JP2006161940A - Non-contact supporting device - Google Patents

Non-contact supporting device Download PDF

Info

Publication number
JP2006161940A
JP2006161940A JP2004353551A JP2004353551A JP2006161940A JP 2006161940 A JP2006161940 A JP 2006161940A JP 2004353551 A JP2004353551 A JP 2004353551A JP 2004353551 A JP2004353551 A JP 2004353551A JP 2006161940 A JP2006161940 A JP 2006161940A
Authority
JP
Japan
Prior art keywords
levitation
floating
accuracy
suction
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353551A
Other languages
Japanese (ja)
Other versions
JP4494179B2 (en
Inventor
Masa Ito
雅 伊藤
Daiki Yamada
大樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2004353551A priority Critical patent/JP4494179B2/en
Publication of JP2006161940A publication Critical patent/JP2006161940A/en
Application granted granted Critical
Publication of JP4494179B2 publication Critical patent/JP4494179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To ensure original effects in a high-accuracy flotation region while suppressing a great increase in cost. <P>SOLUTION: Between a high-accuracy floating suction mixing part 5 having a relatively fixed floating amount and a low-accuracy floating table 3, a porous floating part 4 is provided having medium accuracy. A difference in accuracy between flotation on the floating suction mixing part 5 and flotation on both sides is therefore reduced. Thus, high-accuracy flotation is less influenced by low-accuracy flotation. The provision of the porous floating part less increases cost than the expansion of the floating suction mixing part 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ワークを非接触の状態で支持する非接触支持装置に関する。   The present invention relates to a non-contact support device that supports a workpiece in a non-contact state.

液晶パネルなどの製造工程では、液晶ガラスの表面を検査するための工程がある。この工程では、液晶ガラスはその性質上、支持装置に直接載置することを嫌って、液晶ガラスを非接触の状態で支持するための非接触支持装置が用いられている。そして、非接触支持装置の中には、表面検査を行う検査カメラの焦点合わせを容易にするため、一定の浮上量を得るための工夫がなされたものがある(特許文献1)。   In the manufacturing process of a liquid crystal panel or the like, there is a process for inspecting the surface of the liquid crystal glass. In this step, the liquid crystal glass is disliked from being placed directly on the support device due to its nature, and a non-contact support device for supporting the liquid crystal glass in a non-contact state is used. Some non-contact support devices have been devised to obtain a certain flying height in order to facilitate focusing of an inspection camera that performs surface inspection (Patent Document 1).

図7にこのような一定の浮上量を得る従来の非接触支持装置51を示す。この非接触支持装置51は、静圧軸受け部材52と、その両側に設けられた一対の浮上テーブル53とを備えている。静圧軸受け部材52は負圧ユニット54と、その両側に設けられた一対の静圧ユニット55とを備えている。負圧ユニット54には吸引力が作用する負圧用溝56が形成され、静圧ユニット55には上面からエアが噴出する多孔質体57が設けられている。一方、各浮上テーブル53にはエアが噴出する細孔である噴出孔58が多数形成されている。   FIG. 7 shows a conventional non-contact support device 51 that obtains such a constant flying height. The non-contact support device 51 includes a static pressure bearing member 52 and a pair of floating tables 53 provided on both sides thereof. The static pressure bearing member 52 includes a negative pressure unit 54 and a pair of static pressure units 55 provided on both sides thereof. The negative pressure unit 54 is formed with a negative pressure groove 56 on which a suction force acts, and the static pressure unit 55 is provided with a porous body 57 from which air is ejected from the upper surface. On the other hand, each levitation table 53 is formed with a large number of ejection holes 58 which are fine holes through which air is ejected.

このように構成された非接触支持装置51では、ガラス基板Gはまず浮上テーブル53の上面から浮上した状態で移動する。そして、静圧軸受け部材52が設けられた領域(静圧軸受け領域)にかかると、多孔質体57の上面から噴出されるエアにより、両者の間にエア膜が形成され、静圧がもたらされる。それと同時に、負圧用溝56ではガラス基板Gに対してエアの吸引力が作用する。すると、この静圧と吸引力との調和から、静圧軸受け領域ではガラス基板Gに対する静圧浮上剛性が高められるとともに、浮上量を一定させることができる。すなわち、この領域では高精度な浮上が行われる。   In the non-contact support device 51 configured as described above, the glass substrate G first moves in a state of floating from the upper surface of the floating table 53. When the static pressure bearing member 52 is provided in the region (static pressure bearing region), the air blown from the upper surface of the porous body 57 forms an air film between the two, resulting in static pressure. . At the same time, air suction force acts on the glass substrate G in the negative pressure groove 56. Then, from the harmony between the static pressure and the suction force, the static pressure floating rigidity with respect to the glass substrate G can be increased and the flying height can be made constant in the static pressure bearing region. That is, high-precision levitation is performed in this region.

ところで、前述した通り、この高精度な浮上が行われる静圧軸受け領域には、浮上テーブル53が隣接して設けられている。この浮上テーブル53では、単なる細孔である噴出孔58からエアを噴出させているだけであるから、その領域での浮上は不安定で、浮上量も一定しない、いわば低精度な浮上となっている。このため、従来の非接触支持装置51では、低精度な浮上と高精度な浮上という浮上精度のギャップが大きい領域が隣接して設けられているといえる。   By the way, as described above, the levitation table 53 is provided adjacent to the hydrostatic bearing area where the levitation is performed with high accuracy. In this levitation table 53, air is merely ejected from the ejection hole 58, which is a simple pore, so that the levitation in that region is unstable and the levitation amount is not constant, that is, the levitation is low precision. Yes. For this reason, in the conventional non-contact support apparatus 51, it can be said that the area | region where the gap of the floating precision of a low precision levitation and a high precision levitation is large is provided adjacently.

このような従来の非接触支持装置51では、低精度領域での不安定な浮上状態が、高精度領域での浮上に影響を与えてしまい、高精度な浮上領域で本来得られるはずの効果、すなわち、静圧浮上剛性を高め、浮上量を一定させるという効果が充分に得られないという問題がある。
特開2004−152941号公報
In such a conventional non-contact support device 51, the unstable levitation state in the low accuracy region affects the levitation in the high accuracy region, and the effect that should be originally obtained in the high accuracy levitation region, That is, there is a problem that the effect of increasing the static pressure floating rigidity and making the flying height constant cannot be obtained sufficiently.
JP 2004-152941 A

上記の問題に対処すべく、高精度な浮上領域を広げることが考えられる。しかし、それでは、コストの増加を招くという問題が生じてしまう。   In order to cope with the above problem, it is conceivable to widen a highly accurate flying region. However, this causes a problem of increasing the cost.

そこで、本発明は、コストの大幅な増加を抑えながら、高精度な浮上領域で、その本来の効果を確実に得ることができる非接触支持装置を提供することを主たる目的とする。   Therefore, a main object of the present invention is to provide a non-contact support device capable of reliably obtaining the original effect in a highly accurate flying region while suppressing a significant increase in cost.

以下、上記課題を解決するのに有効な手段等につき、必要に応じて作用、効果、より踏み込んだ具体的手段等を示しつつ説明する。なお以下では、理解を容易にするため、発明の実施の形態において対応する構成を括弧書き等で適宜示すが、この括弧書き等で示した具体的構成に限定されるものではない。   Hereinafter, effective means and the like for solving the above-described problems will be described with reference to actions, effects, and more specific means as required. In the following, in order to facilitate understanding, the corresponding configuration in the embodiment of the invention is appropriately shown in parentheses, but is not limited to the specific configuration shown in parentheses.

手段1.ワーク支持側の面に、加圧気体(エア)によりその面からワーク(ガラス基板G)を浮上させた状態で支持する複数の浮上領域を隣接して備え、その各浮上領域では浮上量を一定とする精度が異なるように構成して、各浮上領域を相対的に精度の高い高精度浮上領域(浮上吸引混合部5が設けられた領域)と精度の低い低精度浮上領域(浮上テーブル3が設けられた領域)とに分け、高精度浮上領域の両側に低精度浮上領域を配置した非接触支持装置において、
前記高精度浮上領域と前記低精度浮上領域との間に、両精度の中間の精度を備えた中精度浮上領域(多孔質浮上部4が設けられた領域)を設けたことを特徴とする非接触支持装置。
Means 1. The surface on the workpiece support side is provided with a plurality of adjacent floating regions that support the workpiece (glass substrate G) in a state where the workpiece (glass substrate G) is floated from the surface by pressurized gas (air), and the floating amount is constant in each floating region. The levitation areas are divided so that each levitation area has a high accuracy levitation area (area where the levitation suction mixing unit 5 is provided) and a low accuracy levitation area (the levitation table 3 has a lower accuracy). In the non-contact support device in which the low-precision floating area is arranged on both sides of the high-precision floating area,
A non-precision floating area (an area in which the porous floating portion 4 is provided) having an intermediate accuracy between both high precision floating areas is provided between the high precision floating area and the low precision floating area. Contact support device.

