layer of a mixture material containing an active material, a conductive material and a binder on a current collector (hereinafter, also referred to as a mixture material layer).
Is formed by forming. In such a mixture layer, Li having an average particle size within the range of 10 to 30 μm
Since CoO 2 has a relatively large particle size, the reaction area is small, and the migration distance of ions within the substance is long, so that when a large current flows, a concentration gradient of ions is formed and an apparent potential is increased. It will be low. However, at this time, around the LiCoO 2 having an average particle diameter of 10 to 30 μm, LiNi having an average particle diameter smaller than that of LiCoO 2 is used.
O 2 , LiNi 1-x Co x O 2 (0 <x <1) or LiN
i 1-xy Co x Al y O 2 (0 <x <1-y, 0 <y <0.
2) is present, the LiNiO 2 , L
iNi 1-x Co x O 2 or LiNi 1-xy Co x Al y O 2
Since has a small particle size and has high reactivity by itself, it is possible to prevent the voltage drop of the positive electrode by actively inserting ions. After that, if discharge is performed for a long time, LiNiO 2 , LiNi 1-x Co x O 2 or LiNi
Although the potential drop of 1-xy Co x Al y O 2 occurs,
At that time, heat generated by the internal resistance of the positive electrode caused electrolyte and L
Since the movement of ions in iCoO 2 becomes active,
The discharge can be continued without any trouble. In addition, when the discharge is stopped midway, LiCoO 2 , LiNiO 2 , L
iNi 1-x Co x O 2 or LiNi 1-xy Co x Al y O 2
Depending on the potential difference between the large particle size LiCoO 2 and the small particle size LiNiO 2 , LiNi 1-x Co x O 2 or LiNi
By charging 1-xy Co x Al y O 2 , LiN having such a small particle size is charged.
iO 2 , LiNi 1-x Co x O 2 or LiNi 1-xy Co x
Since the potential of Al y O 2 is restored, good low temperature / rate characteristics can be obtained even when the discharge is started again by the same mechanism as in the case of full charge.

【0011】当該本発明の正極活物質において、LiC
oO2として平均粒径が10〜30μmの範囲内にある
ものを使用するのは、電池の安全性の確保と、正極活物
質の正極中での充填密度の向上(つまり、正極の一定体
積当たりの容量の向上)のためである。すなわち、平均
粒径が10μm以上であれば電池の安全性が良好となる
が、平均粒径が過大になると、LiCoO2の電気抵抗
が大きくなり過ぎて、レート特性の低下、特に低温での
レート特性の低下を起こしやすくなってしまう。当該L
iCoO2は平均粒径が12.5〜27.5μmの範囲
内にあるもを使用するのが好ましく、平均粒径が15〜
25μmの範囲内にあるものを使用するのが特に好まし
い。なお、本発明で用いるLiCoO2は、(平均粒径
×0.25)〜(平均粒径×2.5)の粒径範囲内に全
体の85〜95体積%の粒子が含まれるものである。
In the positive electrode active material of the present invention, LiC
The use of oO 2 having an average particle size within the range of 10 to 30 μm is to ensure the safety of the battery and improve the packing density of the positive electrode active material in the positive electrode (that is, per a certain volume of the positive electrode). This is because of the improvement in capacity). That is, if the average particle diameter is 10 μm or more, the safety of the battery is good, but if the average particle diameter is too large, the electric resistance of LiCoO 2 becomes too large, and the rate characteristics deteriorate, especially at low temperature. The characteristics tend to deteriorate. The L
It is preferable to use iCoO 2 having an average particle diameter in the range of 12.5 to 27.5 μm, and an average particle diameter of 15 to
It is particularly preferable to use one having a size in the range of 25 μm. The LiCoO 2 used in the present invention contains 85 to 95% by volume of the whole particles within the particle size range of (average particle size × 0.25) to (average particle size × 2.5). .

【0012】一方、LiNiO2、LiNi1-xCox2
またはLiNi1-x-yCoxAly2は、その平均粒径が
LiCoO2の平均粒径(10〜30μm範囲内から選
ばれる)よりも小さいものが使用されるが、本発明の効
果が顕著に現れるには、その平均粒径がLiCoO2
平均粒径よりも5μm以上小さいものが好ましく、10
μm以上小さいものがより好ましい(すなわち、LiC
oO2の平均粒径と、LiNiO2、LiNi1-xCox
2またはLiNi1-x-yCoxAly2の平均粒径との差
が5μm以上であるのが好ましく、10μm以上である
のがより好ましい。)。また、平均粒径が小さすぎる
と、過熱、ショート等の異常時の反応性が高く、電池の
安全性が低下する傾向となるので、LiNiO2、Li
Ni1-xCo x2またはLiNi1-x-yCoxAly2
平均粒径は0.1μm以上であるのが好ましく、特に好
ましくは1μm以上である。
On the other hand, LiNiO2, LiNi1-xCoxO2
Or LiNi1-xyCoxAlyO2Has an average particle size of
LiCoO2Average particle size (selected from the range of 10 to 30 μm
However, the effect of the present invention is
In order for the fruits to appear remarkably, the average particle size should be LiCoO 2.2of
It is preferable that the average particle size is 5 μm or more smaller than 10
It is more preferable that it is smaller than μm (that is, LiC
oO2Average particle size of LiNiO2, LiNi1-xCoxO
2Or LiNi1-xyCoxAlyO2Difference from the average particle size
Is preferably 5 μm or more, and 10 μm or more
Is more preferable. ). Also, the average particle size is too small
And high reactivity during abnormal conditions such as overheating and short circuit,
Since the safety tends to decrease, LiNiO2, Li
Ni1-xCo xO2Or LiNi1-xyCoxAlyO2of
The average particle size is preferably 0.1 μm or more, and particularly preferably.
It is preferably 1 μm or more.

【0013】なお、本発明で用いるLiNiO2、Li
Ni1-xCox2またはLiNi1-x- yCoxAly
2は、通常、(平均粒径×0.25)〜(平均粒径×
2.5)の粒径範囲内に全体の85〜95体積%の粒子
が含まれるものが使用される。
Incidentally, LiNiO 2 and Li used in the present invention
Ni 1-x Co x O 2 or LiNi 1-x- y Co x Al y O
2 is usually (average particle size x 0.25) to (average particle size x
Those having 85 to 95% by volume of the whole particles within the particle size range of 2.5) are used.

【0014】本発明において、LiCoO2と、LiN
iO2、LiNi1-xCox2またはLiNi1-x-yCox
Aly2との配合比は、60〜95重量%[LiCoO
2]:5〜40重量%[LiNiO2、LiNi1-xCox
2またはLiNi1-x-yCoxAly2]であるが、特
に好ましい配合比は85〜70重量%[LiCo
2]:15〜30重量%[LiNiO2、LiNi1-x
Cox2またはLiNi1-x- yCoxAly2]である。
LiCoO2の割合が95重量%を超えると、低温/レ
ート特性が低下する傾向となり、好ましくなく、反対に
LiNiO2、LiNi1-xCox2またはLiNi
1-x-yCoxAly2の割合が40重量%を超えると、電
池の安全性、平均放電電圧等が低下する傾向となり、好
ましくない。
In the present invention, LiCoO 2 and LiN
iO 2 , LiNi 1-x Co x O 2 or LiNi 1-xy Co x
The compounding ratio with Al y O 2 is 60 to 95% by weight [LiCoO 2.
2 ]: 5 to 40% by weight [LiNiO 2 , LiNi 1-x Co x
O 2 or LiNi 1-xy Co x Al y O 2] a but, particularly preferred compounding ratio 85-70 wt% [LiCo
O 2 ]: 15 to 30 wt% [LiNiO 2 , LiNi 1-x
Co x O 2 or LiNi 1-x- y Co x Al y O 2] it is.
When the proportion of LiCoO 2 exceeds 95% by weight, the low temperature / rate characteristics tend to deteriorate, which is not preferable, and conversely LiNiO 2 , LiNi 1-x Co x O 2 or LiNi.
If the proportion of 1-xy Co x Al y O 2 exceeds 40% by weight, the safety of the battery, the average discharge voltage, etc. tend to decrease, which is not preferable.

