JP2006156802A - Group iii nitride semiconductor device - Google Patents

Group iii nitride semiconductor device Download PDF

Info

Publication number
JP2006156802A
JP2006156802A JP2004346902A JP2004346902A JP2006156802A JP 2006156802 A JP2006156802 A JP 2006156802A JP 2004346902 A JP2004346902 A JP 2004346902A JP 2004346902 A JP2004346902 A JP 2004346902A JP 2006156802 A JP2006156802 A JP 2006156802A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
group iii
iii nitride
dislocation density
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004346902A
Other languages
Japanese (ja)
Other versions
JP2006156802A5 (en
Inventor
Hironao Shinohara
裕直 篠原
Yasuhito Urashima
泰人 浦島
Hisayuki Miki
久幸 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004346902A priority Critical patent/JP2006156802A/en
Publication of JP2006156802A publication Critical patent/JP2006156802A/en
Publication of JP2006156802A5 publication Critical patent/JP2006156802A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a group III nitride semiconductor device having good performance and excellent reliability. <P>SOLUTION: A first group III nitride semiconductor layer and a second group III nitride semiconductor layer are laminated in this sequence on a substrate. The second semiconductor layer includes an active layer. The first semiconductor layer has a pattern in which a low dislocation density region and a high dislocation density region alternately exist in the planar direction. The second layer has a pattern structure similar to that of the first layer. The group III nitride semiconductor device has no second semiconductor layer on at least part of the high dislocation density region of the first semiconductor layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は発光素子、受光素子および電子デバイス等に利用されるIII族窒化物半導体素子に関する。特に、発光効率に優れ、かつ、逆方向に電流が流れ出す閾値の電圧、即ち逆耐圧電圧が大きく、信頼性に優れたIII族窒化物半導体発光素子に関する。   The present invention relates to a group III nitride semiconductor device used for a light emitting device, a light receiving device, an electronic device, and the like. In particular, the present invention relates to a group III nitride semiconductor light-emitting device that has excellent light emission efficiency, a threshold voltage at which a current flows in the reverse direction, that is, a large reverse breakdown voltage and excellent reliability.

III族窒化物半導体は直接遷移型バンドギャップ構造を持ち、そのギャップエネルギーは可視光から紫外光領域に相当する。この性質を利用して、現在では青・青緑色のLED、紫外LEDおよび蛍光物質と組みあせた白色LEDなどの発光用の素子に実用化されている。   The group III nitride semiconductor has a direct transition type band gap structure, and the gap energy corresponds to the visible light to ultraviolet light region. Utilizing this property, it is currently put into practical use in light emitting elements such as blue / blue-green LEDs, ultraviolet LEDs, and white LEDs combined with fluorescent materials.

III族窒化物単結晶はそれ自体では独立して成長させることは困難とされている。これは構成物質の窒素の乖離圧が高く、引き上げ成長法などでは窒素を固定しておくことができないためというのがその理由である。   Group III nitride single crystals themselves are difficult to grow independently. The reason is that the dissociation pressure of the constituent nitrogen is high and nitrogen cannot be fixed by the pulling growth method or the like.

そのため、III族窒化物半導体の製造は、一般に有機金属気相法(MOCVD法)が採用されている。この方法は反応空間内の加熱可能な冶具上に単結晶基板をセットして、その基板表面へ原料ガスを供給して、基板上にIII族窒化物半導体単結晶のエピタキシャル膜を成長させる手法である。この時の単結晶基板としては、サファイアおよび炭化珪素(SiC)等が用いられる。しかし、これら単結晶基板上にIII族窒化物半導体単結晶を直接成長させても、基板結晶と窒化物単結晶の結晶格子ミスマッチが存在するため、これに起因した結晶転位が窒化物単結晶層内に多数発生してしまい、結晶性が良好なエピタキシャル膜を得ることはできない。そのため、良好なエピタキシャル膜を得るために、基板とエピタキシャル膜の間に、結晶転位の発生を抑える機能をもたせたバッファ層に相当するものを成長させる方法がいくつか提案されている。   For this reason, the metal organic vapor phase method (MOCVD method) is generally employed for the production of the group III nitride semiconductor. In this method, a single crystal substrate is set on a heatable jig in the reaction space, a source gas is supplied to the substrate surface, and a group III nitride semiconductor single crystal epitaxial film is grown on the substrate. is there. As the single crystal substrate at this time, sapphire, silicon carbide (SiC), or the like is used. However, even when a group III nitride semiconductor single crystal is directly grown on these single crystal substrates, there is a crystal lattice mismatch between the substrate crystal and the nitride single crystal. A large number of them are generated, and an epitaxial film with good crystallinity cannot be obtained. Therefore, in order to obtain a good epitaxial film, several methods for growing a buffer layer having a function of suppressing the occurrence of crystal dislocation between the substrate and the epitaxial film have been proposed.

代表的なものとして、400〜600℃の温度で基板上に有機金属原料と窒素源を同時に供給して低温バッファー層と呼ばれる層を堆積させ、その後温度を上昇させて低温バッファー層の結晶化と呼ばれる熱処理を行ない、しかる後に目的とするIII族窒化物半導体単結晶をエピタキシャル成長させる方法がある(特許文献1参照)。また、基板表面にV族原料とIII族原料の比(V/III比)を1000以下としてIII族原料を供給してIII族窒化物半導体を形成する第一工程と、その後III族原料と窒素原料を用いてIII族窒化物半導体単結晶を気相成長させる第二工程からなる方法も知られている(特許文献2参照)。   As a typical example, an organic metal raw material and a nitrogen source are simultaneously supplied onto a substrate at a temperature of 400 to 600 ° C. to deposit a layer called a low-temperature buffer layer, and then the temperature is increased to crystallize the low-temperature buffer layer. There is a method of performing a so-called heat treatment and then epitaxially growing a target group III nitride semiconductor single crystal (see Patent Document 1). Further, a first step of forming a group III nitride semiconductor by supplying a group III material with a ratio of group V material to group III material (V / III ratio) of 1000 or less on the substrate surface, and then a group III material and nitrogen A method comprising a second step in which a group III nitride semiconductor single crystal is vapor-grown using a raw material is also known (see Patent Document 2).

これらの方法の出現により、半導体素子材料として使用可能な、結晶転位がある程度抑えられたIII族窒化物半導体単結晶が得られるようになった。しかし、電子工業界では半導体素子の一層の性能向上を要求している。   With the advent of these methods, a group III nitride semiconductor single crystal having crystal dislocations suppressed to some extent that can be used as a semiconductor element material has been obtained. However, the electronic industry demands further improvement in performance of semiconductor elements.

例えば、半導体発光素子にとって、発光波長、定格電流下での順方向電圧ならびに発光強度、および素子としての信頼性が重要である。信頼性を判断するひとつの指標として、順方向に電流を流したときではなく、逆方向に通電したときに電流が流れるかどうかという点、すなわち、逆方向に電流が流れ出す閾値の電圧がどれくらい高いかという点が重要になる。この閾値での電圧を逆耐圧電圧という。近年、この逆耐圧電圧のより大きい素子が望まれるようになった。   For example, for a semiconductor light emitting device, the emission wavelength, the forward voltage under the rated current, the light emission intensity, and the reliability as the device are important. One indicator of reliability is whether the current flows when the current is applied in the reverse direction rather than when the current is applied in the forward direction, that is, the threshold voltage at which the current flows in the reverse direction is high. This is important. The voltage at this threshold is called reverse breakdown voltage. In recent years, an element having a higher reverse breakdown voltage has been desired.

一方、結晶転位を低減させる技術として、いわゆる選択成長技術が提案されており、選択マスクを用いた方法(ELO)、凹凸加工基板等を用いた方法および窒化物半導体層の表面に凹凸加工を施した後さらに窒化物半導体層を成長させる方法等が知られている。しかし、選択成長では成長面の大部分で転位密度が下がるものの、成長面における成長合体部において結晶転位が集中するという問題がある。   On the other hand, a so-called selective growth technique has been proposed as a technique for reducing crystal dislocations. A method using a selective mask (ELO), a method using a concavo-convex substrate, and the surface of a nitride semiconductor layer are subjected to concavo-convex processing. Then, a method of further growing a nitride semiconductor layer is known. However, in selective growth, although the dislocation density decreases in most of the growth surface, there is a problem that crystal dislocations concentrate in the growth coalescence portion on the growth surface.

この成長合体部表面における結晶転位の集中を抑制するために、選択成長の位置を変えて再度選択成長を行なうという手法も報告されている(例えば、特許文献3および4)。しかし、選択成長を複数回行なうために成長時間の延長、収率の低下およびコストの増大を生ずる。また、転位密度の高い部分の上方に電流障壁層を設けて転位密度の低い部分に電流を集中させることが提案されている(例えば、特許文献5)。しかし、高転位密度領域の上方に電流障壁層を設けても、低転位密度領域と高転位密度領域が物理的に結合しているため、低転位密度領域から高転位密度領域への電流の漏洩は避けられず、電流障壁層の効果は限定的とならざるを得ない。   In order to suppress the concentration of crystal dislocations on the surface of the growth coalescence part, a method of performing selective growth again by changing the position of selective growth has been reported (for example, Patent Documents 3 and 4). However, since the selective growth is performed a plurality of times, the growth time is extended, the yield is reduced, and the cost is increased. In addition, it has been proposed to provide a current barrier layer above a portion having a high dislocation density so as to concentrate the current in a portion having a low dislocation density (for example, Patent Document 5). However, even if a current barrier layer is provided above the high dislocation density region, current leakage from the low dislocation density region to the high dislocation density region because the low dislocation density region and the high dislocation density region are physically coupled. Inevitably, the effect of the current barrier layer must be limited.