手段1によれば、高精度浮上領域は一部の範囲に限られているため、その分コスト増加が抑えられている。また、中精度浮上領域を設けたことにより、高精度浮上領域における浮上とその両側での浮上とで、浮上量を一定とする浮上精度のギャップを低減できる。これにより、高精度浮上領域での浮上がそれよりも低い精度の浮上から受ける影響も低減される。そして、中精度浮上領域を設けることは高精度領域を広げるよりもコスト増加は低く抑えられる。その結果、コストの大幅な増加を抑えながら、本来意図する高精度な浮上を確実に得ることができる。なお、各浮上領域の配置構成として、より具体的には、ワークの搬送方向に沿って、高精度浮上領域の両側に中精度領域が配置され、さらにその外側に低精度領域が配置されている。   According to the means 1, since the high-accuracy flying region is limited to a part of the range, an increase in cost is suppressed accordingly. Further, by providing the medium-accuracy levitation region, it is possible to reduce the levitation accuracy gap in which the levitation amount is constant between the levitation in the high-accuracy levitation region and the levitation on both sides thereof. Thereby, the influence which the levitation | floating in a high precision levitation | floating area receives from the levitation | floating of the lower precision is also reduced. In addition, providing a medium-precision floating area can reduce the cost increase more than expanding the high-precision area. As a result, it is possible to reliably obtain the originally intended high-accuracy levitation while suppressing a significant increase in cost. In addition, as an arrangement configuration of each floating area, more specifically, a medium-precision area is arranged on both sides of the high-precision floating area along the workpiece conveyance direction, and a low-precision area is arranged on the outside thereof. .

手段2.加圧気体(エア)を噴出させる静圧発生部(多孔質体23)と吸引部(負圧溝33)とで構成され、静圧発生部で生成する静圧と吸引部で生成する吸引力とを同時にワーク(ガラス基板G)に作用させてワークを浮上させる浮上吸引混合部を設けた非接触支持装置において、
前記浮上吸引混合部のワーク搬送方向に沿った両側に、浮上吸引混合部より浮上量を一定とする精度が低い状態でワークを浮上させる少なくとも2つの浮上部(浮上テーブル3、多孔質浮上部4)を設け、各浮上部の中では浮上吸引混合部に近いほど相対的に浮上精度が高くなるように構成したことを特徴とする非接触支持装置。
Mean 2. It is composed of a static pressure generating part (porous body 23) for ejecting pressurized gas (air) and a suction part (negative pressure groove 33), and a static pressure generated by the static pressure generating part and a suction force generated by the suction part. In a non-contact support device provided with a floating suction mixing unit that causes the workpiece to float by acting on the workpiece (glass substrate G) at the same time,
At least two floating parts (the floating table 3 and the porous floating part 4) that float the work in a state in which the floating amount is lower than that of the floating suction mixing part on both sides along the workpiece conveyance direction of the floating suction mixing part. The non-contact support device is characterized in that the floating accuracy is relatively higher in each floating portion as it is closer to the floating suction mixing portion.

手段2によれば、2つの浮上部での浮上より高精度となる浮上吸引混合部は一部の範囲に限られているため、その分コスト増加が抑えられている。また、浮上吸引混合部の両側に設けられた少なくとも2つの浮上部の中で、混合部に近いほど、浮上量を一定とする精度が高くなっている。このため、ワークを最も高精度に浮上させる浮上吸引混合部での浮上とその両側の浮上部による浮上とで、浮上精度のギャップを低減できる。これにより、浮上吸引混合部での高精度な浮上がそれよりも低い精度の浮上から受ける影響も低減される。そして、少なくとも2つの浮上部を設けることは、高精度領域を広げるよりも、コスト増加は低く抑えられる。その結果、コストの大幅な増加を抑えながら、本来意図する高精度な浮上を確実に得ることができる。   According to the means 2, the levitation suction mixing unit, which is more accurate than the levitation at the two levitation parts, is limited to a part of the range, so that an increase in cost is suppressed accordingly. Moreover, the accuracy which makes floating amount constant is so high that it is close to a mixing part among at least two floating parts provided in the both sides of the floating suction mixing part. For this reason, the gap of the floating accuracy can be reduced by the floating at the floating suction mixing unit that floats the workpiece with the highest accuracy and the floating by the floating portions on both sides thereof. As a result, the influence of high-accuracy levitation in the levitation suction mixing unit from levitation with lower accuracy is also reduced. Providing at least two floating parts can suppress the increase in cost lower than expanding the high precision region. As a result, it is possible to reliably obtain the originally intended high-accuracy levitation while suppressing a significant increase in cost.

手段3.加圧気体(エア)を噴出させる静圧発生部(多孔質体23)と吸引部(負圧溝33)とを備え、静圧発生部で生成する静圧と吸引部で生成する吸引力とを同時にワーク(ガラス基板G)に作用させてワークを浮上させる浮上吸引混合部と、
前記浮上吸引混合部の両側に隣接して配置され、加圧気体を多孔質体から噴出させて静圧を生成し、その静圧によりワークを浮上させる一対の多孔質浮上部と、
前記多孔質浮上部に前記浮上吸引混合部とは反対側で隣接して配置され、加圧気体を噴出孔から噴出させてワークを浮上させる一対の単純浮上部(浮上テーブル3)と
を備えたことを特徴とする非接触支持装置。
Means 3. A static pressure generating section (porous body 23) for ejecting pressurized gas (air) and a suction section (negative pressure groove 33); a static pressure generated by the static pressure generating section and a suction force generated by the suction section; Levitation suction mixing unit that causes the workpiece to float by simultaneously acting on the workpiece (glass substrate G),
A pair of porous floating parts that are arranged adjacent to both sides of the floating suction mixing unit, generate a static pressure by ejecting pressurized gas from the porous body, and float the workpiece by the static pressure,
A pair of simple floating portions (floating tables 3) that are disposed adjacent to the porous floating portion on the side opposite to the floating suction mixing portion and cause the workpiece to float by ejecting pressurized gas from the ejection holes. A non-contact support device.

手段3によれば、ワークの浮上量を一定とする浮上精度は、相対的にみて浮上吸引混合部が最も高く、多孔質浮上部、単純浮上部の順に低下する。まず、浮上吸引混合部では、吸引力と静圧による離反力との調和により静圧浮上剛性が高められ、浮上量が略一定となる。その点で、高精度といえる。そして、高精度浮上が行われる浮上吸引混合部は一部の範囲に限定されているため、コストの増加が抑えられている。一方、単純浮上部では加圧気体を噴出孔から噴出させるだけであり、そこでの浮上量は一定ではない。その点で、低精度といえる。多孔質浮上部では、加圧気体が多孔質体の上面から均一に噴出するため、生成する静圧はワークに対して均等に作用する。このため、単純浮上部での浮上に比べれば、浮上量を一定とする精度は高まる。その点で、中精度といえる。   According to the means 3, the levitating accuracy for keeping the floating amount of the workpiece constant is relatively highest in the levitating suction mixing portion, and decreases in order of the porous levitating portion and the simple levitating portion. First, in the levitation suction mixing section, the static pressure levitation rigidity is increased by the harmony between the suction force and the separation force due to the static pressure, and the levitation amount becomes substantially constant. In that respect, it can be said that it is highly accurate. And since the levitation suction mixing part in which high-precision levitation is performed is limited to a part of the range, an increase in cost is suppressed. On the other hand, in the simple floating part, only the pressurized gas is ejected from the ejection hole, and the floating amount there is not constant. In that respect, it can be said that the accuracy is low. Since the pressurized gas is uniformly ejected from the upper surface of the porous body at the porous floating part, the generated static pressure acts uniformly on the workpiece. For this reason, the accuracy of making the flying height constant is higher than that of floating at the simple floating part. In that respect, it can be said to be medium accuracy.

また、高精度に浮上させる浮上吸引混合部の両側(搬送方向の両側)に、低精度の単純浮上部ではなく、中精度の多孔質浮上部が設けられている。このため、ワークを高精度に浮上させる浮上吸引混合部での浮上とその両側の浮上とで、浮上精度のギャップを低減できる。これにより、浮上吸引混合部での高精度な浮上がそれよりも低い精度の浮上から受ける影響も低減される。そして、単純浮上部や多孔質浮上部を設けることは浮上吸引混合部を広げるよりもコスト増加は低く抑えられる。   In addition, a medium-precision porous floating part is provided on both sides (both sides in the conveying direction) of the floating suction mixing part that floats with high accuracy, instead of a low-precision simple floating part. For this reason, the gap of the floating accuracy can be reduced by the floating in the floating suction mixing unit that floats the workpiece with high accuracy and the floating on both sides thereof. Thereby, the influence which the highly accurate levitation | floating in a levitation suction mixing part receives from the levitation | floating of a lower precision is also reduced. Further, providing a simple floating part and a porous floating part can suppress the cost increase lower than expanding the floating suction mixing part.

その結果、コストの大幅な増加を抑えながら、本来意図する高精度な浮上を確実に得ることができる。   As a result, it is possible to reliably obtain the originally intended high-accuracy levitation while suppressing a significant increase in cost.

手段4.前記多孔質浮上部を、複数の多孔質ユニットを組み合わせて構成したことを特徴とする手段3に記載の非接触支持装置。   Means 4. The non-contact support apparatus according to means 3, wherein the porous floating part is configured by combining a plurality of porous units.

