JP2006161388A - Vibration-proofing method of structure floor - Google Patents

Vibration-proofing method of structure floor Download PDF

Info

Publication number
JP2006161388A
JP2006161388A JP2004353779A JP2004353779A JP2006161388A JP 2006161388 A JP2006161388 A JP 2006161388A JP 2004353779 A JP2004353779 A JP 2004353779A JP 2004353779 A JP2004353779 A JP 2004353779A JP 2006161388 A JP2006161388 A JP 2006161388A
Authority
JP
Japan
Prior art keywords
vibration
floor
propagation path
frequency
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353779A
Other languages
Japanese (ja)
Inventor
Ryuta Inoue
竜太 井上
Yoshiyuki Hashimoto
嘉之 橋本
Takayuki Abe
隆之 阿部
Hirokazu Yoshioka
宏和 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004353779A priority Critical patent/JP2006161388A/en
Publication of JP2006161388A publication Critical patent/JP2006161388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-proofing method of a structure floor capable of efficiently exhibiting a vibration-proofing effect by realizing oscillating offset using the phase difference over single exciting force and, at the same time, being carried out on the floor wherein any gap and uneven step do not occur. <P>SOLUTION: The structure floor 1 is supported by combining the first propagation course 10 by a vibration-proof material 2 with the second propagation course 11 by a vibration-proof material 4 holding a mass body 3 in an intermediate section, the exciting force acting on the structure floor 1 is made to transfer to an under floor structure 5, the second propagation course 11 is constituted of a plurality of propagation courses 11 etc. respectively having different natural frequencies, and the vibration is negated by using the phase difference between a phase of vibration propagated to the under-floor structure 5 from the first propagation course 10 and a phase of vibration propagated to the under-floor structurre 5 from the second propagation course 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、構造物の床の防振工法の技術分野に属し、更に云えば、本出願人による先の特開2004−251064に係る構造物床の防振工法を改良した防振工法に関する。   The present invention belongs to the technical field of a structural floor vibration isolation method, and more particularly, relates to an improved vibration isolation method for the structure floor according to Japanese Patent Application Laid-Open No. 2004-251064 by the present applicant.

従来の防振技術は、加振力が作用する床の全面を、防振材で防振支持する等の防振技術を導入することにより、共振回避および床下構造(基礎や地盤など)への振動伝達率の低減が図られてきた(例えば、特許文献1〜3参照)。   Conventional anti-vibration technology introduces anti-vibration technology, such as anti-vibration support for the entire floor where the excitation force acts, using anti-vibration materials, thereby avoiding resonance and reducing the structure under the floor (foundation, ground, etc.). Reduction of vibration transmissibility has been attempted (for example, see Patent Documents 1 to 3).

しかしながら、上記特許文献1〜3に開示された防振技術は、本出願人による先の特開2004−251064(特許文献4参照)の段落[0013]〜[0015]に開示したような問題があり、この問題を一挙に解決するべく、本出願人は、当該特許文献4に係る構造物床の防振工法を開発した。   However, the anti-vibration techniques disclosed in Patent Documents 1 to 3 have problems as disclosed in paragraphs [0013] to [0015] of Japanese Patent Application Laid-Open No. 2004-251064 (see Patent Document 4) by the present applicant. In order to solve this problem all at once, the present applicant has developed a vibration isolation method for a structural floor according to Patent Document 4.

上記特許文献4に係る構造物床の防振工法は、構造物の床を、加振力に対して防振支持した防振エリアと防振支持しない非防振エリアとの組み合わせで構成し、前記防振エリアから床下構造へ伝達される振動の位相を遅らせ、前記非防振エリアから床下構造へ伝達される振動との位相差を利用して振動を打ち消し合わせるので(請求項1参照)、位相差を利用せずに床全面を防振支持する従来技術と比して、特許文献4の図5に示したように、fを加振力の振動数、fnを床の固有振動数とした場合に、0<f/fn<2の範囲で顕著な防振効果(Fsを伝達力、Fs0を加振力とした場合の振動伝達率:Fs/Fs0)を得ることが分かる。   The vibration isolating method for the structure floor according to Patent Document 4 is configured by combining the floor of the structure with an anti-vibration area that is anti-vibration supported with respect to an excitation force and a non-vibration-proof area that is not anti-vibration supported. The phase of vibration transmitted from the vibration-proof area to the underfloor structure is delayed, and the vibration is canceled out using the phase difference from the vibration transmitted from the non-vibration-proof area to the under-floor structure (see claim 1). As shown in FIG. 5 of Patent Document 4, f is the vibration frequency and fn is the natural frequency of the floor, as shown in FIG. In this case, it can be seen that a remarkable anti-vibration effect (vibration transmission rate when Fs is a transmission force and Fs0 is an excitation force: Fs / Fs0) is obtained in the range of 0 <f / fn <2.

したがって、本出願人による特許文献4に係る構造物床の防振工法によれば、[本発明の奏する効果]に記載している通り、(1)加振力が作用する構造物の床の一部のみを防振支持して防振効果を図り得ると共に、シンプルな構造で実施できるので、経済性に優れている、(2)加振力が作用する構造物床に対して占める防振エリアの割合、及び加振力の加振振動数の高低、並びに加振力の位相の相違を問わず、防振効果を図ることができるので、フレキシブル性に優れているなどの効果を奏し、有用である(特許文献4の段落[0068]参照)。また、特許文献4の図5から分かるように、従来技術と比して、振動伝達率の最大値(ピーク)を低減できることは勿論、振動伝達率の値を全体的に低減できるので、空気ばね等の汎用の防振材で容易に防振支持構造を実施できるほか、居住性を向上させることができる点で優れている(特許文献4の特に段落[0033]参照)。   Therefore, according to the vibration isolation method for a structure floor according to Patent Document 4 by the present applicant, as described in [Effects of the present invention], (1) the floor of a structure on which an excitation force acts Anti-vibration effect can be achieved by supporting only a part of the anti-vibration effect, and since it can be implemented with a simple structure, it is excellent in economic efficiency. (2) Anti-vibration occupies the structure floor where the excitation force acts Regardless of the ratio of the area, the excitation frequency of the excitation force, and the difference in the phase of the excitation force, it is possible to achieve an anti-vibration effect, so that there are effects such as excellent flexibility, Useful (see paragraph [0068] of Patent Document 4). Further, as can be seen from FIG. 5 of Patent Document 4, the maximum value (peak) of the vibration transmissibility can be reduced as compared with the prior art, and the overall value of the vibration transmissibility can be reduced. In addition to being able to easily implement the anti-vibration support structure with a general-purpose anti-vibration material such as the above, it is excellent in that the habitability can be improved (see particularly paragraph [0033] of Patent Document 4).