特開平2−229476号公報JP-A-2-229476 特開2003−243302号公報JP 2003-243302 A 特開2002−33282号公報JP 2002-33282 A 特開2001−111174号公報JP 2001-111174 A 特開2002−33512号公報JP 2002-33512 A

本発明の目的は、良好な性能および優れた信頼性を有するIII族窒化物半導体素子を提供することである。また、本発明の目的は、逆方向に電流が流れ出す閾値の電圧、即ち逆耐圧電圧が大きく、信頼性に優れたIII族窒化物半導体素子を提供することである。   An object of the present invention is to provide a group III nitride semiconductor device having good performance and excellent reliability. Another object of the present invention is to provide a group III nitride semiconductor device having a large threshold voltage at which a current flows in the reverse direction, that is, a reverse breakdown voltage, and excellent in reliability.

本発明は、以下の発明を提供する。
(1)基板上に第一のIII族窒化物半導体層および第二のIII族窒化物半導体層がこの順序で積層されており、該第二の半導体層は能動層を含んでおり、該第一の半導体層は低転位密度領域と高転位密度領域が平面方向に交互に存在するパターンを有し、該第二の半導体層は該第一の半導体層と同様のパターン構造を有しており、かつ、該第一の半導体層の該高転位密度領域上の少なくとも一部に該第二の半導体層が存在しないことを特徴とするIII族窒化物半導体素子。
The present invention provides the following inventions.
(1) A first group III nitride semiconductor layer and a second group III nitride semiconductor layer are stacked in this order on a substrate, and the second semiconductor layer includes an active layer, One semiconductor layer has a pattern in which low dislocation density regions and high dislocation density regions exist alternately in a plane direction, and the second semiconductor layer has a pattern structure similar to that of the first semiconductor layer. And the Group III nitride semiconductor device, wherein the second semiconductor layer does not exist in at least a part of the high dislocation density region of the first semiconductor layer.

(2)低転位密度領域と高転位密度領域のパターンが周期的パターンである上記1項に記載のIII族窒化物半導体素子。 (2) The group III nitride semiconductor device according to the above item 1, wherein the pattern of the low dislocation density region and the high dislocation density region is a periodic pattern.

(3)低転位密度領域と高転位密度領域がストライプ状に存在する上記1または2項に記載のIII族窒化物半導体素子。 (3) The group III nitride semiconductor device according to the above item 1 or 2, wherein the low dislocation density region and the high dislocation density region exist in a stripe shape.

(4)低転位密度領域または高転位密度領域が島状に存在する上記1または2項に記載のIII族窒化物半導体素子。 (4) The group III nitride semiconductor device according to the above item 1 or 2, wherein the low dislocation density region or the high dislocation density region exists in an island shape.

(5)低転位密度領域または高転位密度領域が格子状に存在する上記1または2項に記載のIII族窒化物半導体素子。 (5) The group III nitride semiconductor device according to the above item 1 or 2, wherein the low dislocation density region or the high dislocation density region exists in a lattice form.

(6)第一のIII族窒化物半導体層の下方(基板側)に、選択マスクを有する上記1〜5項のいずれか一項に記載のIII族窒化物半導体素子。 (6) The group III nitride semiconductor device according to any one of the above items 1 to 5, further including a selection mask below (on the substrate side) the first group III nitride semiconductor layer.

(7)第一のIII族窒化物半導体層の下方に、選択成長用III族窒化物半導体層を有する上記1〜5項のいずれか一項に記載のIII族窒化物半導体素子。 (7) The group III nitride semiconductor device according to any one of the above items 1 to 5, further comprising a group III nitride semiconductor layer for selective growth below the first group III nitride semiconductor layer.

(8)基板が平面方向に周期的な凹部を有する上記1〜5項のいずれか一項に記載のIII族窒化物半導体素子。 (8) The group III nitride semiconductor device according to any one of the above items 1 to 5, wherein the substrate has periodic recesses in a planar direction.

(9)III族窒化物半導体素子が発光素子である上記1〜8項のいずれか一項に記載のIII族窒化物半導体素子。 (9) The group III nitride semiconductor device according to any one of the above items 1 to 8, wherein the group III nitride semiconductor device is a light emitting device.

(10)第一のIII族窒化物半導体層がn型層の少なくとも一部を形成し、第二のIII族窒化物半導体層が少なくとも発光層およびp型層を形成している上記9項に記載のIII族窒化物半導体素子。 (10) In the above item 9, wherein the first group III nitride semiconductor layer forms at least a part of the n-type layer, and the second group III nitride semiconductor layer forms at least a light emitting layer and a p-type layer. The group III nitride semiconductor device described.

(11)発光素子の周辺部の第一のIII族窒化物半導体層の高転位密度領域上には第二のIII族窒化物半導体層が存在している上記9または10項に記載のIII族窒化物半導体素子。 (11) The group III according to the above item 9 or 10, wherein the second group III nitride semiconductor layer is present on the high dislocation density region of the first group III nitride semiconductor layer in the periphery of the light emitting device. Nitride semiconductor device.

(12)第二のIII族窒化物半導体層が存在する第一のIII族窒化物半導体層の高転位密度領域は高転位密度領域全体の20%以下である上記9〜11項のいずれか一項に記載のIII族窒化物半導体素子。 (12) The high dislocation density region of the first group III nitride semiconductor layer in which the second group III nitride semiconductor layer is present is 20% or less of the entire high dislocation density region, Group III nitride semiconductor device according to Item.

(13)基板上に低転位密度領域と高転位密度領域が平面方向に交互に存在するパターンを有するIII族窒化物半導体層からなる、n型層、発光層およびp型層をこの順序で積層させる第1の工程、n型層およびp型層に負極および正極をそれぞれ形成する第2の工程および、少なくとも発光層およびp型層の高転位密度領域の少なくとも一部を除去する第3の工程からなることを特徴とするIII族窒化物半導体発光素子の製造方法。 (13) An n-type layer, a light-emitting layer, and a p-type layer made of a group III nitride semiconductor layer having a pattern in which low dislocation density regions and high dislocation density regions are alternately present in the plane direction are stacked in this order on a substrate. A first step of forming, a second step of forming a negative electrode and a positive electrode in the n-type layer and the p-type layer, respectively, and a third step of removing at least a part of the high dislocation density regions of at least the light-emitting layer and the p-type layer A method for producing a group III nitride semiconductor light-emitting device comprising:

(14)第1の工程、第2の工程および第3の工程がこの順序で行なわれる上記13項に記載のIII族窒化物半導体発光素子の製造方法。 (14) The method for producing a group III nitride semiconductor light-emitting device according to the above item 13, wherein the first step, the second step, and the third step are performed in this order.

(15)上記13または14項に記載の製造方法によって製造されたIII族窒化物半導体発光素子。 (15) A group III nitride semiconductor light-emitting device manufactured by the manufacturing method according to item 13 or 14 above.

(16)上記9〜12および15項のいずれか一項に記載のIII族窒化物半導体発光素子を用いてなるランプ。 (16) A lamp comprising the group III nitride semiconductor light-emitting device according to any one of items 9 to 12 and 15.

(17)上記1〜12および15項のいずれか一項に記載のIII族窒化物半導体素子を用いてなる電子機器。
(18)上記17項に記載の電子機器が組み込まれている機械装置。
(17) Electronic equipment using the group III nitride semiconductor device according to any one of 1 to 12 and 15 above.
(18) A mechanical device in which the electronic device according to item 17 is incorporated.

本発明のIII族窒化物半導体素子は能動層を構成する窒化物半導体の転位密度が低いので、特性および信頼性が向上する。特に、III族窒化物半導体素子が発光素子の場合、優れた発光効率と大きな逆耐圧電圧を有する。   In the group III nitride semiconductor device of the present invention, since the dislocation density of the nitride semiconductor constituting the active layer is low, the characteristics and reliability are improved. In particular, when the group III nitride semiconductor device is a light emitting device, it has excellent luminous efficiency and a large reverse breakdown voltage.

本発明において、基板には、サファイア単結晶(Al23;A面、C面、M面、R面)、スピネル単結晶(MgAl24)、ZnO単結晶、LiAlO2単結晶、LiGaO2単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶、GaAs単結晶、およびZrB2などのホウ化物単結晶など周知の基板材料を何ら制限なく用いることができる。好ましくはサファイア基板およびSiC基板である。基板の面方位は特に限定されないが、サファイア基板を使用する場合は望ましくはC面((0001)面)であるとよい。また基板表面の垂直軸方向がサファイア基板の<0001>方向から特定の方向に傾いた状態であるとよい。 In the present invention, the substrate includes a sapphire single crystal (Al 2 O 3 ; A plane, C plane, M plane, R plane), spinel single crystal (MgAl 2 O 4 ), ZnO single crystal, LiAlO 2 single crystal, LiGaO. Known substrate materials such as 2 single crystal, oxide single crystal such as MgO single crystal, Si single crystal, SiC single crystal, GaAs single crystal, and boride single crystal such as ZrB 2 can be used without any limitation. A sapphire substrate and a SiC substrate are preferable. The plane orientation of the substrate is not particularly limited, but when a sapphire substrate is used, it is preferably the C plane ((0001) plane). Further, it is preferable that the vertical axis direction of the substrate surface is inclined in a specific direction from the <0001> direction of the sapphire substrate.