手段4によれば、多孔質ユニットの数を適宜変更することで、多孔質浮上部を各種の大きさに変更することができる。このため、さまざまな大きさの装置に対応させることができ、汎用性が高まる。   According to the means 4, the porous floating part can be changed to various sizes by appropriately changing the number of the porous units. For this reason, it can respond to the apparatus of various sizes, and versatility increases.

手段5.前記高精度領域又は前記浮上吸引混合部での浮上量を、他の領域での浮上量よりも大きくなるように設定したことを特徴とする手段1乃至4のいずれかに記載の非接触指示装置。   Means 5. The non-contact indicating device according to any one of means 1 to 4, wherein a floating amount in the high-precision region or the floating suction mixing unit is set to be larger than a floating amount in another region. .

手段5によれば、高精度領域又は浮上吸引混合部におけるワークの浮上量と、中・低精度領域、又は多孔質浮上部及び単純浮上部での浮上量との違いによる影響を小さくし、本来所望していた高精度な浮上をより得やすくすることができる。手段1乃至4によれば浮上量の安定性の違いによる影響を小さくできたが、それとあいまって、本来所望していた高精度な浮上がより得やすくなる。   According to the means 5, the influence by the difference between the floating amount of the workpiece in the high accuracy region or the floating suction mixing portion and the floating amount in the middle / low accuracy region, or the porous floating portion and the simple floating portion is reduced. Desired high-accuracy levitation can be obtained more easily. According to the means 1 to 4, the influence due to the difference in the stability of the flying height can be reduced, but together with this, it becomes easier to obtain the highly accurate flying that was originally desired.

ここで、手段5に記載の非接触指示装置において、以下の構成を備えることが好ましい。すなわち、中精度浮上領域を構成する箇所、浮上吸引混合部に隣接する浮上部又は多孔質浮上部に供給される加圧気体を設定圧に調整する圧力調整手段(電空レギュレータ43)と、ワークの先端が高精度浮上領域又は浮上吸引混合部の領域に導入されてからその上面すべてを覆うまでの間(導入時)、及び後端が高精度浮上領域又は浮上吸引混合部の領域を抜け始めてから抜けきるまでの間(導出時)で、高精度浮上領域又は浮上吸引混合部の領域にあるワークを、高精度浮上領域又は浮上吸引混合部での設定浮上量まで持ち上げるように前記圧力調整手段の設定圧を制御する制御手段(コントローラ44)とである。   Here, the non-contact indication device described in the means 5 preferably includes the following configuration. That is, a pressure adjusting means (electropneumatic regulator 43) for adjusting a pressurized gas supplied to a location constituting a medium-accuracy floating region, a floating portion adjacent to the floating suction mixing portion or a porous floating portion to a set pressure, and a workpiece From the time when the tip of the head is introduced into the high-precision levitation region or the region of the levitation suction mixing unit until it covers the entire upper surface (at the time of introduction), and the rear end begins to pass through the region of the high-precision levitation region or levitation suction mixing unit The pressure adjusting means so as to lift the workpiece in the high-precision floating area or the floating suction mixing section to the set floating amount in the high-precision floating area or the floating suction mixing section until it is completely removed (at the time of derivation). Control means (controller 44) for controlling the set pressure.

この構成によれば、制御手段によって圧力調整手段の設定圧が制御されることにより、導入・導出時で、ワークの先端部又は後端部が、高精度浮上領域又は浮上吸引混合部での設定浮上量まで持ち上げられる。そうすると、導入・導出時では、高精度浮上領域又は浮上吸引混合部での浮上作用が充分でなくても、ワークの先端部又は後端部は設定浮上量まで浮上する。これにより、ワークが高精度浮上領域又は浮上吸引混合部の上方を通過する際、その先端から後端までの全体を通して浮上量の変位を少なくできる。   According to this configuration, the control unit controls the set pressure of the pressure adjusting unit, so that the leading end portion or the rear end portion of the workpiece is set in the high-precision floating region or the floating suction mixing unit at the time of introduction / derivation. Can be lifted up to the flying height. Then, at the time of introduction / derivation, even if the floating action in the high-accuracy floating region or the floating suction mixing unit is not sufficient, the leading end portion or the rear end portion of the workpiece floats to the set flying height. Thereby, when a workpiece | work passes over the high precision floating area | region or the floating suction mixing part, the displacement of a floating amount can be decreased through the whole from the front-end | tip to a rear end.

また、前記制御手段による制御は、具体的には次のように行われる。まず、浮上吸引混合部よりも浮上量を小さくした設定圧を通常設定圧(圧力Pa)とする。ワークの先端部が浮上吸引混合部の領域に導入されたタイミング(t1)で、その先端部の浮上量が混合部での設定浮上量まで大きくなるように通常設定圧から設定圧を高め(圧力Pbとする)、その後、浮上吸引混合部の上面すべてを覆うまで(タイミングt2まで)徐々に低下させて通常設定圧とする。ワークが浮上吸引混合部の上面すべてを覆っている間は、通常設定圧を維持する。ワークの後端部が浮上吸引混合部の領域を抜け始めたタイミング(t3)で、通常設定圧から徐々に設定圧を高め始め、その後、浮上吸引混合部から抜けきるとき(タイミングt4)には後端部の浮上量が混合部での設定浮上量まで大きくする設定圧とする(圧力Pbとする)。   Further, the control by the control means is specifically performed as follows. First, a set pressure in which the flying height is smaller than that of the floating suction mixing unit is set as a normal set pressure (pressure Pa). At the timing (t1) when the tip of the workpiece is introduced into the area of the levitation suction mixing unit, the set pressure is increased from the normal set pressure so that the levitation amount of the tip increases to the set levitation amount in the mixing unit (pressure Pb), and then gradually lower until the entire upper surface of the levitation suction mixing unit is covered (until timing t2) to the normal set pressure. While the workpiece covers the entire upper surface of the floating suction mixing unit, the normal set pressure is maintained. At the timing (t3) when the rear end of the workpiece starts to escape from the area of the levitation suction mixing portion, the set pressure starts to be gradually increased from the normal setting pressure, and then when the workpiece is completely removed from the levitation suction mixing portion (timing t4). The set pressure is set so that the flying height at the rear end increases to the set flying height at the mixing section (referred to as pressure Pb).

以下、発明を具体化した一実施の形態を図面に基づいて説明する。本実施の形態では、非接触支持装置をワークの表面検査装置に用いた場合について具体化している。図1は非接触支持装置を示す平面図、図2は図1のA−A線断面図、図3は図1のB−B線断面図である。   Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings. In the present embodiment, the case where the non-contact support device is used in a workpiece surface inspection device is embodied. 1 is a plan view showing a non-contact support device, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG.

図1乃至図3に示すように、非接触支持装置1は、後述する各部材を支持するベース2を備え、そのベース2は図示しない脚で支持されている。ベース2上には、一対の浮上テーブル3と、一対の多孔質浮上部4と、浮上吸引混合部5とが設けられ、それぞれ適宜の固定手段でベース2に固定されている。これら各部材はまず浮上吸引混合部5の両側に多孔質浮上部4が配置され、さらにその外側に浮上テーブル3が配置されている。   As shown in FIGS. 1 to 3, the non-contact support device 1 includes a base 2 that supports each member described later, and the base 2 is supported by legs (not shown). On the base 2, a pair of floating tables 3, a pair of porous floating portions 4, and a floating suction mixing unit 5 are provided and fixed to the base 2 by appropriate fixing means. In each of these members, first, the porous floating portion 4 is disposed on both sides of the floating suction mixing unit 5, and the floating table 3 is further disposed on the outside thereof.

単純浮上部としての浮上テーブル3には、それぞれ下面(ベース2との接合面)に、ほぼ全域にわたり凹部11が設けられている。このため、各浮上テーブル3の凹部11とベース2の上面とで一対の内部空間12が形成されている。そして、この内部空間12にはベース2に設けられた図示しないポート及び通路を介して加圧気体としてのエアが供給されている。ベース2の上面と各浮上テーブル3の下面との間は、例えばメタルシール等によってシールが施されている。   The levitation table 3 as a simple levitation portion is provided with a concave portion 11 on the lower surface (joint surface with the base 2) over almost the entire area. For this reason, a pair of internal spaces 12 are formed by the recess 11 of each floating table 3 and the upper surface of the base 2. The internal space 12 is supplied with air as pressurized gas through a port and a passage (not shown) provided in the base 2. A seal is applied between the upper surface of the base 2 and the lower surface of each floating table 3 by, for example, a metal seal.

また、各浮上テーブル3にはその上面で開口し、前記内部空間12と外部とを連通する噴出孔13が形成されている。噴出孔13は凹部11が形成された領域全体にわたり、格子状に多数形成されている。そして、内部空間12に供給されたエアはこの噴出孔13から噴出される。なお、噴出孔13は拡大して図示されているが、実際には細孔として形成されている。   In addition, each floating table 3 is formed with an ejection hole 13 that opens on the upper surface and communicates the internal space 12 with the outside. A large number of ejection holes 13 are formed in a lattice shape over the entire region where the recesses 11 are formed. The air supplied to the internal space 12 is ejected from the ejection hole 13. In addition, although the ejection hole 13 is illustrated in an enlarged manner, it is actually formed as a pore.

