JP2006162670A5 - - Google Patents

Download PDF

Info

Publication number
JP2006162670A5
JP2006162670A5 JP2004349862A JP2004349862A JP2006162670A5 JP 2006162670 A5 JP2006162670 A5 JP 2006162670A5 JP 2004349862 A JP2004349862 A JP 2004349862A JP 2004349862 A JP2004349862 A JP 2004349862A JP 2006162670 A5 JP2006162670 A5 JP 2006162670A5
Authority
JP
Japan
Prior art keywords
coating
coating solution
substrate
photosensitive member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349862A
Other languages
Japanese (ja)
Other versions
JP2006162670A (en
JP4387930B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004349862A priority Critical patent/JP4387930B2/en
Priority claimed from JP2004349862A external-priority patent/JP4387930B2/en
Publication of JP2006162670A publication Critical patent/JP2006162670A/en
Publication of JP2006162670A5 publication Critical patent/JP2006162670A5/ja
Application granted granted Critical
Publication of JP4387930B2 publication Critical patent/JP4387930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

電子写真感光体の製造方法Method for producing electrophotographic photosensitive member

本発明は、電子写真感光体の製造方法に関し、特には、浸漬塗布法において不可避である塗布端部の膜厚のタレを改善し、塗布域全域にわたって均一な膜厚を有し、画像均一性に優れた電子写真感光体を製造する方法に関する。 The present invention relates to the production how the electrophotographic photosensitive member, in particular, to improve the film thickness of the sauce is inevitable coating ends in a dip coating method, has a uniform thickness over the coated area the entire image The present invention relates to a method for producing an electrophotographic photoreceptor excellent in uniformity.

電子写真感光体は、その像形成プロセスにおいて、帯電、露光、現像、転写、クリーニング及び除電の繰り返しの行程を採る。また、近年の電子写真装置の小型化の動向により、電子写真感光体のサイズもより小型化を求められている。   The electrophotographic photosensitive member takes a repeated process of charging, exposure, development, transfer, cleaning and static elimination in the image forming process. In addition, due to the recent trend of miniaturization of electrophotographic apparatuses, the size of electrophotographic photoreceptors is also required to be smaller.

このような中にあって、電子写真感光体は画像の均一性を達成するため、塗布により形成された感光層の全域にわたって均一で、かつ、塗布域の端部においても膜厚均一性を保つことが求められる。   Under such circumstances, in order to achieve image uniformity, the electrophotographic photosensitive member is uniform over the entire photosensitive layer formed by coating, and also maintains film thickness uniformity at the end of the coating region. Is required.

特に、電子写真感光体の製造方法として一般的な浸漬塗布法においては、塗布上端部の膜厚の変動(塗布開始直後の上端部から下方にかけて膜厚が徐々に厚くなる現象で、膜厚タレ又は膜厚ダレと表現される)をなるべく小さくするために種々の方法が採られてきた。   In particular, in a general dip coating method as a method for producing an electrophotographic photosensitive member, the film thickness variation at the upper end of coating (a phenomenon in which the film thickness gradually increases from the upper end immediately after the start of coating to the lower side. Various methods have been employed to reduce the thickness of the film as much as possible.

具体的には、塗布開始直後の塗布速度を制御して予めタレる分の塗布液を余計に付着させる方法や、塗布液の溶媒に低沸点成分を添加して乾燥速度を速める方法が一般的である。更には、塗布する基体を加温して乾燥速度を速める方法(例えば、特許文献1参照)や塗布する基体の雰囲気を加温して乾燥速度を速める方法(例えば、特許文献2参照)、更には、基体の表面及び塗布液の少なくとも一方を加温する方法(例えば、特許文献3参照)等が開示されている。   Specifically, a general method is to control the coating speed immediately after the start of coating to allow extra coating liquid to adhere in advance, or to add a low boiling point component to the solvent of the coating liquid to increase the drying speed. It is. Furthermore, a method for heating the substrate to be coated to increase the drying speed (for example, see Patent Document 1), a method for heating the atmosphere of the substrate to be coated to increase the drying speed (for example, see Patent Document 2), and Discloses a method of heating at least one of the surface of the substrate and the coating solution (for example, see Patent Document 3).

しかし、前記の予めタレる分の塗布液を余計に付着させるための塗布速度の制御、すなわち中心的な塗布速度に対して初期速度を速める制御方法や、低沸点溶媒を添加する方法だけでは、膜厚タレに対して有効ではあるものの、その効果は限定的である。   However, the control of the coating speed for adhering extra coating liquid in advance as described above, that is, the control method of increasing the initial speed with respect to the central coating speed, or the method of adding a low boiling point solvent alone, Although effective against film thickness sagging, the effect is limited.

これについて、更なる効果を実現する方法として、先に挙げた基体の表面及び塗布液の少なくとも一方を加温して塗布を行う方法は、その塗布液に含まれる希釈溶媒の基本的な揮発速度を上昇させることによって非常に効果的に塗布を行うことができる。しかしながら、近年は電子写真感光体に求められる更なる高画質化によって塗膜の均一性が従来にも増して要求されており、同時に、耐刷性等を向上させる目的から積層型電子写真感光体においては電荷輸送層の強度を向上させるため構成樹脂の高分子化に加えて更なる厚膜化が求められている。そして、このような厚膜の塗膜を浸漬塗布法により形成する場合、薄膜に比べて膜厚タレの程度が悪化し易い傾向にある。   In this regard, as a method for realizing a further effect, the method of heating and applying at least one of the surface of the substrate and the coating solution mentioned above is the basic volatilization rate of the dilution solvent contained in the coating solution. The coating can be carried out very effectively by raising the. However, in recent years, the higher image quality required for electrophotographic photosensitive members has led to a greater demand for coating uniformity, and at the same time, a laminated electrophotographic photosensitive member for the purpose of improving printing durability and the like. However, in order to improve the strength of the charge transport layer, in addition to increasing the molecular weight of the constituent resin, further thickening is required. And when forming such a thick film by the dip coating method, the degree of film thickness tends to be worse than that of a thin film.

ここで、塗膜において重要な品質要素である膜厚の均一性を構成する要因について言及すれば、塗布液の粘度は、この膜厚の均一性において非常に大きく影響するものであり、塗布液の粘度は塗布引き上げ中の全てのタイミングにおいて変化しないことが理想的である。   Here, referring to the factors constituting the film thickness uniformity which is an important quality factor in the coating film, the viscosity of the coating solution has a great influence on the film thickness uniformity. Ideally, the viscosity of the resin does not change at all timings during application lifting.

一方、前記基体の表面及び塗布液の少なくとも一方を加温して塗布する方法のうち、浸漬及び引き上げ中の基体の温度が塗布液よりも高い場合は、塗布上昇速度が一定であれば、形成される塗膜の厚みは、塗布開始後に少なくとも発生するタレによるピークを過ぎた後に連続的に低下するという現象を生じる。   On the other hand, among the methods of heating and applying at least one of the surface of the substrate and the coating solution, if the temperature of the substrate during dipping and pulling is higher than that of the coating solution, if the coating rising speed is constant, the formation The thickness of the applied coating causes a phenomenon that it continuously decreases after a peak due to sagging that occurs at least after the start of coating.

この膜厚減少が進行する度合、すなわち塗膜の膜厚変化の強さは、基体と塗布液の間で熱交換がなされる時間の長さ、基体と塗布液の温度差、塗布液の粘度、等々の複数の要因によって変化するが、もっとも変化が強くなるのは、当然基体と塗布液の温度差が大きいときである。そこで、この基体と塗布液を加温させる塗布方法の効果を最大限に得ると同時に、連続した熱交換による膜厚の変化を抑えるためには、基体と塗布液の双方の温度をより高くかつ同一にすることが一つの方法として考えられるが、塗布液の管理において、例えば送液系統中の温度ムラによる気泡発生や塗布液構成材料の高温環境での耐久性等の問題が懸念され、塗布液の温度は基体に比べてそれほど高く保つことはできない。 There degree this thickness reduction progresses, that the strength of the film thickness change of the coating, the length of time that the heat exchange is made between the substrate and the coating solution, the temperature difference between the substrate and the coating liquid, the coating liquid Although it changes depending on a plurality of factors such as viscosity, the change becomes strongest when the temperature difference between the substrate and the coating solution is large. Therefore, in order to obtain the maximum effect of the coating method for heating the substrate and the coating solution, and at the same time, to suppress the change in the film thickness due to continuous heat exchange, the temperature of both the substrate and the coating solution is set higher. One method is considered to be the same, but in the management of the coating liquid, there are concerns about problems such as bubble generation due to temperature unevenness in the liquid feeding system and durability of the coating liquid constituent material in a high temperature environment. The temperature of the liquid cannot be kept so high compared to the substrate.