しかしながら、この特許文献4に開示した技術が適用できるのは、複数の異なる点に対して加振点が作用する場合、すなわち多数の人間が跳躍運動等する場合を振動低減対象としており、例えば、1台の大型プレス機の稼働により発生する振動のように、加振源が1箇所の条件においては、位相差を発生せしめることによって振動を相殺させることができなかったと云える。また、特許文献4に係る技術は、同文献4の図12に示したように、防振エリアと非防振エリアを分割する部分で隙間が生じ、同一用途の床として使用する場合には、仕上げ材で隙間を埋める等の処理が必要であった。さらに、硬く支持した非防振エリアと比して、防振エリアの床上は加振力が作用することにより大きな動的変形を生じることがあるために、非防振エリアと防振エリアの間に段差が生じ、同一用途の床としての使用に制約を設けざるをえない虞があった。   However, the technique disclosed in Patent Document 4 can be applied to a case where an excitation point acts on a plurality of different points, that is, a case where a large number of humans perform a jumping motion, and the like. It can be said that the vibration could not be canceled by generating a phase difference under the condition of one excitation source, such as the vibration generated by the operation of one large press. In addition, as shown in FIG. 12 of Patent Document 4, the technique according to Patent Document 4 generates a gap in a portion that divides the vibration-proof area and the non-vibration-proof area, and when used as a floor for the same application, Processing such as filling the gap with a finishing material was necessary. Furthermore, compared to a hard supported non-vibration-proof area, the floor of the anti-vibration area may cause large dynamic deformation due to the action of an excitation force. As a result, there is a risk that a difference in level occurs, and there is a need to place restrictions on use as a floor for the same purpose.

ところで、排気管の加振力に対して、サポート材からなる伝搬経路を2つに分割し、位相差を生じさせることにより振動を相殺する方法として、特許文献5に係る技術が開示されている。この防振技術に係る振動モデルは、同文献5の図1(b)に示した通りである。   By the way, the technique which concerns on patent document 5 is disclosed as a method of canceling a vibration by dividing | segmenting the propagation path which consists of support materials into two with respect to the excitation force of an exhaust pipe, and producing a phase difference. . The vibration model according to this vibration isolation technique is as shown in FIG.

上記特許文献5に係る技術によると、上記特許文献4と同様に、位相差を用いて振動を相殺させるため、振動低減効果においては、高い効果を得ることができる。よって、この排気管に係る防振技術を構造物床の防振技術に適用すれば、一見、防振エリアと非防振エリアに分割することなく加振源が1箇所の条件においても位相差を発生せしめることによって振動を相殺できると共に、同一用途の床として制約を設けることなく実施できるように見える。   According to the technique according to Patent Document 5, as in Patent Document 4, since the vibration is canceled using the phase difference, a high effect can be obtained in the vibration reduction effect. Therefore, if this anti-vibration technology for the exhaust pipe is applied to the anti-vibration technology for the structure floor, the phase difference can be obtained even if there is only one excitation source without dividing the anti-vibration area into the non-vibration-proof area. It is possible to cancel the vibrations by generating, and it can be implemented without any restrictions as a floor for the same application.

特公平3−3818号公報Japanese Patent Publication No.3-3818 特公平4−58865号公報Japanese Examined Patent Publication No. 4-58865 特開平8−53954号公報JP-A-8-53954 特開2004−251064号公報JP 2004-251064 A 特開平4−347321号公報JP-A-4-347321

しかしながら、上記特許文献5に係る防振技術は、振動増幅ピークに対する配慮がなされていない。つまり、上記特許文献4の図5に示したような振動伝達率曲線が得られた場合、図示した曲線の極小値をさらに低減させるためには、減衰を低くする必要があるが、その場合、上記特許文献5に係る防振技術では、増幅ピークが増大する結果を招いてしまう問題があった。すなわち、上記特許文献5に係る防振技術では、人間の動作に伴う加振などの加振振動数が変動する場合で増幅ピークの振動数と加振振動数が一致するようなときには、逆に振動障害を招く虞があった。   However, the anti-vibration technique according to Patent Document 5 does not consider the vibration amplification peak. That is, when the vibration transmissibility curve as shown in FIG. 5 of Patent Document 4 is obtained, in order to further reduce the minimum value of the illustrated curve, it is necessary to reduce the attenuation. The anti-vibration technique according to Patent Document 5 has a problem that the amplification peak is increased. That is, in the anti-vibration technique according to Patent Document 5 described above, when the vibration frequency such as vibration caused by human movement fluctuates, when the frequency of the amplification peak and the vibration frequency coincide, There was a risk of vibration disturbance.

また、上記特許文献5に係る防振技術は、排気管を対象としているため、伝搬経路のバネ剛性の相違によるロッキングはさほど問題にはならないが、ある程度の平面的な広がりを有する防振架台や床スラブなどの構造物の床においては、ロッキングによる回転振動が生じるため、不安定な構造とならざるを得ないという問題があった。   Further, since the vibration isolating technique according to Patent Document 5 is directed to the exhaust pipe, locking due to a difference in the spring stiffness of the propagation path is not so much of a problem. On the floor of a structure such as a floor slab, rotational vibration due to rocking is generated, which inevitably has an unstable structure.

したがって、上記特許文献5に係る排気管を対象とする防振技術は、構造物床を対象とする防振技術にはそのまま適用することはできなかった。   Therefore, the anti-vibration technology for the exhaust pipe according to Patent Document 5 cannot be applied as it is to the anti-vibration technology for the structural floor.

本発明の目的は、本出願人による特許文献4に開示した構造物床の防振工法ではできなかった、単一の加振力に対する位相差を用いた振動相殺を実現させることで、効率よく防振効果を発揮することができると共に、隙間及び段差が生じない床面で実施可能な構造物床の防振工法を提供することである。   An object of the present invention is to efficiently perform vibration cancellation using a phase difference for a single excitation force, which was not possible with the vibration isolation method for a structural floor disclosed in Patent Document 4 by the present applicant. An object of the present invention is to provide a vibration isolating method for a structure floor that can exhibit an anti-vibration effect and can be carried out on a floor surface that does not cause gaps and steps.

本発明の目的は、また、多数の人間の動作時による可変加振振動数に対しても振動障害が生じないように振動増幅ピークを低減できると共に、ロッキングによる回転振動を抑制できる構造物床の防振工法を提供することである。   Another object of the present invention is to provide a structure floor that can reduce the vibration amplification peak so that vibration disturbance does not occur even for a variable excitation frequency caused by a large number of human movements and can suppress rotational vibration caused by rocking. It is to provide a vibration isolation method.

上記従来技術の課題を解決するための手段として、請求項1に記載した発明に係る構造物床の防振工法は、図1に示したように、
構造物の床1を、防振材2による第一の伝搬経路10と、中間部に質量体3を挟んだ防振材4による第二の伝搬経路11との組み合わせで支持し、前記構造物の床1に作用する加振力を床下構造5へ伝搬させること、
前記第二の伝搬経路11は、固有振動数がそれぞれ異なる複数の伝搬経路11…で構成し、前記第一の伝搬経路10から床下構造5へ伝搬される振動の位相と、第二の伝搬経路11から床下構造5へ伝搬される振動の位相との位相差を利用して振動を打ち消し合わせることを特徴とする。
As a means for solving the problems of the prior art, the vibration isolating method for a structure floor according to the invention described in claim 1 is as shown in FIG.
The floor 1 of the structure is supported by a combination of a first propagation path 10 by the vibration isolator 2 and a second propagation path 11 by the vibration isolator 4 with the mass body 3 sandwiched between the intermediate parts. Propagating the excitation force acting on the floor 1 to the underfloor structure 5;
The second propagation path 11 is composed of a plurality of propagation paths 11 having different natural frequencies, and the phase of vibration propagated from the first propagation path 10 to the underfloor structure 5 and the second propagation path The vibrations are canceled out using a phase difference from the phase of the vibrations propagated from 11 to the underfloor structure 5.