ここで、各浮上テーブル3は、アルミニウム等、手に入れ易くて加工もし易い金属材料で形成されている。これにより、前記凹部11や前記噴出孔13の形成も容易となるため、浮上テーブル3は安価に製造できる。   Here, each floating table 3 is formed of a metal material that is easy to obtain and process, such as aluminum. Thereby, since formation of the said recessed part 11 and the said ejection hole 13 becomes easy, the floating table 3 can be manufactured cheaply.

次に、前記多孔質浮上部4は、多数の多孔質ユニット21で構成されている。そして、各多孔質浮上部4において、多孔質ユニット21は複数個がワークとしてのガラス基板Gの搬送方向に沿って列をなすように並接され、その列がガラス基板Gの幅(搬送方向と直交する方向の幅)に合わせて複数列並設されている。本実施の形態では、2個の多孔質ユニット21で構成される列が4列設けられている。多孔質ユニット21はベース2に固定されるユニット本体22と多孔質体23とを備えている。ユニット本体22にはその上面に収容溝24が形成され、その収容溝24に多孔質体23が両者の上面で同一平面を形成するようにして収容されている。なお、多孔質体23の上面が若干突出するように収容してもよい。収容溝24の底面には流通溝25が形成されている。そして、ベース2に設けられた図示しない流路、及びユニット本体22に設けられたエア通路26を介してこの流通溝25内にエアが供給される。   Next, the porous floating part 4 is composed of a number of porous units 21. And in each porous floating part 4, a plurality of porous units 21 are juxtaposed so as to form a row along the transport direction of the glass substrate G as a workpiece, and the row is the width of the glass substrate G (the transport direction). Are arranged side by side in accordance with the width in the direction orthogonal to the vertical direction. In the present embodiment, four rows composed of two porous units 21 are provided. The porous unit 21 includes a unit main body 22 and a porous body 23 fixed to the base 2. An accommodation groove 24 is formed on the upper surface of the unit body 22, and the porous body 23 is accommodated in the accommodation groove 24 so as to form the same plane on both upper surfaces. In addition, you may accommodate so that the upper surface of the porous body 23 may protrude a little. A flow groove 25 is formed on the bottom surface of the housing groove 24. Then, air is supplied into the flow groove 25 through a flow path (not shown) provided in the base 2 and an air passage 26 provided in the unit main body 22.

一方、前記多孔質体23は、焼結三フッ化樹脂、焼結四フッ化樹脂といったフッ素樹脂により形成されている。そして、前記流通溝25にエアが供給されると、そのエアが多孔質体23の微細孔を通過し、上面から噴出する。なお、多孔質体23は、フッ素樹脂以外でも、焼結ナイロン樹脂、焼結ポリアセタール樹脂等の合成樹脂材料や、焼結アルミニウム、焼結銅、焼結ステンレス等の金属材料、焼結カーボン、焼結セラミックスなどで形成してもよい。   On the other hand, the porous body 23 is made of a fluororesin such as a sintered trifluoride resin or a sintered tetrafluoride resin. When air is supplied to the flow groove 25, the air passes through the fine holes of the porous body 23 and is ejected from the upper surface. The porous body 23 may be made of a synthetic resin material such as sintered nylon resin or sintered polyacetal resin, a metal material such as sintered aluminum, sintered copper or sintered stainless steel, sintered carbon, It may be formed of sintered ceramics.

次に、前記浮上吸引混合部5は、多数の多孔質ユニット31及び吸引ユニット32で構成されている。そして、これら多数の両ユニット31,32が、互いに隣り合わないように配置され、それぞれがベース2に固定されている。多孔質ユニット31については、前述した多孔質浮上部4を構成する多孔質ユニット21と同様の構成である。このため、説明を省略し、その各構成部分を示す符号も先の多孔質ユニット21と同じ符号を付してある。一方、吸引ユニット32にはその上面に負圧溝33が形成されている。そして、負圧溝33は、吸引通路34及びベース2に設けられた図示しない吸引通路を介して、図示しない吸引ポートにつながっている。このため、真空引き等によって吸引ポートに吸引力が作用すると、負圧溝33の開口部周囲に吸引力が作用する。   Next, the levitation suction mixing unit 5 includes a large number of porous units 31 and suction units 32. And these many units 31 and 32 are arrange | positioned so that it may not mutually adjoin, and each is being fixed to the base 2. As shown in FIG. About the porous unit 31, it is the structure similar to the porous unit 21 which comprises the porous floating part 4 mentioned above. For this reason, description is abbreviate | omitted and the code | symbol which shows each component is attached | subjected the same code | symbol as the previous porous unit 21. FIG. On the other hand, the suction unit 32 has a negative pressure groove 33 formed on the upper surface thereof. The negative pressure groove 33 is connected to a suction port (not shown) through a suction passage 34 and a suction passage (not shown) provided in the base 2. For this reason, when a suction force acts on the suction port by evacuation or the like, the suction force acts around the opening of the negative pressure groove 33.

以上のように構成された非接触支持装置1では、ガラス基板Gを次のように非接触保持する。ガラス基板Gは図示しない搬送手段により搬送されてこの装置1の上方を移動する。また、ガラス基板Gは非接触であることが要求されない箇所、例えば幅方向の両端部で接触支持されながら搬送される。   In the non-contact support device 1 configured as described above, the glass substrate G is held in a non-contact manner as follows. The glass substrate G is transported by transport means (not shown) and moves above the apparatus 1. Further, the glass substrate G is transported while being supported in contact with a portion that is not required to be non-contact, for example, both ends in the width direction.

まず、各浮上テーブル3では、その内部空間12にエアを供給して、噴出孔13から噴出させる。これにより、浮上テーブル3の上面とガラス基板Gとの間に正圧が発生し、それによって基板Gは非接触状態で保持される。ただ、この正圧は単なる細孔である噴出孔13からのエア噴出により発生させただけであり、浮上テーブル3が設けられた領域での浮上は、他の領域での浮上に比べるともっとも浮上量が一定せず安定していない。そこで、この領域での浮上は他の領域での浮上との比較において低精度な浮上といえる。   First, in each floating table 3, air is supplied to the internal space 12 and ejected from the ejection holes 13. Thereby, a positive pressure is generated between the upper surface of the floating table 3 and the glass substrate G, whereby the substrate G is held in a non-contact state. However, this positive pressure is only generated by air ejection from the ejection holes 13 which are simple pores, and the ascent in the area where the levitation table 3 is provided is the most ascending compared to the levitation in other areas. The amount is not constant and stable. Therefore, levitation in this area can be said to be low-accuracy levitation compared to levitation in other areas.

次に、各多孔質浮上部4では、ユニット本体22のエア通路26にエアを供給して、多孔質体23の上面からエアを噴出させる。これにより、多孔質体23の上面とガラス基板Gとの間に静圧が発生し、それによって基板Gは非接触状態で保持される。多孔質体23の上面からエアが均一に噴出するため、このとき発生する静圧はガラス基板Gに対して均等に作用する。かかる静圧によってガラス基板Gを浮上させるため、前述した浮上テーブル3による低精度な浮上に比べれば、その浮上量はより安定する。そこで、この多孔質浮上部4が設けられた領域での浮上は、他の領域での浮上との比較において中精度な浮上といえる。   Next, in each porous floating portion 4, air is supplied to the air passage 26 of the unit body 22, and air is ejected from the upper surface of the porous body 23. Thereby, a static pressure is generated between the upper surface of the porous body 23 and the glass substrate G, whereby the substrate G is held in a non-contact state. Since air is uniformly ejected from the upper surface of the porous body 23, the static pressure generated at this time acts equally on the glass substrate G. Since the glass substrate G is levitated by such a static pressure, the levitating amount is more stable than the low-precision levitating by the levitating table 3 described above. Therefore, the levitation in the region where the porous levitation portion 4 is provided can be said to be a medium-accuracy levitation in comparison with the levitation in other regions.