また、塗膜の強度を向上させる方法の一つとして用いられる結着樹脂に関して、これを溶解する溶媒としては前記結着樹脂との相溶性に優れ、かつ比較的低い沸点を有する溶媒を用いるのが、塗膜のタレを最小限に抑えることにおいて理想的である。しかしながら、溶媒の選定において結着樹脂との相溶性が良好な溶媒群において低沸点の溶媒が期待できない場合、すなわち高沸点の溶媒のみを用いらざるを得なくなった場合は、揮発の遅延による塗膜のタレを抑えるために、粘度を高く設定した塗布液を使用しなくてはならない。 Moreover, regarding the binder resin used as one of the methods for improving the strength of the coating film, as a solvent for dissolving the binder resin, a solvent having excellent compatibility with the binder resin and having a relatively low boiling point is used. Is ideal in minimizing sagging of the coating. However, if a low-boiling solvent cannot be expected in a solvent group with good compatibility with the binder resin in the selection of the solvent, that is, if it is unavoidable to use only a high-boiling solvent, the coating due to a delay in volatilization is required. in order to suppress the sagging of the film, it must be used a coating solution obtained by setting a high viscosity.

このとき、形成すべき塗膜の膜厚が薄いときは、基本的な基体と塗布液の加温量は少なくてすむことに加えて、塗布液の粘度が低くて比較的温度による粘度変動が膜厚に及ぼす影響が小さいか、あるいは塗布引き上げ速度が遅くて熱交換が発生する時間が長く、塗布領域の中で部位による熱交換の度合いの差が現われ難いことから基体の軸方向位置による粘度の違いを生じ難い。しかしながら形成すべき塗膜の膜厚を厚くしなければならないときは、逆に、少なくとも基体の温度をできるだけ高く設定する必要があり、塗布液の粘度が高くて温度による粘度変動が膜厚に及ぼす影響が大きいか、あるいは塗布引き上げ速度が早くて熱交換が発生する時間が短く、塗布領域の中で部位による熱交換の度合いの差が現われ易いことから基体の軸方向位置による温度差すなわち粘度の違いとこれに起因する膜厚差を生じ易い。   At this time, when the coating film to be formed is thin, in addition to the basic substrate and the amount of heating of the coating solution being small, the viscosity of the coating solution is low, and the viscosity variation due to temperature is relatively low. Viscosity due to the axial position of the substrate because the effect on the film thickness is small, or the time for heat exchange to occur is slow due to the slow coating pull-up speed and the difference in the degree of heat exchange depending on the site is difficult to appear in the coating area. It is difficult to make a difference. However, when it is necessary to increase the film thickness of the coating film to be formed, on the contrary, it is necessary to set at least the temperature of the substrate as high as possible, and the viscosity of the coating solution is high and the viscosity variation due to temperature affects the film thickness. The effect is large, or the time for heat exchange to occur is short because the coating pulling speed is fast, and the difference in the degree of heat exchange depending on the part in the coating region is likely to appear. Differences and film thickness differences resulting from this are likely to occur.

ここで、先に述べたように、近年の積層型電子写真感光体における電荷輸送層の強度を向上させることを目的に塗膜の厚膜化が求められ、非常に高粘度化した塗布液を膜厚タレ無く塗りこなす必要が生じている状況において、こうした温度差による膜厚差は大きな課題と言わざるを得ない。
特開平3−181949号公報 特開平6−47327号公報 特開2000−194147号公報
Here, as described above, it is required to increase the thickness of the coating film for the purpose of improving the strength of the charge transport layer in the recent multilayer electrophotographic photosensitive member, and a coating solution having a very high viscosity is required. In a situation where it is necessary to coat without film thickness sagging, the film thickness difference due to such a temperature difference is a big problem.
JP-A-3-181949 Japanese Patent Laid-Open No. 6-47327 JP 2000-194147 A

本発明の目的は、浸漬塗布法により感光層を形成する際、膜厚タレがなく、感光層の全域にわたって膜厚が均一な、従って画像品位に優れた電子写真感光体を製造する方法を提供することにある。 An object of the present invention is to provide a method for producing an electrophotographic photosensitive member having no film thickness sagging when forming a photosensitive layer by a dip coating method and having a uniform film thickness over the entire photosensitive layer, and thus excellent in image quality. There is to do.

本発明に従って、電子写真感光体用の塗布液中に被塗布体を浸漬した後に該被塗布体を引き上げる浸漬塗布法によって塗膜を形成する電子写真感光体の製造方法であって、
浸漬塗布中の該被塗布を、加温手段を有チャッキング装置にて保持して、被塗布基体の温度Td(℃)を、該塗布液の温度Tp(℃)よりも高く、かつ、該塗布液に含まれる希釈溶媒の沸点Tbs(℃)に対して20℃以上低くし、
該塗布液と該被塗布基体との間の熱交換によって生じる該塗布液の粘度低下による塗膜の厚みの減少を抑えるために、該被塗布基体を引き上げる速度を少なくとも1回あるいは連続的に増加させる
ことを特徴とする電子写真感光体の製造方法が提供される。
In accordance with the present invention, there in the method for producing a photoreceptor for forming a coating film by the dip coating method that Ru pulling the該被application base body after immersion to be applied based material in the coating solution of an electrophotographic photoreceptor And
The該被application base body in dip coating, and held by the chucking device you have a heating means, the temperature Td of the coating substrate (℃), than the temperature Tp of the coating solution (℃) High and lower than the boiling point Tbs (° C.) of the dilution solvent contained in the coating solution by 20 ° C. or more,
In order to suppress a decrease in the thickness of the coating film due to a decrease in the viscosity of the coating solution caused by heat exchange between the coating solution and the substrate to be coated, the speed at which the substrate is pulled up is increased at least once or continuously. There is provided a method for producing an electrophotographic photosensitive member.

浸漬塗布法により電子写真感光体用基体に対して感光層を形成する際、膜厚タレがなく、感光層の全域にわたって膜厚が均一な、従って画像品位に優れた電子写真感光体を製造する方法を提供することができる。 When forming a photosensitive layer on a substrate for an electrophotographic photosensitive member by dip coating, an electrophotographic photosensitive member having no film thickness sagging and having a uniform thickness over the entire photosensitive layer, and thus excellent image quality is manufactured. A method can be provided.

浸漬塗布法においては、一旦被塗布部を塗布液中に埋没させ、一定のタイミングで引き上げることにより塗膜が形成され、この引き上げ速度を制御することや塗布液の粘度や固形分及び溶媒の沸点の選定により塗布開始直後の膜厚タレの度合が決まる。そして、このタレの度合いを最小限にするためには塗布液に含まれる希釈溶媒の揮発をより促進するために、基体又は塗布液の少なくとも一方を加温する手段が有効であるが、一定以上の厚い塗膜を形成するにあたっては、これまで述べてきたような基体と塗布液の温度差の必然性から、この温度差に端を発する膜厚差が生じざるを得ない。 In the dip coating method, a coating film is formed by immersing the part to be coated once in the coating liquid and pulling it up at a fixed timing, and controlling the pulling speed, the viscosity of the coating liquid, the solid content, and the boiling point of the solvent. selection by determined physician degree of thickness sagging after coating start is. In order to minimize the degree of sagging, a means for heating at least one of the substrate and the coating solution is effective in order to further promote volatilization of the dilution solvent contained in the coating solution. In forming a thick coating film, a difference in film thickness that must be caused by this temperature difference is unavoidable due to the necessity of the temperature difference between the substrate and the coating solution as described above.

この課題に関し本発明者らは鋭意検討した結果、上記の本発明を用いることによって、膜厚タレを最小限とした電子写真感光体の製造方法を提供できることを見い出した。 As a result of intensive studies on this problem, the present inventors have found that by using the present invention described above, it is possible to provide a method for producing an electrophotographic photosensitive member with a minimum film thickness sagging.

ここで、本発明に関して更に詳しく述べれば、基体又は塗布液を加温して、基体の温度が塗布液のそれよりも高い場合には、基体が塗布液中に浸漬しているときにこの両者の間に熱交換が発生し、基体に接するか又はその近傍に存在する塗布液は加熱されると同時に粘度低下を生じる。この状態を前提に引き上げ塗布を行うと、塗膜の厚みの変化としては、塗布開始直後すなわち基体上の塗布上端部では、先ずその塗布環境に従って塗布液がタレながらいったんピークを迎え、その後塗布が進行するに従って基体に付着する塗布液がより長い時間にわたって基体からの熱交換を受けて粘度低下したのであることから、連続的に減少することになる。 More specifically, the present invention will be described in more detail. When the substrate or the coating solution is heated and the temperature of the substrate is higher than that of the coating solution, both of them are immersed when the substrate is immersed in the coating solution. During this time, heat exchange occurs, and the coating solution in contact with or in the vicinity of the substrate is heated, and at the same time, the viscosity is lowered. Assuming that this state is applied, the coating thickness changes as follows: immediately after the start of coating, that is, at the upper end of the coating on the substrate, the coating solution first reaches a peak while dripping according to the coating environment. since by the heat exchange from the substrate over a longer time coating solution adhering to the substrate is to be calculated and the viscosity decreases as progress, it will decrease continuously.

この減少を克服し、熱交換による粘度変化を前提に、塗布引き上げ速度を少なくとも1回、あるいは連続的に増加させることによって塗膜を塗布終了に至るまでフラットに形成することができる。   By overcoming this decrease and assuming a change in viscosity due to heat exchange, the coating pull-up speed can be increased at least once or continuously to form a flat coating film until the end of coating.

次に、塗布引き上げ速度の制御について述べれば、本発明では塗布引き上げ中に順次基体に付着する塗布液が、塗布が進むに従ってより長時間熱交換されて低粘度化することから、引き上げ速度を増加させることを基本とする。その増加すなわち加速は、塗布引き上げ開始後に少なくとも1回、段階的に加速させる、又は、任意の時間連続加速させる方法であることを特徴とする。更に、基体が引き上げられ塗布液面から離間するときに形成される塗膜の膜厚は、塗布上昇速度が一定であれば、塗布開始後にいったんタレによるピークを迎えることから、加速の影響がこのピークに及ばないことが好ましい。その理由は、塗布開始位置から後に発生する膜厚ピークの距離は、その塗布環境と引き上げ初速における最小限のタレによるものであり、この膜厚の立ち上がりに影響を及ぼす位置からの加速を行えば、ピーク位置をより後方に移動させ、不十分な膜厚領域、すなわち電子写真感光体として十分な機能を果たさない領域を増やすことにもつながるからである。   Next, the control of the coating lifting speed will be described. In the present invention, the coating liquid that adheres to the substrate sequentially during the coating lifting is heat-exchanged for a longer time as the coating progresses, and the viscosity is lowered. It is based on making it. The increase, that is, acceleration is characterized by a method of accelerating stepwise at least once after the start of application pulling up or continuously accelerating for an arbitrary time. Furthermore, the film thickness of the coating film formed when the substrate is pulled up and separated from the coating liquid surface once reaches a peak due to dripping after the start of coating if the coating rising speed is constant. It is preferable not to reach the peak. The reason is that the film thickness peak distance that occurs later from the coating start position is due to the minimum sagging in the coating environment and the initial pulling speed. This is because the peak position is moved further to increase the insufficient film thickness region, that is, the region that does not function sufficiently as an electrophotographic photosensitive member.

更に、加速の方法のうち、連続加速する方法について言及すれば、任意の速度に対して定数又は変数を時間の進行に従って乗算する方法や、任意の速度に対して定数又は変数を時間の進行に従って加算する方法等が好ましい。そして、この乗算又は加算するべき定数又は変数は、使用する塗布液や目標とする膜厚、その他のパラメータによって変化させるべきである。   Further, among the acceleration methods, when referring to the method of continuous acceleration, a method of multiplying a constant or a variable according to the progress of time for an arbitrary speed, or a constant or variable for an arbitrary speed according to the progress of time. A method of adding is preferable. The constant or variable to be multiplied or added should be changed according to the coating solution to be used, the target film thickness, and other parameters.

本発明においては、浸漬塗布を行う際に基体、塗布液、又は基体及び塗布液の両方を、塗布液の気泡の発生しない沸点未満の温度に加温する。基体の温度Td(℃)は、塗布液に使用している希釈溶媒の沸点Tbs(℃)に対して20℃以上低く保たれることによって、先述の送液系統中の温度ムラ等に起因する気泡を生じることい。また、塗布液の温度Tp(℃)は、前記基体の温度Td(℃)よりも5℃以上低く保たれる場合に希釈溶媒の揮発をより促進させることができ、本発明の効果をより得易い。 In the present invention, when performing dip coating, the substrate, the coating solution, or both the substrate and the coating solution are heated to a temperature below the boiling point at which no bubbles of the coating solution are generated. Temperature Td of the substrate (℃), by which is kept 2 0 ° C. or more lower to the boiling point Tbs dilution solvents that are used in the coating liquid (℃), due to the temperature irregularity in the aforementioned liquid feeding system it is not a name that caused the bubbles. Further , when the temperature Tp (° C.) of the coating solution is kept at 5 ° C. or more lower than the temperature Td (° C.) of the substrate, the evaporation of the diluting solvent can be further promoted, and the effect of the present invention can be further obtained. easy.

また、塗布液の粘度は液温20℃において、500mPa・s以上3000mPa・s以下であるとき、すなわち粘度が高くて塗布上昇速度を高く保ち難く、かつ先述の熱交換の時間差によって生じる粘度変化が、最終的に形成される塗膜の厚みに与える影響の大きな塗布液を用いて塗布を行う際には、本発明の効果をより得易い。 The viscosity generated in viscosity liquid temperature 20 ° C. of the coating solution, when it is less 500 mPa · s or more over 3 000mPa · s, i.e. difficult maintaining high coating rate of rise is high viscosity, and the time difference between the aforementioned heat exchanger The effect of the present invention can be more easily obtained when coating is performed using a coating solution that greatly affects the thickness of the coating film to be finally formed.

対象とする塗布液は、積層型電子写真感光体を構成するいかなる層の塗布液に対しても効果的であるが、タレを克服する必要性が最も強く求められるのは、電荷輸送層である。   The target coating solution is effective for any layer coating solution constituting the multilayer electrophotographic photosensitive member, but it is the charge transport layer that most strongly needs to overcome sagging. .

塗布液に含まれる結着樹脂としては、ポリカーボネート、ポリエステル、ポリウレタン、ポリサルフォン、ポリアリレート、ポリビニルブチラール、ポリアミド、フェノキシ樹脂、アクリル樹脂、アクリロニトリル樹脂、メタクリル樹脂、フェノール樹脂、エポキシ樹脂及びアルキド樹脂等が挙げられる。   Examples of the binder resin contained in the coating liquid include polycarbonate, polyester, polyurethane, polysulfone, polyarylate, polyvinyl butyral, polyamide, phenoxy resin, acrylic resin, acrylonitrile resin, methacrylic resin, phenol resin, epoxy resin, and alkyd resin. It is done.

また、溶媒としてはこれら電荷輸送材料と、結着樹脂の双方を可溶で、かつ適当な沸点を持つものから選ばれる。例としては、モノクロロベンゼン及びジクロロメタン等のハロゲン系溶媒、シクロヘキサノン及びメチルエチルケトン等のケトン系溶媒、ジオキサン及びテトラヒドロフラン等のエーテル系溶媒が挙げられるが、乾燥速度や表面張力の調整の目的でその他の溶媒が用いられる場合もある。しかしながら、基体及び塗布液を加温した状態で塗布を行う環境においては、モノクロロベンゼンに代表されるような比較的高沸点の溶媒を選択し、かつ単体で使用することが非常に好ましい。そうすることによって揮発速度の過剰な上昇による不測の膜表面乱れや気泡の発生を防ぐことができるし、また、単一溶媒で塗布液を希釈することによって基本的な液状態において高い安定性を期待することができる。   The solvent is selected from those that are soluble in both the charge transport material and the binder resin and that have an appropriate boiling point. Examples include halogen solvents such as monochlorobenzene and dichloromethane, ketone solvents such as cyclohexanone and methyl ethyl ketone, and ether solvents such as dioxane and tetrahydrofuran, but other solvents may be used for the purpose of adjusting the drying speed and surface tension. Sometimes used. However, in an environment where coating is performed with the substrate and the coating solution heated, it is very preferable to select a solvent having a relatively high boiling point such as monochlorobenzene and to use it alone. By doing so, it is possible to prevent unexpected film surface turbulence and bubble generation due to excessive increase in volatilization rate, and by diluting the coating solution with a single solvent, high stability in the basic liquid state is achieved. You can expect.

続いて、電子写真感光体の製造方法に用いられる機器の構成を示す。図1に示すチャッキング装置は、チャック円筒4とゴム製Oリング5及びOリング押さえ6からなり、チャック円筒4の内部には円筒ヒーター2aを有する。被塗布基体1は、ゴム製Oリング5がOリング押さえ6によって押し広げられることによって保持される。本発明ではチャッキングの加温に際して円筒ヒーターを用いてもよい、図3に示すように温水あるいは温風等の蓄熱流体を使用しても効果的である。加えて、チャック円筒4の素材としては、アルミニウム、ステンレスその他の金属類に代表される、熱伝導性の優れた材料を使用することが好ましく、基体が塗布液と接することによって失われる熱量を短時間に補うことができる。また、基体に対する加温効果をより大きく得るためには、Oリング5を中心とした保持機構部を小型化して、円筒ヒーター2aがより基体の上端部まで到達できることが好ましい。更に、形成すべき塗膜の乱れを防止するために、チャッキング装置から基体に対する熱伝導を均一化することが非常に重要で、被塗布基体1とチャック円筒4、及びチャック円筒4と円筒ヒーター2aの隙間は、全ての位置において0.5mm以下であることが好ましい。   Then, the structure of the apparatus used for the manufacturing method of an electrophotographic photoreceptor is shown. The chucking device shown in FIG. 1 includes a chuck cylinder 4, a rubber O-ring 5, and an O-ring presser 6. A cylindrical heater 2 a is provided inside the chuck cylinder 4. The substrate 1 to be coated is held by the rubber O-ring 5 being spread by the O-ring press 6. In the present invention, a cylindrical heater may be used for warming chucking, and it is effective to use a heat storage fluid such as warm water or warm air as shown in FIG. In addition, as the material of the chuck cylinder 4, it is preferable to use a material having excellent thermal conductivity, represented by aluminum, stainless steel and other metals, and the amount of heat lost when the substrate comes into contact with the coating solution is reduced. Can make up for time. In order to obtain a larger heating effect on the base body, it is preferable that the holding mechanism portion centered on the O-ring 5 is downsized so that the cylindrical heater 2a can reach the upper end portion of the base body. Furthermore, in order to prevent the disturbance of the coating film to be formed, it is very important to make the heat conduction from the chucking device to the substrate uniform. The substrate 1 to be coated and the chuck cylinder 4, and the chuck cylinder 4 and the cylinder heater. The gap 2a is preferably 0.5 mm or less at all positions.

また、このチャッキング装置に内蔵されている円筒ヒーター2aを含む一連の加温手段は、図2に示されるように、塗布槽7に取り付けた塗布槽ヒーター2b、塗布液タンク8に取り付けた塗布液タンクヒーター2cからなり、それぞれが3a〜3cの各ケーブルを通してヒーターアンプ3dと接続される。   Further, as shown in FIG. 2, a series of heating means including a cylindrical heater 2a built in the chucking device includes a coating tank heater 2b attached to the coating tank 7, and a coating applied to the coating liquid tank 8. Each of the liquid tank heaters 2c is connected to the heater amplifier 3d through the cables 3a to 3c.

図8に本発明の製造方法により得られた電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成を示す。 FIG. 8 shows a schematic configuration of an electrophotographic apparatus provided with a process cartridge having an electrophotographic photosensitive member obtained by the manufacturing method of the present invention.

図8において、21はドラム状の本発明の製造方法により得られた電子写真感光体であり、軸22を中心に矢印方向に所定の周速度(プロセススピード)をもって回転駆動される。電子写真感光体21は、回転過程において、一次帯電手段23によりその周面に正又は負の所定電位の均一帯電を受け、次いで、原稿からの反射光であるスリット露光やレーザービーム走査露光等の露光手段(不図示)から出力される目的の画像情報の時系列電気デジタル画像信号に対応して強度変調された露光光24を受ける。こうして電子写真感光体21の周面に対し、目的の画像情報に対応した静電潜像が順次形成されていく。 In FIG. 8, reference numeral 21 denotes a drum-shaped electrophotographic photosensitive member obtained by the production method of the present invention, which is rotationally driven around a shaft 22 at a predetermined peripheral speed (process speed) in the arrow direction. In the rotation process, the electrophotographic photosensitive member 21 is uniformly charged with a predetermined positive or negative potential on the peripheral surface thereof by the primary charging unit 23, and then is subjected to slit exposure or laser beam scanning exposure which is reflected light from the original. The exposure light 24 intensity-modulated in response to the time-series electric digital image signal of the target image information output from the exposure means (not shown) is received. In this way, electrostatic latent images corresponding to the target image information are sequentially formed on the peripheral surface of the electrophotographic photosensitive member 21.

形成された静電潜像は、次いで現像手段25内の荷電粒子(トナー)で正規現像又は反転現像により可転写粒子像(トナー像)として顕画化され、不図示の給紙部から電子写真感光体21と転写手段26との間に電子写真感光体21の回転と同期して取り出されて給送された転写材27に、電子写真感光体21の表面に形成担持されているトナー像が転写手段26により順次転写されていく。この時、転写手段にはバイアス電源(不図示)からトナーの保有電荷とは逆極性のバイアス電圧が印加される。   The formed electrostatic latent image is then visualized as a transferable particle image (toner image) by regular development or reversal development with charged particles (toner) in the developing means 25, and is electrophotographic from a paper supply unit (not shown). A toner image formed and supported on the surface of the electrophotographic photosensitive member 21 is transferred to the transfer material 27 that is taken out and fed between the photosensitive member 21 and the transfer unit 26 in synchronization with the rotation of the electrophotographic photosensitive member 21. Transfer is performed sequentially by the transfer means 26. At this time, a bias voltage having a polarity opposite to the charge held in the toner is applied to the transfer means from a bias power source (not shown).

トナー画像の転写を受けた転写材27(最終転写材(紙やフィルム等)の場合)は、電子写真感光体面から分離されて像定着手段28へ搬送されてトナー像の定着処理を受けることにより画像形成物(プリント、コピー)として装置外へプリントアウトされる。転写材27が一次転写材(中間転写材等)の場合は、複数次の転写工程の後に定着処理を受けてプリントアウトされる。   The transfer material 27 that has received the toner image transfer (in the case of a final transfer material (paper, film, etc.)) is separated from the electrophotographic photosensitive member surface, conveyed to the image fixing means 28, and subjected to a toner image fixing process. Printed out of the apparatus as an image formed product (print, copy). When the transfer material 27 is a primary transfer material (intermediate transfer material or the like), it is printed out after a fixing process after a plurality of transfer processes.

トナー像転写後の電子写真感光体21の表面は、クリーニング手段29によって転写残りトナー等の付着物の除去を受けて清浄面化される。近年、クリーナレスシステムも研究され、転写残りトナーを直接、現像器等で回収することもできる。更に、前露光手段(不図示)からの前露光光30により除電処理された後、繰り返し画像形成に使用される。なお、一次帯電手段23が帯電ローラー等を用いた接触帯電手段である場合は、前露光は必ずしも必要ではない。   The surface of the electrophotographic photosensitive member 21 after the transfer of the toner image is cleaned by the cleaning unit 29 after removing the deposits such as the transfer residual toner. In recent years, a cleanerless system has been studied, and the transfer residual toner can be directly collected by a developing device or the like. Further, after being subjected to charge removal processing by pre-exposure light 30 from a pre-exposure means (not shown), it is repeatedly used for image formation. When the primary charging unit 23 is a contact charging unit using a charging roller or the like, pre-exposure is not always necessary.

本発明においては、上述の電子写真感光体21、一次帯電手段23、現像手段25及びクリーニング手段29等の構成要素のうち、複数のものを容器に納めてプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機やレーザービームプリンター等の電子写真装置本体に対して着脱自在に構成してもよい。例えば、一次帯電手段23、現像手段25及びクリーニング手段29の少なくとも1つを電子写真感光体21と共に一体に支持してカートリッジ化して、装置本体のレール等の案内手段32を用いて装置本体に着脱自在なプロセスカートリッジ31とすることができる。   In the present invention, a plurality of components such as the electrophotographic photosensitive member 21, the primary charging unit 23, the developing unit 25, and the cleaning unit 29 described above are housed in a container and integrally combined as a process cartridge. The process cartridge may be configured to be detachable from an electrophotographic apparatus main body such as a copying machine or a laser beam printer. For example, at least one of the primary charging unit 23, the developing unit 25, and the cleaning unit 29 is integrally supported together with the electrophotographic photosensitive member 21 to form a cartridge, and is attached to and detached from the apparatus main body using a guide unit 32 such as a rail of the apparatus main body. A flexible process cartridge 31 can be obtained.

また、露光光24は、電子写真装置が複写機やプリンターである場合には、原稿からの反射光や透過光、あるいは、センサーで原稿を読取り、信号化し、この信号に従って行われるレーザービームの走査、LEDアレイの駆動又は液晶シャッターアレイの駆動等により照射される光である。   Further, when the electrophotographic apparatus is a copying machine or a printer, the exposure light 24 is a reflected light or transmitted light from the original, or the original is read by a sensor, converted into a signal, and a laser beam scanning performed according to this signal. The light emitted by driving the LED array or the liquid crystal shutter array.

本発明の製造方法により得られた電子写真感光体は、電子写真複写機に利用するのみならず、レーザービームプリンター、CRTプリンター、LEDプリンター、FAX、液晶プリンター及びレーザー製版等の電子写真応用分野にも幅広く適用し得るものである。 The electrophotographic photosensitive member obtained by the production method of the present invention is not only used in electrophotographic copying machines, but also in electrophotographic application fields such as laser beam printers, CRT printers, LED printers, FAX, liquid crystal printers, and laser plate making. Is also widely applicable.

次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(実施例1)
被塗布基体として、アルミニウム円筒基体(φ30mm、長さ254mm)を用意した。
Example 1
As the substrate to be coated, an aluminum cylindrical substrate (φ30 mm, length 254 mm) was prepared.

次に、酸化アンチモンを含有する酸化スズを被覆層として有する導電性酸化チタン粒子粉体(商品名:ECT62、チタン工業(株)製)100質量部、導電性を持たない白色酸化チタン粉体(商品名:SR−1T、堺工業(株)製)100質量部、フェノール樹脂(商品名:プライオーフェンJ325、大日本インキ化学(株)製)130質量部、シリコーン系界面活性剤0.02質量部をメタノール50質量部、メチルセルソルブ50質量部溶剤に混合し、これをサンドミルにより6時間の間分散処理を行って分散液を得た。この分散液を円筒状基体の外表面に浸漬法により塗布し、150℃の雰囲気で30分間乾燥硬化を行い、膜厚が20μmの中間層を形成した。   Next, 100 parts by mass of conductive titanium oxide particle powder (trade name: ECT62, manufactured by Titanium Industry Co., Ltd.) having tin oxide containing antimony oxide as a coating layer, white titanium oxide powder having no conductivity ( Product name: SR-1T, manufactured by Sakai Kogyo Co., Ltd.) 100 parts by mass, phenol resin (trade name: Priorof J325, manufactured by Dainippon Ink & Chemicals) 130 parts by mass, silicone surfactant 0.02 mass Parts were mixed with 50 parts by mass of methanol and 50 parts by mass of methyl cellosolve, and this was subjected to a dispersion treatment with a sand mill for 6 hours to obtain a dispersion. This dispersion was applied to the outer surface of the cylindrical substrate by a dipping method, followed by drying and curing in an atmosphere at 150 ° C. for 30 minutes to form an intermediate layer having a thickness of 20 μm.

次に、ポリアミド樹脂(商品名:アミランCM8000、東レ製)10質量部、メトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学(株)社製)30質量部をメタノール400質量部/n−ブタノール200質量部の混合溶媒中に溶解した塗布液を浸漬塗布し、90℃で10分間熱風乾燥させ、膜厚が0.68μmの下引き層を形成した。 Next, 10 parts by mass of polyamide resin (trade name: Amilan CM8000, manufactured by Toray), 30 parts by mass of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.), 400 parts by mass of methanol A coating solution dissolved in 200 parts by mass of / n-butanol was dip coated and dried in hot air at 90 ° C. for 10 minutes to form an undercoat layer having a thickness of 0.68 μm.

次に、CuKαの特性X線回折におけるブラッグ角2θの7.4°±0.2°及び28.2°±0.2°に強いピークを有するヒドロキシガリウムフタロシアニン(HOGaPc)結晶9質量部とポリビニルブチラール(商品名:エスレックBX−1、積水化学(株)製)3質量部をテトラヒドロフラン100部に溶解した液を、1mmφのガラスビーズを用いたサンドミル装置で3時間分散した。これに200質量部の酢酸ブチルを加えて、希釈した後回収して、これを下引き層上に浸漬塗布し、100℃で10分間乾燥して、140mg/m相当の電荷発生層を形成した。 Next, 9 parts by mass of a hydroxygallium phthalocyanine (HOGaPc) crystal having strong peaks at 7.4 ° ± 0.2 ° and 28.2 ° ± 0.2 ° of the Bragg angle 2θ in the characteristic X-ray diffraction of CuKα and polyvinyl A solution prepared by dissolving 3 parts by mass of butyral (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) in 100 parts of tetrahydrofuran was dispersed in a sand mill using 1 mmφ glass beads for 3 hours. 200 parts by mass of butyl acetate was added to this, diluted and recovered, and this was dip-coated on the undercoat layer and dried at 100 ° C. for 10 minutes to form a charge generation layer corresponding to 140 mg / m 2. did.

次に、下記式で示されるアミン化合物9質量部、   Next, 9 parts by mass of an amine compound represented by the following formula,


下記式で示されるアミン化合物1質量部、

1 part by mass of an amine compound represented by the following formula,


結着樹脂として下記式で示される繰り返し構成単位をm:n=7:3の割合で共重合したポリアリレート(重量平均分子量(Mw)が130,000)樹脂10質量部、

10 parts by mass of a polyarylate (weight average molecular weight (Mw) is 130,000) resin obtained by copolymerizing repeating structural units represented by the following formula as a binder resin at a ratio of m: n = 7: 3,


をモノクロロベンゼン(沸点132℃)に溶解して塗布液を作製した。この塗布液の20℃における粘度は、前記モノクロロベンゼンの含有量を調整することで500mPa・sとした。続いて、この塗布液を前記アルミニウム円筒基体に浸漬塗布法で塗布した。このとき、塗布液の温度は、図2にて示すように温水循環機構を使用して31℃に保ち、また基体の内部には図2及び図3にて示すような加温機構を挿入し、基体表面の温度を35℃に保って塗布を行った。

Was dissolved in monochlorobenzene (boiling point: 132 ° C.) to prepare a coating solution. The viscosity of the coating solution at 20 ° C. was adjusted to 500 mPa · s by adjusting the content of the monochlorobenzene. Subsequently, this coating solution was applied to the aluminum cylindrical substrate by a dip coating method. At this time, the temperature of the coating solution is maintained at 31 ° C. using a warm water circulation mechanism as shown in FIG. 2, and a heating mechanism as shown in FIGS. 2 and 3 is inserted inside the substrate. The coating was performed while maintaining the temperature of the substrate surface at 35 ° C.

このときの塗布引き上げ速度は、初期速度として200mm/minで塗布を開始し、その後引き上げ距離が30mmに達する時点まで一定速度で塗布した後に引き上げ速度を206mm/minに変更した。その後、引き上げ距離が60mm位置に達した時点で引き上げ速度を224mm/minとし、続けて引き上げ距離が100mm位置に達した時点で引き上げ速度を244mm/minとし、以降同様に、140mm位置で262mm/min、180mm位置で280mm/min、220mm位置で296mm/min、と速度を変化させて塗布した。なお、引き上げ距離が60mm以降における速度変更は、加速に要する距離設定を全て20mmとした。このようにして、4層からなる電子写真感光体を作製した。   At this time, the coating lifting speed was 200 mm / min as the initial speed, and then the coating speed was changed to 206 mm / min after coating at a constant speed until the lifting distance reached 30 mm. Thereafter, when the lifting distance reaches the 60 mm position, the lifting speed is 224 mm / min. When the lifting distance reaches the 100 mm position, the lifting speed is 244 mm / min. Similarly, at the 140 mm position, 262 mm / min. The film was applied at a speed of 280 mm / min at the 180 mm position and 296 mm / min at the 220 mm position. Note that the speed change when the lifting distance was 60 mm or later was set to 20 mm for all the distance settings required for acceleration. In this way, an electrophotographic photosensitive member having four layers was produced.

その後、塗布済み電子写真感光体を130℃で1時間乾燥し、形成された膜厚を、渦電流式膜厚測定器(フィッシャー社製 商品名:フィッシャースコープ Type:MMS)にて測定した。このとき、塗布引き上げ距離が40mm位置での膜厚は、25.0μmであった。それ以外の測定結果は図4に示す。   Thereafter, the coated electrophotographic photosensitive member was dried at 130 ° C. for 1 hour, and the formed film thickness was measured with an eddy current film thickness measuring instrument (trade name: Fisherscope Type: MMS manufactured by Fischer). At this time, the film thickness at a coating pull-up distance of 40 mm was 25.0 μm. The other measurement results are shown in FIG.

このようにして作製した電子写真感光体を、キヤノン(株)製複写機GP−40に装着して、ハーフトーン画像を出力して画像評価を行った。なお、評価は、○:濃淡ムラなし、△:軽微な濃淡ムラあり、×:明確な濃淡ムラあり、××:非常に明確な濃淡ムラあり、とした。また、耐久能力の評価を目的に、50000枚を上限としてハーフトーン画像を出力させ、画像に欠陥を生じることなく終了するか、あるいは画像に欠陥を生じた時点での枚数を記録した。評価結果は表1に示す。   The electrophotographic photoreceptor thus produced was mounted on a Canon Co., Ltd. copier GP-40, and a halftone image was output for image evaluation. The evaluations were as follows: ○: no shading unevenness, Δ: slight shading unevenness, x: clear shading unevenness, xx: very clear shading unevenness. Further, for the purpose of evaluating the endurance ability, a halftone image was output with an upper limit of 50000 sheets, and the image was finished without causing defects, or the number of images at the time when defects were generated was recorded. The evaluation results are shown in Table 1.

(実施例2)
電荷輸送層の塗布引き上げ速度について以下に記す方法を使用した以外は、全て実施例1と同様にして塗布を行い、膜厚を測定し、画像と耐久能力を評価した。塗布引き上げ速度は、初期速度として200mm/minで塗布を開始し、その後引き上げ距離が30mmに達する時点まで一定速度で塗布した。その後は塗布進行時間が1秒進むごとに塗布速度を2mm/minづつ加速して塗布した。測定結果は図5に、評価結果は表1にそれぞれ示す。
(Example 2)
Except for using the method described below for the coating and lifting speed of the charge transport layer, coating was performed in the same manner as in Example 1, the film thickness was measured, and the image and durability were evaluated. The coating lifting speed was 200 mm / min as an initial speed, and then the coating was applied at a constant speed until the lifting distance reached 30 mm. Thereafter, the coating speed was increased by 2 mm / min every time the coating progress time advanced by 1 second. The measurement results are shown in FIG. 5 and the evaluation results are shown in Table 1.

(実施例3)
電荷輸送層の塗布液において、構成される唯一の結着樹脂として、下記式で示される繰り返し構成単位を有するポリアリレート樹脂(重量平均分子量(Mw)が130,000)10質量部を使用して塗布液を作製し、塗布引き上げ距離が30mm位置での膜厚が25.0μmになるように初期速度を調整した以外は、全て実施例2と同様にして塗布を行い、膜厚を測定し、画像を評価した。測定結果は図5に、評価結果は表1にそれぞれ示す。
(Example 3)
In the coating solution for the charge transport layer, 10 parts by mass of a polyarylate resin (weight average molecular weight (Mw) is 130,000) having a repeating structural unit represented by the following formula is used as the only binder resin constituted. A coating solution was prepared, and coating was performed in the same manner as in Example 2 except that the initial speed was adjusted so that the film thickness at a coating lifting distance of 30 mm was 25.0 μm, and the film thickness was measured. Images were evaluated. The measurement results are shown in FIG. 5 and the evaluation results are shown in Table 1.

(実施例4)
電荷輸送層の塗布液において、構成される唯一の結着樹脂として、下記式で示される繰り返し構成単位を有するポリカーボネート樹脂(商品名:ユーピロンZ800、三菱エンジニアリングプラスチックス(株)社製)10質量部を使用して塗布液を作製した以外は、全て実施例3と同様にして塗布を行い、膜厚を測定し、画像を評価した。測定結果は図5に、評価結果は表1にそれぞれ示す。
Example 4
10 parts by mass of polycarbonate resin having a repeating structural unit represented by the following formula (trade name: Iupilon Z800, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) as the only binder resin to be constructed in the coating solution for the charge transport layer Except that the coating solution was prepared using, coating was performed in the same manner as in Example 3, the film thickness was measured, and the image was evaluated. The measurement results are shown in FIG. 5 and the evaluation results are shown in Table 1.

(実施例5)
電荷輸送層の塗布液において、構成される唯一の結着樹脂として、下記式で示される繰り返し構成単位を有するポリアリレート樹脂(重量平均分子量(Mw)が130,000)10質量部を使用して塗布液を作製した以外は、全て実施例3と同様にして塗布を行い、膜厚を測定し、画像を評価した。測定結果は図5に、評価結果は表1にそれぞれ示す。
(Example 5)
In the coating solution for the charge transport layer, 10 parts by mass of a polyarylate resin (weight average molecular weight (Mw) is 130,000) having a repeating structural unit represented by the following formula is used as the only binder resin constituted. Except that the coating solution was prepared, coating was performed in the same manner as in Example 3, the film thickness was measured, and the image was evaluated. The measurement results are shown in FIG. 5 and the evaluation results are shown in Table 1.

(実施例6)
電荷輸送層の塗布において、塗布液の温度を36℃とし、基体の温度を40℃に保ち、更に塗布引き上げ距離が30mm位置での膜厚が25.0μmになるように初期速度を調整し、その後引き上げ距離が30mmに達する時点まで一定速度で塗布した。その後は塗布進行時間が1秒進むごとに塗布速度を2.1mm/minづつ加速して塗布した。それ以外は、全て実施例1と同様にして塗布を行い、膜厚を測定し、画像を評価した。測定結果は図6に、評価結果は表1にそれぞれ示す。
(Example 6)
In the application of the charge transport layer, the initial speed was adjusted so that the temperature of the coating liquid was 36 ° C., the temperature of the substrate was kept at 40 ° C., and the film thickness at the coating lifting distance was 30 mm was 25.0 μm. Thereafter, coating was performed at a constant speed until the lifting distance reached 30 mm. Thereafter, the coating speed was increased by 2.1 mm / min every time the coating progress time advanced by 1 second. Other than that, application was performed in the same manner as in Example 1, the film thickness was measured, and the image was evaluated. The measurement results are shown in FIG. 6 and the evaluation results are shown in Table 1.

(実施例7)
電荷輸送層の塗布において、塗布液の温度を106℃とし、基体の温度を110℃に保ち、更に塗布引き上げ距離が30mm位置での膜厚が25.0μmになるように初期速度を調整し、その後引き上げ距離が30mmに達する時点まで一定速度で塗布した。その後は塗布進行時間が1秒進むごとに塗布速度を4.8mm/minづつ加速して塗布した。それ以外は、全て実施例1と同様にして塗布を行い、乾燥終了後に塗膜上の気泡発生の有無を画像にて確認した。評価結果は表1に示す。
(Example 7)
In the application of the charge transport layer, the temperature of the coating solution is set to 106 ° C., the temperature of the substrate is maintained at 110 ° C., and the initial speed is adjusted so that the film thickness at the coating lifting distance is 30 mm is 25.0 μm, Thereafter, coating was performed at a constant speed until the lifting distance reached 30 mm. Thereafter, the coating speed was increased by 4.8 mm / min every time the coating progress time advanced by 1 second. Other than that, application was carried out in the same manner as in Example 1, and the presence or absence of bubbles on the coating film was confirmed by an image after the completion of drying. The evaluation results are shown in Table 1.

(実施例8)
電荷輸送層の塗布において、塗布液の温度を80℃とし、基体の温度を90℃に保ち、更に塗布引き上げ距離が30mm位置での膜厚が25.0μmになるように初期速度を調整し、その後引き上げ距離が30mmに達する時点まで一定速度で塗布した。その後は塗布進行時間が1秒進むごとに塗布速度を4.2mm/minづつ加速して塗布した。それ以外は、全て実施例2と同様にして塗布を行い、膜厚を測定し、画像を評価した。測定結果は図7に、評価結果は表1にそれぞれ示す。
(Example 8)
In the application of the charge transport layer, the temperature of the coating solution is set to 80 ° C., the temperature of the substrate is maintained at 90 ° C., and the initial speed is adjusted so that the film thickness at the coating lifting distance is 30 mm is 25.0 μm, Thereafter, coating was performed at a constant speed until the lifting distance reached 30 mm. Thereafter, the coating speed was increased by 4.2 mm / min every time the coating progress time increased by 1 second. Other than that, application was performed in the same manner as in Example 2, the film thickness was measured, and the image was evaluated. The measurement results are shown in FIG. 7, and the evaluation results are shown in Table 1.

(実施例9)
電荷輸送層の塗布において、塗布液の粘度が、20℃において1000mPa・sとなるようにモノクロロベンゼンを加えて塗布液を作製し、塗布液の温度を80℃とし、基体の温度を90℃とした。更に初期速度200mm/minとして塗布を開始し、引き上げ距離が30mmに達する時点まで一定速度で塗布した。その後は塗布進行時間が1秒進むごとに塗布速度を3.0mm/minづつ加速して塗布した。それ以外は、全て実施例2と同様にして塗布を行い、膜厚を測定し、画像と耐久能力を評価した。なお、この塗布液の固形分は、10.8質量%であった。測定結果は図4に、評価結果は表1にそれぞれ示す。
Example 9
In application of the charge transport layer, monochlorobenzene was added so that the viscosity of the coating solution was 1000 mPa · s at 20 ° C. to prepare the coating solution, the temperature of the coating solution was set to 80 ° C., and the temperature of the substrate was set to 90 ° C. did. Furthermore, the coating was started at an initial speed of 200 mm / min, and the coating was performed at a constant speed until the lifting distance reached 30 mm. Thereafter, the coating speed was increased by 3.0 mm / min every time the coating progress time advanced by 1 second. Other than that, the coating was performed in the same manner as in Example 2, the film thickness was measured, and the image and durability were evaluated. In addition, solid content of this coating liquid was 10.8 mass%. The measurement results are shown in FIG. 4 and the evaluation results are shown in Table 1.

(実施例10)
電荷輸送層の塗布において、塗布液の粘度が、20℃において3000mPa・sとなるようにモノクロロベンゼンを加えて塗布液を作製し、塗布液の温度を80℃とし、基体の温度を90℃とした。更に初期速度100mm/minとして塗布を開始し、引き上げ距離が30mmに達する時点まで一定速度で塗布した。その後は塗布進行時間が1秒進むごとに塗布速度を3.0mm/minづつ加速して塗布した。それ以外は、全て実施例2と同様にして塗布を行い、膜厚を測定し、画像と耐久能力を評価した。なお、この塗布液の固形分は、24.3質量%であった。測定結果は図4に、評価結果は表1にそれぞれ示す。
(Example 10)
In the application of the charge transport layer, monochlorobenzene was added so that the viscosity of the coating solution was 3000 mPa · s at 20 ° C. to prepare the coating solution, the temperature of the coating solution was set to 80 ° C., and the temperature of the substrate was set to 90 ° C. did. Furthermore, the application was started at an initial speed of 100 mm / min, and was applied at a constant speed until the lifting distance reached 30 mm. Thereafter, the coating speed was increased by 3.0 mm / min every time the coating progress time advanced by 1 second. Other than that, the coating was performed in the same manner as in Example 2, the film thickness was measured, and the image and durability were evaluated. In addition, solid content of this coating liquid was 24.3 mass%. The measurement results are shown in FIG. 4 and the evaluation results are shown in Table 1.

(比較例1)
電荷輸送層の塗布において、塗布引き上げ速度を終始200mm/minに保って塗布を行った以外、全て実施例1と同様にして塗布を行い、膜厚を測定し、画像と耐久能力を評価した。測定結果は図4に、評価結果は表1にそれぞれ示す。
(Comparative Example 1)
Application of the charge transport layer was carried out in the same manner as in Example 1 except that the application was carried out while keeping the application lifting speed at 200 mm / min throughout, and the film thickness was measured to evaluate the image and durability. The measurement results are shown in FIG. 4 and the evaluation results are shown in Table 1.

(比較例2)
電荷輸送層の塗布において、塗布引き上げ速度を終始初期速度に保って塗布を行った以外、全て実施例6と同様にして塗布を行い、膜厚を測定し、画像と耐久能力を評価した。測定結果は図6に、評価結果は表1にそれぞれ示す。
(Comparative Example 2)
Application of the charge transport layer was carried out in the same manner as in Example 6 except that the application was carried out while maintaining the application lifting speed at the initial speed, and the film thickness was measured to evaluate the image and durability. The measurement results are shown in FIG. 6 and the evaluation results are shown in Table 1.

(比較例3)
電荷輸送層の塗布において、塗布液の温度を116℃とし、基体の温度を120℃に保った以外は、全て実施例7と同様にして塗布を行い、乾燥終了後に塗膜上の気泡発生の有無を画像にて確認した。評価結果は表1に示す。
(Comparative Example 3)
In the application of the charge transport layer, coating was performed in the same manner as in Example 7 except that the temperature of the coating liquid was set to 116 ° C. and the temperature of the substrate was maintained at 120 ° C. After the drying was completed, bubbles were generated on the coating film. The presence or absence was confirmed by an image. The evaluation results are shown in Table 1.

(比較例4)
電荷輸送層の塗布において、塗布引き上げ速度を終始200mm/minに保って塗布を行った以外、全て実施例8と同様にして塗布を行い、膜厚を測定し、画像と耐久能力を評価した。測定結果は図7、評価結果は表1にそれぞれに示す。
(Comparative Example 4)
Application of the charge transport layer was carried out in the same manner as in Example 8 except that the application was carried out while keeping the application lifting speed at 200 mm / min throughout, and the film thickness was measured to evaluate the image and durability. The measurement results are shown in FIG. 7 and the evaluation results are shown in Table 1, respectively.

(実施例1〜6)
図4〜図6に示されるように、それぞれ膜厚は、塗布開始後に最大値を示した後にも引き続き減少することなく形成されている。また、表1に示されるように、画像での濃淡ムラは発生せず、実施例1及び2については耐久枚数も終了まで欠陥を生じなかった。
(Examples 1-6)
As shown in FIG. 4 to FIG. 6, the film thicknesses are formed without decreasing continuously even after the maximum value is shown after the start of coating. Further, as shown in Table 1, no shading unevenness occurred in the image, and in Examples 1 and 2, the endurance number did not cause a defect until the end.

(実施例7)
表1に示されるように、画像においても気泡に起因する黒点は発生せず、耐久枚数も終了まで欠陥を生じなかった。
(Example 7)
As shown in Table 1, no black spots due to bubbles were generated in the image, and no defects were generated until the end of the durability.

(実施例8〜10)
図4及び図7に示されるように、それぞれ膜厚は、塗布開始後に最大値を示した後にも引き続き減少することなく形成されている。また、表1に示されるように、画像での濃淡ムラは発生せず、実施例9及び10については耐久枚数も終了まで欠陥を生じなかった。
(Examples 8 to 10)
As shown in FIGS. 4 and 7, the film thicknesses are formed without continuing to decrease even after the maximum value is shown after the start of coating. Further, as shown in Table 1, no shading unevenness occurred in the images, and in Examples 9 and 10, no defects occurred until the end of the durability number.

(比較例1)
図4に示されるように、膜厚は、塗布開始後にいったん最大値を示し、その後減少した。塗布開始から220mm位置での実施例1との膜厚差は2.1μmであった。また、表1に示されるように、画像での濃淡ムラは、電子写真感光体塗布前半部から後半部にかけて軽微に濃度が増す現象が確認された。耐久枚数は46200枚付近にて電子写真感光体塗布後半部に画像カブリを生じた。
(Comparative Example 1)
As shown in FIG. 4, the film thickness once showed a maximum value after the start of coating, and then decreased. The film thickness difference from Example 1 at a position of 220 mm from the start of application was 2.1 μm. Further, as shown in Table 1, it was confirmed that the density unevenness in the image slightly increased in density from the first half to the second half of the electrophotographic photosensitive member coating. Image fogging occurred in the latter half of the electrophotographic photosensitive member coating when the durability was about 46,200.

(比較例2)
図6に示されるように、膜厚は、塗布開始後にいったん最大値を示し、その後減少した。塗布開始から220mm位置での実施例6との膜厚差は2.6μmであった。また、表1にて示されるように、画像での濃淡ムラは、電子写真感光体塗布前半部から後半部にかけて明確に濃度が増す現象が確認された。耐久枚数は39500枚付近にて電子写真感光体塗布後半部に画像カブリを生じた。
(Comparative Example 2)
As shown in FIG. 6, the film thickness once showed a maximum value after the start of coating, and then decreased. The film thickness difference from Example 6 at the position of 220 mm from the start of application was 2.6 μm. Further, as shown in Table 1, it was confirmed that the density unevenness in the image clearly increased in density from the first half to the second half of the electrophotographic photosensitive member coating. Image fogging occurred in the latter half of the electrophotographic photosensitive member coating when the durability was 39,500.

(比較例3)
表1に示されるように、気泡発生に起因する黒点が、φ0.7mm以上が2点と、φ0.7mm未満が4点確認された。
(Comparative Example 3)
As shown in Table 1, it was confirmed that black spots caused by the generation of bubbles were 2 points of φ0.7 mm or more and 4 points of less than φ0.7 mm.

(比較例4)
図7に示されるように、膜厚は、塗布開始後にいったん最大値を示し、その後減少した。塗布開始から220mm位置での実施例6との膜厚差は4.5μmであった。また、表1に示されるように、画像での濃淡ムラは、電子写真感光体塗布前半部から後半部にかけて非常に強く濃度が増す現象が確認された。耐久枚数は27700枚付近にて電子写真感光体塗布後半部に画像カブリを生じた。
(Comparative Example 4)
As shown in FIG. 7, the film thickness once showed a maximum value after the start of coating, and then decreased. The film thickness difference from Example 6 at a position of 220 mm from the start of application was 4.5 μm. Further, as shown in Table 1, it was confirmed that the density unevenness in the image was very strongly increased from the first half to the second half of the electrophotographic photosensitive member coating. Image fogging occurred in the latter half of the electrophotographic photosensitive member coating when the durable number was around 27,700.

本発明におけるヒーターを用いたチャッキング装置の概略構成図である。It is a schematic block diagram of the chucking apparatus using the heater in this invention. 本発明における加熱装置の概略構成図である。It is a schematic block diagram of the heating apparatus in this invention. 本発明における蓄熱流体を用いたチャッキング装置の概略構成図である。It is a schematic block diagram of the chucking apparatus using the thermal storage fluid in this invention. 実施例1、実施例9、実施例10及び比較例1の塗布結果を示す図である。It is a figure which shows the application result of Example 1, Example 9, Example 10, and Comparative Example 1. FIG. 実施例2〜5の塗布結果を示す図である。It is a figure which shows the application result of Examples 2-5. 実施例6及び比較例2の塗布結果を示す図である。It is a figure which shows the application result of Example 6 and Comparative Example 2. 実施例8及び比較例4の塗布結果を示す図である。It is a figure which shows the application result of Example 8 and Comparative Example 4. 本発明の製造方法により得られた電子写真感光体を有するプロセスカートリッジを備えた電子写真装置の概略構成の例を示す図である。It is a figure which shows the example of schematic structure of the electrophotographic apparatus provided with the process cartridge which has the electrophotographic photoreceptor obtained by the manufacturing method of this invention.

符号の説明Explanation of symbols

1 被塗布基体
2a 円筒ヒーター
2b 塗布槽ヒーター
2c 塗布液タンクヒーター
3a〜c ヒーターケーブル
3d ヒーターアンプ
4チャック円筒
5 ゴム製Oリング
6 Oリング押さえ
7 塗布槽
8 塗布液タンク
9 フィルターユニット
10 送液ポンプ
11 蓄熱流体用循環経路
DESCRIPTION OF SYMBOLS 1 Substrate to be coated 2a Cylindrical heater 2b Coating tank heater 2c Coating liquid tank heater 3a to c Heater cable 3d Heater amplifier 4 Chuck cylinder 5 Rubber O-ring 6 O-ring press 7 Coating tank 8 Coating liquid tank 9 Filter unit 10 Feed pump 11 Heat storage fluid circulation path

Claims (4)

電子写真感光体用の塗布液中に被塗布体を浸漬した後に該被塗布体を引き上げる浸漬塗布法によって塗膜を形成する電子写真感光体の製造方法であって、
浸漬塗布を行う際の該被塗布を、加温手段を有チャッキング装置にて保持して、被塗布基体の温度Td(℃)を、該塗布液の温度Tp(℃)よりも高く、かつ、該塗布液に含まれる希釈溶媒の沸点Tbs(℃)に対して20℃以上低くし、
該塗布液と該被塗布基体との間の熱交換によって生じる該塗布液の粘度低下による塗膜の厚みの減少を抑えるために、該被塗布基体を引き上げる速度を少なくとも1回あるいは連続的に増加させる
ことを特徴とする電子写真感光体の製造方法。
A process for producing an electrophotographic photosensitive member for forming a coating film by the dip coating method that Ru pulling the該被application base body after immersion to be applied based material in the coating solution of an electrophotographic photoreceptor,
The該被application base material when performing dip coating, and held in heating means you have a chucking device, the temperature Td of the coating substrate (° C.), the coating solution temperature Tp (° C.) Higher than the boiling point Tbs (° C.) of the dilution solvent contained in the coating solution by 20 ° C. or more,
In order to suppress a decrease in the thickness of the coating film due to a decrease in the viscosity of the coating solution caused by heat exchange between the coating solution and the substrate to be coated, the speed at which the substrate is pulled up is increased at least once or continuously. A method for producing an electrophotographic photoreceptor, characterized by comprising:
前記塗布液の温度Tp(℃)を、前記被塗布基体の温度Td(℃)に対して5℃以上低くする請求項1に記載の電子写真感光体の製造方法 The coating liquid temperature Tp andC.), the manufacturing method of the electrophotographic photosensitive member according to claim 1, wherein the lower 5 ° C. or more with respect to the temperature Td of the coating substrate (° C.). 前記塗布液温度が20℃のときにおける前記塗布液の粘度が、500mPa・s以上3000mPa・s以下である請求項1又は2に記載の電子写真感光体の製造方法。 The viscosity of the coating solution, the manufacturing method of the electrophotographic photosensitive member according to claim 1 or 2 or less 5 MPa · s or more over 3 000mPa · s temperature of the coating solution at the time of 20 ° C.. 前記塗布液中に浸漬される前記被塗布基体にはその表面に電荷発生層が形成されており、前記塗布液が電荷輸送層を形成するために用いられる塗布液であり、前記塗膜が電荷輸送層の塗膜である請求項1〜3のいずれかに記載の電子写真感光体の製造方法。A charge generation layer is formed on the surface of the substrate to be coated immersed in the coating solution, and the coating solution is a coating solution used to form a charge transport layer, and the coating film is charged. The method for producing an electrophotographic photosensitive member according to claim 1, wherein the method is a coating film of a transport layer.
JP2004349862A 2004-12-02 2004-12-02 Method for producing electrophotographic photosensitive member Expired - Fee Related JP4387930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349862A JP4387930B2 (en) 2004-12-02 2004-12-02 Method for producing electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349862A JP4387930B2 (en) 2004-12-02 2004-12-02 Method for producing electrophotographic photosensitive member

Publications (3)

Publication Number Publication Date
JP2006162670A JP2006162670A (en) 2006-06-22
JP2006162670A5 true JP2006162670A5 (en) 2008-01-24
JP4387930B2 JP4387930B2 (en) 2009-12-24

Family

ID=36664805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349862A Expired - Fee Related JP4387930B2 (en) 2004-12-02 2004-12-02 Method for producing electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP4387930B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151492B2 (en) * 2019-01-11 2022-10-12 コニカミノルタ株式会社 Electrophotographic photoreceptor and method for producing electrophotographic photoreceptor
JP7409608B2 (en) 2019-03-28 2024-01-09 キヤノン株式会社 Manufacturing method of electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP4702950B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member
JP5755162B2 (en) Method for producing electrophotographic photosensitive member
JP6074295B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and method for manufacturing electrophotographic photosensitive member
EP2600195B1 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2007178813A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP4387930B2 (en) Method for producing electrophotographic photosensitive member
JP2007065164A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JP4100815B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2019139225A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2006162670A5 (en)
JP2005234321A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP3728952B2 (en) Method for producing electrophotographic photosensitive member
JP3840161B2 (en) Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus having electrophotographic photosensitive member, and method of manufacturing electrophotographic photosensitive member
JP2009053727A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2008026481A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4821795B2 (en) Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP2006337926A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2018072475A (en) Coating liquid for electrophotographic photoreceptor protective layer
JP2005208620A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP2010066673A (en) Method for manufacturing multilayer electrophotographic photoreceptor
JP3983028B2 (en) Drive mechanism including electrophotographic photosensitive drum and image forming apparatus using the same
JP2004037475A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP6573364B2 (en) Process cartridge and image forming apparatus
JPH06250413A (en) Electrophotographic sensitive body and electrophotographic device having the same
JPH0764299A (en) Electrophotographic photoreceptor, its production and electrophotographic device with the same