基板上に、通常、前述の特許文献1および2に開示されたようなバッファ層を介して、III族窒化物半導体が積層される。使用する基板やエピタキシャル層の成長条件によっては、バッファ層の不要な場合がある。   A group III nitride semiconductor is usually laminated on the substrate via a buffer layer as disclosed in Patent Documents 1 and 2 described above. Depending on the substrate used and the growth conditions of the epitaxial layer, the buffer layer may be unnecessary.

III族窒化物半導体としては、例えば一般式AlXGaYInZ1-AA(0≦X≦1、0≦Y≦1、0≦Z≦1で且つ、X+Y+Z=1。記号Mは窒素(N)とは別の第V族元素を表し、0≦A<1である。)で表わされるIII族窒化物半導体が多数知られており、本発明においても、それら周知のIII族窒化物半導体を含めて一般式AlXGaYInZ1-AA(0≦X≦1、0≦Y≦1、0≦Z≦1で且つ、X+Y+Z=1。記号Mは窒素(N)とは別の第V族元素を表し、0≦A<1である。)で表わされるIII族窒化物半導体を何ら制限なく用いることができる。 Examples of the group III nitride semiconductor include, for example, the general formula Al X Ga Y In Z N 1-A M A (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, and X + Y + Z = 1. Symbol M Represents a group V element different from nitrogen (N), and 0 ≦ A <1). Many Group III nitride semiconductors represented by this group are known. Including nitride semiconductors, the general formula Al X Ga Y In Z N 1-A M A (0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, and X + Y + Z = 1. Symbol M is nitrogen ( N) represents a Group V element different from 0), and a Group III nitride semiconductor represented by 0 ≦ A <1 can be used without any limitation.

III族窒化物半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、Be、P、AsおよびBなどの元素を含有することもできる。さらに、意識的に添加した元素に限らず、成膜条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。   The group III nitride semiconductor can contain other group III elements in addition to Al, Ga, and In, and elements such as Ge, Si, Mg, Ca, Zn, Be, P, As, and B as required Can also be contained. Furthermore, it is not limited to elements that are intentionally added, but may include impurities that are inevitably included depending on film forming conditions and the like, as well as trace impurities that are included in the raw materials and reaction tube materials.

III族窒化物半導体の成長方法は特に限定されず、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)、などIII族窒化物半導体を成長させることが知られている全ての方法を適用できる。好ましい成長方法としては、膜厚制御性、量産性の観点からMOCVD法である。MOCVD法では、キャリアガスとして水素(H2)または窒素(N2)、III族原料であるGa源としてトリメチルガリウム(TMGa)またはトリエチルガリウム(TEGa)、Al源としてトリメチルアルミニウム(TMAl)またはトリエチルアルミニウム(TEAl)、In源としてトリメチルインジウム(TMIn)またはトリエチルインジウム(TEIn)、V族原料であるN源としてアンモニア(NH3)、ヒドラジン(N24)などが用いられる。また、ドーパントとしては、n型にはSi原料としてモノシラン(SiH4)またはジシラン(Si26)を、Ge原料としてゲルマンガス(GeH4)や、テトラメチルゲルマニウム((CH34Ge)やテトラエチルゲルマニウム((C254Ge)等の有機ゲルマニウム化合物を利用できる。MBE法では、元素状のゲルマニウムもドーピング源として利用できる。p型にはMg原料としては例えばビスシクロペンタジエニルマグネシウム(Cp2Mg)またはビスエチルシクロペンタジエニルマグネシウム(EtCp2Mg)を用いる。 The growth method of the group III nitride semiconductor is not particularly limited, and the group III nitride semiconductor such as MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy) is grown. All methods known to be applied are applicable. A preferred growth method is the MOCVD method from the viewpoint of film thickness controllability and mass productivity. In the MOCVD method, hydrogen (H 2 ) or nitrogen (N 2 ) is used as a carrier gas, trimethyl gallium (TMGa) or triethyl gallium (TEGa) is used as a Ga source as a group III source, and trimethyl aluminum (TMAl) or triethyl aluminum is used as an Al source. (TEAl), trimethylindium (TMIn) or triethylindium (TEIn) as the In source, ammonia (NH 3 ), hydrazine (N 2 H 4 ), or the like as the N source which is a group V source. In addition, as a dopant, for n-type, monosilane (SiH 4 ) or disilane (Si 2 H 6 ) is used as a Si raw material, germanium gas (GeH 4 ) or tetramethyl germanium ((CH 3 ) 4 Ge) is used as a Ge raw material. And an organic germanium compound such as tetraethylgermanium ((C 2 H 5 ) 4 Ge) can be used. In the MBE method, elemental germanium can also be used as a doping source. For the p-type, for example, biscyclopentadienyl magnesium (Cp 2 Mg) or bisethylcyclopentadienyl magnesium (EtCp 2 Mg) is used as the Mg raw material.

本発明のIII族窒化物半導体素子は、基板上に第一のIII族窒化物半導体層と第二のIII族窒化物半導体層がこの順序で積層されている。第一のIII族窒化物半導体層は、結晶転位の少ない低転位密度領域と結晶転位の多い高転位密度領域とが平面方向に交互に存在している。第二のIII族窒化物半導体層はこの第一の半導体層と同じ構造をしているが、高転位密度領域の少なくとも一部が除去されている。即ち、第一の半導体層の高転位密度領域上の少なくとも一部に第二の半導体層は存在していない。従って、第二の半導体層は低転位密度領域のみかまたはその大半が低転位密度領域からなっている。そして、本発明の半導体素子における能動層はこの第二の半導体層に含まれている。   In the group III nitride semiconductor device of the present invention, a first group III nitride semiconductor layer and a second group III nitride semiconductor layer are stacked in this order on a substrate. In the first group III nitride semiconductor layer, low dislocation density regions with few crystal dislocations and high dislocation density regions with many crystal dislocations are alternately present in the plane direction. The second group III nitride semiconductor layer has the same structure as the first semiconductor layer, but at least a part of the high dislocation density region is removed. That is, the second semiconductor layer does not exist in at least part of the high dislocation density region of the first semiconductor layer. Therefore, the second semiconductor layer is composed of only the low dislocation density region or most of the low dislocation density region. The active layer in the semiconductor element of the present invention is included in this second semiconductor layer.

本発明において、能動層とは素子機能を発現させる層のことであり、例えば発光素子では発光層、受光素子では受光層、電子デバイスでは電子走行層のことである。   In the present invention, the active layer refers to a layer that exhibits an element function, for example, a light emitting layer for a light emitting element, a light receiving layer for a light receiving element, and an electron transit layer for an electronic device.

また、本発明において、高転位密度領域とは結晶転位が1〜100×108cm-2の密度で存在する領域を言う。また、低転位密度領域とは結晶転位の密度が高転位密度領域よりも低く、その1/2〜1/100の結晶転位密度の領域を言う。 In the present invention, a high dislocation density region means a region where crystal dislocations exist at a density of 1 to 100 × 10 8 cm −2 . The low dislocation density region refers to a region having a crystal dislocation density that is 1/2 to 1/100 of the crystal dislocation density lower than that of the high dislocation density region.

III族窒化物半導体層の結晶転位の密度は、チップの表面に幅1μmのタングステンマスクを蒸着した後、フォーカストイオンビーム(FIB)で加工し、さらにアルゴンビームで表面を2000Å幅まで薄片化したチップの断面をTEMによって観察して測定する。結晶転位部分は線状のコントラストとして観察される。   The density of crystal dislocations in the group III nitride semiconductor layer was determined by depositing a tungsten mask with a width of 1 μm on the surface of the chip, processing it with a focused ion beam (FIB), and then thinning the surface to 2000 mm width with an argon beam. The cross section of is observed and measured by TEM. The crystal dislocation part is observed as a linear contrast.

低転位密度領域と高転位密度領域が平面方向に交互に現れるパターンは、どのようなパターンでもよいが、周期的なパターンが工業的に製造しやすく好ましい。例えば図1に示したような一次元方向の繰り返し周期を持つストライプ状、図2に示したような二次元方向の繰り返し周期を持つ格子状であることができる。これらの図において斜線部が低転位密度領域である。また、図2において低転位密度領域と高転位密度領域が逆になり、低転位密度領域が孤立して存在する島状パターンであってもよい。   The pattern in which the low dislocation density region and the high dislocation density region alternately appear in the plane direction may be any pattern, but a periodic pattern is preferable because it is easy to manufacture industrially. For example, a stripe shape having a repetition cycle in one-dimensional direction as shown in FIG. 1 or a lattice shape having a repetition cycle in two-dimensional direction as shown in FIG. In these figures, the shaded area is the low dislocation density region. Further, in FIG. 2, an island-like pattern in which the low dislocation density region and the high dislocation density region are reversed and the low dislocation density region exists in isolation may be used.