次に、浮上吸引混合部5では、多孔質ユニット31のユニット本体22に設けられた通路26にエアを供給して、多孔質体23の上面からエアを噴出させる。これにより、多孔質体23の上面とガラス基板Gとの間に静圧が発生し、それによって基板Gは非接触状態で保持される。それと同時に、負圧ユニット32の吸引通路34に吸引力を作用させる。すると、負圧溝33内は負圧となる。これにより、負圧溝33の開口部分周辺に吸引力が作用し、ガラス基板Gは浮上吸引混合部5の上面に引き寄せられる。この引き寄せられる力(吸引力)と、前述した多孔質体23との間で生じる静圧によりガラス基板Gが浮上吸引混合部5の上面から離れようとする力(離反力)との調和により、浮上吸引混合部5と基板Gとの間では静圧浮上剛性が高まる。そして、浮上吸引混合部5では、この剛性が高められた静圧軸受けによりガラス基板Gが非接触保持される。これにより、ガラス基板Gは浮上吸引混合部5の上面に対し略一定した浮上量で浮上し、安定した浮上となる。そこで、この浮上吸引混合部5が設けられた領域での浮上は、浮上量が略一定となる点で前述した二つの領域での浮上よりも高精度な浮上といえる。   Next, in the levitation suction mixing unit 5, air is supplied to the passage 26 provided in the unit main body 22 of the porous unit 31, and air is ejected from the upper surface of the porous body 23. Thereby, a static pressure is generated between the upper surface of the porous body 23 and the glass substrate G, whereby the substrate G is held in a non-contact state. At the same time, a suction force is applied to the suction passage 34 of the negative pressure unit 32. Then, the negative pressure groove 33 becomes negative pressure. Thereby, a suction force acts on the periphery of the opening portion of the negative pressure groove 33, and the glass substrate G is attracted to the upper surface of the floating suction mixing unit 5. Due to the harmony between this attracting force (suction force) and the force (separation force) that causes the glass substrate G to move away from the upper surface of the floating suction mixing unit 5 by the static pressure generated between the porous body 23 described above, The static pressure levitation rigidity is increased between the levitation suction mixing unit 5 and the substrate G. In the levitation suction mixing unit 5, the glass substrate G is held in a non-contact manner by the static pressure bearing with increased rigidity. As a result, the glass substrate G floats with a substantially constant flying height with respect to the upper surface of the floating suction mixing unit 5 and becomes stable floating. Therefore, it can be said that the levitation in the region where the levitation suction mixing unit 5 is provided is more accurate than the levitation in the two regions described above in that the levitation amount is substantially constant.

非接触支持装置1は、搬送方向端部から同方向に沿って順に、浮上テーブル3、多孔質浮上部4、浮上吸引混合部5、多孔質浮上部4、浮上テーブル3と並設されている。このため、ガラス基板Gは順次、低精度浮上、中精度浮上を経て高精度浮上に至り、その後、中精度浮上、低精度浮上を経て送り出される。浮上吸引混合部5の上方には検査カメラCAが設置されており(図4参照)、高精度に浮上するガラス基板Gの表面が検査カメラCAによって検査される。高精度な浮上状態では浮上量が略一定しており、カメラCAの焦点合わせが容易なため、表面検査を確実に行うことができる。   The non-contact support device 1 is arranged in parallel with the floating table 3, the porous floating part 4, the floating suction mixing part 5, the porous floating part 4, and the floating table 3 in this order from the conveyance direction end. . For this reason, the glass substrate G reaches high-precision levitation sequentially through low-precision levitation and medium-precision levitation, and then is sent out through medium-precision levitation and low-precision levitation. An inspection camera CA is installed above the floating suction mixing unit 5 (see FIG. 4), and the surface of the glass substrate G that floats with high accuracy is inspected by the inspection camera CA. In a highly accurate flying state, the flying height is substantially constant, and the camera CA can be easily focused, so that surface inspection can be performed reliably.

そして、本実施の形態ではガラス基板Gを高精度に浮上させる浮上吸引混合部5の両側に、中精度に浮上させる多孔質浮上部4を設け、さらにその両側に低精度に浮上させる浮上テーブル3を設けた構成としている。すなわち、ガラス基板Gの浮上精度が極端に異なる領域が隣り合って設けられるのではなく、その間に中間の精度で浮上させる領域を設けている。そのため、浮上吸引混合部5での高精度な浮上とその両側の領域での浮上とで浮上精度のギャップが低減される。これにより、浮上吸引混合部5での高精度な浮上がそれよりも低い精度の浮上から受ける影響も低減されることになり、本来意図する高精度な浮上を確実に得ることができる。   In the present embodiment, the floating table 3 is provided on both sides of the levitation suction mixing unit 5 for levitating the glass substrate G with high accuracy, and is levitated with low accuracy on both sides thereof. It is set as the structure which provided. That is, the areas where the flying accuracy of the glass substrate G is extremely different are not provided adjacent to each other, but are provided with an area where the flying precision is intermediate between them. For this reason, the gap of the floating accuracy is reduced by the high-precision floating in the floating suction mixing unit 5 and the floating in the regions on both sides thereof. As a result, the influence of high-accuracy levitation in the levitation suction mixing unit 5 from levitation with lower accuracy is reduced, and the originally intended high-accuracy levitation can be reliably obtained.

ここで、多孔質浮上部4及び浮上テーブル3での浮上量を、浮上吸引混合部5での浮上量と同程度又はそれより大きく設定すると、それらの領域での浮上が高精度な浮上に与える影響が大きくなり、本来所望していた高精度な浮上を得にくくなる。そこで、非接触支持装置1では、通常、浮上吸引混合部5での浮上量が、多孔質浮上部4及び浮上テーブル3での浮上量よりも大きくなるように設定される。その場合、浮上吸引混合部5に関しては、多孔質ユニット31及び負圧ユニット32の設置個数や配置、エアの供給圧力を調整すること等で設定される。また、多孔質浮上部4及び浮上テーブル3に関してはそれぞれに供給されるエア圧力を調整することで設定される。これを通常制御状態とする。   Here, if the flying height at the porous floating portion 4 and the floating table 3 is set to be approximately the same as or larger than the floating height at the floating suction mixing unit 5, the floating in these regions gives high-precision floating. The influence becomes large, and it becomes difficult to obtain the highly accurate levitation that was originally desired. Therefore, in the non-contact support device 1, the flying height at the floating suction mixing unit 5 is usually set to be larger than the flying height at the porous floating portion 4 and the floating table 3. In this case, the levitation suction mixing unit 5 is set by adjusting the number and arrangement of the porous units 31 and the negative pressure units 32, the air supply pressure, and the like. Moreover, regarding the porous floating part 4 and the floating table 3, it sets by adjusting the air pressure supplied to each. This is the normal control state.

ただ、ガラス基板Gの搬送中、浮上吸引混合部5への導入・導出時にもこの通常制御状態を維持し続けると、次のような問題が生じる。すなわち、導入・導出時では浮上吸引混合部5の領域にあるガラス基板Gに対し、離反力や吸引力の作用が不十分なため、浮上量は浮上吸引混合部5での設定浮上量よりも小さくなる。そして、導入当初・導出直前であるほどその浮上量は小さく、浮上吸引混合部5の上面がすべて覆われた状態(高精度浮上時)に近いほど、設定浮上量に近くなり浮上量も大きい。このため、導入・導出時に浮上吸引混合部5における浮上量の変位が大きくなってしまう(図6参照。なお、図6については後で説明する。)。例えば、一つの試験結果として、180μmもの差が生じる。この場合、導入・導出時に検査カメラCAの下方を通過するガラス基板Gの先端部及び後端部では焦点合わせが困難となり、検査カメラCAでの検査が充分に行えなくなる。   However, if the normal control state is maintained even during the introduction / extraction to the levitation suction mixing unit 5 during the conveyance of the glass substrate G, the following problems occur. That is, at the time of introduction / derivation, the separation force and the suction force are insufficient for the glass substrate G in the region of the levitation suction mixing unit 5, so the levitation amount is larger than the set levitation amount in the levitation suction mixing unit 5. Get smaller. The flying height is smaller as it is introduced and immediately before derivation. The closer to the state where all the upper surfaces of the floating suction mixing unit 5 are covered (during high-precision flying), the closer to the set flying height and the higher the flying height. For this reason, the displacement of the floating amount in the floating suction mixing unit 5 becomes large at the time of introduction / derivation (see FIG. 6, and FIG. 6 will be described later). For example, as a test result, a difference of 180 μm is generated. In this case, focusing becomes difficult at the front end portion and the rear end portion of the glass substrate G passing under the inspection camera CA at the time of introduction / derivation, and inspection with the inspection camera CA cannot be performed sufficiently.

なお、具体的に導入時とは、ガラス基板Gの搬送方向先端が浮上吸引混合部5の領域に導入されてから同混合部5の上面がガラス基板Gによってすべて覆われるまでの間をいう。また、導出時とは、ガラス基板Gの搬送方向後端が浮上吸引混合部5の領域を抜け始めてから完全に抜けるまでの間をいう。   Specifically, the time of introduction refers to a period from when the conveyance direction tip of the glass substrate G is introduced into the region of the floating suction mixing unit 5 until the upper surface of the mixing unit 5 is completely covered by the glass substrate G. In addition, the time of derivation refers to a period from when the rear end of the glass substrate G in the transport direction starts to escape from the region of the floating suction mixing unit 5 until it completely exits.

そこで、本実施の形態の非接触支持装置1では、導入・導出時において浮上吸引混合部5の領域にあるガラス基板Gの浮上量変位を小さくすべく、多孔質浮上部4の多孔質ユニット21から噴出されるエアの供給圧力を制御するように構成されている。   Therefore, in the non-contact support device 1 of the present embodiment, the porous unit 21 of the porous floating part 4 is designed to reduce the flying height displacement of the glass substrate G in the region of the floating suction mixing unit 5 at the time of introduction / derivation. It is comprised so that the supply pressure of the air ejected from may be controlled.

まず、その具体的な構成を図4の回路図に基づいて説明する。図4では、理解を容易にするため、浮上吸引混合部5を網掛けで示し、多孔質浮上部4を白抜きで示している。また、浮上吸引混合部5へのエア供給経路は省略されている。   First, the specific configuration will be described based on the circuit diagram of FIG. In FIG. 4, for easy understanding, the floating suction mixing unit 5 is indicated by shading, and the porous floating portion 4 is indicated by white. Further, the air supply path to the levitation suction mixing unit 5 is omitted.

図4に示すように、両多孔質浮上部4への供給ポートに接続される各配管41とエア供給源42との間には、圧力調整手段としての電空レギュレータ43が設けられている。この電空レギュレータ43により、その出力側圧力が制御手段としてのコントローラ44からの指令信号に基づく設定圧に制御される。そして、その設定圧とされたエアが多孔質浮上部4に供給される。   As shown in FIG. 4, an electropneumatic regulator 43 as a pressure adjusting means is provided between each pipe 41 connected to the supply port to both porous floating parts 4 and the air supply source 42. The electropneumatic regulator 43 controls the output side pressure to a set pressure based on a command signal from the controller 44 as a control means. Then, the air having the set pressure is supplied to the porous floating portion 4.

また、多孔質浮上部4と浮上吸引混合部5との境界の上方には、基板検出センサSが設けられている。この基板検出センサSはコントローラ44に接続されている(図示略)。そして、基板検出センサSによりガラス基板Gの存在が検出されると、コントローラ44に基板検出信号が入力される。導入側の基板検出センサS−1からの信号が入力されると、コントローラ44はガラス基板Gの先端が浮上吸引混合部5の領域に入ったと判断する(タイミングt1)。さらに、導出側の基板検出センサS−2からの信号も入力されると、コントローラ44は浮上吸引混合部5の上面すべてが基板Gで覆われたと判断する(タイミングt2)。その後、導入側の基板検出センサS−1からの信号入力がなくなると、コントローラ44はガラス基板Gの後端が浮上吸引混合部5から抜け始めたと判断する(タイミングt3)。そして、導出側の基板検出センサS−2からの信号入力もなくなると、コントローラ44はガラス基板Gの後端が浮上吸引混合部5から完全に抜けきったと判断する(タイミングt4)。   Further, a substrate detection sensor S is provided above the boundary between the porous floating portion 4 and the floating suction mixing portion 5. The substrate detection sensor S is connected to the controller 44 (not shown). When the substrate detection sensor S detects the presence of the glass substrate G, a substrate detection signal is input to the controller 44. When a signal from the introduction side substrate detection sensor S-1 is input, the controller 44 determines that the tip of the glass substrate G has entered the region of the floating suction mixing unit 5 (timing t1). Further, when a signal from the substrate detection sensor S-2 on the derivation side is also input, the controller 44 determines that the entire upper surface of the floating suction mixing unit 5 is covered with the substrate G (timing t2). Thereafter, when there is no signal input from the substrate detection sensor S-1 on the introduction side, the controller 44 determines that the rear end of the glass substrate G has started to come out of the floating suction mixing unit 5 (timing t3). Then, when there is no signal input from the substrate detection sensor S-2 on the derivation side, the controller 44 determines that the rear end of the glass substrate G is completely removed from the levitation suction mixing unit 5 (timing t4).

次に、コントローラ44による具体的な圧力制御を、図5に示した圧力変動のタイムチャートに基づいて説明する。   Next, specific pressure control by the controller 44 will be described based on the pressure fluctuation time chart shown in FIG.

まず、ガラス基板Gの搬送方向先端が浮上吸引混合部5の領域に入るまでの間、各多孔質浮上部4への供給圧が通常制御状態での圧力Paとなるよう、コントローラ44は電空レギュレータ43に指令信号を出力する。その後、ガラス基板Gの移動が進み、先端が浮上吸引混合部5の領域に入る前記t1のタイミングで、コントローラ44は供給圧力を圧力Pbまで高めるよう、電空レギュレータ43に指令信号を出力する。ここでは、浮上吸引混合部5での浮上量は通常制御状態のまま維持されている。そして、圧力Pbは、浮上吸引混合部5に存在するガラス基板Gの先端部を同混合部5での設定浮上量まで持ち上げるのに必要な圧力であり、多孔質浮上部4における供給圧力と浮上量との関係から予め設定されている。   First, the controller 44 is electropneumatic so that the supply pressure to each porous floating portion 4 becomes the pressure Pa in the normal control state until the tip in the transport direction of the glass substrate G enters the region of the floating suction mixing unit 5. A command signal is output to the regulator 43. Thereafter, the movement of the glass substrate G proceeds, and at the timing t1 when the tip enters the region of the floating suction mixing unit 5, the controller 44 outputs a command signal to the electropneumatic regulator 43 so as to increase the supply pressure to the pressure Pb. Here, the floating amount in the floating suction mixing unit 5 is maintained in the normal control state. The pressure Pb is a pressure necessary for lifting the tip portion of the glass substrate G existing in the levitation suction mixing unit 5 to the set levitation amount in the mixing unit 5. It is preset from the relationship with the quantity.

t1のタイミングからガラス基板Gが移動して浮上吸引混合部5の上面が順次覆われていくと、離反力及び吸引力の作用による影響も順次増大する。このため、コントローラ44は浮上吸引混合部5の上面がすべてガラス基板Gで覆われる前記t2のタイミングまでの間で、供給圧力を徐々に通常制御状態の圧力Paに下げるよう、電空レギュレータ43−1に指令信号を出力する。その後、ガラス基板Gの後端が浮上吸引混合部5の領域から抜け始める前記t3のタイミングまで、供給圧力は圧力Paを維持する。   As the glass substrate G moves from the timing t1 and the upper surface of the levitation suction mixing unit 5 is sequentially covered, the effects of the separation force and the suction force also increase sequentially. For this reason, the controller 44 adjusts the electropneumatic regulator 43-so that the supply pressure is gradually lowered to the pressure Pa in the normal control state until the timing t 2 when the upper surface of the levitation suction mixing unit 5 is entirely covered with the glass substrate G. 1 outputs a command signal. Thereafter, the supply pressure is maintained at the pressure Pa until the timing t3 when the rear end of the glass substrate G starts to escape from the region of the levitation suction mixing unit 5.

t3のタイミングで、コントローラ44は導出側の多孔質浮上部4−2への供給圧力を、通常制御状態の圧力Paから供給圧力を高めるべく、電空レギュレータ43−2に指令信号を出力する。そして、ガラス基板Gが浮上吸引混合部5の領域から完全に抜けきる前記t4のタイミングで再び前記圧力Pbとなるよう、徐々に圧力が高められる。   At the timing of t3, the controller 44 outputs a command signal to the electropneumatic regulator 43-2 in order to increase the supply pressure to the porous floating part 4-2 on the outlet side from the pressure Pa in the normal control state. Then, the pressure is gradually increased so that the pressure Pb is reached again at the timing t4 when the glass substrate G is completely removed from the region of the floating suction mixing unit 5.

その後、ガラス基板Gが浮上吸引混合部5の領域から完全に抜けきってしまうと、コントローラ44は供給圧を圧力Pbから通常制御状態での圧力Paに戻すよう、電空レギュレータ43に指令信号を出力する。そして、ガラス基板Gが新たに搬送されるたび、上述した供給圧の制御が繰返し行われる。   Thereafter, when the glass substrate G is completely removed from the region of the levitation suction mixing unit 5, the controller 44 sends a command signal to the electropneumatic regulator 43 so as to return the supply pressure from the pressure Pb to the pressure Pa in the normal control state. Output. And whenever glass substrate G is newly conveyed, control of the supply pressure mentioned above is performed repeatedly.

図6は、導入・導出時、及び高精度浮上時における基板Gの浮上の様子を示した模式図である。図4と同様、浮上吸引混合部5を網掛けで示し、多孔質浮上部4を白抜きで示している。また、仮想線での領域区分も模式的なものである。   FIG. 6 is a schematic diagram showing how the substrate G floats at the time of introduction / derivation and at high precision. As in FIG. 4, the floating suction mixing unit 5 is indicated by shading, and the porous floating portion 4 is indicated by white. Moreover, the area division | segmentation by a virtual line is also a typical thing.

図6(a),(b)に示したように、導入・導出時に前述した多孔質浮上部4への供給圧力を制御することにより、浮上吸引混合部5の領域にあるガラス基板Gの先端部(実線で図示)は二点鎖線で示すような低い浮上状態から、一点鎖線で示す設定浮上量まで持ち上げられている。このため、導入・導出時におけるガラス基板Gの浮上量変位が小さくなる。例えば、前述の試験(180μmの変位が生じたもの)と同じ状況で行った試験結果として、供給圧力の制御により70μmまで変位を小さくすることができた。なお、図6(c)に示すように、高精度浮上時では、浮上吸引混合部5の領域にあるガラス基板Gは設定浮上量で浮上する。このため、ガラス基板Gが浮上吸引混合部5の上方を通過する際、先端から後端までを通して浮上量の変位が少なくなる。   As shown in FIGS. 6 (a) and 6 (b), the tip of the glass substrate G in the region of the levitation suction mixing unit 5 is controlled by controlling the supply pressure to the porous levitation unit 4 at the time of introduction and derivation. The portion (shown by a solid line) is lifted from a low flying state as shown by a two-dot chain line to a set flying height shown by a one-dot chain line. For this reason, the flying height displacement of the glass substrate G at the time of introduction / derivation becomes small. For example, as a result of a test performed in the same situation as the above-described test (where a displacement of 180 μm occurred), the displacement could be reduced to 70 μm by controlling the supply pressure. In addition, as shown in FIG.6 (c), at the time of high precision levitation, the glass substrate G in the area | region of the levitation suction mixing part 5 is levitated by the set levitation amount. For this reason, when the glass substrate G passes above the levitation suction mixing unit 5, the displacement of the levitation amount decreases from the front end to the rear end.