請求項2に記載した発明は、請求項1に記載した構造物床の防振工法において、図14に示したように、第一の伝搬経路10は、中間部に質量体13を挟んだ防振材2による伝搬経路とし、第二の伝搬経路11が有するいずれの固有振動数とも一致させないことを特徴とする。   According to the second aspect of the present invention, in the vibration isolating method for the structure floor according to the first aspect, as shown in FIG. It is a propagation path by the vibration material 2 and is not matched with any natural frequency of the second propagation path 11.

請求項3に記載した発明は、請求項1又は2に記載した構造物床の防振工法において、床下構造5への伝達力を加振力で除した振動伝達率について、第一及び第二の伝搬経路10、11に係る固有振動数及び減衰定数並びに個数、加振力分配比を任意の組み合わせでチューニングすることにより、前記振動伝達率の最大値、最小値、伝達率曲線の形状を自在に設計することを特徴とする。   The invention described in claim 3 is the first and second vibration transmissibility obtained by dividing the transmission force to the underfloor structure 5 by the excitation force in the vibration isolating method for the structure floor described in claim 1 or 2. By tuning the natural frequency, damping constant and number, and excitation force distribution ratio of the propagation paths 10 and 11 in any combination, the maximum and minimum values of the vibration transmissibility and the shape of the transmissibility curve can be freely adjusted. It is characterized by designing.

本発明に係る構造物床の防振工法によれば、本出願による特許文献4に開示した構造物床の防振工法が奏する効果に加えて、下記する効果を奏する。
1)単一の加振源に対しても、下部構造5に伝搬される加振力に位相差を発生させ、振動を打ち消し合わせることが可能で、優れた防振工法を実現できるとともに、振動低減対象とする加振力の条件を幅広く設定して実施することができる。
2)隙間及び段差が生じない床面で実施できるので、適用の幅を大きく拡大することができる。
3)多数の人間の動作時による可変加振振動数に対して振動障害が生じないように振動振幅ピークを低減できる。
4)伝搬経路のばね剛性の相違によるロッキングによる回転振動を抑制できる。
According to the vibration isolating method for a structure floor according to the present invention, in addition to the effects exhibited by the vibration isolating method for a structural floor disclosed in Patent Document 4 according to the present application, the following effects are exhibited.
1) Even for a single excitation source, it is possible to generate a phase difference in the excitation force propagated to the lower structure 5 and cancel out the vibrations, thereby realizing an excellent vibration isolation method and vibration. It is possible to carry out by setting a wide range of excitation force conditions to be reduced.
2) Since it can be carried out on the floor surface where no gaps and steps are generated, the range of application can be greatly expanded.
3) The vibration amplitude peak can be reduced so that no vibration disturbance occurs with respect to the variable excitation frequency caused by the movement of many humans.
4) Rotational vibration due to rocking due to a difference in spring stiffness of the propagation path can be suppressed.

本発明に係る構造物床の防振工法は、上述した発明の効果を奏するべく、以下のように実施される。   The vibration isolation method for a structure floor according to the present invention is carried out as follows in order to achieve the effects of the above-described invention.

図1は、請求項1に記載した構造物床の防振工法の実施形態を示している。
この構造物床の防振工法は、構造物の床1を、防振材2による第一の伝搬経路10と、中間部に質量体3を挟んだ防振材4による第二の伝搬経路11との組み合わせで支持し、前記構造物の床1に作用する加振力を床下構造(基礎や地盤、或いは建物の床などが該当する。以下同じ。)5へ伝搬させ、前記第二の伝搬経路11は、固有振動数がそれぞれ異なる複数の伝搬経路11で構成し、前記第一の伝搬経路10から床下構造5へ伝搬される振動の位相と、第二の伝搬経路11…から床下構造5へ伝搬される振動の位相との位相差を利用して振動を打ち消し合わせることを特徴としている(請求項1記載の発明)。
FIG. 1 shows an embodiment of a vibration isolation method for a structure floor according to claim 1.
The vibration isolating method for the structure floor is such that the floor 1 of the structure is divided into a first propagation path 10 by the vibration isolation material 2 and a second propagation path 11 by the vibration isolation material 4 with the mass body 3 sandwiched between the intermediate portions. The excitation force acting on the floor 1 of the structure is propagated to the under-floor structure (foundation, ground, building floor, etc., the same applies hereinafter) 5 and the second propagation. The path 11 is composed of a plurality of propagation paths 11 having different natural frequencies, and the phase of vibration propagated from the first propagation path 10 to the underfloor structure 5 and the second propagation path 11. The present invention is characterized in that the vibrations are canceled out using a phase difference from the phase of the vibration propagated to (invention of claim 1).

具体的に、前記構造物床1に作用する加振力は、コイルスプリング(防振材)2を介した第一の伝搬経路10と、質量体3とその上下のコイルスプリング(防振材)4を介した第二の伝搬経路11とに分配されて床下構造5へ伝搬され、打ち消し合わせる構成で実施している。ちなみに、図示例の防振工法は、第一の伝搬経路10を、構造物床1の四隅部に計4体配設し、第二の伝搬経路11を中央部に隣り合うように計2体配設して実施している。また、第二の伝搬経路11に使用するコイルスプリング4は、各質量体3、3の上下の四隅位置に計8個ずつ設置して実施している。ちなみに、図1中の符号6は、コイルスプリング定着部材を示し、符号7は、支持部材を示している。なお、前記防振材2はコイルスプリングに限定されず、空気ばね等の汎用の防振材で実施できるのは勿論である。   Specifically, the excitation force acting on the structure floor 1 includes the first propagation path 10 via the coil spring (vibration isolation material) 2, the mass body 3, and the upper and lower coil springs (vibration isolation materials). 4 is distributed to the second propagation path 11 via 4, propagated to the underfloor structure 5, and cancelled. Incidentally, the anti-vibration method of the illustrated example has a total of four first propagation paths 10 arranged at the four corners of the structure floor 1 and a second propagation path 11 adjacent to the center. Arranged and implemented. Further, a total of eight coil springs 4 used for the second propagation path 11 are installed at the upper and lower four corner positions of the mass bodies 3 and 3. Incidentally, reference numeral 6 in FIG. 1 denotes a coil spring fixing member, and reference numeral 7 denotes a support member. The vibration isolator 2 is not limited to a coil spring, and can of course be implemented by a general-purpose vibration isolator such as an air spring.

前記第一及び第二の伝搬経路10、11で分配される加振力の割合(加振力分配比)は、各伝搬経路10、11の硬さと、加振力が作用する構造物床1の質量と、第二の伝搬経路11に使用される質量体3の質量の比によって決定することができる。前記加振力分配比は、云うならば、本出願人による特許文献4の明細書中に記載した防振エリアと非防振エリアの分担する加振力の割合(加振力分担比)に相当するものである。   The ratio of the excitation force distributed in the first and second propagation paths 10 and 11 (excitation force distribution ratio) is determined by the hardness of each propagation path 10 and 11 and the structure floor 1 on which the excitation force acts. And the ratio of the mass of the mass body 3 used in the second propagation path 11 can be determined. In other words, the excitation force distribution ratio is equal to the ratio of the excitation force (excitation force sharing ratio) shared by the vibration-proof area and the non-vibration-proof area described in the specification of Patent Document 4 by the applicant. It is equivalent.