【0015】本発明で用いるLiCoO2、LiNi
2、LiNi1-xCox2およびLiNi1-x-yCox
y2の平均粒径は、以下の方法で測定される。最初
に、測定対象となる粒状物を、水やエタノールなどの有
機液体に投入し、35kHz〜40kHz程度の超音波
を付与して約2分間分散処理を行う。なお、測定対象と
なる粒状物の量は、分散処理後の分散液のレーザ透過率
(入射光量に対する出力光量の比)が70%〜95%と
なる量とする。次に、この分散液をマイクロトラック粒
度分析計にかけ、レーザー光の散乱により個々の粒状物
の粒径(D1 、D2 、D3 ・・)、および各粒径毎の存
在個数(N1 、N2 、N3 ・・・)を計測する。マイク
ロトラック粒度分析計では、観測された散乱強度分布に
最も近い理論強度になる球形粒子群の粒径分布を算出し
ている。即ち、粒子は、レーザー光の照射によって得ら
れる投影像と同面積の断面円を持つ球体と想定され、こ
の断面円の直径(球相当径)が粒径として計測される。
平均粒径(μm)は、上記で得られた個々の粒子の粒径
(D)と各粒径毎の存在個数(N)とから、下記の式
(1)を用いて算出される。 平均粒径(μm)=(ΣND3 /ΣN) 1/ 3 (1)
LiCoO 2 and LiNi used in the present invention
O 2 , LiNi 1-x Co x O 2 and LiNi 1-xy Co x A
The average particle size of l y O 2 is measured by the following method. First, the granular material to be measured is put into an organic liquid such as water or ethanol, ultrasonic waves of about 35 kHz to 40 kHz are applied, and dispersion treatment is performed for about 2 minutes. The amount of the particulate matter to be measured is such that the laser transmittance (ratio of the output light amount to the incident light amount) of the dispersion liquid after the dispersion treatment is 70% to 95%. Next, this dispersion is applied to a Microtrac particle size analyzer to measure the particle size (D1, D2, D3 ...) Of the individual particles by the scattering of laser light, and the number of existing particles (N1, N2, N3) for each particle size. ...) is measured. The Microtrac particle size analyzer calculates the particle size distribution of the spherical particle group that has the theoretical intensity closest to the observed scattering intensity distribution. That is, the particles are assumed to be spheres having a cross-sectional circle with the same area as the projected image obtained by irradiation with laser light, and the diameter of this cross-sectional circle (sphere equivalent diameter) is measured as the particle diameter.
The average particle size (μm) is calculated from the particle size (D) of the individual particles obtained above and the number of existing particles (N) for each particle size using the following formula (1). Average particle size (μm) = (ΣND 3 / ΣN) 1/3 (1)

【0016】本発明で用いるLiCoO2は、例えば、
以下の方法で作製できる。すなわち、出発原料となるリ
チウム化合物とコバルト化合物を、コバルトとリチウム
との原子比が1:1となるようにそれぞれを秤量して混
合し、その混合物を温度700℃〜1200℃の酸素雰
囲気下で、3時間〜50時間加熱する等して反応させ、
さらに反応して出来たものを粉砕して粒状物とし、該粒
状物から目的の平均粒径となる粒子群を取集する。
LiCoO 2 used in the present invention is, for example,
It can be produced by the following method. That is, a lithium compound as a starting material and a cobalt compound are weighed and mixed so that the atomic ratio of cobalt and lithium is 1: 1 and the mixture is heated under an oxygen atmosphere at a temperature of 700 ° C to 1200 ° C. React by heating for 3 hours to 50 hours,
Further, the reaction product is pulverized into particles, and a group of particles having an intended average particle size is collected from the particles.

【0017】また、LiNiO2、LiNi1-xCox2
(0<x<1)およびLiNi1-x- yCoxAly2(0
<x<1−y、0<y<0.2)についても同様であ
り、LiNiO2においては、出発原料となるリチウム
化合物とニッケル化合物を、ニッケルとリチウムの原子
比が1:1となるようにそれぞれを秤量して混合し、そ
の混合物を温度600℃〜900℃の酸素雰囲気下で、
3時間〜50時間加熱する等して反応させ、さらに反応
して出来たものを粉砕して粒状物とし、粒状物から目的
の平均粒径となる粒子群を取集する。LiNi1-xCox
2(0<x<1)においては、出発原料となるリチウ
ム化合物とニッケル化合物とコバルト化合物とを、リチ
ウムに対して、ニッケルとコバルトの合計量の原子比
(LI:(Ni+Co))が1:1となるようにそれぞ
れを秤量して混合し、その混合物を温度600℃〜90
0℃の酸素雰囲気下で、3時間〜30時間加熱する等し
て反応させ、さらに反応して出来たものを粉砕して粒状
物とし、該粒状物から目的の平均粒径となる粒子群を取
集する。また、LiNi1-x-yCoxAly2(0<x<
1−y、0<y<0.2)においては、LiとNiとC
oとAlの原子比が1:(1−x−y):x:yとなる
ように原料となる化合物を秤量して混合し、その混合物
をLiNiO2と同様に焼成、粉砕し、粒状物から目的
の平均粒径となる粒子群を取集する。
Further, LiNiO 2 , LiNi 1-x Co x O 2
(0 <x <1) and LiNi 1-x- y Co x Al y O 2 (0
The same applies to <x <1-y, 0 <y <0.2). In LiNiO 2 , the lithium compound and the nickel compound, which are the starting materials, are mixed so that the atomic ratio of nickel and lithium is 1: 1. Are weighed and mixed with each other, and the mixture is mixed in an oxygen atmosphere at a temperature of 600 ° C to 900 ° C.
The reaction is carried out by heating for 3 hours to 50 hours, and the reaction product is pulverized into particles, and a group of particles having a desired average particle size is collected from the particles. LiNi 1-x Co x
In O 2 (0 <x <1), the atomic ratio (LI: (Ni + Co)) of the total amount of nickel and cobalt with respect to the lithium compound, the nickel compound, and the cobalt compound, which are the starting materials, is 1 with respect to lithium. Each of them is weighed and mixed so that the ratio becomes 1: 1, and the mixture is heated at a temperature of 600 ° C to 90
The reaction is carried out by heating for 3 hours to 30 hours in an oxygen atmosphere at 0 ° C., and the resulting reaction product is pulverized into granules. From the granules, a group of particles having an intended average particle diameter is obtained. To collect. In addition, LiNi 1-xy Co x Al y O 2 (0 <x <
1-y, 0 <y <0.2), Li, Ni, and C
atomic ratio of o and Al 1: (1-x-y ): x: were weighed and mixed compounds as a raw material so that y, firing the mixture in the same manner as LiNiO 2, was pulverized, granular material To collect a group of particles having an intended average particle size.

【0018】原料となる化合物としては、各金属の水酸
化物、硝酸塩、炭酸塩等が使用できる。また、小粒径の
ものを収率よく得るために、リチウム以外の金属の水溶
性化合物を水に溶解した後、pH調整等によって共沈さ
せ、次に水中にリチウム化合物とともに分散させてスラ
リーとし、噴霧乾燥させる方法を使うこともできる。
As the raw material compound, hydroxides, nitrates, carbonates and the like of each metal can be used. Further, in order to obtain a small particle size in good yield, a water-soluble compound of a metal other than lithium is dissolved in water, co-precipitated by pH adjustment or the like, and then dispersed in water together with the lithium compound to form a slurry. Alternatively, a method of spray drying can be used.

【0019】本発明の正極活物質は、当該活物質と導電
材と結着剤とを含む合材の層を集電体上に設けることに
よって正極中に存在させる。すなわち、本発明のリチウ
ム二次電池用の正極は、集電体上に上記本発明の正極活
物質と導電材と結着剤とを含む合材の層を設けて構成さ
れる。その作製方法は、従来からの一般的な方法、すな
わち、活物質、導電材および結着剤を含むスラリーを調
製し(スラリー調製用の溶媒には、例えば、N−メチル
ピロリドン等が使用される。)、かかるスラリーを集電
体上に塗工、乾燥し、得られた塗膜に圧延処理を施す方
法等が好適である。
The positive electrode active material of the present invention is made to exist in the positive electrode by providing a layer of a mixture containing the active material, a conductive material and a binder on a current collector. That is, the positive electrode for a lithium secondary battery of the present invention is configured by providing a layer of a mixture material containing the positive electrode active material of the present invention, a conductive material and a binder on a current collector. The preparation method is a conventional method, that is, a slurry containing an active material, a conductive material and a binder is prepared (for example, N-methylpyrrolidone is used as a solvent for preparing the slurry. ), And a method in which such a slurry is applied onto a current collector and dried, and the resulting coating film is subjected to a rolling treatment.

【0020】本発明において、LiCoO2と、LiN
iO2、LiNi1-xCox2またはLiNi1-x-yCox
Aly2は、スラリーの調製時に導電材および結着剤等
と共に混練(混合)するだけでもよいが、スラリーの調
製前に両者をリボンブレンダーなど混合機で予め混合し
ておいてもよい。
In the present invention, LiCoO 2 and LiN
iO 2 , LiNi 1-x Co x O 2 or LiNi 1-xy Co x
Al y O 2 is may be simply kneaded (mixed) with conductive material and a binder or the like at the time of slurry preparation, both prior to preparation of the slurry may be pre-mixed in a mixer such as a ribbon blender.

【0021】本発明の正極に用いる、導電材としては、
人造または天然の黒鉛類や、アセチレンブラック、オイ
ルファーネスブラック、イクストラコンダクティブファ
ーネスブラックなどのカーボンブラックなどの粒状の炭
素材(「粒状」とは、鱗片状、球状、擬似球状、塊状、
ウィスカー状などが含まれ、特に限定されない。)が挙
げられる。また、結着剤としては、従来からリチウム二
次電池の正極の活物質層に使用されている結着剤を支障
なく使用でき、例えば、ポリテトラフルオロエチレン
(PTFE)、ポリフッ化ビニリデン(PVdF)、ポ
リエチレン、エチレン−プロピレン−ジエン共重合体
(EPDM)等が使用される。
As the conductive material used for the positive electrode of the present invention,
Artificial or natural graphite and granular carbonaceous materials such as acetylene black, oil furnace black, carbon black such as Ixtra conductive furnace black ("granular" means scaly, spherical, pseudo-spherical, massive,
The whiskers are included and are not particularly limited. ) Is mentioned. Further, as the binder, a binder that has been conventionally used in the active material layer of the positive electrode of a lithium secondary battery can be used without any problem, and examples thereof include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF). , Polyethylene, ethylene-propylene-diene copolymer (EPDM) and the like are used.

【0022】集電体としては、アルミニウム、アルミニ
ウム合金、チタンなどの導電性金属の、厚さ10〜10
0μm程度、特に15〜50μm程度の箔や穴あき箔、
厚さ25〜300μm程度、特に30〜150μm程度
のエキスパンドメタルなどが好ましい。
As the current collector, a conductive metal such as aluminum, aluminum alloy or titanium, having a thickness of 10 to 10 is used.
Foil or perforated foil of about 0 μm, especially about 15 to 50 μm,
Expanded metal or the like having a thickness of about 25 to 300 μm, particularly about 30 to 150 μm is preferable.

【0023】集電体上に設ける合材層において、導電材
の使用量は活物質100重量部当たり1〜10重量部程
度が好ましく、特に好ましくは4〜7重量部程度であ
る。また、結着剤の使用量は、活物質100重量部当た
り1〜10重量部程度、好ましくは2〜5重量部程度で
ある。
In the composite material layer provided on the current collector, the amount of the conductive material used is preferably about 1 to 10 parts by weight, and particularly preferably about 4 to 7 parts by weight, per 100 parts by weight of the active material. The amount of the binder used is about 1 to 10 parts by weight, preferably about 2 to 5 parts by weight, per 100 parts by weight of the active material.

【0024】正極を高容量化するには、集電体上に設け
る活物質、導電材および結着剤を含む合材層の充填密度
を高める必要がある。すなわち、合材層中の空隙を少な
くすることが重要である。このため、合材層の作製時、
最終段階で圧延処理を行い、合材層中の空隙を減少させ
る。本発明の正極においては、合材層における合材の充
填密度は3.0〜3.6g/cm3であることが好まし
く、特に好ましくは3.3〜3.5g/cm3である。
すなわち、充填密度が3.0g/cm3より小さいと、
正極の容量が十分に確保されにくく、電池の高容量化が
不十分となる場合があり、また、3.6g/cm3より
大きくなると、正極(合材層)に電解液が十分量保持さ
れにくく、低温/レート特性が低下したり、さらには低
温/レート特性の低下とともに容量低下を生じる場合が
ある。
In order to increase the capacity of the positive electrode, it is necessary to increase the packing density of the composite material layer provided on the current collector, the active material, the conductive material and the binder. That is, it is important to reduce the voids in the mixture layer. Therefore, when the composite material layer is produced,
A rolling process is performed at the final stage to reduce voids in the composite material layer. In the positive electrode of the present invention, the packing density of the mixture material in the mixture layer is preferably from 3.0~3.6g / cm 3, particularly preferably 3.3~3.5g / cm 3.
That is, if the packing density is less than 3.0 g / cm 3 ,
If the capacity of the positive electrode is not sufficiently secured, the capacity of the battery may not be sufficiently increased. If the capacity is more than 3.6 g / cm 3 , the positive electrode (composite material layer) may retain a sufficient amount of electrolytic solution. In some cases, the low temperature / rate characteristics may be deteriorated, and further, the capacity may be reduced together with the deterioration of the low temperature / rate characteristics.

【0025】ここで充填密度(g/cm3)とは、正極
における合材の単位体積当たりの重量であり、集電体上
の単位面積当り合剤の存在量(g/cm2)を求め、当
該合剤の存在量(g/cm2)を合剤層の平均厚み(c
m)で割ることによって求められる。
Here, the packing density (g / cm 3 ) is the weight per unit volume of the mixture in the positive electrode, and the amount (g / cm 2 ) of the mixture per unit area on the current collector is determined. , The existing amount (g / cm 2 ) of the mixture is determined by the average thickness (c
It is calculated by dividing by m).

【0026】なお、本発明の正極において、合材層の厚
み(圧延処理後)は40〜100μmが好ましく、特に
好ましくは50〜80μmである。
In the positive electrode of the present invention, the thickness of the composite material layer (after rolling treatment) is preferably 40 to 100 μm, particularly preferably 50 to 80 μm.

