JPH04347321A - Vibro-damper - Google Patents

Vibro-damper

Info

Publication number
JPH04347321A
JPH04347321A JP11887491A JP11887491A JPH04347321A JP H04347321 A JPH04347321 A JP H04347321A JP 11887491 A JP11887491 A JP 11887491A JP 11887491 A JP11887491 A JP 11887491A JP H04347321 A JPH04347321 A JP H04347321A
Authority
JP
Japan
Prior art keywords
mass
exhaust pipe
spring
spring system
elastic arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11887491A
Other languages
Japanese (ja)
Inventor
Shigeki Terashi
寺師 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11887491A priority Critical patent/JPH04347321A/en
Publication of JPH04347321A publication Critical patent/JPH04347321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To provide such a vibro-damper as capable of securing an optimum vibro-isolating characteristic over an extensive frequency band without entailing any damage to the strength and durable performance of a vibrator or the like. CONSTITUTION:An exhaust pipe support unit 1 is provided with an almost ringlike support member 6 which is composed of a first mounting part 7, a second mounting part 8 and a symmetrical pair of elastic arm parts 11, 12 connecting both ends of these mounting parts 7, 8. An exhaust pipe side bracket 5 is inserted into a first mounting hole 9 of the first mounting part 7, and a body side bracket 3 is inserted into a second mounting hole 10 of the second mounting part 8 into engagement as well. The elastic arm part 11 at the left constitutes a spring system K. In addition, a mass body 13 is embedded in an intermediate position in the upper direction of the elastic arm part 12 at the right, and these elements constitute a series of a spring-mass-spring system M.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は振動減衰装置に係り、例
えば自動車の排気管等を吊り下げて車体への振動伝達を
遮断又は減衰するための排気管サポート装置として好適
な振動減衰装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping device, and more particularly, to a vibration damping device suitable as an exhaust pipe support device for suspending an automobile exhaust pipe or the like to cut off or damp vibration transmission to the vehicle body. It is.

【0002】0002

【従来の技術】従来から、振動体をゴム製サポート装置
で吊り下げ、その振動体の振動を遮断又は減衰するよう
にした構造が種々採用されている。例えば、自動車にお
いては、エンジンからの排気ガスが通過する排気管を車
体に吊り下げる場合に排気管サポート装置が用いられる
2. Description of the Related Art Conventionally, various structures have been employed in which a vibrating body is suspended by a rubber support device to isolate or attenuate the vibrations of the vibrating body. For example, in automobiles, an exhaust pipe support device is used when suspending an exhaust pipe through which exhaust gas from an engine passes from a vehicle body.

【0003】図6(a)に示すように、この排気管サポ
ート装置21はゴム弾性体によってリング状に形成され
たサポート部材22を備えている。サポート部材22の
上下に相対向する部位にはそれぞれ取付孔23,24が
透設されており、同取付孔23,24に車体側ブラケッ
ト25及び排気管側ブラケット26が嵌入される。また
、サポート部材22の左右に相対向する部位は弾性アー
ム部27,28となっており、同弾性アーム部27,2
8によってばね系が構成されている。
As shown in FIG. 6(a), this exhaust pipe support device 21 includes a ring-shaped support member 22 made of rubber elastic material. Attachment holes 23 and 24 are formed through the support member 22 at vertically opposing positions, respectively, and a vehicle body side bracket 25 and an exhaust pipe side bracket 26 are fitted into the attachment holes 23 and 24, respectively. Further, the portions of the support member 22 that face each other on the left and right sides are elastic arm portions 27 and 28.
8 constitutes a spring system.

【0004】図6(b)は図6(a)をモデル化した図
である。図中、kは弾性アーム部27,28のばね定数
、Fは排気管サポート装置21を介し車体31側へ伝わ
る力(基準伝達力)、xは排気管32が上下方向に振動
する際の変位量であり、これらの間にはF=kxの関係
がある。ここで、排気管32は一定変位(xが一定)で
振動するので、基準伝達力Fを低減するにはばね定数k
を小さくする必要がある。しかし、このようにすると、
排気管サポート装置21を構成するゴム弾性体が柔らか
くなって、同排気管サポート装置21や排気管32の耐
久性能がともに低下してしまう。
FIG. 6(b) is a model of FIG. 6(a). In the figure, k is the spring constant of the elastic arm parts 27 and 28, F is the force transmitted to the vehicle body 31 side via the exhaust pipe support device 21 (reference transmission force), and x is the displacement when the exhaust pipe 32 vibrates in the vertical direction. There is a relationship F=kx between them. Here, since the exhaust pipe 32 vibrates with a constant displacement (x is constant), in order to reduce the reference transmission force F, the spring constant k
needs to be made smaller. However, if you do it like this,
The rubber elastic body constituting the exhaust pipe support device 21 becomes soft, and the durability of both the exhaust pipe support device 21 and the exhaust pipe 32 deteriorates.

【0005】そこで、図7(a)に示すように、各弾性
アーム部27,28の上下方向におけるほぼ中間位置に
質量体29,30を取付けた排気管サポート装置21が
提案されている(実開昭64−11318号公報)。こ
れらの質量体29,30の質量が互いに同じ、つまり左
右対称の場合、1自由度の系が構成される。図7(b)
は図7(a)をモデル化した図である。図中、Fb は
排気管サポート装置21を介し車体31側へ伝わる力(
伝達力)、mは質量体29,30の質量であり、k,x
は前述した図6(b)のものと同一である。この排気管
サポート装置21の振動減衰特性は図8において特性線
L12で示される。図8の縦軸は、前記基準伝達力Fに
対する伝達力Fb の比(Fb/F)であり、デシベル
表示されている。従って、図6(a)の排気管サポート
装置21の特性を図8において特性線L11で示すと、
伝達力の比は周波数に関係なく「0」となる。また、図
8から、特性線L12において特性線L11よりも小さ
い部分、つまり図8の斜線部分は伝達力を低減すること
が可能な領域である。なお、fb は伝達力Fb を低
減することができる最も低い周波数である。
[0005] Therefore, as shown in FIG. 7(a), an exhaust pipe support device 21 has been proposed in which mass bodies 29 and 30 are attached to approximately mid-positions in the vertical direction of each elastic arm portion 27 and 28 (in practice). Publication No. 64-11318). When these mass bodies 29 and 30 have the same mass, that is, are symmetrical, a system with one degree of freedom is constructed. Figure 7(b)
is a modeled version of FIG. 7(a). In the figure, Fb is the force transmitted to the vehicle body 31 side via the exhaust pipe support device 21 (
transmission force), m is the mass of the mass bodies 29, 30, k, x
is the same as that shown in FIG. 6(b) described above. The vibration damping characteristic of this exhaust pipe support device 21 is shown by a characteristic line L12 in FIG. The vertical axis in FIG. 8 is the ratio (Fb/F) of the transmission force Fb to the reference transmission force F, expressed in decibels. Therefore, if the characteristics of the exhaust pipe support device 21 in FIG. 6(a) are shown by the characteristic line L11 in FIG.
The ratio of transmitted forces is "0" regardless of frequency. Further, from FIG. 8, a portion of the characteristic line L12 smaller than the characteristic line L11, that is, a diagonally shaded portion in FIG. 8 is an area where the transmitted force can be reduced. Note that fb is the lowest frequency at which the transmitted force Fb can be reduced.

【0006】また、前記従来公報には前記質量体29,
30の質量mを互いに異ならせた(左右非対称)技術も
開示されている。この場合の、排気管サポート装置21
を介し車体31側へ伝わる力を伝達力Fc とすると、
前記基準伝達力Fに対する伝達力Fc の比(Fc /
F)と周波数との関係は、図8において特性線L13で
表される。この場合の特性は2つのピークを有し、それ
ぞれのピーク値は前記対称の場合のピーク値よりも低く
なる。
[0006] Also, in the prior art publication, the mass body 29,
A technique in which the masses m of 30 are made different from each other (left-right asymmetric) is also disclosed. In this case, the exhaust pipe support device 21
Letting the force transmitted to the vehicle body 31 side via Fc be the transmission force Fc,
The ratio of the transmission force Fc to the reference transmission force F (Fc /
The relationship between F) and frequency is represented by a characteristic line L13 in FIG. The characteristic in this case has two peaks, and each peak value is lower than the peak value in the symmetric case.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記質量体
29,30の質量mが左右同一(対称)である場合には
、図8から明らかなように、伝達力Fb を高周波数域
で低減することができるものの、低周波数域ではこのよ
うな効果は見られない。そこで、低周波数域から伝達力
を低減するためには、質量体29,30の質量mを大き
くするか、弾性アーム部27,28のばね定数kを小さ
くする必要がある。すなわち、前記のように同一質量m
の質量体29,30を弾性アーム部27,28に取付け
た構造における共振周波数をf0bとすると、この共振
周波数をf0bは、   f0b=(1/2π)・(k/m)1/2    
                 ……(1)で表さ
れる。また、伝達力Fb は、fb =21/2・f0
bで表される周波数fb 以上の周波数域で低減される
。従って、この周波数fb を低くするには、上記(1
)式において質量mを大きくし、ばね定数kを小さくす
る必要がある。しかし、このような対策は排気管系の強
度、耐久性能と背反するので、現実的には限界があった
[Problem to be Solved by the Invention] However, when the masses m of the mass bodies 29 and 30 are the same (symmetrical) on the left and right sides, as is clear from FIG. 8, the transmitted force Fb is reduced in the high frequency range. However, such an effect is not seen in the low frequency range. Therefore, in order to reduce the transmitted force from the low frequency range, it is necessary to increase the mass m of the mass bodies 29 and 30 or to decrease the spring constant k of the elastic arm sections 27 and 28. That is, as mentioned above, the same mass m
Let f0b be the resonance frequency in the structure in which the mass bodies 29 and 30 are attached to the elastic arms 27 and 28, f0b is as follows: f0b=(1/2π)・(k/m)1/2
...It is expressed as (1). Also, the transmission force Fb is fb = 21/2・f0
It is reduced in the frequency range equal to or higher than the frequency fb expressed by b. Therefore, in order to lower this frequency fb, the above (1
), it is necessary to increase the mass m and decrease the spring constant k. However, such measures conflict with the strength and durability of the exhaust pipe system, and therefore have practical limitations.