ちなみに、図示例の防振工法は、ロンキングによる回転振動を極力抑制するべく、左右対称形状で実施している。   Incidentally, the anti-vibration method in the illustrated example is implemented in a bilaterally symmetric shape so as to suppress rotational vibration due to ronking as much as possible.

第一の伝搬経路10の振動数及び減衰定数は、特許文献4で云うところの非防振エリアの振動数及び減衰定数に対応し、第二の伝搬経路11の振動数及び減衰定数は、同様に、防振エリアの振動数及び減衰定数に対応する。   The frequency and damping constant of the first propagation path 10 correspond to the frequency and damping constant of the non-vibration-proof area described in Patent Document 4, and the frequency and damping constant of the second propagation path 11 are the same. Furthermore, it corresponds to the frequency and damping constant of the vibration-proof area.

本発明に係る防振技術は、低減すべき振動特性に応じて、加振力分配比と、第一及び第二の伝搬経路10、11の振動数及び減衰定数とを最適値に設定している。前記振動数及び減衰定数は、第一及び第二の伝搬経路10、11における質量、剛性、減衰の要素を個別に変化させることで設定可能なパラメータであり、その要素を構成する部材の種類は特に限定されず、低減すべき振動数特性に応じて自由に選定することができる(請求項3記載の発明)。例えば、振動すべき振動特性に対して求められる伝達率曲線の形状が、第一の伝搬経路10の減衰をゼロ、つまり第一の伝搬経路10の減衰要素を省略した場合に得られる曲線形状であれば、その減衰要素をなくすこともできる。   The vibration isolation technique according to the present invention sets the excitation force distribution ratio, the frequencies of the first and second propagation paths 10 and 11 and the damping constant to optimum values according to the vibration characteristics to be reduced. Yes. The frequency and the damping constant are parameters that can be set by individually changing the mass, stiffness, and damping elements in the first and second propagation paths 10 and 11, and the types of members constituting the elements are: The invention is not particularly limited, and can be freely selected according to the frequency characteristic to be reduced (the invention according to claim 3). For example, the shape of the transmissibility curve required for the vibration characteristic to be vibrated is a curve shape obtained when the attenuation of the first propagation path 10 is zero, that is, when the attenuation element of the first propagation path 10 is omitted. If present, the damping element can be eliminated.

本発明に係る振動低減効果について、具体例を挙げながら以下に説明する。   The vibration reduction effect according to the present invention will be described below with specific examples.

図2A〜Cは、本発明に係る防振技術について、振動低減率に対する振動数特性を表したグラフである。図2Aは、第二の伝搬経路11を分割しない場合(上記特許文献5に係る防振技術に該当する)を示している。一例として、振動数2.5Hzにおいて、振動伝達率を0.2倍にするためには、増幅ピークにおける振動伝達率が約3.5倍になるように設定しなければならない。   2A to 2C are graphs showing the frequency characteristics with respect to the vibration reduction rate in the vibration isolation technology according to the present invention. FIG. 2A shows a case where the second propagation path 11 is not divided (corresponding to the anti-vibration technique according to Patent Document 5). As an example, in order to make the vibration transmissibility 0.2 times at a frequency of 2.5 Hz, the vibration transmissibility at the amplification peak must be set to be about 3.5 times.

本発明に係る防振技術の適用範囲の1つである、人間の音楽等に合わせる動作などでは、音楽のピッチによって加振振動数も変化し、2〜3Hzが最も音楽に合わせて動きやすい振動数であるといわれている。しかし、場合によっては、振動数が2.0Hz以下の曲でも、ある程度大きな加振力が発揮される場合もあり、増幅率が高いほど振動クレームにつながる可能性が高いといえる。その点、本発明に係る防振技術は、以下に説明するように、位相差を用いて相殺現象を生じさせ、振動を低減させる性能を損なうことなく、増幅領域の増幅率を低減させることができる。   In the operation of adjusting to human music or the like, which is one of the application ranges of the vibration isolation technology according to the present invention, the vibration frequency changes depending on the music pitch, and 2 to 3 Hz is the vibration that is most easily moved in accordance with the music. It is said to be a number. However, depending on the case, even a song with a frequency of 2.0 Hz or less may exhibit a certain large excitation force, and it can be said that the higher the amplification factor, the higher the possibility of a vibration complaint. In that regard, as will be described below, the image stabilization technique according to the present invention causes a cancellation phenomenon using a phase difference, and can reduce the amplification factor of the amplification region without impairing the performance of reducing vibration. it can.

本発明に係る防振技術は、振動低減性能を維持させながら、増幅領域の増幅率を低減させるという課題を解決するために、云うならば上記特許文献5に係る伝搬経路のうち、質量体を含む側を複数(一例として2つまたは4つ)の部分に分割し、低減すべき振動数特性に応じて分割したそれぞれの振動数、減衰定数、加振力分配比を最適に設定することを特徴とする技術である。   In order to solve the problem of reducing the amplification factor of the amplification region while maintaining the vibration reduction performance, the anti-vibration technology according to the present invention is, in other words, the mass body in the propagation path according to Patent Document 5 described above. Dividing the containing side into a plurality of parts (two or four as an example), and optimally setting each divided frequency, damping constant, and excitation force distribution ratio according to the frequency characteristics to be reduced It is a featured technology.

図2A(上記特許文献5に該当)と対比するべく、加振力の振動数f=2.5Hzに対して、第二の伝搬経路11を2分割(2体設けた場合を意味する。即ち、図1に対応している)した場合(図3のモデル図参照)、4分割した場合(図4のモデル図参照)で、振動伝達率を0.2倍に低減し、かつ増幅率を小さくするように最適設定した結果をそれぞれ、図2Bと図2Cに示す。   For comparison with FIG. 2A (corresponding to Patent Document 5 above), this means that the second propagation path 11 is divided into two parts (two bodies are provided) with respect to the vibration frequency f = 2.5 Hz. 1) (see the model diagram of FIG. 3), and when divided into four (see the model diagram of FIG. 4), the vibration transmissibility is reduced by a factor of 0.2 and the gain is increased. Results optimally set to be small are shown in FIGS. 2B and 2C, respectively.

図2Aと、図2B及び図2Cとを対比すると、第二の伝搬経路11を分割しなかった図2Aの場合、3.5倍であった振動伝達率(増幅率)の最大値は、2分割した場合には2.1倍程度に、4分割した場合には1.4倍程度に低減されていることが分かる(図2A〜C参照)。   2A is compared with FIG. 2B and FIG. 2C, in the case of FIG. 2A in which the second propagation path 11 is not divided, the maximum value of the vibration transmissibility (amplification factor) which is 3.5 times is 2 It can be seen that the frequency is reduced to about 2.1 times when divided, and about 1.4 times when divided into four (see FIGS. 2A to 2C).