【0027】本発明の正極を使用してリチウム二次電池
を構成する場合、負極、電解液、セパレータ等の負極以
外の電池の構成要素は特に限定されず、公知のものを常
法に従って使用することができる。
When a lithium secondary battery is constructed using the positive electrode of the present invention, the components of the battery other than the negative electrode such as the negative electrode, the electrolytic solution and the separator are not particularly limited, and known ones can be used according to a conventional method. be able to.

【0028】負極は集電体上に、活物質および結着剤を
含む合材の層が形成されて構成されるが、活物質として
は、各種黒鉛材、カーボンブラック、非晶質炭素材(ハ
ードカーボン、ソフトカーボン)、活性炭等の公知のリ
チウム二次電池の負極用の活物質として使用されている
粒状の炭素材を使用できる。これらのうちでも、電池の
放電特性をより向上させる観点からは、黒鉛化炭素が好
ましい。該粒状の炭素材の粒形状は特に限定されず、鱗
片状、球状、擬似球状、塊状、ウィスカー状等のいずれ
でもよい。
The negative electrode is constructed by forming a layer of a mixture material containing an active material and a binder on a current collector. As the active material, various graphite materials, carbon black and amorphous carbon materials ( Granular carbon materials such as hard carbon, soft carbon) and activated carbon, which are used as an active material for a negative electrode of a known lithium secondary battery, can be used. Of these, graphitized carbon is preferable from the viewpoint of further improving the discharge characteristics of the battery. The particle shape of the granular carbon material is not particularly limited, and may be scale-like, spherical, pseudo-spherical, lump-like, whisker-like, or the like.

【0029】また、黒鉛化炭素においては、粒状物以外
に繊維状のものを用いることができ、この場合、直線状
のものでも、カールしたものでもよい。かかる繊維状の
黒鉛化炭素の大きさは、特に限定されないが、平均繊維
長が1〜100μmが好ましく、3〜50μmが特に好
ましい。また、平均繊維径が0.5〜15μmが好まし
く、1〜15μmが特に好ましく、5〜10μmがとり
わけ好ましい。また、この時のアスペクト比(平均繊維
長/平均繊維径)は1〜5であるのが好ましく、3〜5
が特に好ましい。
As the graphitized carbon, fibrous ones may be used in addition to the granular ones, and in this case, straight or curled ones may be used. The size of the fibrous graphitized carbon is not particularly limited, but the average fiber length is preferably 1 to 100 μm, particularly preferably 3 to 50 μm. The average fiber diameter is preferably 0.5 to 15 μm, particularly preferably 1 to 15 μm, particularly preferably 5 to 10 μm. The aspect ratio (average fiber length / average fiber diameter) at this time is preferably 1 to 5, and 3 to 5
Is particularly preferable.

【0030】かかる繊維状の黒鉛化炭素の大きさ(繊維
径、繊維長)は、電子顕微鏡を用いて測定できる。すな
わち、視野に繊維が20本以上入るよう倍率を設定して
電子顕微鏡写真を撮影し、写真に写った各繊維の繊維径
および繊維長をノギス等で測定することで行うことがで
きる。なお、繊維長の測定は、繊維が直線状の場合であ
れば、一端と他端との最短距離を測定することにより行
えば良い。但し、繊維がカール等している場合であれ
ば、繊維上の最も互いに離れる任意の二点を取り、この
二点間の距離を測定し、これを繊維長とすれば良い。な
お、平均繊維径、平均繊維長さは測定個数の個数平均値
である。
The size (fiber diameter, fiber length) of the fibrous graphitized carbon can be measured by using an electron microscope. That is, the magnification can be set so that 20 or more fibers are included in the visual field, an electron micrograph is taken, and the fiber diameter and fiber length of each fiber shown in the photo can be measured with a caliper or the like. The fiber length may be measured by measuring the shortest distance between one end and the other end if the fiber is linear. However, if the fibers are curled or the like, it is sufficient to take any two points on the fiber that are most distant from each other, measure the distance between these two points, and use this as the fiber length. The average fiber diameter and the average fiber length are number average values of the measured numbers.

【0031】結着剤には、従来からリチウム二次電池の
負極の活物質層に使用されている結着剤、例えば、ポリ
テトラフルオロエチレン(PTFE)、ポリフッ化ビニ
リデン(PVdF)等のフッ素樹脂、エチレン−プロピ
レン−ジエン共重合体(EPDM)、スチレン−ブタジ
エンゴム(SBR)、カルボキシメチルセルロース(C
MC)等の高分子材料が使用される。
The binder is a binder that has been conventionally used in the active material layer of the negative electrode of a lithium secondary battery, for example, a fluororesin such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF). , Ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethyl cellulose (C
A polymer material such as MC) is used.

【0032】負極の合材層中の活物質の量(集電体上の
単位面積当りの活物質の存在量)は、通常、3〜30m
g/cm2程度、好ましくは5〜20mg/cm2程度で
ある。合材層全体における活物質と結着剤の割合は重量
比(活物質:結着剤)で一般に80:20〜98:2で
ある。
The amount of the active material in the negative electrode mixture layer (the amount of the active material present per unit area on the current collector) is usually 3 to 30 m.
g / cm 2 or so, preferably from 5 to 20 mg / cm 2 or so. The ratio of the active material to the binder in the entire mixture layer is generally 80:20 to 98: 2 by weight ratio (active material: binder).

【0033】電解液の溶媒としては、エチレンカーボネ
ート、プロピレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネー
ト、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、N,N−ジメチル
ホルムアミド、テトラヒドロフラン、1,3−ジオキソ
ラン、2−メチルテトラヒドロフラン、ジエチルエーテ
ル等の種々の溶媒を挙げることができ、これらは1種ま
たは2種以上を混合して使用することできるが、エチレ
ンカーボネート4〜20体積%(好ましくは6〜18体
積%)と、プロピレンカーボネート3〜17体積%(好
ましくは5〜15体積%)と、ジエチルカーボネートお
よびエチルメチルカーボネートから選ばれる少なくとも
一種25〜50体積%(好ましくは30〜35体積%)
と、ジメチルカーボネート40〜60体積%(好ましく
は45〜55体積%)との混合溶媒が用いるのが好まし
い。当該混合溶媒を用いることで、粘度が低く、しか
も、低温で凝固しにくい電解液を構成することができ、
本発明が目的とする低温/レート特性の向上により好ま
しい結果を与える。
Solvents for the electrolytic solution include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dimethyl sulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, N, N-dimethylformamide, tetrahydrofuran. , 1,3-dioxolane, 2-methyltetrahydrofuran, diethyl ether and the like can be mentioned, and these can be used alone or in admixture of two or more. (Preferably 6 to 18% by volume), propylene carbonate 3 to 17% by volume (preferably 5 to 15% by volume), and at least one selected from diethyl carbonate and ethylmethyl carbonate 25 to 50% by volume. Preferably 30 to 35% by volume)
It is preferable to use a mixed solvent of 40 to 60% by volume (preferably 45 to 55% by volume) of dimethyl carbonate. By using the mixed solvent, it is possible to form an electrolytic solution having a low viscosity and being hard to coagulate at a low temperature,
The improved low temperature / rate characteristics aimed at by the present invention give more favorable results.