以上詳述したように、本実施の形態によれば、以下の優れた効果を有する。   As described above in detail, the present embodiment has the following excellent effects.

高精度に浮上させる浮上吸引混合部5の両側に、低精度の浮上テーブル3ではなく、中精度の多孔質浮上部4が設けられている。このため、高精度な浮上がそれに隣接する浮上から受ける影響を少なくして、本来意図する高精度な浮上を確実に得ることができる。しかも、多孔質浮上部4への供給圧力を調整して浮上吸引混合部5への導入・導出時における浮上量変位を抑えたため、先端から後端までを通して浮上量の変位が少ない。これにより、検査カメラCAによる焦点合わせはその下方を通過するガラス基板Gの先端から後端まで通して容易となり、検査カメラCAでの検査を確実に行うことができる。   On both sides of the levitation suction mixing unit 5 that levitates with high accuracy, medium-precision porous levitation portions 4 are provided instead of the low-accuracy levitation table 3. For this reason, it is possible to reduce the influence of the high-accuracy levitation from the levitation adjacent thereto, and to reliably obtain the originally intended high-accuracy levitation. Moreover, since the supply pressure to the porous levitation portion 4 is adjusted to suppress the displacement of the levitation amount at the time of introduction / derivation to the levitation suction mixing unit 5, the displacement of the levitation amount is small from the front end to the rear end. Thereby, the focusing by the inspection camera CA is facilitated from the front end to the rear end of the glass substrate G passing therebelow, and the inspection by the inspection camera CA can be reliably performed.

これにより、非接触支持装置1全体に浮上吸引混合部5のような高精度浮上を得るための構成を設ける必要がなくなる。そもそも、浮上吸引混合部5は、大量のエアを多孔質体23から噴出させるのと同時に吸引力も作用させることで高い静圧浮上剛性が得られ、浮上量を一定とするものである。このため、多孔質ユニット31と負圧ユニット32の複合という点でそれ自体高価であるとともに、大量のエアを消費するという点でランニングコストも高価となる。それに比べると、本実施の形態のように、浮上吸引混合部5を限定して設けただけの構成であれば、製造コスト及びランニングコストのいずれも大幅な低減が望める。しかも、前述した構成や供給圧力の制御によって、高精度な浮上を一部に限定したことの不都合性は充分に解消されている。したがって、コストの増加を大幅に抑えながら、必要とする高精度な浮上が確実に得られる。   Thereby, it is not necessary to provide the whole non-contact support device 1 with a structure for obtaining high-precision levitation such as the levitation suction mixing unit 5. In the first place, the levitation suction mixing unit 5 allows a high static pressure levitation rigidity to be obtained by causing a large amount of air to be ejected from the porous body 23 and simultaneously exerting a suction force, and makes the levitation amount constant. For this reason, it is expensive in terms of the composite of the porous unit 31 and the negative pressure unit 32, and the running cost is also expensive in that a large amount of air is consumed. Compared with that, if it is the structure which provided only the floating suction mixing part 5 like this Embodiment, both the manufacturing cost and the running cost can be reduced significantly. Moreover, the inconvenience of limiting high-precision levitation to a part by the above-described configuration and control of supply pressure is sufficiently eliminated. Therefore, the required high-accuracy levitation can be reliably obtained while greatly suppressing an increase in cost.

なお、実施の形態は上記の内容に限定されず、例えば次のように実施してもよい。   In addition, embodiment is not limited to said content, For example, you may implement as follows.

上記実施の形態では、浮上吸引混合部5を構成する多孔質ユニット31として、図1に示すように2種類の平面形状をなすものを用いたが、多孔質ユニット31及び負圧ユニット32の平面形状をすべて統一してもよい。また、多孔質体23及び負圧溝33の平面形状は円形状に限定されず、長円形状とするなど他の形状としてもよい。さらに、多孔質ユニット31及び負圧ユニット32の個数や配置は、図1に示されたものに限定されず、ガラス基板Gの重量や要求される浮上量その他の要因によって適宜変更してもよい。   In the above embodiment, as the porous unit 31 constituting the levitation suction mixing unit 5, those having two kinds of planar shapes as shown in FIG. 1 are used, but the planes of the porous unit 31 and the negative pressure unit 32 are used. All shapes may be unified. Further, the planar shape of the porous body 23 and the negative pressure groove 33 is not limited to a circular shape, and may be other shapes such as an oval shape. Furthermore, the number and arrangement of the porous units 31 and the negative pressure units 32 are not limited to those shown in FIG. 1, and may be appropriately changed depending on the weight of the glass substrate G, the required flying height, and other factors. .

上記の実施形態では、多孔質浮上部4を構成する多孔質ユニット21を、浮上吸引混合部5を構成する多孔質ユニット31と異なる平面形状としたが、両者を統一してもよい。また、多孔質体23の平面形状も円形状に限定されない。さらに、多孔質浮上部4は多数の多孔質ユニット21によって構成するのではなく、一つの部材で構成してもよい。   In the above embodiment, the porous unit 21 constituting the porous floating portion 4 has a different planar shape from the porous unit 31 constituting the floating suction mixing unit 5, but both may be unified. Further, the planar shape of the porous body 23 is not limited to a circular shape. Further, the porous floating part 4 may be constituted by one member instead of being constituted by a large number of porous units 21.

上記実施の形態では、導入・導出時に多孔質浮上部4の供給圧力を高める際の圧力Pbを予め設定していたが、多孔質浮上部4の上方に設けたレーザ変位計等でガラス基板Gの浮上量を検出し、浮上吸引混合部5での浮上量を目標値とするフィードバック制御する構成としてもよい。   In the above embodiment, the pressure Pb for increasing the supply pressure of the porous floating part 4 at the time of introduction / derivation is set in advance. However, the glass substrate G can be obtained by a laser displacement meter or the like provided above the porous floating part 4. It is good also as a structure which detects the flying height of this and performs feedback control which makes the flying height in the floating suction mixing part 5 the target value.

上記の実施形態では、ワークとしてガラス基板Gを例にあげて説明したが、薄板状のものであればガラス基板Gに限定されない。   In the above embodiment, the glass substrate G is taken as an example of the workpiece, but the glass substrate G is not limited as long as it is a thin plate.

上記実施の形態では、非接触支持装置1に供給される加圧気体としてエアを例に挙げて説明したが、エア以外にも窒素等の他の気体を用いても良い。   In the said embodiment, although air was mentioned as an example as a pressurized gas supplied to the non-contact support apparatus 1, other gases, such as nitrogen, may be used besides air.

非接触支持装置を示す平面図。The top view which shows a non-contact support apparatus. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. 図1のB−B線断面図。FIG. 3 is a sectional view taken along line BB in FIG. 1. 多孔質浮上部へのエアの供給経路を示す回路説明図。The circuit explanatory view showing the supply route of the air to the porous floating part. 多孔質浮上部に供給されるエアの圧力変動を示すタイムチャート。The time chart which shows the pressure fluctuation of the air supplied to a porous floating part. ガラス基板の浮上の様子を示した模式図。The schematic diagram which showed the mode that the glass substrate floated. 従来の非接触支持装置を示す平面図。The top view which shows the conventional non-contact support apparatus.

符号の説明Explanation of symbols

1…非接触支持装置、3…単純浮上部としての浮上テーブル、4…多孔質浮上部、5…浮上吸引混合部、23…多孔質体、33…負圧溝、43…圧力調整手段としての電空レギュレータ、44…制御手段としてのコントローラ。   DESCRIPTION OF SYMBOLS 1 ... Non-contact support apparatus, 3 ... Levitation table as simple floating part, 4 ... Porous floating part, 5 ... Levitation suction mixing part, 23 ... Porous body, 33 ... Negative pressure groove, 43 ... As pressure adjustment means Electropneumatic regulator, 44... Controller as control means.

Claims (5)

ワーク支持側の面に、加圧気体によりその面からワークを浮上させた状態で支持する複数の浮上領域を隣接して備え、その各浮上領域では浮上量を一定とする精度が異なるように構成して、各浮上領域を相対的に精度の高い高精度浮上領域と精度の低い低精度浮上領域とに分け、高精度浮上領域の両側に低精度浮上領域を配置した非接触支持装置において、
前記高精度浮上領域と前記低精度浮上領域との間に、両精度の中間の精度を備えた中精度浮上領域を設けたことを特徴とする非接触支持装置。
The work support side surface is equipped with a plurality of flotation areas that support the work piece in a state where it is lifted from the surface by pressurized gas, and each flotation area is configured to have a different accuracy to keep the flotation amount constant. In the non-contact support device in which each levitation region is divided into a high accuracy levitation region with relatively high accuracy and a low accuracy levitation region with low accuracy, and the low accuracy levitation regions are arranged on both sides of the high accuracy levitation region,
A non-contact support device, wherein a medium-accuracy levitation region having an intermediate accuracy between both the high-accuracy levitation regions and the low-accuracy levitation regions is provided.
加圧気体を噴出させる静圧発生部と吸引部とで構成され、静圧発生部で生成する静圧と吸引部で生成する吸引力とを同時にワークに作用させてワークを浮上させる浮上吸引混合部を設けた非接触支持装置において、
前記浮上吸引混合部のワーク搬送方向に沿った両側に、浮上吸引混合部より浮上量を一定とする精度が低い状態でワークを浮上させる少なくとも2つの浮上部を設け、各浮上部の中では浮上吸引混合部に近いほど相対的に浮上精度が高くなるように構成したことを特徴とする非接触支持装置。
A floating suction mixing system that consists of a static pressure generating part that ejects pressurized gas and a suction part, and that causes the static pressure generated by the static pressure generating part and the suction force generated by the suction part to act on the work at the same time. In the non-contact support device provided with a portion,
At least two levitation parts are provided on both sides of the levitation suction mixing unit along the workpiece conveyance direction so that the workpiece is levitated with a lower accuracy than that of the levitation suction mixing unit. A non-contact support device characterized in that the levitation accuracy is relatively higher as it is closer to the suction mixing unit.
加圧気体を噴出させる静圧発生部と吸引部とを備え、静圧発生部で生成する静圧と吸引部で生成する吸引力とを同時にワークに作用させてワークを浮上させる浮上吸引混合部と、
前記浮上吸引混合部の両側に隣接して配置され、加圧気体を多孔質体から噴出させて静圧を生成し、その静圧によりワークを浮上させる一対の多孔質浮上部と、
前記多孔質浮上部に前記浮上吸引混合部とは反対側で隣接して配置され、加圧気体を噴出孔から噴出させてワークを浮上させる一対の単純浮上部と
を備えたことを特徴とする非接触支持装置。
A floating suction mixing unit that has a static pressure generating unit and a suction unit for ejecting pressurized gas, and causes the workpiece to float by causing the static pressure generated by the static pressure generating unit and the suction force generated by the suction unit to simultaneously act on the workpiece. When,
A pair of porous floating parts that are arranged adjacent to both sides of the floating suction mixing unit, generate a static pressure by ejecting pressurized gas from the porous body, and float the workpiece by the static pressure,
The porous levitation unit is disposed adjacent to the levitation suction mixing unit on the side opposite to the levitation suction mixing unit, and includes a pair of simple levitation units for ejecting pressurized gas from the ejection holes to float the workpiece. Non-contact support device.
前記多孔質浮上部を、複数の多孔質ユニットを組み合わせて構成したことを特徴とする請求項3に記載の非接触支持装置。   The non-contact support device according to claim 3, wherein the porous floating portion is configured by combining a plurality of porous units. 前記高精度領域又は前記浮上吸引混合部での浮上量を、他の領域での浮上量よりも大きくなるように設定したことを特徴とする請求項1乃至4のいずれかに記載の非接触指示装置。   The non-contact instruction according to any one of claims 1 to 4, wherein a flying height in the high-precision area or the floating suction mixing unit is set to be larger than a flying height in another area. apparatus.
JP2004353551A 2004-12-07 2004-12-07 Non-contact support device Expired - Fee Related JP4494179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353551A JP4494179B2 (en) 2004-12-07 2004-12-07 Non-contact support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353551A JP4494179B2 (en) 2004-12-07 2004-12-07 Non-contact support device

Publications (2)

Publication Number Publication Date
JP2006161940A true JP2006161940A (en) 2006-06-22
JP4494179B2 JP4494179B2 (en) 2010-06-30

Family

ID=36664190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353551A Expired - Fee Related JP4494179B2 (en) 2004-12-07 2004-12-07 Non-contact support device

Country Status (1)

Country Link
JP (1) JP4494179B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266352A (en) * 2005-03-23 2006-10-05 Ckd Corp Non-contact supporting device
JP2006266351A (en) * 2005-03-23 2006-10-05 Ckd Corp Non-contact supporting device
JP2008115876A (en) * 2006-10-31 2008-05-22 Ckd Corp Non-contact supporting device
JP2008140953A (en) * 2006-12-01 2008-06-19 Tanken Seal Seiko Co Ltd Levitation device
JP2011523215A (en) * 2008-06-09 2011-08-04 ケーエルエー−テンカー・コーポレーション Board inspection device
CN113130368A (en) * 2021-04-13 2021-07-16 南京中安半导体设备有限责任公司 Air floatation chuck and wafer geometric parameter measuring device
CN114857172A (en) * 2022-05-30 2022-08-05 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Air supporting mechanism

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222124A (en) * 1996-02-19 1997-08-26 Nippon Seiko Kk Static pressure gas bearing
JPH10157851A (en) * 1996-12-02 1998-06-16 Ckd Corp Object-to-be-conveyed conveying method in floatation type conveying device and floatation type conveying device
JP2000337375A (en) * 1999-05-24 2000-12-05 Ntn Corp Static pressure gas bearing
JP2003074554A (en) * 2001-09-03 2003-03-12 Ckd Corp Static slider, noncontact chuck, and chuck device
JP2004152941A (en) * 2002-10-30 2004-05-27 Ckd Corp Noncontact supporting apparatus
JP2004279335A (en) * 2003-03-18 2004-10-07 Olympus Corp Substrate inspection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222124A (en) * 1996-02-19 1997-08-26 Nippon Seiko Kk Static pressure gas bearing
JPH10157851A (en) * 1996-12-02 1998-06-16 Ckd Corp Object-to-be-conveyed conveying method in floatation type conveying device and floatation type conveying device
JP2000337375A (en) * 1999-05-24 2000-12-05 Ntn Corp Static pressure gas bearing
JP2003074554A (en) * 2001-09-03 2003-03-12 Ckd Corp Static slider, noncontact chuck, and chuck device
JP2004152941A (en) * 2002-10-30 2004-05-27 Ckd Corp Noncontact supporting apparatus
JP2004279335A (en) * 2003-03-18 2004-10-07 Olympus Corp Substrate inspection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266352A (en) * 2005-03-23 2006-10-05 Ckd Corp Non-contact supporting device
JP2006266351A (en) * 2005-03-23 2006-10-05 Ckd Corp Non-contact supporting device
JP4491364B2 (en) * 2005-03-23 2010-06-30 シーケーディ株式会社 Non-contact support device
JP4494262B2 (en) * 2005-03-23 2010-06-30 シーケーディ株式会社 Non-contact support device
JP2008115876A (en) * 2006-10-31 2008-05-22 Ckd Corp Non-contact supporting device
JP2008140953A (en) * 2006-12-01 2008-06-19 Tanken Seal Seiko Co Ltd Levitation device
JP2011523215A (en) * 2008-06-09 2011-08-04 ケーエルエー−テンカー・コーポレーション Board inspection device
CN113130368A (en) * 2021-04-13 2021-07-16 南京中安半导体设备有限责任公司 Air floatation chuck and wafer geometric parameter measuring device
CN114857172A (en) * 2022-05-30 2022-08-05 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Air supporting mechanism

Also Published As

Publication number Publication date
JP4494179B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US10418262B2 (en) Gas floated workpiece supporting apparatus and noncontact workpiece support method
JP2013191604A (en) Coating applicator
JP4607665B2 (en) Non-contact support device
JP2008192718A (en) Substrate supporting device, substrate supporting method, substrate processing device, substrate processing method, method of manufacturing component for display device, inspecting device, and inspecting method
JP4494262B2 (en) Non-contact support device
JP4494179B2 (en) Non-contact support device
JP2007073876A (en) Work stage and exposure device
JP2006264804A (en) Flotation unit for large flat panel, and non-contact carrying device using the same
JP2021015931A (en) Substrate levitation type laser processing device and levitation amount measurement method
JP6518891B2 (en) Transport device
JP4491364B2 (en) Non-contact support device
JP2010260715A (en) Levitation unit and levitation device
JP4583882B2 (en) Non-contact support device
JP4442685B2 (en) Work support device
JP2009179423A (en) Floating structure, slide member, and stage device
JP2008114953A (en) Object floating device and stage device
JP6456904B2 (en) Gas floating work support device
JP2008114954A (en) Object floating device and stage device
JPH09222124A (en) Static pressure gas bearing
JP6685894B2 (en) Air bearing device and measuring device
JP4359833B2 (en) Movable member support device
KR102297312B1 (en) Apparatus for floating substrate and apparatus for processing substrate having the same
JP2009063032A (en) Slider
JP2005226709A (en) Movable member supporting device
JP2008244054A (en) Apparatus and method of conveying electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Ref document number: 4494179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees