JP2006156910A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006156910A
JP2006156910A JP2004349043A JP2004349043A JP2006156910A JP 2006156910 A JP2006156910 A JP 2006156910A JP 2004349043 A JP2004349043 A JP 2004349043A JP 2004349043 A JP2004349043 A JP 2004349043A JP 2006156910 A JP2006156910 A JP 2006156910A
Authority
JP
Japan
Prior art keywords
layer
solder
semiconductor substrate
semiconductor device
free solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004349043A
Other languages
Japanese (ja)
Inventor
Kimiji Kayukawa
君治 粥川
Shoji Miura
昭二 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004349043A priority Critical patent/JP2006156910A/en
Publication of JP2006156910A publication Critical patent/JP2006156910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device capable of assuring a sufficient bonding lifetime when a semiconductor substrate is soldered to a header or the like by using Sn-based Pb free solder. <P>SOLUTION: Inverse sputtering is executed to a forming face S of the semiconductor substrate 1 in order to remove a natural oxide film (not illustrated in Figure) formed on the forming face S of the semiconductor substrate 1. Next, an Al layer 2, a Ti layer 3, and an Ni layer 4 are formed on the forming face S of the semiconductor substrate 1 by sputtering. A protection film, for example, made of unillustrated Au or the like with a thickness of about 30-50 nm is formed on the Ni layer 4 by the sputtering. After that, a Ti-Ni layer 5 as a solder barrier layer is formed to the interface between the Ti layer 3 and the Ni layer 4 by executing heat treatment with a quartz tube type heat treatment furnace of a nitrogen atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の金属層からなる電極を有する半導体装置に関するものである。   The present invention relates to a semiconductor device having an electrode composed of a plurality of metal layers.

従来より、例えば特許文献1に示すように、シリコン基板の裏面に複数の金属層からなる裏面電極105を備えた半導体ペレット100を半田106によってヘッダ107に半田接合する半導体装置がある。図7は特許文献1の半導体装置の構造を示す要部断面図である。   Conventionally, as shown in Patent Document 1, for example, there is a semiconductor device in which a semiconductor pellet 100 having a back electrode 105 made of a plurality of metal layers on the back surface of a silicon substrate is solder-bonded to a header 107 by solder 106. FIG. 7 is a cross-sectional view of the main part showing the structure of the semiconductor device of Patent Document 1.

この従来の半導体装置は、ゲート電極などを有する半導体ペレット100と裏面電極105を備える。この裏面電極105は、シリコンとの接合性が良いAl層101、シリコンの半田側への拡散防止のためのTi層102、半田106のシリコン基板側への拡散防止のためのNi層103、Ni層103の酸化防止のためのAu層104を備える。そして、シリコンとAl層101との間にシリコン−Al合金層を形成することによって剥離を低減すると共に、各金属層間に合金層を形成することによって各金属層間での接触抵抗を低減するものである。
特許第3339552号公報
This conventional semiconductor device includes a semiconductor pellet 100 having a gate electrode and the like and a back electrode 105. The back electrode 105 includes an Al layer 101 having good bonding property to silicon, a Ti layer 102 for preventing diffusion of silicon to the solder side, a Ni layer 103 for preventing diffusion of solder 106 to the silicon substrate side, Ni An Au layer 104 for preventing oxidation of the layer 103 is provided. Then, the silicon-Al alloy layer is formed between the silicon and the Al layer 101 to reduce peeling, and the alloy layer is formed between the metal layers to reduce the contact resistance between the metal layers. is there.
Japanese Patent No. 3339552

しかしながら、近年、環境汚染などの問題から、Sn−Pb系半田に代わってPbを使用しないPbフリー半田(Sn系Pbフリー半田など)の使用が進められている。このPbフリー半田(Sn系Pbフリー半田など)を用いて半導体電極を下地基板に半田接合する場合には、接合寿命が短くなるという問題があった。   However, in recent years, use of Pb-free solder (such as Sn-based Pb-free solder) that does not use Pb instead of Sn-Pb-based solder has been promoted due to problems such as environmental pollution. When the semiconductor electrode is solder-bonded to the base substrate using this Pb-free solder (Sn-based Pb-free solder or the like), there is a problem that the bonding life is shortened.

本発明は、上記問題点に鑑みなされたものであり、半導体基板を下地基板などにSn系Pbフリー半田を用いて半田接合する場合に、充分な接合寿命を保証できる半導体装置の提供を目的とするものである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device that can guarantee a sufficient bonding life when a semiconductor substrate is solder-bonded to a base substrate or the like using Sn-based Pb-free solder. To do.

上記目的を達成するために請求項1に記載の半導体装置では、Al膜が形成された半導体基板に、Al膜上に接着層として形成された第1の金属層と、第1の金属層とNiもしくはCuとの混合層からなる半田バリア層とを備える半導体電極であって、半導体電極をSn系Pbフリー半田により下地基板に半田接合することを特徴とするものである。   In order to achieve the above object, in the semiconductor device according to claim 1, a first metal layer formed as an adhesive layer on the Al film on the semiconductor substrate on which the Al film is formed, a first metal layer, A semiconductor electrode including a solder barrier layer made of a mixed layer of Ni or Cu, wherein the semiconductor electrode is solder-bonded to a base substrate with Sn-based Pb-free solder.

このように、半導体基板と第1の金属層との間に半導体基板及び第1の金属層との接触抵抗の小さいAl膜を形成することによって、半導体基板とAl膜との間、及びAl膜と第1の金属層との間での接触抵抗を小さくすることができる。したがって、半導体基板と第1の金属層との間をオーミック接続の状態とすることができる。   Thus, by forming an Al film having a low contact resistance between the semiconductor substrate and the first metal layer between the semiconductor substrate and the first metal layer, the Al film is formed between the semiconductor substrate and the Al film. The contact resistance between the first metal layer and the first metal layer can be reduced. Therefore, an ohmic connection can be established between the semiconductor substrate and the first metal layer.

また、半田バリア層として、第1の金属層とNiもしくはCuを含む混合層(合金層)を用いることによって第1の金属層へのSnの到達時間を長くできることを本発明者は実験により見出した。よって、Al膜が形成された半導体基板とベース基板とをSn系Pbフリー半田を用いて接合する場合でも充分な接合寿命を保証できる。   Further, the inventors have found through experiments that the arrival time of Sn to the first metal layer can be increased by using the first metal layer and a mixed layer (alloy layer) containing Ni or Cu as the solder barrier layer. It was. Therefore, even when the semiconductor substrate on which the Al film is formed and the base substrate are bonded using Sn-based Pb-free solder, a sufficient bonding life can be guaranteed.

また、請求項2に示すように、第1の金属層をTiとすることによって、NiもしくはCuとの接合性を良好にすることができる。   In addition, as shown in claim 2, when the first metal layer is made of Ti, the bondability with Ni or Cu can be improved.

また、請求項3に記載の半導体装置では、半田バリア層とSn系Pbフリー半田との間にNiもしくはCuを備えることを特徴とするものである。これによれば、半田バリア層とSn系Pbフリー半田との間にNi層もしくはCu層がある分第1の金属層へのSnの到達時間を長くすることができる。   The semiconductor device according to claim 3 is characterized in that Ni or Cu is provided between the solder barrier layer and the Sn-based Pb-free solder. According to this, the arrival time of Sn to the first metal layer can be increased by the presence of the Ni layer or the Cu layer between the solder barrier layer and the Sn-based Pb-free solder.

また、請求項4に記載の半導体装置では、半田バリア層とSn系Pbフリー半田との間に第1の金属層とNiもしくはCuとSnとからなる3元混合層を備えることを特徴とするものである。これによれば、第1の金属層とNi/CuとSnとからなる3元混合層及び半田バリア層へSnが拡散した場合でも、第1の金属層の界面には、上記3元混合層が形成されることになる。従って、各層の元素で構成された3元混合層が界面に存在するので各層間で結合しやすく接合強度が向上する。   According to a fourth aspect of the present invention, the semiconductor device includes a ternary mixed layer made of Ni or Cu and Sn between the solder barrier layer and the Sn-based Pb-free solder. Is. According to this, even when Sn diffuses to the first metal layer, the ternary mixed layer composed of Ni / Cu and Sn, and the solder barrier layer, the ternary mixed layer is present at the interface of the first metal layer. Will be formed. Accordingly, since a ternary mixed layer composed of the elements of each layer exists at the interface, bonding between the layers is facilitated and bonding strength is improved.

また、請求項5に記載の半導体装置では、半田バリア層の厚さは19nm以上であることを特徴とするものである。これによれば、半田バリア層の厚さは、最低19nmあれば充分な接合寿命を得ることができる。   In the semiconductor device according to claim 5, the thickness of the solder barrier layer is 19 nm or more. According to this, a sufficient bonding life can be obtained if the thickness of the solder barrier layer is at least 19 nm.

以下、本発明の実施の形態における半導体装置に関して、図面に基づいて説明する。図1は本発明の実施の形態に係わる、半導体装置の構造を示す要部断面図である。図1において、1は半導体基板、2はAl層、3はTi層、4aはNi部、5はTi−Ni層、6はSn系Pbフリー半田、7はリードフレームである。 Hereinafter, a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a principal part showing the structure of a semiconductor device according to an embodiment of the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is an Al layer, 3 is a Ti layer, 4a is a Ni portion, 5 is a Ti-Ni layer, 6 is a Sn-based Pb-free solder, and 7 is a lead frame.

半導体基板1は、Si基板上にゲート、ソース領域などが形成されたパワーMOSトランジスタなどである。なお、半導体基板1は、パワーMOSトランジスタに限定されるものではなく、縦型IGBTやダイオードなどであってもよい。   The semiconductor substrate 1 is a power MOS transistor in which a gate, a source region, and the like are formed on a Si substrate. The semiconductor substrate 1 is not limited to a power MOS transistor, and may be a vertical IGBT or a diode.

Al層2は、半導体基板1とTi層3との間がオーミック接続となるようにするためである。半導体基板1としてN型半導体基板を用いる場合、半導体基板1とTi層3との間でオーミック接続が可能である。しかし、半導体基板1としてP型半導体基板を用いる場合、半導体基板1とTi層3との間でショットキー接続となる可能性があった。そこで、P型半導体基板と接触抵抗の小さいAl層2を半導体基板1とTi層3との間に設ける。当然のことながら、Al層2とTi層3とは金属でありオーミック接続となるので、半導体基板1とTi層3との間をオーミック接続の状態とすることができる。   The Al layer 2 is for making an ohmic connection between the semiconductor substrate 1 and the Ti layer 3. When an N-type semiconductor substrate is used as the semiconductor substrate 1, an ohmic connection can be made between the semiconductor substrate 1 and the Ti layer 3. However, when a P-type semiconductor substrate is used as the semiconductor substrate 1, there is a possibility that Schottky connection is made between the semiconductor substrate 1 and the Ti layer 3. Therefore, an Al layer 2 having a low contact resistance with the P-type semiconductor substrate is provided between the semiconductor substrate 1 and the Ti layer 3. As a matter of course, the Al layer 2 and the Ti layer 3 are metal and are in ohmic connection, so that the semiconductor substrate 1 and the Ti layer 3 can be in an ohmic connection state.

Ti層3は、本発明における第1金属層に相当するものである。このTi層3は、Ti−Ni層5とAl層2が形成された半導体基板1との接着層として機能する。なお、Ti層3は、他にもMo、W、Co、V、Cr、TiWなどであっても、接着層としては充分であるが、Ni層4もしくはCuとの接合性が良好なTiを用いるのが好ましい。   The Ti layer 3 corresponds to the first metal layer in the present invention. The Ti layer 3 functions as an adhesive layer between the Ti—Ni layer 5 and the semiconductor substrate 1 on which the Al layer 2 is formed. The Ti layer 3 may be Mo, W, Co, V, Cr, TiW, or the like, but it is sufficient as an adhesive layer, but Ti having good bondability with the Ni layer 4 or Cu is used. It is preferable to use it.

Ni部4aは、後ほど説明するTi−Ni層5を形成するために形成されたNi層4のうち、Ti層3と合金化されずに残ったものである。なお、Ni部4a(Ni層4)は、これに限定されるものではなくCuであってもよい。   The Ni portion 4a is the one that remains without being alloyed with the Ti layer 3 in the Ni layer 4 formed to form the Ti—Ni layer 5 described later. The Ni portion 4a (Ni layer 4) is not limited to this and may be Cu.

Ti−Ni層5は、本発明における半田バリア層に相当するものであり、Sn系Pbフリー半田のSnがTi層3に到達するのを防止するものである。なお、Ni層4の代わりにCuを用いた場合は、この半田バリア層はTi−Cu層となる。   The Ti—Ni layer 5 corresponds to the solder barrier layer in the present invention, and prevents Sn of the Sn-based Pb-free solder from reaching the Ti layer 3. In addition, when Cu is used instead of the Ni layer 4, this solder barrier layer becomes a Ti—Cu layer.

ここで、本発明の実施の形態における半導体装置の製造方法に関して、図面に基づいて説明する。図2は本発明の実施の形態に係わる、半導体装置の製造工程を順に示す模式的である。   Here, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic diagram sequentially showing the manufacturing process of the semiconductor device according to the embodiment of the present invention.

図2(a)において、半導体基板1のTi層3などの形成面Sには図示しない自然酸化膜が形成されているので、まず、この自然酸化膜を除去するために、半導体基板1の形成面Sの逆スパッタリングを行う。逆スパッタリングを行うために、半導体基板1をスパッタリング装置のチャンバ内にセットした後、到達真空度として10−7torr程度までチャンバ内の真空排気を行う。そして、このチャンバ内にアルゴンガスをマスフローコントローラによって3〜25×10−3torrになるように導入する。この雰囲気下で半導体基板1に高周波バイアス400〜600Vを印加し、印加電力を1〜2kW/mの密度で、半導体基板1を例えば4nmの厚さ、逆スパッタリングを行う。この逆スパッタリング終了後、速やかにチャンバ内へのアルゴンガス導入を停止する。この逆スパッタリングによって、半導体基板1の形成面Sに形成されていた自然酸化膜が除去される。 In FIG. 2A, since a natural oxide film (not shown) is formed on the formation surface S such as the Ti layer 3 of the semiconductor substrate 1, first, in order to remove the natural oxide film, the formation of the semiconductor substrate 1 is performed. Reverse sputtering of surface S is performed. In order to perform reverse sputtering, after setting the semiconductor substrate 1 in the chamber of the sputtering apparatus, the chamber is evacuated to a vacuum degree of about 10 −7 torr. And argon gas is introduce | transduced in this chamber so that it may become 3-25 * 10 < -3 > torr by a massflow controller. Under this atmosphere, a high frequency bias of 400 to 600 V is applied to the semiconductor substrate 1, and the semiconductor substrate 1 is reverse-sputtered to a thickness of 4 nm, for example, at a density of 1 to 2 kW / m 2 . After the reverse sputtering is completed, the introduction of argon gas into the chamber is stopped immediately. By this reverse sputtering, the natural oxide film formed on the formation surface S of the semiconductor substrate 1 is removed.

次に、図2(b)に示すように、Al層2を形成する工程に移る。アルミターゲットを備えたチャンバ、すなわちAl層2を形成することができるチャンバへウエハを搬送し、その後、アルゴンガスをマスフローコントローラによって、3〜25×10−3torrになるようにチャンバ内に導入し、この雰囲気下でチタンターゲット側に高周波バイアス400〜600Vを印加する。この状態において、アルゴンイオンはアルミターゲットに衝突し、スパッタリングを引き起こし、アルミ原子またはアルミクラスターがアルミターゲット表面から放出される。放出されたアルミ原子またはアルミクラスターは逆スパッタリングされた半導体基板1に飛来し堆積する。このようにして、例えば厚さ200nm〜300nm程度のAl層2を形成する。なお、Al層2の厚さは、半導体基板1とアルミターゲットとの間にはシャッタが設置されており、このシャッタの開閉によって適宜制御される。 Next, as shown in FIG. 2B, the process proceeds to the step of forming the Al layer 2. The wafer is transferred to a chamber equipped with an aluminum target, that is, a chamber in which the Al layer 2 can be formed, and then argon gas is introduced into the chamber at 3 to 25 × 10 −3 torr by a mass flow controller. In this atmosphere, a high frequency bias of 400 to 600 V is applied to the titanium target side. In this state, argon ions collide with the aluminum target, causing sputtering, and aluminum atoms or aluminum clusters are released from the surface of the aluminum target. The released aluminum atoms or aluminum clusters fly and deposit on the reverse-sputtered semiconductor substrate 1. In this way, for example, the Al layer 2 having a thickness of about 200 nm to 300 nm is formed. The thickness of the Al layer 2 is appropriately controlled by opening and closing the shutter, which is provided between the semiconductor substrate 1 and the aluminum target.

次に、図2(c)に示すように、Ti層3を形成する工程に移る。Ti層3の形成は、Al層2を形成する工程と同じく、チタンターゲットを備えたチャンバ、すなわちTi層3を形成することができるチャンバへウエハを搬送し、チャンバ内にアルゴンガスをマスフローコントローラによって3〜25×10−3torrになるようにチャンバ内に導入する。そして、この雰囲気下でチタンターゲット側に高周波バイアス400〜600Vを印加し、チタンターゲットのスパッタリングを行う。このようにして、例えば厚さ200nm〜300nm程度のTi層3を形成する。なお、Ti層3の厚さに関しても、Al層2が形成された半導体基板1とチタンターゲットとの間にはシャッタが設置されており、このシャッタの開閉によって適宜制御される。 Next, as shown in FIG. 2C, the process proceeds to the step of forming the Ti layer 3. The Ti layer 3 is formed in the same manner as in the formation of the Al layer 2 by transferring the wafer to a chamber equipped with a titanium target, that is, a chamber capable of forming the Ti layer 3, and supplying argon gas into the chamber by a mass flow controller. It introduce | transduces in a chamber so that it may become 3-25 * 10 < -3 > torr. In this atmosphere, a high frequency bias of 400 to 600 V is applied to the titanium target side to perform sputtering of the titanium target. In this way, for example, the Ti layer 3 having a thickness of about 200 nm to 300 nm is formed. The thickness of the Ti layer 3 is also appropriately controlled by opening and closing the shutter between the semiconductor substrate 1 on which the Al layer 2 is formed and the titanium target.

次に、図2(d)に示すように、Ni層4を形成する工程に移る。Ni層4の形成は、Al層2、Ti層3を形成する工程と同じく、ニッケルターゲットを備えたチャンバ、すなわちNi層4を形成することができるチャンバへウエハを搬送し、チャンバ内にアルゴンガスをマスフローコントローラによって3〜25×10−3torrになるようにチャンバ内に導入する。そして、この雰囲気下でニッケルターゲット側に高周波バイアス400〜600Vを印加し、ニッケルターゲットのスパッタリングを行う。このようにして、例えば厚さ500nm〜600nm程度のNi層4を形成する。また、Ni層4の厚さに関しても、Al層2及びTi層3が形成された半導体基板1とニッケルターゲットとの間にシャッタが設置されており、このシャッタの開閉によって適宜制御される。 Next, as shown in FIG. 2D, the process proceeds to the step of forming the Ni layer 4. The formation of the Ni layer 4 is similar to the step of forming the Al layer 2 and the Ti layer 3. The wafer is transferred to a chamber equipped with a nickel target, that is, a chamber in which the Ni layer 4 can be formed, and argon gas is introduced into the chamber. Is introduced into the chamber at 3-25 × 10 −3 torr by a mass flow controller. In this atmosphere, a high frequency bias of 400 to 600 V is applied to the nickel target side to perform sputtering of the nickel target. In this way, for example, the Ni layer 4 having a thickness of about 500 nm to 600 nm is formed. Further, the thickness of the Ni layer 4 is also appropriately controlled by opening and closing the shutter, which is provided between the semiconductor substrate 1 on which the Al layer 2 and the Ti layer 3 are formed and the nickel target.

さらに、Ni層4上に図示しないAuなどからなる保護膜を形成する。保護膜の形成は、Al層2、Ti層3、Ni層4を形成する工程と同じく、金ターゲットを備えたチャンバ、すなわちAu層を形成することができるチャンバへウエハを搬送し、チャンバ内にアルゴンガスをマスフローコントローラによって3〜25×10−3torrになるようにチャンバ内に導入する。そして、この雰囲気下で金ターゲット側に高周波バイアス400〜600Vを印加し、金ターゲットのスパッタリングを行う。このようにして、例えば厚さ30nm〜50nm程度の保護膜を形成する。また、Auの厚さに関してもAl層2及びTi層3などが形成された半導体基板1と金ターゲットとの間にシャッタが設置されており、このシャッタ開閉によって適宜制御される。 Further, a protective film made of Au or the like (not shown) is formed on the Ni layer 4. The protective film is formed in the same manner as the steps of forming the Al layer 2, the Ti layer 3 and the Ni layer 4, by transferring the wafer to a chamber equipped with a gold target, that is, a chamber capable of forming an Au layer, and into the chamber. Argon gas is introduced into the chamber by a mass flow controller so as to be 3 to 25 × 10 −3 torr. In this atmosphere, a high frequency bias of 400 to 600 V is applied to the gold target side to perform sputtering of the gold target. In this way, a protective film having a thickness of, for example, about 30 nm to 50 nm is formed. In addition, the thickness of Au is also appropriately controlled by opening and closing the shutter between the gold substrate and the semiconductor substrate 1 on which the Al layer 2 and the Ti layer 3 are formed.

次に、図2(e)に示されるように、Ti−Ni層5を形成する工程に移る。このTi−Ni層5を形成する工程は、上述のようにしてAl層2、Ti層3、Ni層4、保護層が形成された半導体基板1を窒素雰囲気の石英管熱処理炉にセットする。そして、この石英管熱処理炉において、例えば、350℃で3分間の熱処理を行うことによってTi層3とNi層4との界面にTi−Ni層5を形成する。   Next, as shown in FIG. 2E, the process proceeds to the step of forming the Ti—Ni layer 5. In the step of forming the Ti—Ni layer 5, the semiconductor substrate 1 on which the Al layer 2, Ti layer 3, Ni layer 4 and protective layer are formed as described above is set in a quartz tube heat treatment furnace in a nitrogen atmosphere. In this quartz tube heat treatment furnace, for example, a Ti—Ni layer 5 is formed at the interface between the Ti layer 3 and the Ni layer 4 by performing a heat treatment at 350 ° C. for 3 minutes.

その後、半導体基板1の形成面S上に形成されたAl層2、Ti層3、Ni部4a、Ti−Ni層5からなる電極をSn系Pbフリー半田6によってリードフレーム7に半田接合する。   Thereafter, an electrode made of the Al layer 2, the Ti layer 3, the Ni portion 4 a, and the Ti—Ni layer 5 formed on the formation surface S of the semiconductor substrate 1 is soldered to the lead frame 7 with Sn-based Pb-free solder 6.

なお、Ti−Ni層5の膜厚は、熱処理温度と熱処理時間とによって適宜制御される。例えば、400℃で3分間の熱処理を行った後に360℃で3分間の熱処理を行うことによって膜厚19nm〜26nmのTi−Ni層5を得ることができる。また、一回の熱処理でも、350℃で30分間では膜厚40nm〜60nm、400℃で30分間では膜厚60nm〜70nm、450℃で30分間では膜厚100nm〜120nmのようなTi−Ni層5を得ることができる。   The film thickness of the Ti—Ni layer 5 is appropriately controlled by the heat treatment temperature and the heat treatment time. For example, the Ti—Ni layer 5 having a film thickness of 19 nm to 26 nm can be obtained by performing a heat treatment at 400 ° C. for 3 minutes and then performing a heat treatment at 360 ° C. for 3 minutes. Further, even in one heat treatment, a Ti—Ni layer having a film thickness of 40 nm to 60 nm at 350 ° C. for 30 minutes, a film thickness of 60 nm to 70 nm at 400 ° C. for 30 minutes, and a film thickness of 100 nm to 120 nm at 450 ° C. for 30 minutes. 5 can be obtained.

また、このTi−Ni層5が、どの程度の膜厚で充分な接合寿命を保証できるかを検証した。図3(a)はSn系Pbフリー半田6としてSn−Cu半田を用いた場合の高温放置試験時のTi層3界面付近の断面図であり、(b)はSn系Pbフリー半田6としてSn−Ag半田を用いた場合の高温放置試験時のTi層3界面付近の断面図である。この高温放置試験は、Ti−Ni層5の膜厚が19nmである電極をSn−Cu半田・Sn−Ag半田それぞれでリードフレーム7に半田接合した半導体装置を150℃の温度環境に放置して行った。この結果、150℃の温度環境において5000h経過した時点で、図3(a)、(b)に示すようにTi層3界面に各半田材は到達しておらず、Ti−Ni層5は膜厚が19nm以上であれば充分な接合寿命を保証できるといえる。   Moreover, it was verified by what film thickness this Ti—Ni layer 5 can guarantee a sufficient bonding life. FIG. 3A is a cross-sectional view of the vicinity of the interface of the Ti layer 3 during a high temperature standing test when Sn—Cu solder is used as the Sn-based Pb free solder 6, and FIG. 3B is Sn as the Sn-based Pb free solder 6. It is sectional drawing of Ti layer 3 interface vicinity at the time of the high temperature leaving test at the time of using -Ag solder. In this high temperature standing test, a semiconductor device in which an electrode having a Ti—Ni layer 5 having a film thickness of 19 nm is soldered to the lead frame 7 with Sn—Cu solder and Sn—Ag solder is left in a temperature environment of 150 ° C. went. As a result, when 5000 hours have passed in a temperature environment of 150 ° C., as shown in FIGS. 3A and 3B, each solder material does not reach the interface of the Ti layer 3, and the Ti—Ni layer 5 is a film. If the thickness is 19 nm or more, it can be said that a sufficient bonding life can be guaranteed.

ここで、Sn系Pbフリー半田を用いて半導体電極を下地基板に半田接合する場合に接合寿命が短くなる理由について説明する。図4はSn組成比の異なる半田材におけるNi中へのSn拡散係数の関係を示す図であり、この図からわかるようにSn系Pbフリー半田は、Sn−Pb系半田に比べてNi中へのSn拡散係数が約10倍である。Ni中へのSn拡散係数が約10倍であるということは、SnがNi中へ拡散しNiが消滅する(半田材がTiへ到達する)時間が約1/10になるということである。半田材がTiへ到達すると、半田材とTiとの接合性が良くないためTiと半田材との界面において剥離が起こりやすくなる。   Here, the reason why the bonding life is shortened when the semiconductor electrode is solder-bonded to the base substrate using Sn-based Pb-free solder will be described. FIG. 4 is a diagram showing the relationship of Sn diffusion coefficient into Ni in solder materials having different Sn composition ratios. As can be seen from this figure, Sn-based Pb-free solder is more into Ni than Sn—Pb-based solder. The Sn diffusion coefficient is about 10 times. The fact that the Sn diffusion coefficient into Ni is about 10 times means that the time when Sn diffuses into Ni and Ni disappears (solder material reaches Ti) is about 1/10. When the solder material reaches Ti, since the bonding property between the solder material and Ti is not good, peeling is likely to occur at the interface between Ti and the solder material.

次に、このようなSn系Pbフリー半田6を用いて半導体基板1をリードフレーム7に半田接合する際に、Ti−Ni層5によって、SnがNi中へ拡散しNiが消滅する時間を長くすることができる理由について説明する。   Next, when the semiconductor substrate 1 is soldered to the lead frame 7 using such Sn-based Pb-free solder 6, the Ti—Ni layer 5 causes Sn to diffuse into Ni and increase the time during which Ni disappears. Explain why you can.

検証のため、半導体装置をSn−Pb系半田を用いてリードフレーム7へ半田接続して、150℃の温度環境に放置する高温放置試験を行った。その結果、半田バリア層として膜厚600nmのNi層を用いた場合、約500時間でNi層全てが拡散(消滅)し、Ti層の界面にはNi−Sn層が形成される。   For verification, a high temperature storage test was performed in which the semiconductor device was soldered to the lead frame 7 using Sn—Pb solder and left in a temperature environment of 150 ° C. As a result, when a 600 nm thick Ni layer is used as the solder barrier layer, the entire Ni layer diffuses (disappears) in about 500 hours, and a Ni—Sn layer is formed at the interface of the Ti layer.

また、半田バリア層として膜厚25nmのTi−Ni層5を用いた場合、約500時間でTi−Ni層5にSnの拡散が始まり、約4000時間でTi層3の界面にSnが現れた。この結果から明らかなように、半田バリア層としてTi−Ni層5を用いることによって、SnがTiへ到達する時間を長くすることが出来る。従って、半導体基板1とリードフレーム7とをSn系Pbフリー半田6を用いて半田接合する場合に充分な接合寿命が保証できる。   When the Ti—Ni layer 5 having a film thickness of 25 nm was used as the solder barrier layer, Sn began to diffuse into the Ti—Ni layer 5 in about 500 hours, and Sn appeared at the interface of the Ti layer 3 in about 4000 hours. . As is apparent from this result, the time for Sn to reach Ti can be lengthened by using the Ti—Ni layer 5 as the solder barrier layer. Accordingly, when the semiconductor substrate 1 and the lead frame 7 are soldered together using the Sn-based Pb-free solder 6, a sufficient bonding life can be guaranteed.

(変形例1)
また、変形例1として、Ti−Ni層5とSn系Pbフリー半田6との間に本発明における第2半田バリア層に相当するNi層4を形成するようにしてもよい。図5は、本発明の実施の形態の変形例1に係わる、半導体装置の構造を示す要部断面図である。なお、上述の実施の形態との共通部分についての詳しい説明は省略する。
(Modification 1)
As a first modification, the Ni layer 4 corresponding to the second solder barrier layer in the present invention may be formed between the Ti—Ni layer 5 and the Sn-based Pb free solder 6. FIG. 5 is a cross-sectional view of the main part showing the structure of the semiconductor device according to Modification 1 of the embodiment of the present invention. Note that a detailed description of parts common to the above-described embodiment is omitted.

図5において、1は半導体基板、2はAl層、3はTi層、4はNi層、5はTi−Ni層、6はSn系Pbフリー半田、7はリードフレームである。製造方法に関しては、上述と同様に逆スパッタリング、スパッタリング、熱処理を行い、Al2層、TI層3、Ni層4、Ti−Ni層5を形成する。この際に、Ni層4の膜厚を厚めに(例えば、600nm)形成することによって、Ti−Ni層5とSn系Pbフリー半田6との間にNi層4を形成する。このように、半田バリア層としてのTi−Ni層5とSn系Pbフリー半田6との間にNi層4を形成することによって、Ni層4がある分SnがTi層3へ到達する時間を長くすることが出来る。なお、Ni層4は、これに限定されるものではなくCuであってもよい。   In FIG. 5, 1 is a semiconductor substrate, 2 is an Al layer, 3 is a Ti layer, 4 is a Ni layer, 5 is a Ti-Ni layer, 6 is a Sn-based Pb-free solder, and 7 is a lead frame. Regarding the manufacturing method, reverse sputtering, sputtering, and heat treatment are performed in the same manner as described above to form the Al 2 layer, the TI layer 3, the Ni layer 4, and the Ti—Ni layer 5. At this time, the Ni layer 4 is formed between the Ti—Ni layer 5 and the Sn-based Pb-free solder 6 by forming the Ni layer 4 thick (for example, 600 nm). In this way, by forming the Ni layer 4 between the Ti—Ni layer 5 as the solder barrier layer and the Sn-based Pb-free solder 6, the time required for Sn to reach the Ti layer 3 is increased by the Ni layer 4. Can be long. The Ni layer 4 is not limited to this and may be Cu.

(変形例2)
また、変形例2として、Ti−Ni層5とSn系Pbフリー半田6との間に本発明における3元混合層に相当するTi−Ni−Sn層8を形成するようにしてもよい。図6は、本発明の実施の形態の変形例2に係わる、半導体装置の構造を示す要部断面図である。なお、上述の実施の形態との共通部分についての詳しい説明は省略する。
(Modification 2)
As a second modification, a Ti—Ni—Sn layer 8 corresponding to the ternary mixed layer in the present invention may be formed between the Ti—Ni layer 5 and the Sn-based Pb free solder 6. FIG. 6 is a cross-sectional view of the principal part showing the structure of the semiconductor device according to Modification 2 of the embodiment of the present invention. Note that a detailed description of parts common to the above-described embodiment is omitted.

図6において、1は半導体基板、2はAl層、3はTi層、5はTi−Ni層、6はSn系Pbフリー半田、7はリードフレーム、8はTi−Ni−Sn層である。製造方法に関しては、上述と同様に逆スパッタリング、スパッタリング、熱処理を行い、Al層2、TI層3、Ni層4、Ti−Ni層5を形成する。その後、形成面S側にAl沿層2、Ti層3、Ti−Ni層5などが形成された半導体基板1をSn系Pbフリー半田6によってリードフレーム7に半田接合する。さらに、半導体基板1がSn系Pbフリー半田6によってリードフレーム7に半田接続された状態で、上述のような窒素雰囲気の石英管熱処理炉にて熱処理を行うことによって、Ti−Ni−Sn層8を形成する。この際に、半田接続後の熱処理の時間及び温度によってTi−Ni−Sn層8の膜厚(例えば、19nm)を適宜制御する。   In FIG. 6, 1 is a semiconductor substrate, 2 is an Al layer, 3 is a Ti layer, 5 is a Ti—Ni layer, 6 is a Sn-based Pb-free solder, 7 is a lead frame, and 8 is a Ti—Ni—Sn layer. Regarding the manufacturing method, reverse sputtering, sputtering, and heat treatment are performed in the same manner as described above to form the Al layer 2, the TI layer 3, the Ni layer 4, and the Ti—Ni layer 5. Thereafter, the semiconductor substrate 1 on which the Al creeping layer 2, the Ti layer 3, the Ti—Ni layer 5 and the like are formed on the formation surface S side is soldered to the lead frame 7 with Sn-based Pb-free solder 6. Further, the Ti—Ni—Sn layer 8 is formed by performing a heat treatment in a quartz tube heat treatment furnace in a nitrogen atmosphere as described above in a state where the semiconductor substrate 1 is solder-connected to the lead frame 7 by the Sn-based Pb-free solder 6. Form. At this time, the film thickness (for example, 19 nm) of the Ti—Ni—Sn layer 8 is appropriately controlled according to the time and temperature of the heat treatment after the solder connection.

Ti−Ni層5とSn系Pbフリー半田6との間にTi−Ni−Sn層8を設けると、もし、Ti−Ni−Sn層8及びTi−Ni層5へSnが拡散した場合でも、Ti層3の界面には、Ti−Ni−Sn層8が形成されることになる。従って、Ti界面に各層の元素で構成されたTi−Ni−Sn層8が存在することによって各層間で結合しやすく接合強度が向上する。なお、Ni層4は、これに限定されるものではなくCuであってもよい。   If the Ti—Ni—Sn layer 8 is provided between the Ti—Ni layer 5 and the Sn-based Pb-free solder 6, even if Sn diffuses into the Ti—Ni—Sn layer 8 and the Ti—Ni layer 5, A Ti—Ni—Sn layer 8 is formed at the interface of the Ti layer 3. Therefore, the presence of the Ti—Ni—Sn layer 8 composed of the elements of each layer at the Ti interface facilitates bonding between the layers and improves the bonding strength. The Ni layer 4 is not limited to this and may be Cu.

なお、上述の実施の形態においては、Al層2、Ti層3、Ni層4をスパッタリングを用いて形成する例を用いて説明したが、本発明はこれに限定されるものではなく、蒸着などで形成してもよい。   In the above-described embodiment, the example in which the Al layer 2, the Ti layer 3, and the Ni layer 4 are formed by sputtering has been described. However, the present invention is not limited to this, such as vapor deposition. May be formed.

本発明の実施の形態に係わる、半導体装置の構造を示す要部断面図である。It is principal part sectional drawing which shows the structure of the semiconductor device concerning embodiment of this invention. 本発明の実施の形態に係わる、半導体装置の製造工程を順に示す模式図である。It is a schematic diagram which shows the manufacturing process of the semiconductor device concerning embodiment of this invention in order. (a)は本発明の実施の形態に係わる、半導体装置のSn−Cu半田を用いた場合の高温放置試験のTi層3界面付近の断面図であり、(b)はSn−Ag半田を用いた場合の高温放置試験のTi層3界面付近の断面図である。(A) is sectional drawing of Ti layer 3 interface vicinity of the high temperature standing test at the time of using the Sn-Cu solder of the semiconductor device concerning embodiment of this invention, (b) uses Sn-Ag solder. It is sectional drawing of Ti layer 3 interface vicinity of the high temperature storage test in case of having. Sn組成比の異なる半田材におけるNi中へのSn拡散係数の関係を示す図である。It is a figure which shows the relationship of the Sn diffusion coefficient in Ni in the solder material from which Sn composition ratio differs. 本発明の実施の形態の変形例1に係わる、半導体装置の構造を示す要部断面図である。It is principal part sectional drawing which shows the structure of the semiconductor device concerning the modification 1 of embodiment of this invention. 本発明の実施の形態の変形例2に係わる、半導体装置の構造を示す要部断面図である。It is principal part sectional drawing which shows the structure of the semiconductor device concerning the modification 2 of embodiment of this invention. 従来技術に係わる、半導体装置の構造を示す要部断面図である。It is principal part sectional drawing which shows the structure of the semiconductor device concerning a prior art.

符号の説明Explanation of symbols

1 半導体基板、2 Al層、3 Ti層、4 Ni層、4a Ni部、5 Ti−Ni層、6 Sn系Pbフリー半田、7 リードフレーム、8 Ti−Ni−Sn層   DESCRIPTION OF SYMBOLS 1 Semiconductor substrate, 2 Al layer, 3 Ti layer, 4 Ni layer, 4a Ni part, 5 Ti-Ni layer, 6 Sn type Pb free solder, 7 Lead frame, 8 Ti-Ni-Sn layer

Claims (5)

Al膜が形成された半導体基板に、Al膜上に接着層として形成された第1の金属層と、
前記第1の金属層とNiもしくはCuとの混合層からなる半田バリア層とを備える半導体電極であって、
前記半導体電極をSn系Pbフリー半田により下地基板に半田接合することを特徴とする半導体装置。
A first metal layer formed as an adhesive layer on the Al film on the semiconductor substrate on which the Al film is formed;
A semiconductor electrode comprising the first metal layer and a solder barrier layer made of a mixed layer of Ni or Cu,
A semiconductor device, wherein the semiconductor electrode is solder-bonded to a base substrate with Sn-based Pb-free solder.
前記第1の金属層がTiであることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first metal layer is Ti. 前記半田バリア層と前記Sn系Pbフリー半田との間にNiもしくはCuを備えることを特徴とする請求項1又は請求項2に記載の半導体装置。   The semiconductor device according to claim 1, wherein Ni or Cu is provided between the solder barrier layer and the Sn-based Pb-free solder. 前記半田バリア層と前記Sn系Pbフリー半田との間に前記第1の金属層とNiもしくはCuとSnとからなる3元混合層を備えることを特徴とする請求項1又は請求項2に記載の半導体装置。   The ternary mixed layer comprising the first metal layer and Ni or Cu and Sn is provided between the solder barrier layer and the Sn-based Pb-free solder. Semiconductor device. 前記半田バリア層の厚さは19nm以上であることを特徴とする請求項1乃至請求項4に記載の半導体装置。   The semiconductor device according to claim 1, wherein a thickness of the solder barrier layer is 19 nm or more.
JP2004349043A 2004-12-01 2004-12-01 Semiconductor device Pending JP2006156910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349043A JP2006156910A (en) 2004-12-01 2004-12-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349043A JP2006156910A (en) 2004-12-01 2004-12-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2006156910A true JP2006156910A (en) 2006-06-15

Family

ID=36634772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349043A Pending JP2006156910A (en) 2004-12-01 2004-12-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2006156910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082342A1 (en) * 2009-01-16 2010-07-22 トヨタ自動車株式会社 Semiconductor device, process for fabricating semiconductor device, apparatus for fabricating semiconductor device, and method for evaluating semiconductor device
JP2011054624A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209730A (en) * 1988-02-18 1989-08-23 Sanyo Electric Co Ltd Electrode structure of semiconductor device
JPH0817824A (en) * 1994-06-28 1996-01-19 Nec Corp Semiconductor device and its manufacture
JPH09129647A (en) * 1995-10-27 1997-05-16 Toshiba Corp Semiconductor element
JPH09186163A (en) * 1995-12-26 1997-07-15 Motorola Inc Interconnecting system and manufacture thereof
JPH11163018A (en) * 1997-11-28 1999-06-18 Toshiba Corp Manufacture of semiconductor device and multi-layer wiring substrate and manufacture of the same
JP2003179112A (en) * 2001-12-13 2003-06-27 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2004296621A (en) * 2003-03-26 2004-10-21 Nec Electronics Corp Semiconductor device and its fabricating process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209730A (en) * 1988-02-18 1989-08-23 Sanyo Electric Co Ltd Electrode structure of semiconductor device
JPH0817824A (en) * 1994-06-28 1996-01-19 Nec Corp Semiconductor device and its manufacture
JPH09129647A (en) * 1995-10-27 1997-05-16 Toshiba Corp Semiconductor element
JPH09186163A (en) * 1995-12-26 1997-07-15 Motorola Inc Interconnecting system and manufacture thereof
JPH11163018A (en) * 1997-11-28 1999-06-18 Toshiba Corp Manufacture of semiconductor device and multi-layer wiring substrate and manufacture of the same
JP2003179112A (en) * 2001-12-13 2003-06-27 Nec Electronics Corp Semiconductor device and manufacturing method therefor
JP2004296621A (en) * 2003-03-26 2004-10-21 Nec Electronics Corp Semiconductor device and its fabricating process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082342A1 (en) * 2009-01-16 2010-07-22 トヨタ自動車株式会社 Semiconductor device, process for fabricating semiconductor device, apparatus for fabricating semiconductor device, and method for evaluating semiconductor device
US8410427B2 (en) 2009-01-16 2013-04-02 Toyota Jidosha Kabushiki Kaisha Semiconductor device, method for manufacturing semiconductor device, apparatus for manufacturing semiconductor device, and method for evaluating semiconductor device
JP5343979B2 (en) * 2009-01-16 2013-11-13 トヨタ自動車株式会社 Semiconductor device, semiconductor device manufacturing method, semiconductor device manufacturing apparatus, and semiconductor device evaluation method
JP2011054624A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3144328B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP3871607B2 (en) Semiconductor device and manufacturing method thereof
JP2967743B2 (en) Contact electrode of n-type gallium nitride based semiconductor and method of forming the same
JP2004296846A (en) Semiconductor light emitting element and its fabricating process
US8183144B2 (en) Method of manufacturing semiconductor device
JP2006332358A (en) Silicon carbide semiconductor device and its manufacturing method
JP6151089B2 (en) Semiconductor device and manufacturing method thereof
JPH05175252A (en) Semiconductor electrode structural body
JP2005026612A (en) Semiconductor device
US6653738B2 (en) Semiconductor device
JP2006156910A (en) Semiconductor device
JP5482441B2 (en) Method for manufacturing compound semiconductor device
JP7283053B2 (en) Silicon carbide semiconductor device, silicon carbide semiconductor assembly, and method for manufacturing silicon carbide semiconductor device
JPH06252091A (en) Semiconductor device and its manufacture
JP2006237374A (en) Semiconductor integrated circuit device and manufacturing method thereof
JP4038498B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2008004704A (en) Method of manufacturing semiconductor element
JP2006093206A (en) Sic semiconductor device and manufacturing method thereof
JP6407355B2 (en) Semiconductor device and manufacturing method thereof
JP4343479B2 (en) Method for producing reactive solder or brazing material
JPH065546A (en) Structure and method for brazing junction
JPS6286895A (en) Soldering of electronic part
JPH07115185A (en) Electrode of semiconductor
JP2005197670A (en) Gallium nitride base compound semiconductor light emitting element and its negative electrode
JP2006032863A (en) Electrode for n-type nitride semiconductor layer and its manufacturing method and light emitting element containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228