高転位密度領域と低転位密度領域の幾何的寸法の比は1:1〜1:10の範囲がIII族窒化物半導体層の成膜条件の自由度が大きくなるので好ましい。また、その繰り返しピッチは、III族窒化物半導体層の1時間当りの成長厚さの0.1〜10倍が好ましく、0.5〜5倍がさらに好ましい。ピッチをこの範囲にすることにより、歪みの少ない良好な結晶のIII族窒化物半導体層が得られる。   The ratio of the geometric dimensions of the high dislocation density region and the low dislocation density region is preferably in the range of 1: 1 to 1:10 because the degree of freedom of the film forming conditions of the group III nitride semiconductor layer is increased. Further, the repeating pitch is preferably 0.1 to 10 times, more preferably 0.5 to 5 times the growth thickness of the group III nitride semiconductor layer per hour. By setting the pitch within this range, a good crystal group III nitride semiconductor layer with less distortion can be obtained.

一次元方向の繰り返し周期を持つストライプ状の場合、低転位密度領域と高転位密度領域の面積比は寸法比がそのまま面積比となるが、二次元方向の繰り返し周期を持つ格子状または島状の場合、低転位密度領域と高転位密度領域の面積比は寸法比の2乗となる。従って、低転位密度領域を大きくする上で二次元方向の繰り返し周期を持つ格子状または島状が好ましい。   In the case of a stripe shape having a one-dimensional repetition period, the area ratio of the low dislocation density region and the high dislocation density region is the same as the area ratio, but the lattice ratio or island shape has a two-dimensional repetition period. In this case, the area ratio between the low dislocation density region and the high dislocation density region is the square of the dimensional ratio. Therefore, in order to enlarge the low dislocation density region, a lattice shape or an island shape having a two-dimensional repetitive period is preferable.

上述の低転位密度領域と高転位密度領域が平面方向に交互に現れる半導体層はいわゆる選択成長技術によって形成することができる。選択成長技術としては、例えば特開平11−126948号公報に開示されているような、選択マスクを用いる方法が好ましい。この方法は、基板上に下地となるIII族窒化物半導体層を積層し、その上に上述の所望のパターンからなる開口部を有する選択マスクを形成した後、さらにIII族窒化物半導体層を積層させるものである。選択マスク上に積層された半導体層は、選択マスクの開口部上が高転位密度領域となり、非開口部上が低転位密度領域となる。選択マスクとしては、例えば、SiO2、SiNおよびタングステン等からなる厚さ10〜10000Åの膜が好ましい。 The semiconductor layer in which the low dislocation density region and the high dislocation density region described above alternately appear in the planar direction can be formed by a so-called selective growth technique. As the selective growth technique, for example, a method using a selective mask as disclosed in Japanese Patent Laid-Open No. 11-126948 is preferable. In this method, a base group III nitride semiconductor layer is stacked on a substrate, a selective mask having an opening having the desired pattern described above is formed thereon, and then a group III nitride semiconductor layer is further stacked. It is something to be made. In the semiconductor layer stacked on the selection mask, a high dislocation density region is formed on the opening portion of the selection mask and a low dislocation density region is formed on the non-opening portion. As the selective mask, for example, a film made of SiO 2 , SiN, tungsten or the like and having a thickness of 10 to 10,000 mm is preferable.

また、選択成長技術としては、例えば特開平11−263967号公報に開示されているような、基板上に選択成長用III族窒化物半導体層を形成し、その上にさらにIII族窒化物半導体層を成長させる方法も好ましく用いられる。この方法は、基板上にあらかじめ下地となるIII族窒化物半導体層を積層し、その表面を上述の所望のパターン状にエッチングした後、さらにその上にIII族窒化物半導体層を積層させるものである。本発明では、表面がエッチングされて凹凸を有するIII族窒化物半導体層を選択成長用III族窒化物半導体層という。選択成長用III族窒化物半導体層上に積層されたIII族窒化物半導体層はエッチング面上が低転位密度領域となる。   As a selective growth technique, for example, a group III nitride semiconductor layer for selective growth is formed on a substrate as disclosed in JP-A-11-263967, and a group III nitride semiconductor layer is further formed thereon. A method of growing the is also preferably used. In this method, a base group III nitride semiconductor layer is laminated on a substrate in advance, and the surface is etched into the desired pattern described above, and then a group III nitride semiconductor layer is further laminated thereon. is there. In the present invention, a group III nitride semiconductor layer whose surface is etched and has irregularities is referred to as a group III nitride semiconductor layer for selective growth. The group III nitride semiconductor layer laminated on the group III nitride semiconductor layer for selective growth has a low dislocation density region on the etching surface.

さらに、例えば特開平11−274568号公報に開示されているような、基板表面に上述の所望のパターン状の凹部を設けて、III族窒化物半導体層を成長させる方法も好ましく用いることができる。この方法では凹部上に積層された部分が低転位密度領域となる。   Further, for example, as disclosed in Japanese Patent Application Laid-Open No. 11-274568, a method of growing the group III nitride semiconductor layer by providing the above-mentioned desired pattern-like recesses on the substrate surface can be preferably used. In this method, the portion laminated on the concave portion becomes a low dislocation density region.

積層するIII族窒化物半導体層の組成および層構造は目的とする半導体素子に合わせて適宜選択すればよい。   What is necessary is just to select suitably the composition and layer structure of the group III nitride semiconductor layer to laminate | stack according to the target semiconductor element.

このように基板上に形成された低転位密度領域と高転位密度領域が平面方向に交互に現れるIII族窒化物半導体層の高転位密度領域の少なくとも一部は、表面から少なくとも能動層まで除去される。高転位密度領域の除去された層が本発明における第二のIII族窒化物半導体層であり、高転位密度領域の残された層が本発明における第一のIII族窒化物半導体層である。   Thus, at least a part of the high dislocation density region of the group III nitride semiconductor layer in which the low dislocation density region and the high dislocation density region formed on the substrate alternately appear in the plane direction is removed from the surface to at least the active layer. The The layer from which the high dislocation density region is removed is the second group III nitride semiconductor layer in the present invention, and the layer in which the high dislocation density region is left is the first group III nitride semiconductor layer in the present invention.

第二のIII族窒化物半導体層において、残っている高転位密度領域は高転位密度領域全体の20%以下にすることが好ましい。さらに好ましくは10%以下である。たくさん残っていると半導体素子の特性および信頼性の改良が不十分となる。   In the second group III nitride semiconductor layer, the remaining high dislocation density region is preferably 20% or less of the entire high dislocation density region. More preferably, it is 10% or less. If a large amount remains, improvement of characteristics and reliability of the semiconductor element will be insufficient.

III族窒化物半導体層の除去方法は特に限定されず、例えば、半導体層の残す個所に保護マスクを形成した後、ドライエッチングまたはウェットエッチングなどの周知のエッチング方法を適用することによって除去することができる。また、レーザーやイオンビームを照射するこによって除去することもできる。この場合、保護マスクを形成する必要はない。   The method for removing the group III nitride semiconductor layer is not particularly limited. For example, the group III nitride semiconductor layer may be removed by applying a well-known etching method such as dry etching or wet etching after forming a protective mask on the portion where the semiconductor layer remains. it can. It can also be removed by irradiation with a laser or ion beam. In this case, it is not necessary to form a protective mask.

本発明の構造のIII族窒化物半導体素子は、各種半導体素子として利用することができる。例えば、発光ダイオードやレーザーダイオードなどの半導体発光素子の他、各種高速トランジスターや受光素子などのIII族窒化物半導体素子として利用可能である。これら各種半導体素子の中でも、能動層である発光層の両側にn型層とp型層を設けた構造のIII族窒化物半導体発光素子は、発光層の結晶転位の多少によって、素子の信頼性を左右する逆耐圧電圧が大きく変化するので、本発明の構造が特に好ましい半導体素子である。以下に半導体発光素子を例にして本発明をさらに詳細に説明する。   The group III nitride semiconductor device having the structure of the present invention can be used as various semiconductor devices. For example, in addition to semiconductor light emitting devices such as light emitting diodes and laser diodes, it can be used as group III nitride semiconductor devices such as various high-speed transistors and light receiving devices. Among these various semiconductor elements, the group III nitride semiconductor light-emitting element having a structure in which an n-type layer and a p-type layer are provided on both sides of the light-emitting layer which is an active layer, depends on the degree of crystal dislocations in the light-emitting layer. Since the reverse withstand voltage that affects the voltage changes greatly, the structure of the present invention is a particularly preferable semiconductor element. Hereinafter, the present invention will be described in more detail by taking a semiconductor light emitting device as an example.

III族窒化物半導体発光素子は、例えばサファイアからなる基板上にIII族窒化物半導体からなるn型層、発光層およびp型層がこの順序で積層され、p型層および発光層の一部が除去されて露出したn型層に接して負極が設けられ、残ったp型層に接して正極が設けられている。図3は、後述の実施例1で作製した、本発明のIII族窒化物半導体発光素子の一例を模式的に示した平面図であり、図4はそのX−X’における切断断面を示した模式図である。これらの図において、1が基板、5がn型層、6が発光層および7がp型層である。8が負極であり、p型層および発光層とn型層の厚さの半分までが除去されて露出したn型層に接して設けられている。9が正極であり、図3の斜線部に設けられている。10は正極ボンディングパッドであり、正極9の上に接して設けられている。   In the group III nitride semiconductor light emitting device, for example, an n type layer, a light emitting layer, and a p type layer made of a group III nitride semiconductor are stacked in this order on a substrate made of sapphire, and a part of the p type layer and the light emitting layer are formed. A negative electrode is provided in contact with the removed n-type layer, and a positive electrode is provided in contact with the remaining p-type layer. FIG. 3 is a plan view schematically showing an example of a group III nitride semiconductor light-emitting device of the present invention produced in Example 1 described later, and FIG. 4 shows a cut section at XX ′. It is a schematic diagram. In these figures, 1 is a substrate, 5 is an n-type layer, 6 is a light-emitting layer, and 7 is a p-type layer. Reference numeral 8 denotes a negative electrode, which is provided in contact with the n-type layer exposed by removing up to half of the thickness of the p-type layer, the light emitting layer, and the n-type layer. Reference numeral 9 denotes a positive electrode, which is provided in a hatched portion in FIG. Reference numeral 10 denotes a positive electrode bonding pad, which is provided on and in contact with the positive electrode 9.

この例では、低転位密度領域と高転位密度領域が平面方向に交互に現れる半導体層は上述の選択マスクを用いた選択成長技術によりストライプ状で形成されている。基板1上にバッファ層2を介して下地のIII族窒化物半導体層3を形成した後、その上に選択マスク4を形成する。その上に再びIII族窒化物半導体を成長させて、n型層5、発光層6およびp型層7を形成する。選択マスクの開口部4a上に高転位密度領域aが形成され、非開口部4b上に低転位密度領域bが形成される。   In this example, the semiconductor layers in which the low dislocation density regions and the high dislocation density regions appear alternately in the plane direction are formed in stripes by the selective growth technique using the above-described selection mask. After forming the underlying group III nitride semiconductor layer 3 on the substrate 1 via the buffer layer 2, the selection mask 4 is formed thereon. A group III nitride semiconductor is again grown thereon to form the n-type layer 5, the light emitting layer 6, and the p-type layer 7. A high dislocation density region a is formed on the opening 4a of the selection mask, and a low dislocation density region b is formed on the non-opening 4b.

高転位密度領域bはp型層の上面からn型層の負極形成面まで除去されて、凹部cを形成している。しかし、負極が設けられた辺に沿った部分dおよび正極ボンディングパッドが設けられた辺に沿った部分eの高転位密度領域は除去されずに残されている。また、正極ボンディングパッド部の高転位密度領域も残されている。   The high dislocation density region b is removed from the upper surface of the p-type layer to the negative electrode forming surface of the n-type layer to form a recess c. However, the high dislocation density regions of the part d along the side where the negative electrode is provided and the part e along the side where the positive electrode bonding pad is provided are left without being removed. Further, a high dislocation density region of the positive electrode bonding pad portion is also left.

従って、p型層の上面からn型層の負極形成面までのIII族窒化物半導体層Aが本発明における第二のIII族窒化物半導体層であり、n型層の下面から負極形成面までのIII族窒化物半導体層Bが本発明における第一のIII族窒化物半導体層である。   Therefore, the group III nitride semiconductor layer A from the upper surface of the p-type layer to the negative electrode forming surface of the n-type layer is the second group III nitride semiconductor layer in the present invention, from the lower surface of the n-type layer to the negative electrode forming surface. The group III nitride semiconductor layer B is the first group III nitride semiconductor layer in the present invention.

高転位密度領域を除去して凹部cを形成する工程は負極形成面を露出させる工程と同時に行なってもよいが、残ったp型層上面への正極の形成が煩雑になるので、負極形成面の露出工程に次いで負極および正極等の電極形成工程を行なった後に、その上に形成された正極と共に高転位密度領域を除去することが好ましい。   The step of removing the high dislocation density region and forming the recess c may be performed simultaneously with the step of exposing the negative electrode forming surface, but the formation of the positive electrode on the upper surface of the remaining p-type layer becomes complicated, so the negative electrode forming surface It is preferable to remove the high dislocation density region together with the positive electrode formed on the negative electrode and the positive electrode after the exposure step.

上述のIII族窒化物半導体発光素子において、正極ボンディングパッド10から供給された電流は正極9によって発光素子表面の全面に満遍なく行き渡り、p型層7、発光層6およびn型層5を経由して負極8に流れる。発光層6は大部分が低転位密度領域で構成されているので発光効率が高く、逆耐圧電圧が大きい。   In the group III nitride semiconductor light emitting device described above, the current supplied from the positive electrode bonding pad 10 spreads over the entire surface of the light emitting device by the positive electrode 9 and passes through the p-type layer 7, the light emitting layer 6 and the n-type layer 5. It flows to the negative electrode 8. Since most of the light emitting layer 6 is composed of a low dislocation density region, the light emitting layer 6 has high light emission efficiency and high reverse breakdown voltage.

上述の例では、低転位密度領域と高転位密度領域のパターンとしてストライプ状を用いたが、勿論格子状または島状でもよい。ストライプ状および島状の場合、各孤立した低転位密度領域を繋げるように高転位密度領域の一部を残し、p型層上に形成された正極全体が電気的に繋がっていることが肝要である。特に発光素子の四周部で繋がっていることが好ましい。   In the above example, the stripe shape is used as the pattern of the low dislocation density region and the high dislocation density region, but it may be a lattice shape or an island shape. In the case of stripes and islands, it is important that the entire positive electrode formed on the p-type layer is electrically connected, leaving a part of the high dislocation density region so as to connect the isolated low dislocation density regions. is there. In particular, it is preferable that the light emitting elements are connected at the four circumferences.

ストライプ状の場合、III族窒化物半導体層の成膜条件の自由度が大きくなるので好ましい。また、格子状は成膜条件の自由度が小さくなるものの、発光素子の面方向における電流分布に優れ、作動電圧が低下し、発光強度が強くなる。   The stripe shape is preferable because the degree of freedom of the film forming conditions of the group III nitride semiconductor layer is increased. In addition, the lattice shape reduces the degree of freedom of film formation conditions, but has excellent current distribution in the surface direction of the light emitting element, lowers the operating voltage, and increases the light emission intensity.

III族窒化物半導体発光素子を構成するn型層、発光層およびp型層は、それぞれ各種組成および構造のものが周知である。本発明においても、これら周知のものを含めて如何なる組成および構造のものも使用できる。また、負極および正極もそれぞれ各種組成および構造のものが周知である。本発明においても、これら周知のものを含めて如何なる組成および構造のものも使用できる。   The n-type layer, light-emitting layer, and p-type layer constituting the group III nitride semiconductor light-emitting device are well known in various compositions and structures. In the present invention, those having any composition and structure including those well known can be used. Also, negative electrodes and positive electrodes having various compositions and structures are well known. In the present invention, those having any composition and structure including those well known can be used.

本発明のIII族窒化物半導体素子は優れた特性と信頼性を有するので、例えば、この技術を用いた発光素子から高輝度なLEDランプ等の信頼性に優れたデバイスを作製することができる。従って、この技術を用いた素子の組み込まれている携帯電話、ディスプレイおよびパネル類などの電子機器や、その電子機器の組み込まれている自動車、コンピュータおよびゲーム機などの機械装置類の信頼性も向上する。   Since the group III nitride semiconductor device of the present invention has excellent characteristics and reliability, for example, a highly reliable device such as a high-intensity LED lamp can be manufactured from a light-emitting device using this technology. Therefore, the reliability of electronic devices such as mobile phones, displays and panels incorporating elements using this technology, and mechanical devices such as automobiles, computers and game machines incorporating such electronic devices is also improved. To do.

以下に実施例により本発明を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited only to these examples.

(実施例1)
本実施例では、結晶転位低減の選択成長技術として選択マスクを用いる横方向成長法を使用してIII族窒化物半導体発光素子を作製した。選択マスクとしてはストライプ状のものを使用した。
Example 1
In this example, a group III nitride semiconductor light emitting device was fabricated using a lateral growth method using a selection mask as a selective growth technique for reducing crystal dislocations. A striped mask was used as the selection mask.

図3は本実施例で作製したIII族窒化物半導体発光素子を模式的に示した平面図であり、図4はそのX−X’における切断断面を示した模式図である。これらの図において、1は基板、2はバッファ層、3は下地のIII族窒化物半導体層である。4は選択マスクであり、4aが開口部で4bが非開口部である。5はn型層、6は発光層、7はp型層である。8は負極であり、p型層および発光層とn型層の厚さの半分までが除去されて露出したn型層に接して設けられている。9は正極であり、図3の斜線部で示されたp型層に接して設けられている。10は正極ボンディングパッドであり、正極9の上に接して設けられている。Aは第二のIII族窒化物半導体層であり、p型層7および発光層6とn型層5の一部とからなる。Bは第一のIII族窒化物半導体層であり、n型層5の残りの部分からなる。aは高転位密度領域であり、選択マスク4の開口部4a上に位置する。bは低転位密度領域であり、選択マスク4の非開口部4b上に位置する。   FIG. 3 is a plan view schematically showing the group III nitride semiconductor light emitting device manufactured in this example, and FIG. 4 is a schematic view showing a cross section taken along the line X-X ′. In these drawings, 1 is a substrate, 2 is a buffer layer, and 3 is an underlying group III nitride semiconductor layer. 4 is a selection mask, 4a is an opening, and 4b is a non-opening. 5 is an n-type layer, 6 is a light emitting layer, and 7 is a p-type layer. A negative electrode 8 is provided in contact with the n-type layer exposed by removing up to half of the thickness of the p-type layer, the light-emitting layer, and the n-type layer. Reference numeral 9 denotes a positive electrode, which is provided in contact with the p-type layer indicated by the hatched portion in FIG. Reference numeral 10 denotes a positive electrode bonding pad, which is provided on and in contact with the positive electrode 9. A is a second group III nitride semiconductor layer, and is composed of the p-type layer 7, the light emitting layer 6, and a part of the n-type layer 5. B is a first group III nitride semiconductor layer, and consists of the remaining portion of the n-type layer 5. a is a high dislocation density region and is located on the opening 4 a of the selection mask 4. b is a low dislocation density region and is located on the non-opening portion 4 b of the selection mask 4.

バッファ層形成技術を開示した前述の特許文献2の実施例1に記載の方法に従って、基板状にバッファ層2および下地のIII族窒化物半導体層3を積層した。即ち、基板1としてサファイアを用い、有機洗浄後成長炉に導入し、水素中1170℃まで昇温しながら表面の酸化膜を除去した。   The buffer layer 2 and the underlying group III nitride semiconductor layer 3 were laminated in the form of a substrate according to the method described in Example 1 of Patent Document 2 that disclosed the buffer layer forming technique. That is, sapphire was used as the substrate 1, introduced into a growth furnace after organic cleaning, and the oxide film on the surface was removed while being heated to 1170 ° C. in hydrogen.

次いで基板温度を1150℃に降温し、成長炉にTMGa、TMAlおよびNH3を供給してバッファ層2を積層し、更に同温で厚さ2μmのアンドープのGaNからなる下地のIII族窒化物半導体層3を積層した。サファイア基板上に成長させたアンドープのGaN層3の転位密度を前述の断面TEM評価により別途測定したところ、約8×108cm-2の転位密度を持っていた。 Next, the substrate temperature is lowered to 1150 ° C., TMGa, TMAl, and NH 3 are supplied to the growth furnace, the buffer layer 2 is laminated, and the underlying group III nitride semiconductor made of undoped GaN having the same temperature of 2 μm is then formed. Layer 3 was laminated. When the dislocation density of the undoped GaN layer 3 grown on the sapphire substrate was separately measured by the above-mentioned cross-sectional TEM evaluation, it had a dislocation density of about 8 × 10 8 cm −2 .

サファイア基板1を成長炉より取り出し、下地のIII族窒化物半導体層3上に、スパッタ法により厚さ1000ÅのSiO2からなる選択マスク4を形成した。フォトリソグラフ法により2μmの開口部4aと2μmの非開口部4bとの繰り返しからなるストライプ状のパターンとした。 The sapphire substrate 1 was taken out of the growth furnace, and a selective mask 4 made of SiO 2 having a thickness of 1000 mm was formed on the underlying group III nitride semiconductor layer 3 by sputtering. By a photolithography method, a striped pattern composed of repetition of an opening 4a of 2 μm and a non-opening 4b of 2 μm was formed.

選択マスクが形成された基板1を再度成長炉に戻し、1170℃まで昇温し、III族原料としてTMGa、V族原料としてNH3を流通し、ドーパントとしてSiH4を流通した。流量は夫々30sccm、3.5slm、20sccmである。厚さ2.2μmのSiドープのGaN層からなるn型層5を積層した。なお、積層されたn型層5の転位密度を別途測定したところ、マスク開口部上のGaN層中では転位密度が8×108cm-2の転位密度であるのに対し、非開口部上においては6×107cm-2であり、非開口部上の転位密度は1/10に低下していた。 The substrate 1 on which the selection mask was formed was returned to the growth furnace again, heated to 1170 ° C., TMGa as a group III material, NH 3 as a group V material, and SiH 4 as a dopant. The flow rates are 30 sccm, 3.5 slm, and 20 sccm, respectively. An n-type layer 5 made of a Si-doped GaN layer having a thickness of 2.2 μm was laminated. When the dislocation density of the stacked n-type layer 5 was measured separately, the dislocation density in the GaN layer on the mask opening was 8 × 10 8 cm −2 , whereas the dislocation density was on the non-opening. in a 6 × 10 7 cm -2, the dislocation density on the non-opening was reduced to 1/10.

引き続いて成長炉の温度を800℃まで下げ、III族原料としてTMGa及びTMInを用いて、GaNからなる障壁層とInGaNからなる井戸層を有する多重量子井戸構造の発光層6を積層した。多重量子井戸構造は両端が障壁層の5層構造である。次いで、再度、成長炉を1100℃まで昇温し、III族原料としてTMGa、Mgドーパントの原料としてCp2Mgを用い、Cp2Mg流量を240sccmとして、MgドープのGaNからなるp型層7を形成した。 Subsequently, the temperature of the growth furnace was lowered to 800 ° C., and a light emitting layer 6 having a multiple quantum well structure having a barrier layer made of GaN and a well layer made of InGaN was laminated using TMGa and TMIn as group III materials. The multi-quantum well structure is a five-layer structure in which both ends are barrier layers. Next, the temperature of the growth furnace is raised again to 1100 ° C., TMGa is used as a Group III material, Cp 2 Mg is used as a Mg dopant material, a Cp 2 Mg flow rate is 240 sccm, and a p-type layer 7 made of Mg-doped GaN is formed. Formed.

得られたIII族窒化物半導体積層構造体を成長炉から取り出し、p型層7上に負極を形成する位置を残してレジストにより保護マスクを形成し、塩素系ガスを用いたドライエッチングによりn型層5を露出した。当業界周知の慣用手段により、露出されたn型層5上にTi/Alからなる負極8を、残っているp型層7上にAu/Niからなる透明正極(TE)9を、さらに正極9上に正極ボンディングパッド10をそれぞれ形成した。   The obtained group III nitride semiconductor multilayer structure is taken out of the growth furnace, a protective mask is formed with a resist leaving a position for forming a negative electrode on the p-type layer 7, and n-type is formed by dry etching using a chlorine-based gas. Layer 5 was exposed. By conventional means well known in the art, a negative electrode 8 made of Ti / Al is formed on the exposed n-type layer 5, a transparent positive electrode (TE) 9 made of Au / Ni is formed on the remaining p-type layer 7, and a positive electrode A positive electrode bonding pad 10 was formed on 9.

電極を形成した積層構造体の上にレジストにより保護マスクを形成した。このレジストは転位密度の高い領域の選択除去のためのエッチングの際、保護マスクとして働く。即ち、積層構造体上全面にレジストを塗布し、高転位密度領域の一部に相当する図3におけるc部上のレジストのみ除去した。次いで、塩素系ガスを用いたドライエッチングによりn型層5の厚さの半分に達するまでエッチングし、本発明のIII族窒化物半導体発光素子を得た。   A protective mask was formed with a resist on the laminated structure on which the electrodes were formed. This resist serves as a protective mask during etching for selective removal of a region having a high dislocation density. That is, a resist was applied to the entire surface of the laminated structure, and only the resist on the portion c in FIG. 3 corresponding to a part of the high dislocation density region was removed. Next, etching was performed by dry etching using a chlorine-based gas until it reached half the thickness of the n-type layer 5 to obtain a group III nitride semiconductor light emitting device of the present invention.

得られたIII族窒化物半導体発光素子の特性を評価したところ、逆耐圧電圧Vrは10μAに対し20V以上であり、発光出力は20mAで5mWであった。
なお、比較のため、図3におけるc部の除去を行なわない発光素子を同様に評価したところ、Vrは12V、発光出力は4mWであった。
When the characteristics of the obtained group III nitride semiconductor light emitting device were evaluated, the reverse withstand voltage Vr was 20 V or more with respect to 10 μA, and the light emission output was 5 mW at 20 mA.
For comparison, the light emitting element in which the portion c in FIG. 3 was not removed was evaluated in the same manner. As a result, Vr was 12 V and the light emission output was 4 mW.

(実施例2)
本実施例では、結晶転位低減の選択成長技術として前述の選択成長用III族窒化物半導体層を用いて、格子状パターンの低転位密度領域を有するIII族窒化物半導体発光素子を作製した。
(Example 2)
In this example, a group III nitride semiconductor light-emitting device having a low dislocation density region having a lattice pattern was manufactured using the group III nitride semiconductor layer for selective growth described above as a selective growth technique for reducing crystal dislocations.

厚さ2μmの下地層III族窒化物半導体層3の形成までは実施例1と同一である。本例では、下地層のIII族窒化物半導体層3上の全面に、フォトリソグラフ法で直径2μmのレジスト膜を縦横に4μmのピッチで形成した。次いで、塩素系ガスを用いてドライエッチングを行ない、下地層のIII族窒化物半導体層3を、直径2μmで高さが1.8μmの島状突起が縦横4μmのピッチで存在する形状にした。このように加工された下地層のIII族窒化物半導体層3が、本例においては選択成長用III族窒化物半導体層となる。   The process up to the formation of the foundation layer group III nitride semiconductor layer 3 having a thickness of 2 μm is the same as that of the first embodiment. In this example, a resist film having a diameter of 2 μm was formed at a pitch of 4 μm vertically and horizontally on the entire surface of the underlying group III nitride semiconductor layer 3 by photolithography. Next, dry etching was performed using a chlorine-based gas, so that the base group III nitride semiconductor layer 3 was formed into a shape in which island-shaped protrusions having a diameter of 2 μm and a height of 1.8 μm were present at a pitch of 4 μm in length and width. The underlying group III nitride semiconductor layer 3 processed in this way becomes the group III nitride semiconductor layer for selective growth in this example.

選択成長用III族窒化物半導体層形成後、再び成長炉に戻し、実施例1と同様にしてn型層、発光層およびp型層を形成した。但し、n型層の厚さは4μmとし、n型層の上面で凹凸差が現れないようにした。なお、n型層形成後に別途その転位密度を測定したところ、島状突起の上方は6×108cm-2であるのに対し、他の部分は6×107cm-2であった。 After the group III nitride semiconductor layer for selective growth was formed, it was returned to the growth furnace again, and an n-type layer, a light emitting layer and a p-type layer were formed in the same manner as in Example 1. However, the thickness of the n-type layer was set to 4 μm so that the unevenness did not appear on the upper surface of the n-type layer. When the dislocation density was separately measured after the formation of the n-type layer, it was 6 × 10 8 cm −2 above the island-shaped protrusions, whereas the other portion was 6 × 10 7 cm −2 .

得られたIII族窒化物半導体積層構造体から実施例1と同様にして発光素子を作製した。但し、高転位密度領域に相当するc部の除去に当り、c部の形状は一辺が2μmの正方形を縦横に4μmのピッチで選択成長用III族窒化物半導体層の突起部に合わせて配置し、2μm幅の格子状ストリートの低転位密度領域が残されるパターンとした。   A light emitting device was produced in the same manner as in Example 1 from the obtained group III nitride semiconductor multilayer structure. However, when removing the c portion corresponding to the high dislocation density region, the shape of the c portion is a square having a side of 2 μm arranged vertically and horizontally at a pitch of 4 μm in accordance with the protrusions of the group III nitride semiconductor layer for selective growth. The pattern was such that a low dislocation density region of a grid-like street having a width of 2 μm was left.

得られたIII族窒化物半導体発光素子を実施例1と同様に評価したところ、逆耐圧電圧Vrは10μAに対し20V以上であり、発光出力は20mAで5.2mWであった。   When the obtained group III nitride semiconductor light-emitting device was evaluated in the same manner as in Example 1, the reverse withstand voltage Vr was 20 V or more with respect to 10 μA, and the light emission output was 5.2 mW at 20 mA.

(実施例3)
本実施例では、結晶転位低減の選択成長技術として平面方向に周期的な凹部を有する基板を用いて、実施例1と同様のストライプ状パターンの低転位密度領域を有するIII族窒化物半導体発光素子を作製した。
(Example 3)
In this example, as a selective growth technique for reducing crystal dislocations, a group III nitride semiconductor light-emitting device having a low dislocation density region having a stripe pattern similar to that of Example 1 using a substrate having periodic recesses in the plane direction Was made.

サファイア基板の表面上に全面に亙って、2μm幅のレジスト膜を4μmピッチで形成した。次いで、サファイア基板を塩素系ガスでエッチングし、深さが2μmで幅が2μmの凹部を4μmピッチで設けた。形成したレジスト膜は有機洗浄により除去した。   A 2 μm wide resist film was formed at a 4 μm pitch over the entire surface of the sapphire substrate. Next, the sapphire substrate was etched with a chlorine-based gas, and recesses having a depth of 2 μm and a width of 2 μm were provided at a pitch of 4 μm. The formed resist film was removed by organic cleaning.

上記の処理により得られたサファイア基板を用いて実施例1と同様にしてIII族窒化物半導体発光素子を作製した。但し、下地層のIII族窒化物半導体層3は厚さを4μmとして、その表面で基板の凹凸に基づく高低差が現れないようにした。また、選択マスク4は設けなかった。なお、下地層のIII族窒化物半導体層3の転位密度を別途実施例1と同様に測定したところ、基板の凸部上では、凹凸加工を施さない基板に成長した場合と同様8×108cm-2であったが、凹部上では2×108cm-2であり、1/3〜1/4の転位密度の低減が見られた。 A group III nitride semiconductor light-emitting device was produced in the same manner as in Example 1 using the sapphire substrate obtained by the above treatment. However, the thickness of the group III nitride semiconductor layer 3 of the underlayer was set to 4 μm so that a difference in height based on the unevenness of the substrate did not appear on the surface. Further, the selection mask 4 was not provided. When the dislocation density of the III-nitride semiconductor layer 3 as the underlayer was separately measured in the same manner as in Example 1, it was 8 × 10 8 on the convex portion of the substrate as in the case of growing on a substrate that was not subjected to irregular processing. Although it was cm −2 , it was 2 × 10 8 cm −2 on the concave portion, and a reduction in dislocation density of 1/3 to 1/4 was observed.

得られたIII族窒化物半導体発光素子を実施例1と同様に評価したところ、逆耐圧電圧Vrは10μAに対し20V以上であり、発光出力は20mAで5.2mWであった。   When the obtained group III nitride semiconductor light-emitting device was evaluated in the same manner as in Example 1, the reverse withstand voltage Vr was 20 V or more with respect to 10 μA, and the light emission output was 5.2 mW at 20 mA.

本発明のIII族窒化物半導体素子は、発光ダイオードやレーザーダイオード等の発光素子、受光素子および各種電子デバイス等に利用すると非常に信頼性の高いデバイスを実現することが可能となり、その産業上の利用価値は非常に大きい。   The group III nitride semiconductor device of the present invention can realize a highly reliable device when used for light emitting devices such as light emitting diodes and laser diodes, light receiving devices and various electronic devices. The utility value is very large.

低転位密度領域と高転位密度領域のパターンの一例を示す図である。It is a figure which shows an example of the pattern of a low dislocation density area | region and a high dislocation density area | region. 低転位密度領域と高転位密度領域のパターンの別の一例を示す図である。It is a figure which shows another example of the pattern of a low dislocation density area | region and a high dislocation density area | region. 実施例1で作製したIII族窒化物半導体発光素子を模式的に示した平面図である。3 is a plan view schematically showing a group III nitride semiconductor light-emitting device manufactured in Example 1. FIG. 図3のX−X’における切断断面を示した模式図である。It is the schematic diagram which showed the cut | disconnection cross section in X-X 'of FIG.

符号の説明Explanation of symbols

1 基板
2 バッファ層
5 n型層
6 発光層
7 p型層
8 負極
9 正極
10 正極ボンディングパッド
1 substrate 2 buffer layer 5 n-type layer 6 light-emitting layer 7 p-type layer 8 negative electrode 9 positive electrode 10 positive electrode bonding pad

Claims (18)

基板上に第一のIII族窒化物半導体層および第二のIII族窒化物半導体層がこの順序で積層されており、該第二の半導体層は能動層を含んでおり、該第一の半導体層は低転位密度領域と高転位密度領域が平面方向に交互に存在するパターンを有し、該第二の半導体層は該第一の半導体層と同様のパターン構造を有しており、かつ、該第一の半導体層の該高転位密度領域上の少なくとも一部に該第二の半導体層が存在しないことを特徴とするIII族窒化物半導体素子。   A first group III nitride semiconductor layer and a second group III nitride semiconductor layer are stacked in this order on a substrate, and the second semiconductor layer includes an active layer, and the first semiconductor The layer has a pattern in which low dislocation density regions and high dislocation density regions are alternately present in a plane direction, the second semiconductor layer has a pattern structure similar to that of the first semiconductor layer, and A group III nitride semiconductor device, wherein the second semiconductor layer does not exist in at least a part of the high dislocation density region of the first semiconductor layer. 低転位密度領域と高転位密度領域のパターンが周期的パターンである請求項1に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to claim 1, wherein the pattern of the low dislocation density region and the high dislocation density region is a periodic pattern. 低転位密度領域と高転位密度領域がストライプ状に存在する請求項1または2に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to claim 1, wherein the low dislocation density region and the high dislocation density region exist in a stripe shape. 低転位密度領域または高転位密度領域が島状に存在する請求項1または2に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to claim 1 or 2, wherein the low dislocation density region or the high dislocation density region exists in an island shape. 低転位密度領域または高転位密度領域が格子状に存在する請求項1または2に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to claim 1 or 2, wherein the low dislocation density region or the high dislocation density region exists in a lattice form. 第一のIII族窒化物半導体層の下方(基板側)に、選択マスクを有する請求項1〜5のいずれか一項に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to any one of claims 1 to 5, further comprising a selection mask below the first group III nitride semiconductor layer (substrate side). 第一のIII族窒化物半導体層の下方に、選択成長用III族窒化物半導体層を有する請求項1〜5のいずれか一項に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to any one of claims 1 to 5, further comprising a group III nitride semiconductor layer for selective growth below the first group III nitride semiconductor layer. 基板が平面方向に周期的な凹部を有する請求項1〜5のいずれか一項に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to claim 1, wherein the substrate has periodic recesses in a planar direction. III族窒化物半導体素子が発光素子である請求項1〜8のいずれか一項に記載のIII族窒化物半導体素子。   The group III nitride semiconductor device according to any one of claims 1 to 8, wherein the group III nitride semiconductor device is a light emitting device. 第一のIII族窒化物半導体層がn型層の少なくとも一部を形成し、第二のIII族窒化物半導体層が少なくとも発光層およびp型層を形成している請求項9に記載のIII族窒化物半導体素子。   The III-nitride semiconductor layer according to claim 9, wherein the first group III nitride semiconductor layer forms at least a part of the n-type layer, and the second group III nitride semiconductor layer forms at least a light emitting layer and a p-type layer. Group nitride semiconductor device. 発光素子の周辺部の第一のIII族窒化物半導体層の高転位密度領域上には第二のIII族窒化物半導体層が存在している請求項9または10に記載のIII族窒化物半導体素子。   The group III nitride semiconductor according to claim 9 or 10, wherein the second group III nitride semiconductor layer is present on the high dislocation density region of the first group III nitride semiconductor layer in the peripheral portion of the light emitting device. element. 第二のIII族窒化物半導体層が存在する第一のIII族窒化物半導体層の高転位密度領域は高転位密度領域全体の20%以下である請求項9〜11のいずれか一項に記載のIII族窒化物半導体素子。   12. The high dislocation density region of the first group III nitride semiconductor layer in which the second group III nitride semiconductor layer is present is 20% or less of the entire high dislocation density region. Group III nitride semiconductor device. 基板上に低転位密度領域と高転位密度領域が平面方向に交互に存在するパターンを有するIII族窒化物半導体層からなる、n型層、発光層およびp型層をこの順序で積層させる第1の工程、n型層およびp型層に負極および正極をそれぞれ形成する第2の工程および、少なくとも発光層およびp型層の高転位密度領域の少なくとも一部を除去する第3の工程からなることを特徴とするIII族窒化物半導体発光素子の製造方法。   A first layer in which an n-type layer, a light-emitting layer, and a p-type layer, which are made of a group III nitride semiconductor layer having a pattern in which low dislocation density regions and high dislocation density regions exist alternately in a plane direction, are laminated in this order on a substrate. The second step of forming the negative electrode and the positive electrode on the n-type layer and the p-type layer, respectively, and the third step of removing at least a part of the high dislocation density region of the light-emitting layer and the p-type layer. A method for producing a Group III nitride semiconductor light-emitting device. 第1の工程、第2の工程および第3の工程がこの順序で行なわれる請求項13に記載のIII族窒化物半導体発光素子の製造方法。   The method for manufacturing a group III nitride semiconductor light-emitting device according to claim 13, wherein the first step, the second step, and the third step are performed in this order. 請求項13または14に記載の製造方法によって製造されたIII族窒化物半導体発光素子。   A group III nitride semiconductor light-emitting device manufactured by the manufacturing method according to claim 13 or 14. 請求項9〜12および15のいずれか一項に記載のIII族窒化物半導体発光素子を用いてなるランプ。   The lamp | ramp which uses the group III nitride semiconductor light-emitting device as described in any one of Claims 9-12 and 15. 請求項1〜12および15のいずれか一項に記載のIII族窒化物半導体素子を用いてなる電子機器。   An electronic device using the group III nitride semiconductor device according to any one of claims 1 to 12 and 15. 請求項17に記載の電子機器が組み込まれている機械装置。   A mechanical device in which the electronic device according to claim 17 is incorporated.
JP2004346902A 2004-11-30 2004-11-30 Group iii nitride semiconductor device Pending JP2006156802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346902A JP2006156802A (en) 2004-11-30 2004-11-30 Group iii nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346902A JP2006156802A (en) 2004-11-30 2004-11-30 Group iii nitride semiconductor device

Publications (2)

Publication Number Publication Date
JP2006156802A true JP2006156802A (en) 2006-06-15
JP2006156802A5 JP2006156802A5 (en) 2008-01-10

Family

ID=36634681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346902A Pending JP2006156802A (en) 2004-11-30 2004-11-30 Group iii nitride semiconductor device

Country Status (1)

Country Link
JP (1) JP2006156802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041709A (en) * 2006-08-01 2008-02-21 National Institute For Materials Science Device substrate and its manufacturing method
JP2010114112A (en) * 2008-11-04 2010-05-20 Canon Inc Method of forming gallium nitride-based compound semiconductor layer, transfer method of gallium nitride-based compound semiconductor layer, and silicon substrate to which gallium nitride-based compound semiconductor is bonded
US11063084B2 (en) 2019-02-22 2021-07-13 Nichia Corporation Method for manufacturing light-emitting element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103135A (en) * 1997-07-30 1999-04-13 Mitsubishi Cable Ind Ltd Board for gallium nitride crystal growth, and its application
JPH11233893A (en) * 1998-02-18 1999-08-27 Sharp Corp Semiconductor light emitting device and manufacture thereof
JP2001352133A (en) * 2000-06-05 2001-12-21 Sony Corp Semiconductor laser, semiconductor device, nitride-family iii-v group compound substrate, and their manufacturing method
JP2004260152A (en) * 2003-02-07 2004-09-16 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
JP2004289096A (en) * 2003-03-19 2004-10-14 Lumileds Lighting Us Llc Improvement of led efficiency using photonic crystal structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103135A (en) * 1997-07-30 1999-04-13 Mitsubishi Cable Ind Ltd Board for gallium nitride crystal growth, and its application
JPH11233893A (en) * 1998-02-18 1999-08-27 Sharp Corp Semiconductor light emitting device and manufacture thereof
JP2001352133A (en) * 2000-06-05 2001-12-21 Sony Corp Semiconductor laser, semiconductor device, nitride-family iii-v group compound substrate, and their manufacturing method
JP2004260152A (en) * 2003-02-07 2004-09-16 Sanyo Electric Co Ltd Semiconductor device and manufacturing method therefor
JP2004289096A (en) * 2003-03-19 2004-10-14 Lumileds Lighting Us Llc Improvement of led efficiency using photonic crystal structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041709A (en) * 2006-08-01 2008-02-21 National Institute For Materials Science Device substrate and its manufacturing method
JP2010114112A (en) * 2008-11-04 2010-05-20 Canon Inc Method of forming gallium nitride-based compound semiconductor layer, transfer method of gallium nitride-based compound semiconductor layer, and silicon substrate to which gallium nitride-based compound semiconductor is bonded
US11063084B2 (en) 2019-02-22 2021-07-13 Nichia Corporation Method for manufacturing light-emitting element

Similar Documents

Publication Publication Date Title
US9991424B2 (en) Light-emitting diode and method for manufacturing same
JP5082278B2 (en) Light emitting diode manufacturing method, integrated light emitting diode manufacturing method, and nitride III-V compound semiconductor growth method
JP5232972B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
KR101077078B1 (en) Gallium nitride compound semiconductor light emitting element
JP5521981B2 (en) Manufacturing method of semiconductor light emitting device
JP4989978B2 (en) Nitride-based light emitting device and manufacturing method thereof
JP2017050439A (en) Uv light-emitting device and method for manufacturing the same
KR20100093872A (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2006339534A (en) Light emitting diode, manufacturing method therefor, light emitting diode back light, light emitting diode lighting device, light emitting diode display and electronic apparatus
KR20080102288A (en) Method for manufacturing gallium nitride compound semiconductor light-emitting device, gallium nitride compound semiconductor light-emitting device and lamp using same
US7153713B2 (en) Method for manufacturing high efficiency light-emitting diodes
JP2008091608A (en) Light emitting diode and its manufacturing method, illumination source cell unit, light emitting diode backlight, light emitting diode lighting device, light emitting diode display, electronic instrument, electronic apparatus, and manufacturing method of the electronic apparatus
KR20090079993A (en) Method for producing group iii nitride semiconductor layer, group iii nitride semiconductor light-emitting device, and lamp
JP6181661B2 (en) Nitride semiconductor light emitting device
US20190157069A1 (en) Semipolar amd nonpolar light-emitting devices
JP2008244074A (en) Manufacturing method of nitride semiconductor light-emitting element
JP3680751B2 (en) Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device
KR100728132B1 (en) Light-emitting diode using current spreading layer
JP2009123836A (en) Nitride semiconductor light-emitting element
JP2008028385A (en) Semiconductor substrate with less defect, semiconductor light emitting devices and method for fabrication thereof
JP4548117B2 (en) Semiconductor light emitting device manufacturing method, integrated semiconductor light emitting device manufacturing method, image display device manufacturing method, and lighting device manufacturing method
TWI545798B (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP2006156802A (en) Group iii nitride semiconductor device
JP2007324546A (en) Method of manufacturing gallium nitride compound semiconductor light-emitting element, gallium nitride compound semiconductor light-emitting element, and lamp

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928