【0034】エチレンカーボネートの混合比が4体積%
未満であるとリチウム塩の解離が起こりにくく、イオン
伝導度が低下する傾向となるため、好ましくなく、20
体積%を越えると電解液の粘度が高くなって、イオン伝
導度が低下する傾向となるため、好ましくない。また、
プロピレンカーボネートの混合比が3体積%未満である
と、リチウム塩の解離が起こりにくく、イオン伝導度が
低下する傾向となるため、好ましくなく、17体積%を
越えると電解液の粘度が高くなって、イオン伝導度が低
下する傾向となるため、好ましくない。また、ジエチル
カーボネートおよびエチルメチルカーボネートから選ば
れる少なくとも一種の混合比が25体積%未満である
と、低温下で電解液が凍結しやすく、リチウムイオンの
移動が阻害される虞があり、好ましくなく、50体積%
を越えると電解液の粘度が高くなって、イオン伝導度が
低下する傾向となるため、好ましくない。ジメチルカー
ボネートの混合比が40体積%未満であると、電解液の
粘度が高くなり、イオン伝導度が低下する傾向となるた
め、好ましくなく、60体積%を越えると低温下で電解
液が凍結しやすく、リチウムイオンの移動が阻害される
虞があり、好ましくない。
Mixing ratio of ethylene carbonate is 4% by volume
If it is less than the above range, dissociation of the lithium salt is unlikely to occur and the ionic conductivity tends to decrease, which is not preferable, and 20
When the content exceeds the volume%, the viscosity of the electrolytic solution increases and the ionic conductivity tends to decrease, which is not preferable. Also,
If the mixing ratio of propylene carbonate is less than 3% by volume, dissociation of the lithium salt is unlikely to occur and the ionic conductivity tends to decrease, which is not preferable, and if it exceeds 17% by volume, the viscosity of the electrolytic solution becomes high. However, the ionic conductivity tends to decrease, which is not preferable. Further, if the mixing ratio of at least one selected from diethyl carbonate and ethyl methyl carbonate is less than 25% by volume, the electrolytic solution is likely to freeze at low temperature, there is a possibility that the transfer of lithium ions may be inhibited, which is not preferable, 50% by volume
If it exceeds, the viscosity of the electrolytic solution tends to increase and the ionic conductivity tends to decrease, which is not preferable. If the mixing ratio of dimethyl carbonate is less than 40% by volume, the viscosity of the electrolytic solution tends to be high and the ionic conductivity tends to be low, which is not preferable. If it exceeds 60% by volume, the electrolytic solution will freeze at low temperatures. It is not preferable because it is easy to do so and migration of lithium ions may be hindered.

【0035】電解液に溶解させるリチウム塩としては、
例えば、LiClO4 、LiBF4、LiPF6 、Li
AsF6、LiAlCl4 、Li(CF3 SO2 2
などが挙げられる。これらのうち一種のみを用いても良
いし、二種以上を用いても良い。解離定数が大きく、熱
安定性が高く、又毒性が少ない点から、これらのうちL
iPF6が好ましく用いられる。
As the lithium salt to be dissolved in the electrolytic solution,
For example, LiClO 4 , LiBF 4 , LiPF 6 , Li
AsF 6 , LiAlCl 4 , Li (CF 3 SO 2 ) 2 N
And so on. Only one of these may be used, or two or more may be used. Of these, L has a large dissociation constant, high thermal stability, and low toxicity.
iPF 6 is preferably used.

【0036】電解液に溶解させるリチウム塩を増加させ
ることは、常温以上においては、限界電流密度を増加さ
せる点から有効といえる。しかし、低温下では、塩の解
離に限界がある。そのため、リチウム塩を増量しても電
荷を運ぶのに有効なリチウム塩の増加は望めず、逆に、
電解液の粘度を増加させ、リチウムイオンの拡散速度を
遅くしてしまい、結果、低温特性を低下させてしまう。
従って、リチウム塩の濃度は0.5モル/L〜1.5モ
ル/L、好ましくは0.7モル/L〜1.2モル/Lと
なるように電解液を調製するのがよい。
It can be said that increasing the amount of lithium salt dissolved in the electrolytic solution is effective in increasing the limiting current density at room temperature or higher. However, there is a limit to salt dissociation at low temperatures. Therefore, even if the amount of lithium salt is increased, it is not possible to expect an increase in the amount of lithium salt that is effective for carrying electric charges, and conversely,
This increases the viscosity of the electrolytic solution and slows the diffusion rate of lithium ions, resulting in deterioration of low temperature characteristics.
Therefore, it is preferable to prepare the electrolytic solution so that the concentration of the lithium salt is 0.5 mol / L to 1.5 mol / L, preferably 0.7 mol / L to 1.2 mol / L.

【0037】セパレータには、ポリオレフィンセパレー
タ等の従来からリチウム二次電池で使用されている公知
のセパレータが使用される。ここで、セパレータは多孔
質状のものでも、実質的に孔形成を行っていない、中実
のセパレータでもよい。また、ポリオレフィンセパレー
タはポリエチレン層単体やポリプロピレン層単体のもの
でもよいが、ポリエチレン層とポリプロピレン層とを積
層したタイプが好ましく、特に安全性の点からPP/P
E/PPの3層タイプが好ましい。
As the separator, a known separator such as a polyolefin separator which has been conventionally used in lithium secondary batteries is used. Here, the separator may be a porous separator or a solid separator in which substantially no pores are formed. The polyolefin separator may be a single polyethylene layer or a single polypropylene layer, but is preferably of a type in which a polyethylene layer and a polypropylene layer are laminated, and PP / P is particularly preferable in terms of safety.
A three-layer type of E / PP is preferable.

【0038】電池の形態は特に限定されない。従来から
リチウム二次電池で使用されている公知のものを使用で
き、例えば、Fe、Fe(Niメッキ)、SUS、アル
ミ、アルミ合金等の金属からなる円筒缶、角筒缶、ボタ
ン状缶等や、ラミネートフィルム等のシート状の外装材
が使用される。ラミネートフィルムとしては、銅、アル
ミニウム等の金属箔の少なくとも片面にポリエステル、
ポリプロピレン等の熱可塑性樹脂ラミネート層が形成さ
れたものが好ましい。
The form of the battery is not particularly limited. Known materials that have been used in lithium secondary batteries can be used, for example, cylindrical cans, rectangular cans, button cans, etc. made of metals such as Fe, Fe (Ni plating), SUS, aluminum, aluminum alloys. Alternatively, a sheet-shaped exterior material such as a laminated film is used. As the laminate film, copper, polyester on at least one surface of a metal foil such as aluminum,
Those having a laminated layer of thermoplastic resin such as polypropylene are preferred.

【0039】[0039]

【実施例】以下、実施例を挙げて本発明をより具体的に
説明する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0040】実施例1 〔正極〕活物質としての平均粒径19μmのLiCoO
285重量部および平均粒径1μmのLiNiO215重
量部と、導電材としてのケッチェンブラック1重量部お
よび塊状黒鉛3重量部の混合物と、結着剤としてのポリ
フッ化ビニリデン4重量部と、分散溶媒としてのN−メ
チル−2−ピロリドン50重量部とを、混練(混合)し
スラリーとした。このスラリーを集電体となる幅55m
m、長さ550mmのアルミニウム箔の両面上に塗布
し、乾燥させ、圧延処理を施し、正極全体の厚みが14
5μmとなるように合材層を形成し、正極を完成させ
た。合材層における合材の充填密度を測定したところ、
3.5g/cm3であった。
Example 1 [Positive electrode] LiCoO 2 having an average particle size of 19 μm as an active material
2 85 parts by weight and 15 parts by weight of LiNiO 2 having an average particle size of 1 μm, a mixture of 1 part by weight of Ketjen black as a conductive material and 3 parts by weight of massive graphite, and 4 parts by weight of polyvinylidene fluoride as a binder, 50 parts by weight of N-methyl-2-pyrrolidone as a dispersion solvent was kneaded (mixed) to obtain a slurry. The width of this slurry, which is the collector, is 55m.
m and a length of 550 mm are applied on both sides of an aluminum foil, dried, and rolled to give a positive electrode having a total thickness of 14
A composite material layer was formed to have a thickness of 5 μm to complete the positive electrode. When the packing density of the composite material in the composite material layer was measured,
It was 3.5 g / cm 3 .

【0041】〔負極〕活物質としての黒鉛化炭素繊維
(平均繊維径8μm)100重量部と、結着剤としての
ポリフッ化ビニリデン8重量部と、分散溶媒としてのN
−メチル−2−ピロリドン80重量部とを混合してスラ
リー化し、このスラリーを集電体となる幅57mm、長
さ600mmの銅箔の両面に塗工、乾燥し、さらに圧延
処理を行って、負極全体の厚みが165μmとなるよう
に合材層を形成し、正極を完成させた。負極を完成させ
た。
[Negative Electrode] 100 parts by weight of graphitized carbon fiber (average fiber diameter 8 μm) as an active material, 8 parts by weight of polyvinylidene fluoride as a binder, and N as a dispersion solvent.
-Methyl-2-pyrrolidone is mixed with 80 parts by weight to form a slurry, and the slurry is applied to both sides of a copper foil having a width of 57 mm and a length of 600 mm to be a current collector, dried, and further subjected to a rolling treatment, A composite material layer was formed so that the total thickness of the negative electrode was 165 μm, and the positive electrode was completed. The negative electrode was completed.

【0042】〔リチウム二次電池の組立〕エチレンカー
ボネート10体積%と、プロピレンカーボネート10体
積%と、エチルメチルカーボネート30体積%と、ジメ
チルカーボネート50体積%とからなる混合溶媒に、L
iPF6を1モル/L溶解した電解液を調製した。そし
て、上記作成した正極と負極とを、多孔質のポリエチレ
ン−ポリプロピレン複合セパレータを介して捲回し、こ
れを円筒型の電池缶(外径18mm、内径17.5m
m、高さ65mm)に収容し、この後、正極と負極との
間に電解液を含浸させて、リチウム二次電池を完成させ
た。
[Assembly of Lithium Secondary Battery] 10% by volume of ethylene carbonate, 10% by volume of propylene carbonate, 30% by volume of ethyl methyl carbonate, and 50% by volume of dimethyl carbonate were mixed with L solvent.
An electrolyte solution was prepared by dissolving 1 mol / L of iPF 6 . Then, the positive electrode and the negative electrode prepared above were wound with a porous polyethylene-polypropylene composite separator interposed therebetween, and this was wound into a cylindrical battery can (outer diameter 18 mm, inner diameter 17.5 m).
m, height 65 mm), and then impregnated with an electrolytic solution between the positive electrode and the negative electrode to complete a lithium secondary battery.

【0043】実施例2 活物質として、平均粒径19μmのLiCoO270重
量部と平均粒径7μmのLiNi0.8Co0.2230重
量部を使用し、他は実施例1に準拠して、全体厚みが1
48μmの正極を作製した。合材層における合材の充填
密度を測定したところ、3.4g/cm3であった。ま
た、スラリーの塗工量のみを変更し、他は実施例1と同
様にして全体厚みが162μmの負極を作製した。これ
ら正極と負極を使用し、その他は実施例1と同様にして
電池を作製した。
Example 2 As the active material, 70 parts by weight of LiCoO 2 having an average particle size of 19 μm and 30 parts by weight of LiNi 0.8 Co 0.2 O 2 having an average particle size of 7 μm were used. Thickness is 1
A 48 μm positive electrode was prepared. The packing density of the composite material in the composite material layer was measured and found to be 3.4 g / cm 3 . A negative electrode having a total thickness of 162 μm was prepared in the same manner as in Example 1 except that only the coating amount of the slurry was changed. A battery was produced in the same manner as in Example 1, except that these positive electrode and negative electrode were used.

【0044】実施例3 活物質として平均粒径19μmのLiCoO275重量
部と平均粒径9μmのLiNi0.79Co0.2Al0.012
25重量部を使用し、他は実施例1に準拠して、全体厚
みが148μmの正極を作製した。合材層における合材
の充填密度を測定したところ、3.4g/cm3であっ
た。この正極と実施例2で作製した負極と同じ負極を使
用し、その他は実施例1と同様にして電池を作製した。
Example 3 As an active material, 75 parts by weight of LiCoO 2 having an average particle size of 19 μm and LiNi 0.79 Co 0.2 Al 0.01 O 2 having an average particle size of 9 μm were used.
A positive electrode having a total thickness of 148 μm was produced in the same manner as in Example 1 except that 25 parts by weight was used. The packing density of the composite material in the composite material layer was measured and found to be 3.4 g / cm 3 . A battery was prepared in the same manner as in Example 1, except that this positive electrode and the same negative electrode as the negative electrode prepared in Example 2 were used.

【0045】比較例1 活物質として平均粒径19μmのLiCoO2100重
量部を使用し、他は実施例1に準拠して、全体厚みが1
50μmの正極を作製した。合材層における合材の充填
密度を測定したところ、3.3g/cm3であった。ま
た、スラリーの塗工量のみを変更し、他は実施例1と同
様にして全体厚みが160μmの負極を作製した。これ
ら正極と負極を使用して、その他は実施例1と同様にし
て電池を作製した。
Comparative Example 1 100 parts by weight of LiCoO 2 having an average particle size of 19 μm was used as the active material, and the other conditions were the same as in Example 1, and the total thickness was 1
A 50 μm positive electrode was prepared. When the packing density of the composite material in the composite material layer was measured, it was 3.3 g / cm 3 . Further, a negative electrode having a total thickness of 160 μm was produced in the same manner as in Example 1 except that only the coating amount of the slurry was changed. A battery was produced in the same manner as in Example 1 except that these positive electrode and negative electrode were used.

【0046】比較例2 活物質として平均粒径11μmのLiNiO2100重
量部を使用し、他は実施例1に準拠して、全体厚みが1
56μmの正極を作製した。合材層における合材の充填
密度を測定したところ2.7g/cm3であった。ま
た、スラリーの塗工量のみを変更し、他は実施例1と同
様にして全体厚みが154μmの負極を作製した。これ
ら正極と負極を使用して、その他は実施例1と同様にし
て電池を作製した。
Comparative Example 2 100 parts by weight of LiNiO 2 having an average particle size of 11 μm was used as the active material, and the other conditions were the same as in Example 1, and the total thickness was 1
A 56 μm positive electrode was prepared. The packing density of the composite material in the composite material layer was measured and found to be 2.7 g / cm 3 . A negative electrode having a total thickness of 154 μm was produced in the same manner as in Example 1 except that only the coating amount of the slurry was changed. A battery was produced in the same manner as in Example 1 except that these positive electrode and negative electrode were used.

【0047】比較例3 活物質として平均粒径5μmのLiCoO270重量部
と平均粒径11μmのLiNi0.8Co0.2230重量
部を使用し、他は実施例1に準拠して、全体厚みが15
0μmの正極を作製した。合材層における合材の充填密
度を測定したところ、3.4g/cm3であった。この
正極と比較例1で作製した負極と同じ負極を使用し、そ
の他は実施例1と同様にして電池を作製した。
Comparative Example 3 70 parts by weight of LiCoO 2 having an average particle size of 5 μm and 30 parts by weight of LiNi 0.8 Co 0.2 O 2 having an average particle size of 11 μm were used as active materials. Is 15
A 0 μm positive electrode was prepared. The packing density of the composite material in the composite material layer was measured and found to be 3.4 g / cm 3 . A battery was produced in the same manner as in Example 1, except that this positive electrode and the same negative electrode as the negative electrode produced in Comparative Example 1 were used.