【0008】また、前記質量体29,30の質量mを左
右で異ならせても、ばね−質量−ばねからなる振動系構
成を有するために、高い方のピークの共振周波数が図8
において矢印で示すように高周波数側へ移動するだけで
、やはり伝達力Fc を低周波数域で低減することがで
きない。従って、この場合にも振動を低減するには、前
記と同様に質量体29,30の質量mを増大したり、ば
ね定数kを下げたりしなければならない。
Furthermore, even if the masses m of the mass bodies 29 and 30 are different on the left and right sides, since the vibration system has a spring-mass-spring configuration, the resonant frequency of the higher peak is as shown in FIG.
As shown by the arrow in , the transmission force Fc cannot be reduced in the low frequency range by simply moving to the high frequency side. Therefore, in order to reduce the vibration in this case as well, it is necessary to increase the mass m of the mass bodies 29 and 30 or to decrease the spring constant k, as in the above case.

【0009】本発明は前述した事情に鑑みてなされたも
のであり、その目的は排気管等の非振動体の強度や耐久
性能を損なうことなく、広範囲の周波数域にわたり最適
な防振特性を得ることが可能な振動減衰装置を提供する
ことにある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to obtain optimal vibration isolation characteristics over a wide frequency range without impairing the strength and durability of non-vibrating bodies such as exhaust pipes. The object of the present invention is to provide a vibration damping device capable of

【0010】0010

【課題を解決するための手段】上記目的を達成するため
に本発明は、振動体が取付けられる第1の取付部と、前
記第1の取付部から離間した状態で非振動体が取付けら
れる第2の取付部と、前記第1及び第2の取付部間を互
いに離間した状態で繋ぐ一対の弾性アーム部とから形成
されており、一方の弾性アーム部をばね系Kとするとと
もに、他方の弾性アーム部の中間部分に質量体を設けて
ばね−質量−ばね系Mとしている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a first mounting part to which a vibrating body is mounted, and a second mounting part to which a non-vibrating body is mounted spaced apart from the first mounting part. and a pair of elastic arm sections that connect the first and second attachment sections while being spaced apart from each other, one of the elastic arm sections is a spring system K, and the other is A mass body is provided in the middle part of the elastic arm part to form a spring-mass-spring system M.

【0011】[0011]

【作用】上記構成を採用したことにより、振動体からの
振動が振動減衰装置に伝わると、一方の弾性アーム部が
ばね系Kとして作用し、質量体を有する他方の弾性アー
ム部がばね−質量−ばね系Mとして作用する。そして、
これら両方の系が次のようにして前記振動体からの振動
を減衰し、同振動が非振動体に伝達するのを抑制する。
[Operation] By adopting the above configuration, when vibrations from the vibrating body are transmitted to the vibration damping device, one elastic arm portion acts as a spring system K, and the other elastic arm portion having a mass body acts as a spring-mass system. - acts as a spring system M; and,
Both of these systems damp vibrations from the vibrating body and suppress transmission of the vibrations to non-vibrating bodies in the following manner.

【0012】すなわち、振動体からばね系Kを介し非振
動体へ伝わる力を伝達力FK とし、振動体からばね−
質量−ばね系Mを介し非振動体へ伝わる力を伝達力FM
 とすると、両伝達力FK ,FM は互いに異なった
特性となる。そして、振動体から振動減衰装置を介して
非振動体へ伝わる伝達力をFa とすると、両伝達力F
K ,FM を合成した値がこの伝達力Fa となる。
That is, the force transmitted from the vibrating body to the non-vibrating body via the spring system K is the transmission force FK, and the force transmitted from the vibrating body to the spring -
The force transmitted to the non-vibrating body via the mass-spring system M is the transmission force FM
In this case, both transmission forces FK and FM have different characteristics from each other. If the transmission force transmitted from the vibrating body to the non-vibrating body via the vibration damping device is Fa, both transmission forces F
The combined value of K and FM becomes this transmission force Fa.

【0013】ここで、弾性アーム部のいずれにも質量体
を設けない場合の非振動体への伝達力を基準伝達力Fと
すると、この基準伝達力Fに対する前記ばね系Kからの
伝達力FK の比(FK /F)と周波数との関係は図
3の特性線LK で表される。また、前記基準伝達力F
に対するばね−質量−ばね系Mからの伝達力FM の比
(FM /F)と周波数との関係は図3の特性線LM 
で表される。 この特性線LM における共振周波数f0aは、両方の
弾性アーム部に質量体を設けた場合の共振周波数よりも
低くなる。さらに、ばね系Kの振動の位相と周波数との
関係は図3の特性線NK で表され、ばね−質量−ばね
系Mの振動の位相と周波数との関係は図3の特性線NM
 で表される。
Here, if the transmission force to the non-vibrating body when no mass body is provided in any of the elastic arm parts is the reference transmission force F, then the transmission force FK from the spring system K with respect to this standard transmission force F is The relationship between the ratio (FK/F) and frequency is expressed by the characteristic line LK in FIG. In addition, the reference transmission force F
The relationship between the frequency and the ratio of the transmission force FM from the spring-mass-spring system M to the frequency is shown by the characteristic line LM in Fig. 3.
It is expressed as The resonant frequency f0a in this characteristic line LM is lower than the resonant frequency when both elastic arm sections are provided with mass bodies. Furthermore, the relationship between the phase and frequency of the vibration of the spring system K is represented by the characteristic line NK in Figure 3, and the relationship between the phase and frequency of the vibration of the spring-mass-spring system M is represented by the characteristic line NM in Figure 3.
It is expressed as

【0014】そして、前記両位相の特性線NK ,NM
 を考慮して前記両特性線Lk ,LM を合成すると
、前記基準伝達力Fに対する振動減衰装置全体からの伝
達力Fa の比(Fa /F)と周波数との関係を示す
特性線L1が得られる。つまり、ばね−質量−ばね系M
の共振周波数f0aよりも低い周波数数域では、ばね系
Kの位相とばね−質量−ばね系Mの位相とが同じである
ため、同特性線L1は特性線Lk に特性線LM を加
えた特性となり、共振周波数f0a前後で前記位相が反
転するため、特性線L1は特性線Lk から特性線LM
 を差し引いた特性となる。これにより、特性線L1は
共振周波数f0aの前後で急激に減少する特性となる。
[0014] Then, the characteristic lines NK and NM of both phases are
By combining both the characteristic lines Lk and LM in consideration of the above, a characteristic line L1 is obtained which shows the relationship between the frequency and the ratio of the transmission force Fa from the entire vibration damping device to the reference transmission force F (Fa/F). . In other words, the spring-mass-spring system M
In the frequency range lower than the resonance frequency f0a, the phase of the spring system K and the phase of the spring-mass-spring system M are the same, so the characteristic line L1 is the characteristic line Lk plus the characteristic line LM. Since the phase is reversed around the resonance frequency f0a, the characteristic line L1 changes from the characteristic line Lk to the characteristic line LM.
The characteristics are obtained by subtracting . As a result, the characteristic line L1 has a characteristic that sharply decreases around the resonance frequency f0a.

【0015】このように、ばね系Kとばね−質量−ばね
系Mとの振動位相が反転し、伝達力FK と伝達力FM
 とが相殺しあうことで、低周波数域においても、基準
伝達力Fに対する振動減衰装置全体からの伝達力Fa 
の比(Fa /F)が減少する。その結果、振動を減衰
することが可能な最も低い周波数が、両弾性アーム部に
質量体を設けた場合よりも低くなる。
In this way, the vibration phases of the spring system K and the spring-mass-spring system M are reversed, and the transmitted force FK and the transmitted force FM are
By canceling each other out, even in the low frequency range, the transmission force Fa from the entire vibration damping device against the reference transmission force F
The ratio (Fa/F) decreases. As a result, the lowest frequency at which vibration can be damped becomes lower than when mass bodies are provided on both elastic arms.

【0016】[0016]

【実施例】以下、本発明の振動減衰装置を自動車用排気
管サポート装置に具体化した一実施例を図1〜図5に従
って説明する。図2に示すように、この排気管サポート
装置1は、非振動体としての車体2下面から垂下する車
体側ブラケット3と、振動体としての排気管4から上方
へ突出する排気管側ブラケット5とを連結し、排気管4
を車体2に吊り下げるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the vibration damping device of the present invention is applied to an automobile exhaust pipe support device will be described below with reference to FIGS. 1 to 5. As shown in FIG. 2, this exhaust pipe support device 1 includes a vehicle body side bracket 3 that hangs down from the lower surface of a vehicle body 2 as a non-vibrating body, and an exhaust pipe side bracket 5 that projects upward from an exhaust pipe 4 that serves as a vibrating body. Connect the exhaust pipe 4
is suspended from the vehicle body 2.

【0017】図1(a)に示すように前記排気管サポー
ト装置1は、所定厚さのゴム弾性体からなる略リング状
のサポート部材6を備え、そのサポート部材6の下部は
第1の取付部7を構成し、同じく上部は第2の取付部8
を構成している。前記第1の取付部7には第1の取付孔
9が透設されており、ここに前記排気管側ブラケット5
が挿入係止される。また、前記第2の取付部8には第2
の取付孔10が透設されており、ここに前記車体側ブラ
ケット3が挿入係止される。
As shown in FIG. 1(a), the exhaust pipe support device 1 includes a substantially ring-shaped support member 6 made of a rubber elastic body with a predetermined thickness, and the lower part of the support member 6 is connected to a first attachment point. 7, and the upper part is also a second mounting part 8.
It consists of A first mounting hole 9 is transparently provided in the first mounting portion 7, and the exhaust pipe side bracket 5 is inserted through the first mounting hole 9.
is inserted and locked. Further, the second mounting portion 8 has a second
A mounting hole 10 is provided therethrough, into which the vehicle body side bracket 3 is inserted and locked.

【0018】前記サポート部材6の左側部及び右側部は
、前記第1及び第2の取付部7,8を連結する弾性アー
ム部11,12となっており、このうち左側の弾性アー
ム部11がばね系Kを構成している。また、右側の弾性
アーム部12の上下方向における中間位置には金属片等
からなる質量体13が埋設されており、これらはばね−
質量−ばね系Mを構成している。
The left and right sides of the support member 6 are elastic arm portions 11 and 12 that connect the first and second mounting portions 7 and 8, of which the left elastic arm portion 11 is It constitutes a spring system K. Further, a mass body 13 made of a metal piece or the like is buried in an intermediate position in the vertical direction of the right elastic arm part 12, and these bodies are supported by springs.
It constitutes a mass-spring system M.

【0019】図1(b)は図1(a)をモデル化した図
である。図中、kは弾性アーム部11,12のばね定数
、mは質量体13の質量、FK はばね系Kから車体2
への伝達力、FM はばね−質量−ばね系Mから車体2
への伝達力、Fa は排気管サポート装置1から車体2
への伝達力、xは排気管4が上下方向に振動する際の変
位量である。なお、本実施例では静ばね定数を従来技術
と同一としている。
FIG. 1(b) is a model of FIG. 1(a). In the figure, k is the spring constant of the elastic arm parts 11 and 12, m is the mass of the mass body 13, and FK is the spring constant from the spring system K to the vehicle body 2.
The force transmitted to, FM is the spring-mass-spring system M to the vehicle body 2
The transmission force, Fa, is from the exhaust pipe support device 1 to the vehicle body 2.
x is the amount of displacement when the exhaust pipe 4 vibrates in the vertical direction. Note that in this embodiment, the static spring constant is the same as that of the prior art.

【0020】前記のように構成された本実施例において
、排気管4の振動が排気管サポート装置1に伝わると、
左側の弾性アーム部11がばね系Kとして作用するとと
もに、右側の弾性アーム部12及び質量体13がばね−
質量−ばね系Mとして作用する。そして、左右の弾性ア
ーム部11,12がそれぞれ伸縮するとともに、質量体
13が上下方向へ変位する。これらの振動や変位により
次のようにして前記排気管4の振動が減衰され、同振動
が車体2に伝達されにくくなる。
In this embodiment configured as described above, when the vibration of the exhaust pipe 4 is transmitted to the exhaust pipe support device 1,
The left elastic arm 11 acts as a spring system K, and the right elastic arm 12 and mass body 13 act as a spring system.
It acts as a mass-spring system M. Then, the left and right elastic arm sections 11 and 12 expand and contract, respectively, and the mass body 13 is displaced in the vertical direction. These vibrations and displacements attenuate the vibrations of the exhaust pipe 4 in the following manner, making it difficult for the same vibrations to be transmitted to the vehicle body 2.

【0021】すなわち、前記排気管サポート装置1にお
いては、ばね系Kからの伝達力FK と、ばね−質量−
ばね系Mからの伝達力FM とは互いに異なった特性と
なる。そして、両伝達力FK ,FM を合成した値が
、排気管4から排気管サポート装置1を介して車体2へ
伝わる伝達力Fa となる。ここで、弾性アーム部のい
ずれにも質量体を設けない場合(図6参照)の伝達力を
基準伝達力Fとすると、この基準伝達力Fに対する前記
ばね系Kからの伝達力FK の比(FK /F)と周波
数との関係は図3の特性線LK で表される。このよう
に特性線Lk が特性線L11よりも6dBだけ低くな
るのは、ばね系Kからの伝達力FK が基準伝達力Fの
半分であるからである。
That is, in the exhaust pipe support device 1, the transmission force FK from the spring system K and the spring-mass-
The transmission force FM from the spring system M has different characteristics from each other. The combined value of both transmission forces FK and FM becomes the transmission force Fa transmitted from the exhaust pipe 4 to the vehicle body 2 via the exhaust pipe support device 1. Here, if the transmission force in the case where no mass body is provided in any of the elastic arm parts (see FIG. 6) is the reference transmission force F, then the ratio of the transmission force FK from the spring system K to this reference transmission force F is ( The relationship between FK /F) and frequency is expressed by the characteristic line LK in FIG. The reason why the characteristic line Lk is 6 dB lower than the characteristic line L11 is because the transmission force FK from the spring system K is half of the reference transmission force F.

【0022】また、前記基準伝達力Fに対するばね−質
量−ばね系Mからの伝達力FM の比(FM /F)と
周波数との関係は図3の特性線LM で表される。この
特性線LM における共振周波数f0aは前記特性線L
12における共振周波数f0b(図8参照)よりも低く
なる。これは次の理由による。つまり、図7(b)の排
気管サポート装置21における質量体29,30の合計
の質量と、図1(b)の排気管サポート装置1における
質量体13の質量とを同一とした場合、図1(b)にお
けるばね−質量−ばね系Mの質量体13の質量は図7(
b)における右側の質量体30の質量の2倍となる。そ
のため、前述した共振周波数f0bを算出する(1)式
における質量mを2倍にすると、ばね−質量−ばね系M
の共振周波数f0aは前記共振周波数f0bよりも低く
なる。
Further, the relationship between the frequency and the ratio (FM/F) of the transmission force FM from the spring-mass-spring system M to the reference transmission force F is expressed by the characteristic line LM in FIG. The resonant frequency f0a in this characteristic line LM is the characteristic line L
12 (see FIG. 8). This is due to the following reason. In other words, if the total mass of the mass bodies 29 and 30 in the exhaust pipe support device 21 in FIG. 7(b) is the same as the mass of the mass body 13 in the exhaust pipe support device 1 in FIG. The mass of the mass body 13 of the spring-mass-spring system M in 1(b) is shown in FIG.
The mass is twice the mass of the mass body 30 on the right side in b). Therefore, if the mass m in equation (1) for calculating the resonance frequency f0b mentioned above is doubled, the spring-mass-spring system M
The resonant frequency f0a is lower than the resonant frequency f0b.

【0023】さらに、ばね系Kの振動の位相と周波数と
の関係は図3の特性線NK で表され、ばね−質量−ば
ね系Mの振動の位相と周波数との関係は図3の特性線N
M で表される。ばね系Kの位相は周波数に関係なく一
定である。この位相を基準(0°)とすると、ばね−質
量−ばね系Mの位相は、前記共振周波数f0aよりも低
い周波数域ではばね系Kの位相と同一(0°)である。 また、ばね−質量−ばね系Mの位相は、共振周波数f0
a前後の周波数域で、それよりも低周波数域での0°か
ら180°反転する。
Furthermore, the relationship between the phase and frequency of the vibration of the spring system K is represented by the characteristic line NK in FIG. 3, and the relationship between the phase and frequency of the vibration of the spring-mass-spring system M is represented by the characteristic line NK in FIG. N
It is represented by M. The phase of the spring system K is constant regardless of frequency. If this phase is used as a reference (0°), the phase of the spring-mass-spring system M is the same as the phase of the spring system K (0°) in a frequency range lower than the resonance frequency f0a. Also, the phase of the spring-mass-spring system M is at the resonance frequency f0
In the frequency range around a, it is inverted from 0° to 180° in a lower frequency range.

【0024】そして、前記両振動位相の特性線NK ,
NM を考慮して前記両特性線Lk ,LM を合成す
ると、基準伝達力Fに対する排気管サポート装置1から
の伝達力Fa の比(Fa /F)と周波数との関係を
示す特性線L1になる。つまり、共振周波数f0aより
も低い周波数域では両位相が同じであるため、特性線L
1は特性線Lk に特性線LM を加えた値となり、共
振周波数f0a前後では位相が反転するため、特性線L
1は特性線Lk から特性線LM を差し引いた値とな
る。これにより、特性線L1は低周波数域では0dBで
あり、共振周波数f0aに近づく程増加し、共振周波数
f0a前後で急激に減少する。 なお、共振周波数f0aよりも所定値以上高い周波数域
では両特性線Lk ,LM のレベル差が大きくなる(
特性線LM のレベルが小さくなる)ために、特性線L
1は位相反転の影響がなくなって特性線Lk に近づく
[0024] Then, the characteristic line NK of both vibration phases,
When both the characteristic lines Lk and LM are combined in consideration of NM, a characteristic line L1 is obtained which shows the relationship between the ratio of the transmission force Fa from the exhaust pipe support device 1 to the reference transmission force F (Fa/F) and the frequency. . In other words, in the frequency range lower than the resonance frequency f0a, both phases are the same, so the characteristic line L
1 is the value obtained by adding the characteristic line Lk to the characteristic line LM, and since the phase is reversed around the resonance frequency f0a, the characteristic line L
1 is the value obtained by subtracting the characteristic line LM from the characteristic line Lk. As a result, the characteristic line L1 is 0 dB in the low frequency range, increases as it approaches the resonant frequency f0a, and sharply decreases around the resonant frequency f0a. Note that in a frequency range higher than the resonant frequency f0a by a predetermined value or more, the level difference between both characteristic lines Lk and LM becomes large (
(the level of the characteristic line LM becomes smaller), the characteristic line L
1 approaches the characteristic line Lk because the influence of phase inversion disappears.

【0025】このように、本実施例では左右の弾性アー
ム部11,12のうち左側の弾性アーム部11によって
ばね系Kを構成するとともに、右側の弾性アーム部12
に質量体13を設けてばね−質量−ばね系Mを構成した
ので、ばね系Kとばね−質量−ばね系Mとの振動位相が
共振周波数f0a前後で反転し、伝達力FK と伝達力
FM とが相殺しあうことで、伝達力の比(Fa /F
)が低い周波数域でも減少する。これにより、図4に示
すように、振動を減衰することが可能な最も低い周波数
fa が、両弾性アーム部27,28に質量体29,3
0を設けた場合(図7参照)の周波数fb よりも低く
なる。 その結果、質量体13の質量mを大きくしたり、弾性ア
ーム部11,12のばね定数kを小さくすることなく、
低周波数域から伝達力を低減することが可能となる。従
って、本実施例では排気管4の強度や耐久性能を損なう
ことなく広範囲の周波数域にわたり最適な防振特性を得
ることができる。
As described above, in this embodiment, the left elastic arm 11 of the left and right elastic arm sections 11 and 12 constitutes the spring system K, and the right elastic arm 12
Since the mass body 13 is provided in the spring-mass-spring system M to configure the spring-mass-spring system M, the vibration phases of the spring system K and the spring-mass-spring system M are reversed around the resonance frequency f0a, and the transmitted force FK and the transmitted force FM are By canceling each other out, the transmission force ratio (Fa /F
) also decreases in the low frequency range. As a result, as shown in FIG.
The frequency is lower than the frequency fb when 0 is provided (see FIG. 7). As a result, without increasing the mass m of the mass body 13 or decreasing the spring constant k of the elastic arm portions 11 and 12,
It becomes possible to reduce the transmission force from the low frequency range. Therefore, in this embodiment, optimum vibration damping characteristics can be obtained over a wide frequency range without impairing the strength or durability of the exhaust pipe 4.

【0026】また、図5は本実施例の排気管サポート装
置1の効果を確認するためのグラフであり、縦軸は減衰
できる最も低い周波数を示している。比較例は、左右の
弾性アーム部の両方に質量体を設けた場合である。この
図からも明らかなように、本実施例では小さな質量mで
低周波数域から振動を減衰することができる。なお、本
発明は前記実施例の構成に限定されるものではなく、例
えば以下のように発明の趣旨から逸脱しない範囲で任意
に変更してもよい。 (1)前記実施例における質量体13の形状、材質等を
適宜変更してもよい。 (2)弾性アーム部12に対する質量体13の取付位置
は同弾性アーム部12の中間位置から若干ずれていても
よい。 (3)本発明は排気管サポート装置以外にも、振動体を
非振動体に支持するための種々の振動減衰装置に適用で
きる。
FIG. 5 is a graph for confirming the effect of the exhaust pipe support device 1 of this embodiment, and the vertical axis indicates the lowest frequency that can be attenuated. A comparative example is a case where mass bodies are provided on both the left and right elastic arm sections. As is clear from this figure, in this example, vibrations can be damped from the low frequency range with a small mass m. It should be noted that the present invention is not limited to the configuration of the embodiments described above, and may be modified as desired without departing from the spirit of the invention, for example, as described below. (1) The shape, material, etc. of the mass body 13 in the above embodiment may be changed as appropriate. (2) The attachment position of the mass body 13 to the elastic arm part 12 may be slightly shifted from the intermediate position of the elastic arm part 12. (3) In addition to the exhaust pipe support device, the present invention can be applied to various vibration damping devices for supporting a vibrating body on a non-vibrating body.

【0027】[0027]

【発明の効果】以上詳述したように本発明の振動減衰装
置は、一方の弾性アーム部をばね系とするとともに、他
方の弾性アーム部の中間部分に質量体を設けてばね−質
量−ばね系としたので、振動体等の強度や耐久性能を損
なうことなく、広範囲の周波数域にわたり最適な防振特
性を得ることができるという優れた効果を奏する。
Effects of the Invention As described in detail above, the vibration damping device of the present invention has one elastic arm part of a spring system, and a mass body provided in the middle part of the other elastic arm part, so that the vibration damping device of the present invention has a spring-mass-spring structure. system, it has the excellent effect of being able to obtain optimal vibration damping characteristics over a wide frequency range without impairing the strength or durability of the vibrating body or the like.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の振動減衰装置を自動車用排気管サポー
ト装置に具体化した一実施例を示し、(a)は排気管サ
ポート装置の一部を破断して示す正面図、(b)は排気
管サポート装置をモデル化した図である。
FIG. 1 shows an example in which the vibration damping device of the present invention is embodied in an automobile exhaust pipe support device, in which (a) is a partially cutaway front view of the exhaust pipe support device, and (b) is a partially cutaway front view of the exhaust pipe support device. It is a diagram modeling an exhaust pipe support device.

【図2】一実施例の排気管サポート装置によって排気管
を車体に支持した状態の側面図である。
FIG. 2 is a side view of an exhaust pipe supported on a vehicle body by an exhaust pipe support device according to an embodiment.

【図3】一実施例の排気管サポート装置を用いた場合の
周波数と伝達力の比との関係、及び周波数と位相との関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between frequency and transmission force ratio and the relationship between frequency and phase when using the exhaust pipe support device of one embodiment.

【図4】一実施例の排気管サポート装置を用いた場合の
周波数と伝達力の比との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between frequency and transmission force ratio when using the exhaust pipe support device of one embodiment.

【図5】質量体の質量と周波数との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between the mass of a mass body and frequency.

【図6】(a)は従来の排気管サポート装置の正面図、
(b)は同じく排気管サポート装置をモデル化した図で
ある。
FIG. 6(a) is a front view of a conventional exhaust pipe support device;
(b) is a diagram similarly modeling the exhaust pipe support device.

【図7】(a)は従来の排気管サポート装置の一部を破
断して示す正面図、(b)は同じく排気管サポート装置
をモデル化した図である。
FIG. 7(a) is a partially cutaway front view of a conventional exhaust pipe support device, and FIG. 7(b) is a modeled view of the exhaust pipe support device.

【図8】従来の排気管サポート装置を用いた場合の周波
数と伝達力の比との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between frequency and transmission force ratio when a conventional exhaust pipe support device is used.

【符号の説明】[Explanation of symbols]

2…非振動体としての車体、4…振動体としての排気管
、7…第1の取付部、8…第2の取付部、11,12…
弾性アーム部、13…質量体、K…ばね系、M…ばね−
質量−ばね系
2... Vehicle body as a non-vibrating body, 4... Exhaust pipe as a vibrating body, 7... First mounting part, 8... Second mounting part, 11, 12...
Elastic arm portion, 13...mass body, K...spring system, M...spring-
Mass-spring system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  振動体が取付けられる第1の取付部と
、前記第1の取付部から離間した状態で非振動体が取付
けられる第2の取付部と、前記第1及び第2の取付部間
を互いに離間した状態で繋ぐ一対の弾性アーム部とから
形成されており、一方の弾性アーム部をばね系とすると
ともに、他方の弾性アーム部の中間部分に質量体を設け
てばね−質量−ばね系としたことを特徴とする振動減衰
装置。
1. A first mounting part to which a vibrating body is mounted, a second mounting part to which a non-vibrating body is mounted while being spaced from the first mounting part, and the first and second mounting parts. It is formed from a pair of elastic arms that are connected to each other while being spaced apart from each other, one of the elastic arms is a spring system, and a mass body is provided in the middle part of the other elastic arm to create a spring. A vibration damping device characterized by having a spring system.
JP11887491A 1991-05-23 1991-05-23 Vibro-damper Pending JPH04347321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887491A JPH04347321A (en) 1991-05-23 1991-05-23 Vibro-damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887491A JPH04347321A (en) 1991-05-23 1991-05-23 Vibro-damper

Publications (1)

Publication Number Publication Date
JPH04347321A true JPH04347321A (en) 1992-12-02

Family

ID=14747260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887491A Pending JPH04347321A (en) 1991-05-23 1991-05-23 Vibro-damper

Country Status (1)

Country Link
JP (1) JPH04347321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161388A (en) * 2004-12-07 2006-06-22 Takenaka Komuten Co Ltd Vibration-proofing method of structure floor
US9134632B2 (en) 2010-12-21 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161388A (en) * 2004-12-07 2006-06-22 Takenaka Komuten Co Ltd Vibration-proofing method of structure floor
US9134632B2 (en) 2010-12-21 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9696630B2 (en) 2010-12-21 2017-07-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US4727957A (en) Rubber vibration isolator for muffler
JPS6235537B2 (en)
JPS6134180Y2 (en)
US4634088A (en) Suspension element for the exhaust system of a motor vehicle engine
JPS6015808B2 (en) engine mounting device
JPH084816A (en) Vibration isolating mount
JPH04347321A (en) Vibro-damper
JPH08319825A (en) Muffler supporting structure
JPH06117485A (en) Frequency coping type vibration damper
JP2002356939A (en) Damping structure and plate member
JPS60109633A (en) Vibration damping device for engine
JPS5997343A (en) Vibration-proof supporter for engine, etc.
JPH04339019A (en) Vibration-proof device
JPS628162Y2 (en)
JPH0635692U (en) mount
JPS6132815Y2 (en)
JPH0238011Y2 (en)
JPS5829315Y2 (en) Anti-vibration elastic support
JPH0874922A (en) Movable valve type fluid enclosed anti-vibration supporter
JPH0355777Y2 (en)
JPH04136539A (en) Vibration control method for structure
JPH0599274A (en) Amplitude-sensitive vibration-proof rubber device
JP2516746B2 (en) Fluid filled vibration isolation device
JPH04145244A (en) Liquid seal mount device
JP3975619B2 (en) Anti-vibration hanger