このように、第二の伝搬経路11を複数に分割することによって、振動数に対する低減率を維持しながら、増幅率を低減することが可能となる。ちなみに、図2A〜Cは、一例として、第一の伝搬経路10から伝搬される加振力と、第二の伝搬経路11から伝搬される加振力の合計との加振力分配比を1:1にした検討結果である。もちろん、第一及び第二の伝搬経路10、11の加振力分配比や、分配したそれぞれの第二の伝搬経路11の加振力分配比を最適設定することで、さらなる増幅率の低減を図ることができる(請求項3記載の発明)。   As described above, by dividing the second propagation path 11 into a plurality of parts, it is possible to reduce the amplification factor while maintaining the reduction rate with respect to the frequency. Incidentally, as an example, FIGS. 2A to 2C show an excitation force distribution ratio of the excitation force propagated from the first propagation path 10 and the sum of the excitation forces propagated from the second propagation path 11 as 1. It is the result of the study that was set to 1. Of course, by further setting the excitation force distribution ratio of the first and second propagation paths 10 and 11 and the excitation force distribution ratio of each distributed second propagation path 11, further reduction of the amplification factor can be achieved. (Invention of claim 3).

なお、本実施例では、2分割と4分割の2つの例を挙げたが、図2Bと図2Cとを対比すれば明らかなように、4分割の方が2分割よりも増幅率を低減していることが分かる。このように、分割数(第二の伝搬経路11の個数)を増やすことにより増幅率をさらに低減することが可能となる(請求項3記載の発明)。本実施例では、分割数を2分割、4分割で実施しているがこれに限定されるものではなく、必要に応じて分割数を増加させて実施することも勿論できる。   In this embodiment, two examples of two divisions and four divisions are given. As is clear from comparison between FIG. 2B and FIG. 2C, four divisions reduce the amplification factor more than two divisions. I understand that Thus, the amplification factor can be further reduced by increasing the number of divisions (the number of second propagation paths 11) (the invention according to claim 3). In this embodiment, the number of divisions is divided into two and four. However, the present invention is not limited to this, and it is of course possible to increase the number of divisions as necessary.

減衰の変動については、振動伝達率に対する振動数特性を表したグラフを図5と図6に示す。図5の符号Xは、第二の伝搬経路11を分割しない場合の振動数特性を示しており、図2Aと同じラインを示している。図5の符号Yは、第二の伝搬経路の減衰が0.5倍になった場合の振動数特性を示している。図3より、X曲線では、振動数2.5Hzの伝達率が0.2倍であるのに対し、減衰が0.5倍になったY曲線では、約0.1倍に低減していることがわかる。また、伝達率の最大値は、3.5倍から6.8倍に増幅していることが分かる。   Regarding the fluctuation of the attenuation, graphs showing the frequency characteristics with respect to the vibration transmissibility are shown in FIGS. 5 indicates the frequency characteristics when the second propagation path 11 is not divided, and indicates the same line as FIG. 2A. Symbol Y in FIG. 5 indicates the frequency characteristic when the attenuation of the second propagation path is 0.5 times. From FIG. 3, the transmission rate at a frequency of 2.5 Hz is 0.2 times in the X curve, whereas it is reduced to about 0.1 times in the Y curve in which the attenuation is 0.5 times. I understand that. It can also be seen that the maximum value of the transmission rate is amplified from 3.5 times to 6.8 times.

これに対し、本発明に係る第二の伝搬経路11を2分割した場合の当該分割した双方の伝搬経路11の減衰が0.5倍になった場合について、同様の検討を行った結果が図6である。図6の符号Xは、第二の伝搬経路11を2分割した場合の振動数特性を示しており、図2Bと同じラインを示している。図6の符号Yは、第二の伝搬経路11を2分割したそれぞれにおいて減衰が0.5倍になった場合の振動数特性を示している。図10より、X曲線では、振動数2.5Hzの振動伝達率が0.2倍であるのに対し、減衰が0.5倍になったY曲線では、約0.1倍に低減されており、第二の伝搬経路11を分割しなかった場合とほぼ同じ結果になっている。また、伝達率の最大値は、第二の伝搬経路11を分割しなかった場合に比べて低かった2.0倍から4.0倍に増幅するが、分割しなかった場合より低い水準を保っていると云える。   On the other hand, when the second propagation path 11 according to the present invention is divided into two, when the attenuation of both of the divided propagation paths 11 is 0.5 times, the result of the same examination is shown in FIG. 6. 6 indicates the frequency characteristics when the second propagation path 11 is divided into two, and indicates the same line as in FIG. 2B. The symbol Y in FIG. 6 shows the frequency characteristics when the attenuation is 0.5 times in each of the second propagation path 11 divided into two. From FIG. 10, the X curve shows that the vibration transmissibility at a frequency of 2.5 Hz is 0.2 times, whereas the Y curve where the attenuation is 0.5 times is reduced to about 0.1 times. Thus, the result is almost the same as when the second propagation path 11 is not divided. In addition, the maximum value of the transmissibility is amplified from 2.0 times to 4.0 times, which is lower than the case where the second propagation path 11 is not divided, but is kept at a lower level than the case where the second propagation path 11 is not divided. It can be said that

次に、第二の伝搬経路11を2分割したうち、固有振動数を高く設定した方と低く設定した方の一方のみについて減衰を0.5倍に変動させた結果をそれぞれ図7と図8に示す。   Next, the results of varying the attenuation by 0.5 times for only one of the one set to a higher natural frequency and the one set to a lower one among the two divisions of the second propagation path 11 are shown in FIGS. 7 and 8, respectively. Shown in

図7より、固有振動数を高く設定した方の第二の伝搬経路11の減衰が0.5倍になった場合では、振動数2.5Hzの振動伝達率の最小値が0.12倍に低減されており、第二の伝搬経路11を分割しなかった場合の最小値が0.1倍(図5のY曲線参照)になったのと比べると、若干ロバスト性が向上していることが分かる。前記振動伝達率の最大値は、両方の伝搬経路の減衰をそれぞれ0.5倍にした場合(図6のY曲線参照)と同じく、2.0倍から4.0倍に増幅しているが、伝搬経路を分割しなかった場合より低い水準を保っていると云える(請求項3記載の発明)。   From FIG. 7, when the attenuation of the second propagation path 11 with the higher natural frequency is 0.5 times, the minimum value of the vibration transmissibility at a frequency of 2.5 Hz is 0.12 times. Compared to the fact that the minimum value when the second propagation path 11 is not divided is 0.1 times (see the Y curve in FIG. 5), the robustness is slightly improved. I understand. The maximum value of the vibration transmissibility is amplified from 2.0 times to 4.0 times as in the case where the attenuation of both propagation paths is 0.5 times (see the Y curve in FIG. 6). It can be said that the lower level is maintained than when the propagation path is not divided (the invention according to claim 3).

図8より、固有振動数を低く設定した方の第二の伝搬経路11の減衰が0.5倍になった場合では、振動数2.5Hzの振動伝達率の最小値が0.2倍からほとんど変動しておらず、ロバスト性が向上していることが分かる。また、振動伝達率の最大値についても、2.0倍から3.0倍への増幅にとどまり、ロバスト性が向上していることが分かる。   From FIG. 8, when the attenuation of the second propagation path 11 with the lower natural frequency is 0.5 times, the minimum value of the vibration transmissibility of the frequency 2.5 Hz is from 0.2 times. It can be seen that there is almost no fluctuation and the robustness is improved. It can also be seen that the maximum value of the vibration transmissibility is only amplified from 2.0 times to 3.0 times, and the robustness is improved.

上述した結果は、第二の伝搬経路11の質量体3の質量に比して、加振力が作用する構造物床1の質量が無視できるほどに軽い場合の結果であるが、加振力が作用する構造物床1の質量が大きくなると、振動伝達率曲線の形状も変化するとともに、第一の伝搬経路10の減衰の影響も考慮する必要が生じる。   The above-described result is a result in the case where the mass of the structure floor 1 on which the excitation force acts is lighter than the mass of the mass body 3 in the second propagation path 11. When the mass of the structure floor 1 on which is applied increases, the shape of the vibration transmissibility curve also changes, and the influence of the attenuation of the first propagation path 10 needs to be considered.

一例として、加振力が作用する構造物床1の質量と、第二の伝搬経路2の質量体3の質量の質量比が1:9の場合において、第一及び第二の伝搬経路10、11の減衰を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたものを図9に示す。図10は、第二の伝搬経路11のみの減衰を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたものであり、図11は、第一の伝搬経路10の減衰を0.5〜2.0倍に変動させた場合の振動伝達率を示している。   As an example, when the mass ratio of the mass of the structure floor 1 on which the excitation force acts and the mass of the mass body 3 of the second propagation path 2 is 1: 9, the first and second propagation paths 10, FIG. 9 shows a plot of vibration transmissibility when the attenuation of 11 is varied by 0.5 to 2.0 times. FIG. 10 is a plot of vibration transmissibility when the attenuation of only the second propagation path 11 is varied by 0.5 to 2.0 times. FIG. 11 shows the attenuation of the first propagation path 10. The vibration transmissibility when fluctuating to 0.5 to 2.0 times is shown.

図9〜図11より、伝搬経路10、11における減衰の大小によって、振動伝達率曲線の形状の縦軸を自在に操作できることが分かる。また、図11から分かるように、第一の伝搬経路10の減衰の大小による振動伝達率曲線への影響はほとんど小さいことから、床下構造5へ伝達される加振力の観点からは、第一の伝搬経路10の減衰要素を省略することが可能であると云える。しかしながら、加振力が直接作用する構造物床1の変位振幅を抑制する観点からは、第一の伝搬経路10に減衰要素を配置し、有効に活用する方法も考えられる。   9 to 11, it can be seen that the vertical axis of the shape of the vibration transmissibility curve can be freely manipulated depending on the magnitude of attenuation in the propagation paths 10 and 11. Further, as can be seen from FIG. 11, since the influence on the vibration transmissibility curve due to the magnitude of the attenuation of the first propagation path 10 is almost small, from the viewpoint of the excitation force transmitted to the underfloor structure 5, the first It can be said that the attenuation element of the propagation path 10 can be omitted. However, from the viewpoint of suppressing the displacement amplitude of the structure floor 1 on which the excitation force directly acts, a method of arranging a damping element in the first propagation path 10 and utilizing it effectively can be considered.

図12は、第一の伝搬経路10の剛性を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたものである。図13は、第二の伝搬経路10の固有振動数を同一に保ちながら、質量を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたものである。すなわち、第一の伝搬経路10の剛性、または、第二の伝搬経路11の質量によって、加振力分配比を変化させた結果を示している。なお、振動伝達率の最小ピーク値の振動数の変化を分かりやすくするために、図12及び図13は、ともに第一及び第二の伝搬経路10、11の減衰を0(ゼロ)とした結果を示している。   FIG. 12 is a plot of vibration transmissibility when the rigidity of the first propagation path 10 is varied 0.5 to 2.0 times. FIG. 13 is a plot of vibration transmissibility when the mass is varied 0.5 to 2.0 times while keeping the natural frequency of the second propagation path 10 the same. That is, the result of changing the excitation force distribution ratio by the rigidity of the first propagation path 10 or the mass of the second propagation path 11 is shown. In addition, in order to make it easy to understand the change in the frequency of the minimum peak value of the vibration transmissibility, FIGS. 12 and 13 both show the results of setting the attenuation of the first and second propagation paths 10 and 11 to 0 (zero). Is shown.

図12より、第一の伝搬経路10の剛性を小さくすると、振動伝達率が最小となる振動数は高くなり、剛性を大きくすると、振動伝達率が最小となる振動数は低くなることが分かる。これは、剛性が大きいほど加振力の分配比が大きくなることの結果であり、この結果は、本出願人による先願明細書に記載した非防振エリアの加振力分担比が大きくなった場合と同様の傾向を示している(上記特許文献4の図8参照)。   From FIG. 12, it can be seen that when the rigidity of the first propagation path 10 is reduced, the frequency at which the vibration transmissibility is minimized is increased, and when the rigidity is increased, the frequency at which the vibration transmissibility is minimized is decreased. This is a result of an increase in the distribution ratio of the excitation force as the rigidity increases. This result indicates that the distribution ratio of the excitation force in the non-vibration-proof area described in the prior application specification by the present applicant increases. (See FIG. 8 of Patent Document 4).

図13より、第二の伝搬経路11の質量を小さくすると、振動伝達率が最小となる振動数は低くなり、質量を大きくすると、振動伝達率が最小となる振動数は高くなることが分かる。   From FIG. 13, it can be seen that when the mass of the second propagation path 11 is reduced, the frequency at which the vibration transmissibility is minimized is decreased, and when the mass is increased, the frequency at which the vibration transmissibility is minimized is increased.

以上、図12と図13から、振動伝達率が最小となる振動数を、第一の伝搬経路10の剛性と第二の伝搬経路11の質量とを変化させることにより、自在に操作できることが分かる。   As described above, it can be seen from FIGS. 12 and 13 that the frequency at which the vibration transmissibility is minimized can be freely manipulated by changing the rigidity of the first propagation path 10 and the mass of the second propagation path 11. .

本出願による先願、即ち上記特許文献4では、この振動伝達率が最小となる振動数は、加振力分担比によって決定されていたが、例えば、エアロビクススタジオやコンサート会場などの多人数加振が作用する床を想定した場合、加振力分担比を防振エリアと非防振エリアとで50%ずつ設定した場合であっても、使用用途的に全く同じ加振力を作用させることが困難であり、設定通りの振動低減効果が得られない可能性があった。   In the prior application according to the present application, that is, in Patent Document 4 described above, the frequency at which the vibration transmissibility is minimized is determined by the excitation force sharing ratio. Assuming that the floor acts on the floor, even if the excitation force sharing ratio is set to 50% for each of the vibration-proof area and the non-vibration-proof area, the same vibration force can be applied for the intended use. It was difficult and there was a possibility that the vibration reduction effect as set could not be obtained.

これに対し、本発明に係る構造物床の防振工法は、人数の偏りなどに起因する加振力のばらつきに左右されることなく、防振機構内で加振力分配比を操作することが可能となるため、設定通りの振動低減効果を得ることができるという効果がある。   On the other hand, the vibration isolation method for a structure floor according to the present invention operates the vibration distribution ratio within the vibration isolation mechanism without being influenced by variations in the vibration force caused by the uneven number of people. Therefore, there is an effect that the vibration reduction effect as set can be obtained.

さらに、上述の減衰のパラメータも操作することで、振動伝達率のピークや極小値の大きさ、鋭さ、振動数を調整することが可能であり、様々なニーズ毎に異なる低減すべき振動特性に対して、フレキシブルに最適な組み合わせを設定することができるのである。   In addition, by manipulating the damping parameters described above, it is possible to adjust the peak, minimum value, sharpness, and frequency of vibration transmissibility. On the other hand, an optimal combination can be set flexibly.

図14は、実施例2に係る構造物床の防振工法を示している。この実施例2は、上記実施例1と比して、第一の伝搬経路10においても質量体13を設置して実施していることが主に相違する。即ち、この実施例2に係る防振工法は、前記第一の伝搬経路10を、中間部に質量体13を挟んだ防振材2、2による伝搬経路とし、第二の伝搬経路11が有するいずれの固有振動数とも一致させないことを特徴とする(請求項2記載の発明)。   FIG. 14 shows a vibration isolation method for a structure floor according to the second embodiment. The second embodiment is mainly different from the first embodiment in that the mass body 13 is also installed in the first propagation path 10. That is, in the vibration isolating method according to the second embodiment, the first propagation path 10 is a propagation path by the vibration isolating materials 2 and 2 with the mass body 13 sandwiched between the intermediate portions, and the second propagation path 11 has the second propagation path 11. It is not matched with any natural frequency (the invention according to claim 2).

図15は、実施例2に係る防振技術について、振動低減率に対する振動数特性を表したグラフである。図中の符号Xは、実施例1に係る振動数特性を示しており、符号Yは、実施例2に係る振動数特性を示している。   FIG. 15 is a graph illustrating the frequency characteristics with respect to the vibration reduction rate for the vibration isolation technique according to the second embodiment. A symbol X in the figure indicates the frequency characteristic according to the first embodiment, and a symbol Y indicates the frequency characteristic according to the second embodiment.

図15より、第一の伝搬経路10においても質量体13を設置して実施すれば、設置しない実施例1と比して、高振動数領域において、さらなる振動低減効果を発揮できることが分かる。つまり、数Hzの低振動数以外に高振動数に対しても振動低減が必要な用途に用いる場合に有効である。具体的には、エアロビクススタジオ床などでは、2〜3Hzの人間の動作に伴う加振振動数以外にも、下階への床衝撃音として63Hz、125Hzオクターブ帯域などで特に問題となる場合があり、高振動数における振動低減が求められ、図14に示したように、3質点系とすることで、高振動数における高い振動低減効果を得ることが可能となる。   From FIG. 15, it can be seen that if the mass body 13 is also installed in the first propagation path 10, a further vibration reduction effect can be exhibited in the high frequency region as compared with the first embodiment in which the mass body 13 is not installed. In other words, it is effective when used for applications that require vibration reduction even at high frequencies other than a low frequency of several Hz. Specifically, in aerobics studio floors, in addition to vibration frequencies associated with human movements of 2 to 3 Hz, floor impact sounds to the lower floor may be particularly problematic in the 63 Hz and 125 Hz octave bands. Therefore, vibration reduction at a high frequency is required, and as shown in FIG. 14, it is possible to obtain a high vibration reduction effect at a high frequency by using a three-mass system.

なお、請求項2に係る発明は、3質点系に限定するものではなく、第一の伝搬経路10に設ける質量をさらに直列、並列に分割することより、振動モデルにおける質点をさらに増やすことにより、高い振動低減効果を得ようとする行為を含むものである。   The invention according to claim 2 is not limited to a three-mass system, but by further dividing the mass provided in the first propagation path 10 in series and parallel, further increasing the mass points in the vibration model, This includes actions to obtain a high vibration reduction effect.

実施例1及び実施例2に係る床下構造への伝達力を加振力で除した振動伝達率については、上述したように、第一及び第二の伝搬経路に係る固有振動数及び減衰定数並びに個数、加振力分配比を任意の組み合わせでチューニングすることにより、前記振動伝達率の最大値、最小値、伝達率曲線の形状(山や谷の数、及び値、傾き等)を様々なニーズに対応する設計をすることが可能であり(請求項3記載の発明)、ロバスト性を向上させることもできる。   Regarding the vibration transmissibility obtained by dividing the transmission force to the underfloor structure according to Example 1 and Example 2 by the excitation force, as described above, the natural frequency and the damping constant related to the first and second propagation paths, and By tuning the number and excitation force distribution ratio in any combination, various needs for the maximum and minimum values of the vibration transmissibility and the shape of the transmissibility curve (number of peaks and valleys, values, slope, etc.) Can be designed (invention of claim 3), and robustness can also be improved.

以上に実施形態を図面に基づいて説明したが、本発明は、図示例の実施形態の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。   The embodiments have been described with reference to the drawings. However, the present invention is not limited to the illustrated embodiments, and design modifications and application variations that are usually made by those skilled in the art are within the scope of the technical idea of the invention. Note that it includes the range.

請求項1に記載した発明に係る構造物床の防振工法の実施例1を示した斜視図である。It is the perspective view which showed Example 1 of the vibration proofing method of the structure floor concerning the invention described in Claim 1. FIG. Aは、従来技術(特許文献5)に係る振動伝達率に対する振動数特性を表したグラフであり、Bは、実施例1に係る第二の伝搬経路を2体設けて実施した場合の振動伝達率に対する振動数特性を表したグラフであり、Cは、実施例1に係る第二の伝搬経路を4体設けて実施した場合の振動伝達率に対する振動数特性を表したグラフである。A is a graph showing the frequency characteristics with respect to the vibration transmissibility according to the prior art (Patent Document 5), and B is a vibration transmission when two second propagation paths according to the first embodiment are provided. C is a graph showing the frequency characteristics with respect to the vibration transmissibility when four second propagation paths according to Example 1 are provided. 実施例1に対応する振動モデルを示している。The vibration model corresponding to Example 1 is shown. 第二の伝搬経路を4体設けて実施した場合の振動モデルを示している。The vibration model is shown when four second propagation paths are provided. 減衰の変動について振動伝達率に対する振動数特性を表したグラフである。It is a graph showing the frequency characteristic with respect to a vibration transmissibility about the fluctuation | variation of attenuation | damping. 減衰の変動について振動伝達率に対する振動数特性を表したグラフである。It is a graph showing the frequency characteristic with respect to a vibration transmissibility about the fluctuation | variation of attenuation | damping. 固有振動数を高く設定した方について減衰を0.5倍に変動させた場合の振動伝達率に対する振動数特性を表したグラフである。It is the graph showing the frequency characteristic with respect to the vibration transmissibility when attenuation | damping is changed 0.5 time about the direction which set the natural frequency high. 固有振動数を高く設定した方について減衰を0.5倍に変動させた場合の振動伝達率に対する振動数特性を表したグラフである。It is the graph showing the frequency characteristic with respect to the vibration transmissibility when attenuation | damping is changed 0.5 time about the direction which set the natural frequency high. 第一及び第二の伝搬経路の減衰を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたグラフである。It is the graph which plotted the vibration transmissibility at the time of changing attenuation of the 1st and 2nd propagation path to 0.5 to 2.0 times. 第二の伝搬経路のみの減衰を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたグラフである。It is the graph which plotted the vibration transmissibility at the time of changing attenuation of only the 2nd propagation path to 0.5 to 2.0 times. 第一の伝搬経路の減衰を0.5〜2.0倍に変動させた場合の振動伝達率を示している。The vibration transmissibility is shown when the attenuation of the first propagation path is varied 0.5 to 2.0 times. 第一の伝搬経路の剛性を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたグラフである。It is the graph which plotted the vibration transmissibility at the time of changing the rigidity of the 1st propagation path to 0.5 to 2.0 times. 第二の伝搬経路の固有振動数を同一に保ちながら、質量を0.5〜2.0倍に変動させた場合の振動伝達率をプロットしたグラフである。It is the graph which plotted the vibration transmissibility at the time of changing mass 0.5 to 2.0 times, keeping the natural frequency of a 2nd propagation path the same. 実施例2に対応する振動モデルを示している。The vibration model corresponding to Example 2 is shown. 実施例2に係る防振技術について、振動低減率に対する振動数特性を表したグラフである。It is a graph showing the frequency characteristic with respect to a vibration reduction rate about the vibration proof technique which concerns on Example 2. FIG.

符号の説明Explanation of symbols

1 床
2 防振材(コイルスプリング)
3 質量体
4 防振材(コイルスプリング)
5 床下構造
6 定着部材
7 支持部材
10 第一の伝搬経路
11 第二の伝搬経路
13 質量体
1 Floor 2 Anti-vibration material (coil spring)
3 Mass body 4 Anti-vibration material (coil spring)
5 Underfloor Structure 6 Fixing Member 7 Support Member 10 First Propagation Path 11 Second Propagation Path 13 Mass Body

Claims (2)

床スラブや基礎等の下部構造体の上面に設けられ、加振力が作用する床構造物や機器等の上部構造体を防振支持する振動低減装置であって、
前記振動低減装置は、前記上部構造体及び下部構造体の質量より小さい質量体と、同質量体を中間部に挟み前記上下の構造体を弾性支持する防振材と、前記質量体に設けた動吸振器とから成ることを特徴とする、振動低減装置。
A vibration reducing device that is provided on the upper surface of a lower structure such as a floor slab or foundation and that supports the upper structure such as a floor structure or equipment on which an excitation force acts,
The vibration reducing device includes a mass body smaller than the mass of the upper structure and the lower structure, a vibration isolating material that elastically supports the upper and lower structures by sandwiching the mass body in an intermediate portion, and the mass body. A vibration reducing device comprising a dynamic vibration absorber.
質量体に設けた動吸振器は、固有振動数が異なる複数の動吸振器で構成されていることを特徴とする、請求項1に記載した振動低減装置。   The vibration reducing device according to claim 1, wherein the dynamic vibration absorber provided on the mass body includes a plurality of dynamic vibration absorbers having different natural frequencies.
JP2004353779A 2004-12-07 2004-12-07 Vibration-proofing method of structure floor Pending JP2006161388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353779A JP2006161388A (en) 2004-12-07 2004-12-07 Vibration-proofing method of structure floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353779A JP2006161388A (en) 2004-12-07 2004-12-07 Vibration-proofing method of structure floor

Publications (1)

Publication Number Publication Date
JP2006161388A true JP2006161388A (en) 2006-06-22

Family

ID=36663711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353779A Pending JP2006161388A (en) 2004-12-07 2004-12-07 Vibration-proofing method of structure floor

Country Status (1)

Country Link
JP (1) JP2006161388A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180073A (en) * 2006-12-25 2008-08-07 Bridgestone Corp Floor structure
JP2018045471A (en) * 2016-09-15 2018-03-22 株式会社 日立産業制御ソリューションズ State supervising system
CN111981084A (en) * 2020-08-21 2020-11-24 电子科技大学 Eddy current damper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347321A (en) * 1991-05-23 1992-12-02 Toyota Motor Corp Vibro-damper
JPH09310734A (en) * 1996-03-21 1997-12-02 Nippon Steel Corp Built-in damping mechanism type vibration isolation device
JPH10110774A (en) * 1996-10-01 1998-04-28 Hiroshi Matsuhisa Impact vibration absorbing method and vibration damping device
JP2004251064A (en) * 2003-02-21 2004-09-09 Takenaka Komuten Co Ltd Vibration-proof construction method for structure floor
JP2005265132A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Impact vibration absorbing method and vibration damping device
JP2006057269A (en) * 2004-08-18 2006-03-02 Takenaka Komuten Co Ltd Vibration control method for structure floor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04347321A (en) * 1991-05-23 1992-12-02 Toyota Motor Corp Vibro-damper
JPH09310734A (en) * 1996-03-21 1997-12-02 Nippon Steel Corp Built-in damping mechanism type vibration isolation device
JPH10110774A (en) * 1996-10-01 1998-04-28 Hiroshi Matsuhisa Impact vibration absorbing method and vibration damping device
JP2004251064A (en) * 2003-02-21 2004-09-09 Takenaka Komuten Co Ltd Vibration-proof construction method for structure floor
JP2005265132A (en) * 2004-03-19 2005-09-29 Technology Seed Incubation Co Ltd Impact vibration absorbing method and vibration damping device
JP2006057269A (en) * 2004-08-18 2006-03-02 Takenaka Komuten Co Ltd Vibration control method for structure floor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008180073A (en) * 2006-12-25 2008-08-07 Bridgestone Corp Floor structure
JP2012207529A (en) * 2006-12-25 2012-10-25 Bridgestone Corp Floor structure
JP2018045471A (en) * 2016-09-15 2018-03-22 株式会社 日立産業制御ソリューションズ State supervising system
CN111981084A (en) * 2020-08-21 2020-11-24 电子科技大学 Eddy current damper
CN111981084B (en) * 2020-08-21 2021-05-18 电子科技大学 Eddy current damper

Similar Documents

Publication Publication Date Title
Yang et al. Dynamic vibration absorbers for vibration control within a frequency band
Liu et al. Band stop vibration suppression using a passive X-shape structured lever-type isolation system
KR101777319B1 (en) Self-tuned mass damper and system comprising the same
Sun et al. Membrane-type resonator as an effective miniaturized tuned vibration mass damper
JP2009198902A (en) Sound absorbing structure, sound absorbing structure group, acoustic chamber, method of adjusting sound absorbing structure and noise reduction method
US8876091B2 (en) Insulating coating with mass amplification
Romeo et al. Vibration reduction in piecewise bi-coupled periodic structures
JP2006161388A (en) Vibration-proofing method of structure floor
JP4148793B2 (en) Dynamic vibration absorber
Benassi et al. Global control of a vibrating plate using a feedback-controlled inertial actuator
Yuksel et al. Size and topology optimization of inertial amplification induced phononic band gap structures
JPH1130279A (en) Base isolator
JP4444038B2 (en) Vibration isolation method for structural floor
Tantanawat et al. Application of compliant mechanisms to active vibration isolation systems
JP4327044B2 (en) Vibration isolation method for structural floor
JP2018145627A (en) Floor structure
JP4022483B2 (en) Vibration isolation method for structural floor
JPH1130278A (en) Base isolation construction
JP2009079728A (en) Dynamic vibration absorber using viscoelastic material and charged particle wire device using dynamic vibration absorber
JP7083121B1 (en) Structures, vibration devices and sensory acoustic devices
JP7220100B2 (en) Vibration damping device and method of designing a vibration damping device
Vijayan et al. Design of compliant mechanism for vibration isolation using topology optimization and flexible building blocks
JP3525017B2 (en) Equipment vibration control installation mechanism
JP5795936B2 (en) Low frequency noise reduction device
EP4270378A1 (en) Improved acoustic black hole, structural damper, structurally damped structure, and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Effective date: 20090611

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A02