【0048】なお、上記実施例および比較例で使用した
LiCoO2、LiNiO2、LiNi0.8Co0.22
よびLiNi0.79Co0.2Al0.012の各平均粒径はマ
イクロトラック粒度分析計(島津製作所社製、SALD
−3000J)にて測定した。
The average particle diameters of LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 and LiNi 0.79 Co 0.2 Al 0.01 O 2 used in the above-mentioned Examples and Comparative Examples are measured by Microtrack particle size analyzer (Shimadzu Corporation). Made, SALD
-3000J).

【0049】以上実施例1〜3および比較例1〜3で作
製したリチウム二次電池につき、以下の測定と評価試験
を行った。
The lithium secondary batteries prepared in Examples 1 to 3 and Comparative Examples 1 to 3 were subjected to the following measurements and evaluation tests.

【0050】〔電池の容量〕20℃の環境下で、定電流
−定電圧充電(1900mA、4.2V、2.5時間)
後、定電流放電(950mA、カットオフ電圧:2.5
V)を行い、放電時間×電流より容量を求める。
[Battery capacity] Constant current-constant voltage charging (1900 mA, 4.2 V, 2.5 hours) in an environment of 20 ° C.
After that, constant current discharge (950 mA, cutoff voltage: 2.5)
V) is performed, and the capacity is obtained from discharge time × current.

【0051】〔低温特性〕 放電開始直後の電圧の落ち込み 20℃の環境で定電流−定電圧充電(1900mA、
4.2V、2.5時間)後、−20℃で定電流放電(1
900mA、カットオフ電圧:2.5V)を行い、電圧
変化を記録する。記録した電圧を縦軸に、放電開始から
の時間を横軸にして、グラフを作成した後、放電開始直
後に見られる極小値を読み取り、落ち込み電圧とする。
この落ち込みで電圧が高いほど、電圧の落ち込みが小さ
く、好ましい。
[Low temperature characteristic] Voltage drop immediately after the start of discharge Constant current-constant voltage charge (1900 mA,
After 4.2 V, 2.5 hours), a constant current discharge (1
900 mA, cut-off voltage: 2.5 V) and record the voltage change. After making a graph with the recorded voltage on the vertical axis and the time from the start of discharge on the horizontal axis, the minimum value observed immediately after the start of discharge is read and used as the dip voltage.
The higher the voltage due to this drop, the smaller the voltage drop, which is preferable.

【0052】低温での間欠放電 この試験は例えば作動電圧が電池1本当たり、3V以上
の携帯無線機を−20℃の環境で断続的に使用する場合
を想定している。20℃の環境で、定電流−定電圧充電
(1900mA、4.2V、2.5時間)後、−20℃
で5分間の定電流放電(1900mA)と1時間の休止
を交互に行い、放電中の電圧が3V以下になるまで繰り
返し、そのひとつ前までの放電回数を間欠放電可能な回
数とする。
Intermittent Discharge at Low Temperature This test assumes, for example, a case where a portable wireless device having an operating voltage of 3 V or more per battery is intermittently used in an environment of −20 ° C. -20 ℃ after constant current-constant voltage charge (1900mA, 4.2V, 2.5 hours) in the environment of 20 ℃
At this time, a constant current discharge (1900 mA) for 5 minutes and a rest for 1 hour are alternately performed and repeated until the voltage during discharge becomes 3 V or less, and the number of discharges up to the previous one is set as the number of times that intermittent discharge is possible.

【0053】〔釘刺し試験〕20℃環境で、定電流−定
電圧充電(1900mA、4.3V、2.5時間)後、
釘を電池缶の側面中央に突き刺し、破裂、発煙または発
火が生じるかを観察する。試験は10本の電池について
行い、破裂、発煙または発火が起こった電池の本数を全
本数で割り、その発生率を求めた。
[Nail piercing test] In a 20 ° C. environment, after constant current-constant voltage charging (1900 mA, 4.3 V, 2.5 hours),
Stick a nail into the center of the side of the battery can and observe if it bursts, smokes or ignites. The test was carried out on 10 batteries, and the number of batteries in which rupture, smoke emission or ignition occurred was divided by the total number, and the generation rate was obtained.

【0054】以上の試験結果が以下の表1である。The above test results are shown in Table 1 below.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】以上の説明により明らかなように、本発
明によれば、高容量で、安全性に優れ、しかも、良好な
低温/レート特性を示すリチウム二次電池を達成し得る
リチウム二次電池用の正極活物質および正極を提供でき
る。また、これらを使用することによって、高容量で、
安全性に優れ、しかも、良好な低温/レート特性を示す
リチウム二次電池を得ることができる。
As is apparent from the above description, according to the present invention, a lithium secondary battery capable of achieving a lithium secondary battery having a high capacity, excellent safety, and good low temperature / rate characteristics can be achieved. A positive electrode active material for a battery and a positive electrode can be provided. Also, by using these, high capacity,
It is possible to obtain a lithium secondary battery having excellent safety and exhibiting good low temperature / rate characteristics.

フロントページの続き (72)発明者 大瀬 俊一郎 兵庫県伊丹市池尻4丁目3番地 三菱電線 工業株式会社伊丹製作所内 Fターム(参考) 5H029 AJ03 AJ12 AK03 AL07 AM03 AM04 AM05 AM07 BJ02 BJ14 CJ28 DJ16 HJ02 HJ05 5H050 AA06 AA08 AA15 BA17 CA08 CA29 CB08 FA17 GA05 GA27 HA02 HA05 Continued front page    (72) Inventor Shunichiro Ose             4-3 Ikejiri, Itami City, Hyogo Prefecture Mitsubishi Electric Cable             Industrial Co., Ltd. Itami Works F-term (reference) 5H029 AJ03 AJ12 AK03 AL07 AM03                       AM04 AM05 AM07 BJ02 BJ14                       CJ28 DJ16 HJ02 HJ05                 5H050 AA06 AA08 AA15 BA17 CA08                       CA29 CB08 FA17 GA05 GA27                       HA02 HA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が10〜30μmの範囲内にあ
るLiCoO260〜95重量%と、当該LiCoO2
平均粒径よりも平均粒径が小さいLiNiO2、LiN
1-xCox2(0<x<1)またはLiNi1-x-yCo
xAly2(0<x<1−y、0<y<0.2)5〜4
0重量%とからなるリチウム二次電池用の正極活物質。
1. LiCoO 2 having an average particle size in the range of 10 to 30 μm, 60 to 95% by weight, and LiNiO 2 and LiN having an average particle size smaller than the average particle size of the LiCoO 2.
i 1-x Co x O 2 (0 <x <1) or LiNi 1-xy Co
x Al y O 2 (0 < x <1-y, 0 <y <0.2) 5~4
A positive electrode active material for a lithium secondary battery, which comprises 0% by weight.
【請求項2】 LiCoO2の平均粒径と、LiNi
2、LiNi1-xCox2(0<x<1)またはLiN
1-x-yCoxAly2(0<x<1−y、0<y<0.
2)の平均粒径との差が5μm以上である請求項1記載
のリチウム二次電池用の正極活物質。
2. The average particle size of LiCoO 2 and LiNi
O 2 , LiNi 1-x Co x O 2 (0 <x <1) or LiN
i 1-xy Co x Al y O 2 (0 <x <1-y, 0 <y <0.
The positive electrode active material for a lithium secondary battery according to claim 1, wherein the difference from the average particle size in 2) is 5 μm or more.
【請求項3】 LiNiO2、LiNi1-xCox2(0
<x<1)またはLiNi1-x-yCoxAly2(0<x
<1−y、0<y<0.2)の平均粒径が0.1μm以
上である請求項1または2記載のリチウム二次電池用の
正極活物質。
3. LiNiO 2 , LiNi 1-x Co x O 2 (0
<X <1) or LiNi 1-xy Co x Al y O 2 (0 <x
The positive electrode active material for a lithium secondary battery according to claim 1, wherein the average particle size of <1-y, 0 <y <0.2) is 0.1 μm or more.
【請求項4】 請求項1〜3のいずれかに記載の正極活
物質を含むリチウム二次電池用の正極。
4. A positive electrode for a lithium secondary battery, which comprises the positive electrode active material according to claim 1.
【請求項5】 請求項4記載の正極を有するリチウム二
次電池。
5. A lithium secondary battery having the positive electrode according to claim 4.
JP2001261722A 2001-08-30 2001-08-30 Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery Pending JP2003077459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261722A JP2003077459A (en) 2001-08-30 2001-08-30 Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261722A JP2003077459A (en) 2001-08-30 2001-08-30 Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003077459A true JP2003077459A (en) 2003-03-14

Family

ID=19088726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261722A Pending JP2003077459A (en) 2001-08-30 2001-08-30 Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2003077459A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JP2006156004A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2006286336A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
JP2006294393A (en) * 2005-04-11 2006-10-26 Hitachi Maxell Ltd Lithium ion secondary battery
JP2007141527A (en) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd Electrode and nonaqueous secondary battery using it
JP2007517368A (en) * 2003-12-31 2007-06-28 エルジー・ケム・リミテッド Electrode active material powder having particle size-dependent composition and method for producing the same
EP1851814A1 (en) * 2005-02-23 2007-11-07 LG Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
WO2008084679A1 (en) * 2006-12-28 2008-07-17 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and method for production thereof
JP2008198463A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2010070427A (en) * 2008-09-19 2010-04-02 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide suitable for lithium ion secondary battery
US7763386B2 (en) 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
US8900753B2 (en) 2008-09-30 2014-12-02 Hitachi Automotive Systems, Ltd. Cathode material for Li ion secondary battery and Li ion secondary battery using the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763386B2 (en) 2002-01-08 2010-07-27 Sony Corporation Cathode active material and non-aqueous electrolyte secondary cell using same
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JPWO2004027903A1 (en) * 2002-09-18 2006-01-19 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4498142B2 (en) * 2002-09-18 2010-07-07 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2007517368A (en) * 2003-12-31 2007-06-28 エルジー・ケム・リミテッド Electrode active material powder having particle size-dependent composition and method for producing the same
JP4890264B2 (en) * 2003-12-31 2012-03-07 エルジー・ケム・リミテッド Electrode active material powder having particle size-dependent composition and method for producing the same
US8012626B2 (en) 2003-12-31 2011-09-06 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP2011091050A (en) * 2003-12-31 2011-05-06 Lg Chem Ltd Electrode active material powder with size dependent composition and method of manufacturing the same
US7771877B2 (en) 2003-12-31 2010-08-10 Lg Chem, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
JP2006156004A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4639775B2 (en) * 2004-11-26 2011-02-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US9666862B2 (en) 2005-02-23 2017-05-30 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
US9276259B2 (en) 2005-02-23 2016-03-01 Lg Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
JP2016042490A (en) * 2005-02-23 2016-03-31 エルジー・ケム・リミテッド Cathode active material, electrode, and secondary battery improved in lithium ion mobility and battery capacity
JP2014029881A (en) * 2005-02-23 2014-02-13 Lg Chem Ltd Secondary battery improved in lithium ion mobility and battery capacity
JP2008532221A (en) * 2005-02-23 2008-08-14 エルジー・ケム・リミテッド Secondary battery with improved lithium ion mobility and battery capacity
EP2600444A3 (en) * 2005-02-23 2013-09-25 LG Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
EP1851814A4 (en) * 2005-02-23 2011-07-20 Lg Chemical Ltd Secondary battery of improved lithium ion mobility and cell capacity
EP2728652A1 (en) * 2005-02-23 2014-05-07 LG Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
EP1851814A1 (en) * 2005-02-23 2007-11-07 LG Chem, Ltd. Secondary battery of improved lithium ion mobility and cell capacity
JP2011181528A (en) * 2005-02-23 2011-09-15 Lg Chem Ltd Secondary battery in which lithium ion mobility and battery capacity are improved
JP2006286336A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its charging method
JP4743752B2 (en) * 2005-04-11 2011-08-10 日立マクセル株式会社 Lithium ion secondary battery
JP2006294393A (en) * 2005-04-11 2006-10-26 Hitachi Maxell Ltd Lithium ion secondary battery
JP2007141527A (en) * 2005-11-15 2007-06-07 Hitachi Maxell Ltd Electrode and nonaqueous secondary battery using it
WO2008084679A1 (en) * 2006-12-28 2008-07-17 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and method for production thereof
JP5112318B2 (en) * 2006-12-28 2013-01-09 Agcセイミケミカル株式会社 Lithium-containing composite oxide and method for producing the same
TWI412170B (en) * 2006-12-28 2013-10-11 Agc Seimi Chemical Co Ltd Composite oxide containing lithium and a method for producing the same
US8192715B2 (en) 2006-12-28 2012-06-05 Agc Seimi Chemical Co., Ltd. Lithium-containing composite oxide and its production method
CN102263259A (en) * 2006-12-28 2011-11-30 Agc清美化学股份有限公司 Lithium-containing composite oxide and method for production thereof
KR101085368B1 (en) 2006-12-28 2011-11-21 에이지씨 세이미 케미칼 가부시키가이샤 Lithium-containing composite oxide and method for production thereof
JP2008198463A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2010070427A (en) * 2008-09-19 2010-04-02 Agc Seimi Chemical Co Ltd Method for producing lithium-containing multiple oxide suitable for lithium ion secondary battery
US8900753B2 (en) 2008-09-30 2014-12-02 Hitachi Automotive Systems, Ltd. Cathode material for Li ion secondary battery and Li ion secondary battery using the same

Similar Documents

Publication Publication Date Title
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
JP4985524B2 (en) Lithium secondary battery
JP7427629B2 (en) A positive electrode and a lithium battery including the positive electrode
JP2005339970A (en) Cathode activator and nonaqueous electrolyte secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP2014194842A (en) Lithium ion secondary battery
JP2008117611A (en) Nonaqueous electrolyte secondary battery, and its manufacturing method
JP2004006094A (en) Nonaqueous electrolyte secondary battery
JP2023001306A (en) Electrode for lithium secondary battery
JP2004103546A (en) Positive active material composite particle, electrode using the same, and lithium secondary battery
JP2001345101A (en) Secondary battery
JP2003077459A (en) Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery
JP4441933B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2009129820A (en) Lithium-nickel composite oxide, lithium-ion secondary battery using it, and manufacturing method of lithium-nickel composite oxide
JP5181455B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2005019149A (en) Lithium secondary battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2007059206A (en) Anode and battery
JP2017021941A (en) Nonaqueous electrolyte secondary battery
JP2023520363A (en) Positive electrode for lithium secondary battery comprising lithium iron phosphate compound primer layer, and lithium secondary battery comprising the same
JP2003234099A (en) Electrode active material containing composition, and electrode and lithium secondary battery using the same
JP2013137939A (en) Nonaqueous secondary battery
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof