JP2006152325A - Aluminum alloy brazing sheet for heat exchanger and its production method - Google Patents

Aluminum alloy brazing sheet for heat exchanger and its production method Download PDF

Info

Publication number
JP2006152325A
JP2006152325A JP2004340665A JP2004340665A JP2006152325A JP 2006152325 A JP2006152325 A JP 2006152325A JP 2004340665 A JP2004340665 A JP 2004340665A JP 2004340665 A JP2004340665 A JP 2004340665A JP 2006152325 A JP2006152325 A JP 2006152325A
Authority
JP
Japan
Prior art keywords
brazing
mass
aluminum alloy
alloy
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004340665A
Other languages
Japanese (ja)
Other versions
JP4432748B2 (en
Inventor
Hidenori Suzuki
秀紀 鈴木
Yoshito Oki
義人 沖
Terue Takahashi
照栄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2004340665A priority Critical patent/JP4432748B2/en
Publication of JP2006152325A publication Critical patent/JP2006152325A/en
Application granted granted Critical
Publication of JP4432748B2 publication Critical patent/JP4432748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a brazing sheet composed of a three layer clad plate used at the time when a heat exchanger made of an aluminum alloy is produced by a brazing process, which has excellent strength, bending fatigue properties and corrosion resistance, in which the fluidity of a brazing filler metal is suitable, and which has no generation of defects in brazing and erosion even when brazed using fluoride based flux. <P>SOLUTION: The brazing sheet is composed of an aluminum alloy clad plate with a three layer structure consisting of an aluminum alloy as a core material having a composition comprising, by mass, 0.3 to 1.0% Si, 0.3 to 0.8% Fe, 0.8 to 1.6% Mn and 0.5 to 0.9% Cu, and in which the content of Mg as impurities is regulated to ≤0.05%, and the balance Al with inevitable impurities, an aluminum alloy as a sacrificial anode material having a composition comprising 0.2 to 0.6% Mg and 0.1 to 0.3% Zn, and the balance Al with inevitable impurities, and an aluminum alloy as a brazing filler metal comprising 6.5 to 8.5% Si and 0.15 to 0.6% Fe, and in which the content of Mg as impurities is regulated to ≤0.05%, and the balance Al with inevitable impurities. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ろう付け性,耐食性,曲げ疲労特性(耐繰り返し加圧特性)に優れた高強度な熱交換器用アルミニウム合金ブレージングヘッダープレート、詳しくは、輸送機用のラジエータ,インタークーラ,オイルクーラ,カーヒータ等の作動流体通路構成材料と薄肉フィン材料とがろう付けにより接合される熱交換器に用いられるアルミニウム合金ブレージングヘッダープレート材に関する。さらに詳しくは、成型加工して用いられるヘッダープレートとして、ろう付け性,耐食性,曲げ疲労特性に優れた高強度な熱交換器用アルミニウム合金ブレージングシートに関する。   The present invention is a high-strength aluminum alloy brazing header plate for heat exchangers excellent in brazing, corrosion resistance, and bending fatigue properties (repetitive pressure resistance), and more specifically, radiators, intercoolers, oil coolers for transport aircraft, The present invention relates to an aluminum alloy brazing header plate material used in a heat exchanger in which a working fluid passage constituting material such as a car heater and a thin fin material are joined by brazing. More specifically, the present invention relates to a high-strength aluminum alloy brazing sheet for heat exchangers that is excellent in brazing properties, corrosion resistance, and bending fatigue properties as a header plate used by molding.

輸送機用のラジエータ,インタークーラ,オイルクーラ,カーヒータ等の熱交換器は、Al−Mn系合金,Al−Mn−Cu系合金等からなる作動流体通路構成用芯材、Al−Si系合金からなるろう材、及びAl−Zn系合金からなる犠牲陽極材とがクラッドされたチューブシート及びヘッダープレートが、フィン材、及び/又は芯材とろう材がクラッドされたサイドプレートとろう付けすることによって組み立てられている。すなわち、アルミニウム製の熱交換器は、各部材をろう付けすることにより組み立てられている。
このろう付けの際、ろう付けされるアルミニウム表面の酸化皮膜を除去するために、非腐食性のフッ化物系フラックスが使用されている。
Heat exchangers such as radiators, intercoolers, oil coolers and car heaters for transport aircraft are made of Al-Mn alloy, Al-Mn-Cu alloy, etc. The brazing material and the tube sheet and the header plate clad with the sacrificial anode material made of an Al—Zn alloy are brazed with the fin material and / or the side plate clad with the core material and the brazing material. It is assembled. That is, the heat exchanger made of aluminum is assembled by brazing each member.
During this brazing, a non-corrosive fluoride-based flux is used to remove the oxide film on the aluminum surface to be brazed.

アルミニウム製の熱交換器を構成する主要素である作動流体通路の構築には、芯材として3003合金等のAl−Mn系合金が使用され、その片面にろう材として4343合金や4045合金等のAl−Si系合金が、また他面に犠牲陽極材として7072合金等のAl−Zn系合金がそれぞれクラッドされたブレージングシートが用いられている。そして、このブレージングシートには、ろう付け性や耐食性が求められている。   For the construction of the working fluid passage which is the main element constituting the heat exchanger made of aluminum, an Al—Mn alloy such as 3003 alloy is used as a core material, and a solder material such as 4343 alloy or 4045 alloy is used on one side thereof. A brazing sheet is used in which an Al—Si alloy is clad and an Al—Zn alloy such as 7072 alloy is clad on the other surface as a sacrificial anode material. The brazing sheet is required to have brazing properties and corrosion resistance.

例えば、特許文献1で、Mn:0.5〜1.5重量%を含有するAl合金芯材に、Si:3〜15重量%を含有するAl合金ろう材、及びMn:0.05〜0.5重量%,Mg:0.05〜0.5重量%の一種又は二種とZn:0.05〜0.5重量%を含有するAl合金犠牲陽極材とがクラッドされた3層構造の耐孔食性及び機械的強度の優れた熱交換器用のAl合金複合管材が提案されている。   For example, in Patent Document 1, an Al alloy brazing material containing Si: 3 to 15 wt% in an Al alloy core material containing Mn: 0.5 to 1.5 wt%, and Mn: 0.05 to 0 .5 wt%, Mg: 0.05 to 0.5 wt% of one or two types and Zn: 0.05 to 0.5 wt% Al alloy sacrificial anode material clad with a three-layer structure Al alloy composite pipes for heat exchangers having excellent pitting corrosion resistance and mechanical strength have been proposed.

また、特許文献2で、Mn:0.7〜1.5重量%を含有するAl合金の芯材と、当該芯材に比して電気化学的に卑にして、Zn:0.1〜0.5重量%,Mg:0.1〜0.5重量%を含有し、不純物元素としてのFe:0.25重量%以下,Si:0.15重量%以下,Cu:0.05重量%以下であるAl合金の皮材からなるAl合金クラッド板で構成された耐隙間腐食性にすぐれたラジエータタンク材が提案されている。   Further, in Patent Document 2, a core material of Al alloy containing Mn: 0.7 to 1.5% by weight and an electrochemical base compared to the core material, Zn: 0.1 to 0 0.5% by weight, Mg: 0.1 to 0.5% by weight, Fe as impurity elements: 0.25% by weight or less, Si: 0.15% by weight or less, Cu: 0.05% by weight or less A radiator tank material excellent in crevice corrosion resistance composed of an Al alloy clad plate made of an Al alloy skin material has been proposed.

さらに、特許文献3では、Si:0.05〜0.8重量%,Fe:0.05〜0.6重量%,Mn:0.4〜1.6重量%,Mg:0.05〜0.5重量%を含有し、更にCr:0.3重量%以下,Zr:0.3重量%以下,Ti:0.3重量%以下のいずれか1種又は2種以上を含有するAl合金を芯材とし、その片面にAl−Si系合金ろう材を有し、他の片面に犠牲効果を有するAl合金であって、Mgを0.05重量%以上芯材のMg含有量以下の範囲内で含有したAl合金を有する高強度高耐食性アルミニウムブレージングシートが提案されている。
特開昭60−141844号公報 特許第2608890号公報 特開平5−43971号公報
Further, in Patent Document 3, Si: 0.05 to 0.8 wt%, Fe: 0.05 to 0.6 wt%, Mn: 0.4 to 1.6 wt%, Mg: 0.05 to 0 Al alloy containing 0.5% by weight, further containing Cr: 0.3% by weight or less, Zr: 0.3% by weight or less, Ti: 0.3% by weight or less An Al alloy having an Al-Si alloy brazing material on one side and a sacrificial effect on the other side, and having a Mg content of 0.05 wt% or more and not more than the Mg content of the core material. A high-strength, high-corrosion-resistant aluminum brazing sheet having an Al alloy contained in has been proposed.
JP-A-60-141844 Japanese Patent No. 2608890 JP-A-5-43971

しかしながら、最近では、熱交換器の軽量化やコスト軽減がますます要求されている。このため、作動流体経路材料,フィン材等の熱交換器構成材料を更に薄肉化することが必要になっている。作動流体経路構成材料には、十分なろう付け性,耐食性はもとより、高強度化が求められる。さらに作動流体経路構成材料を防食するために犠牲陽極効果も要求されている。特にラジエータのヘッダープレート材はろう付け後に、ゴムパッキン等を用いてプラスチック製部材との間でかしめられているが、作動流体経路構成材料の高強度化に伴い、前記かしめた部分が冷媒による繰り返しの加圧で疲労破壊しやすくなっている。このため耐疲労破壊特性も必要になっている。   Recently, however, there is an increasing demand for weight reduction and cost reduction of heat exchangers. For this reason, it is necessary to further reduce the thickness of the heat exchanger constituent materials such as the working fluid path material and the fin material. The working fluid path constituent material is required to have high strength as well as sufficient brazing and corrosion resistance. Furthermore, a sacrificial anode effect is also required to protect the working fluid path constituent material. Particularly, the header plate material of the radiator is caulked between the plastic members using rubber packing after brazing. However, as the working fluid path constituent material becomes stronger, the caulked portion is repeatedly used by the refrigerant. It is easy to break fatigue by pressurizing. For this reason, fatigue fracture resistance is also required.

高強度化を目的として、例えば3003合金芯材に0.05〜0.5%程度のMgを含有させることが普通に行われている。しかし含有Mgは、フラックスのF成分と反応してフラックスの効果を低下させてろう付け不良をおこさせる原因ともなっているため、芯材にMgを添加する技術は使い難い。また例えば7072合金犠牲陽極材に0.05〜0.5%程度のMgを含有させることも普通に行われている。しかしながら、7072合金には1質量%前後のZnが含有されている。そして、ラジエータのヘッドプレート材はろう付け後に、ゴムパッキン等を用いてプラスチック製部材との間でかしめられている。含有Znの影響により7072合金は比較的耐疲労破壊性が低く、前記かしめた部分が冷媒による繰り返しの加圧で疲労破壊しやすくなるため、7072合金犠牲陽極材にMgを添加する技術も使用し難い。   For the purpose of increasing the strength, for example, it is common practice to add about 0.05 to 0.5% Mg to a 3003 alloy core material. However, since Mg contained reacts with the F component of the flux to reduce the effect of the flux and cause brazing failure, the technique of adding Mg to the core material is difficult to use. For example, it is common practice to add about 0.05 to 0.5% Mg to a 7072 alloy sacrificial anode material. However, 7072 alloy contains about 1% by mass of Zn. The head plate material of the radiator is caulked between plastic members using rubber packing after brazing. The 7072 alloy has a relatively low fatigue fracture resistance due to the influence of Zn contained, and the caulked portion is easily damaged by repeated pressurization with a refrigerant. Therefore, a technique of adding Mg to the 7072 alloy sacrificial anode material is also used. hard.

前記で提案された各種のクラッド材も次のような問題点を有している。
すなわち、特許文献1では、芯材に耐孔食性向上を目的としたAl−Mn系の合金を使用しているが、強度、特にろう付け後の強度が十分でない。また芯材の電位が貴にならず、耐食性も不十分である。犠牲陽極材も耐食性の観点でのみ成分調整されているため、かしめ部の疲労特性の点で不十分である。さらにろう材に関しても、ろうの流動性に対する検討が不十分である。
The various clad materials proposed above have the following problems.
That is, in Patent Document 1, an Al—Mn alloy for the purpose of improving pitting corrosion resistance is used for the core material, but the strength, particularly the strength after brazing is not sufficient. Moreover, the potential of the core material is not noble and the corrosion resistance is insufficient. Since the sacrificial anode material is also adjusted only in terms of corrosion resistance, the sacrificial anode material is insufficient in terms of the fatigue characteristics of the caulking portion. In addition, regarding the brazing material, the study on the fluidity of the brazing is insufficient.

特許文献2で提案されたクラッド材は、芯材と犠牲陽極材としての皮材からなる2層構造のラジエータ材である。ろう材について記載されておらず、適正なろう付け性を得るためのろうの流動性の調整が必要であることは示されていない。芯材については、特許文献1と同様、耐食性を目的としたAl−Mn合金であり、強度、特にろう付け後の強度が十分でない。また芯材の電位が貴にならず、耐食性も不十分である。さらに、皮材についても、耐孔食性の観点でのみ成分調整されているため、かしめ部の疲労特性の点で不十分である。   The clad material proposed in Patent Document 2 is a radiator material having a two-layer structure including a core material and a skin material as a sacrificial anode material. It does not describe the brazing material, and it does not indicate that it is necessary to adjust the flowability of the brazing to obtain proper brazing properties. The core material is an Al—Mn alloy for the purpose of corrosion resistance as in Patent Document 1, and the strength, particularly the strength after brazing, is not sufficient. Moreover, the potential of the core material is not noble and the corrosion resistance is insufficient. Furthermore, the skin material is also adjusted only from the viewpoint of pitting corrosion resistance, so that it is insufficient in terms of the fatigue characteristics of the caulking portion.

さらに、特許文献3で提案されたクラッド材は、芯材にMgを含有するAl−Mn系合金を用いているため、フッ化物系の非腐食性フラックスを用いてろう付けすると、Mgとフラックスとが反応してろう付け不良が起きやすくなる。また上記特許文献1,2と同様、強度、特にろう付け後の強度が十分でないばかりか、芯材の電位が貴にならず、耐食性も不十分である。犠牲陽極材も強度向上と耐食性の観点でのみ成分調整されているため、かしめ部の疲労特性の点で不十分である。ろう材に関しては、通常用いられるJIS4004合金やJIS4045合金が用いられているが、このような合金ではSi含有量が9.7〜10.0%であり、ろう材の流動性が良くなりすぎ、エロージョン(すなわち下地=芯材の融解)を起しやすくなる。   Furthermore, since the cladding material proposed in Patent Document 3 uses an Al-Mn alloy containing Mg as a core material, when brazing using a fluoride-based non-corrosive flux, Mg and flux Reacts easily to brazing defects. In addition, as in Patent Documents 1 and 2, not only the strength, particularly the strength after brazing, is not sufficient, but the potential of the core material is not noble and the corrosion resistance is insufficient. The sacrificial anode material is also inadequate in terms of the fatigue characteristics of the caulking portion because the components are adjusted only in terms of strength improvement and corrosion resistance. As for the brazing material, a commonly used JIS4004 alloy or JIS4045 alloy is used, but in such an alloy, the Si content is 9.7 to 10.0%, and the fluidity of the brazing material becomes too good. Erosion (that is, the base material = melting of the core material) is likely to occur.

本発明は、このような問題を解消すべく案出されたものであり、高強度、特にろう付け後に高強度を呈するばかりでなく、優れた耐食性及び曲げ疲労特性を有し、ろう材の流動性が適切で、フッ化物系の非腐食性フラックスを用いてろう付けしても、ろう付け不良やエロージョン(下地・芯材の融解)を発生させることのない三層構造のクラッド材からなる熱交換器用アルミニウム合金ブレージングシートを提供することを目的とする。   The present invention has been devised to solve such problems, and not only exhibits high strength, particularly high strength after brazing, but also has excellent corrosion resistance and bending fatigue characteristics, Heat consisting of a clad material with a three-layer structure that is suitable and that does not cause brazing failure or erosion (melting of the base / core material) even when brazed using a fluoride-based non-corrosive flux It aims at providing the aluminum alloy brazing sheet for exchangers.

本発明の熱交換器用アルミニウム合金ブレージングシートは、その目的を達成するため、Si:0.3〜1.0質量%,Fe:0.3〜0.8質量%,Mn:0.8〜1.6質量%,Cu:0.5〜0.9質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金を芯材とし、その片面に、Mg:0.2〜0.6質量%,Zn:0.1〜0.3質量%を含み、残部がAl及び不可避的不純物からなるアルミニウム合金を犠牲陽極材として、他の片面に、Si:6.5〜8.5質量%,Fe:0.15〜0.6質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金をろう材とした三層構造のアルミニウム合金クラッド材からなることを特徴とする。   In order to achieve the object, the aluminum alloy brazing sheet for a heat exchanger of the present invention has Si: 0.3 to 1.0% by mass, Fe: 0.3 to 0.8% by mass, Mn: 0.8 to 1 .6% by mass, Cu: 0.5 to 0.9% by mass, Mg as an impurity is regulated to 0.05% by mass or less, and the balance is an aluminum alloy composed of Al and inevitable impurities. On one side, Mg: 0.2-0.6% by mass, Zn: 0.1-0.3% by mass, and the other side by using an aluminum alloy consisting of Al and inevitable impurities as the sacrificial anode material In addition, Si: 6.5 to 8.5% by mass, Fe: 0.15 to 0.6% by mass, Mg as an impurity is regulated to 0.05% by mass or less, and the balance is Al and inevitable impurities Aluminum alloy with a three-layer structure using an aluminum alloy composed of Characterized in that an alloy cladding material.

また、本発明の熱交換器用アルミニウム合金ブレージングシート製造方法は、Si:0.3〜1.0質量%,Fe:0.3〜0.8質量%,Mn:0.8〜1.6質量%,Cu:0.5〜0.9質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金を580〜620℃で1〜15時間、又は/さらに引き続き440〜490℃で1〜6時間の均質化処理を施した後、当該アルミニウム合金を芯材とし、その片面に、Mg:0.2〜0.6質量%,Zn:0.1〜0.3質量%を含み、残部がAl及び不可避的不純物からなるアルミニウム合金を犠牲陽極材として、他の片面に、Si:6.5〜8.5質量%,Fe:0.15〜0.6質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金をろう材とした三層構造のアルミニウム合金クラッド材を得ることを特徴とする。   Moreover, the aluminum alloy brazing sheet manufacturing method for a heat exchanger according to the present invention includes Si: 0.3 to 1.0 mass%, Fe: 0.3 to 0.8 mass%, Mn: 0.8 to 1.6 mass%. %, Cu: 0.5 to 0.9 mass%, Mg as an impurity is regulated to 0.05 mass% or less, and an aluminum alloy consisting of Al and unavoidable impurities is 580 to 620 ° C. After homogenization treatment for 15 hours or / and subsequently at 440 to 490 ° C. for 1 to 6 hours, the aluminum alloy is used as a core material, and Mg: 0.2 to 0.6% by mass, Zn on one side : Aluminum alloy containing 0.1 to 0.3% by mass, the balance being Al and inevitable impurities as a sacrificial anode material, Si: 6.5 to 8.5% by mass, Fe: 0 on the other side Mg containing 15 to 0.6% by mass as impurities Restricted to 0.05 wt% or less, the balance being obtained an aluminum alloy clad material of a three-layer structure in which the aluminum alloy brazing material made of Al and unavoidable impurities.

本発明の三層構造クラッド材からなる熱交換器用アルミニウム合金ブレージングシートは、それを構成する芯材,犠牲陽極材及びろう材のそれぞれが、必要とする特性を発揮するように成分調整されている。
このため、ろう付け性に優れるとともに、ろう付け後にあっても耐食性に優れるばかりでなく、繰り返し加圧を受けても亀裂が発生し難いので優れた耐食性を維持することができる。しかも、芯材として用いられるアルミニウム合金が予め適正に均質化処理されており、特にろう付け後に適正な強度が得られるため、かしめ構造で用いられても、かしめ部における亀裂の発生が抑制される。
したがって、本発明により、耐食性や疲労特性に優れた熱交換器をろう付け法で製造する際の好適な素材を提供することができる。
The aluminum alloy brazing sheet for a heat exchanger made of the three-layer structure clad material according to the present invention has its components adjusted so that each of the core material, the sacrificial anode material, and the brazing material constituting the aluminum alloy brazing sheet exhibits the required characteristics. .
For this reason, it is excellent in brazing property and not only excellent in corrosion resistance even after brazing, but also maintains excellent corrosion resistance because cracks hardly occur even when repeatedly subjected to pressure. In addition, the aluminum alloy used as the core material is appropriately homogenized in advance, and an appropriate strength can be obtained particularly after brazing. Therefore, even when used in a caulking structure, the occurrence of cracks in the caulking portion is suppressed. .
Therefore, according to the present invention, it is possible to provide a suitable material for manufacturing a heat exchanger excellent in corrosion resistance and fatigue characteristics by the brazing method.

本発明者等は、三層構造クラッド材からなる熱交換器用アルミニウム合金ブレージングシートの各層を構成するアルミニウム合金の、それぞれの所望特性を再検討するとともに、それぞれの所望特性を発揮する成分組成について検討を重ねた。
その結果、まず熱交換器を構成するアルミニウム合金となる三層構造クラッド材の芯材としては、Si:0.3〜1.0質量%,Fe:0.3〜0.8質量%,Mn:0.8〜1.6質量%,Cu:0.5〜0.9質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金が好ましいことを見出した。
The present inventors reexamined each desired characteristic of the aluminum alloy constituting each layer of the aluminum alloy brazing sheet for a heat exchanger made of a three-layer clad material, and examined the component composition that exhibits each desired characteristic. Repeated.
As a result, first, as a core material of a three-layer structure clad material that becomes an aluminum alloy constituting a heat exchanger, Si: 0.3 to 1.0 mass%, Fe: 0.3 to 0.8 mass%, Mn : Aluminum containing 0.8 to 1.6% by mass, Cu: 0.5 to 0.9% by mass, Mg as impurities being regulated to 0.05% by mass or less, the balance being Al and inevitable impurities We have found that alloys are preferred.

このような合金組成に限定した理由は次の通りである。
Siは、強度向上に寄与する元素である。マトリックス中に固溶したり、MnやFeと金属間化合物を作ったりして強度を向上させる。ただし、その含有量が0.3質量%に満たないと、所望の強度、特にろう付け後の強度が十分でない。また逆に1.0質量%を超えて多量に含有させると、ろう付け加熱時にろうの拡散を大きくしたり、芯材の溶融開始温度を低下させたりして、ろう付け性を低下させることになる。したがって、強度向上及びろう付け性確保の観点から、Si含有量は0.3〜1.0質量%の範囲とする。好ましくは0.3〜0.8質量%である。
The reason for limiting to such an alloy composition is as follows.
Si is an element that contributes to strength improvement. Strength is improved by forming a solid solution in the matrix or making an intermetallic compound with Mn or Fe. However, if the content is less than 0.3% by mass, the desired strength, particularly the strength after brazing, is not sufficient. On the contrary, if it is contained in a large amount exceeding 1.0% by mass, brazing diffusion is increased during brazing heating, or the melting start temperature of the core material is lowered, thereby reducing brazing properties. Become. Therefore, from the viewpoint of improving strength and securing brazing properties, the Si content is in the range of 0.3 to 1.0 mass%. Preferably it is 0.3-0.8 mass%.

Feは、熱間圧延性及び強度向上に寄与する。しかも、SiやCuを多く含むアルミニウム合金において溶融開始温度を上昇させる作用を有している。さらに、MnやSiとともに金属間化合物を形成し、強度を向上させる。その含有量が0.3質量%に満たないと、十分な熱間圧延性が得られないばかりでなく、所望の強度、特にろう付け後の強度が得られない。また芯材の溶融開始温度を低下させ、ろう付け性を低下させる。逆に、0.8質量%を超えると、耐食性が低下する。また0.8質量%を超えるか、Mnと合わせて2.4質量%を超えると、鋳造時に巨大な晶出物が出現して鋳造割れを起しやすい。したがって、熱間圧延性や鋳造性の確保、強度や耐食性の向上の観点から、Fe含有量は0.3〜0.8質量%の範囲とする。好ましくは0.4〜0.7質量%である。   Fe contributes to hot rollability and strength improvement. And it has the effect | action which raises a melting start temperature in the aluminum alloy containing many Si and Cu. Furthermore, an intermetallic compound is formed with Mn and Si, and strength is improved. If the content is less than 0.3% by mass, not only the sufficient hot rolling property can be obtained, but also the desired strength, particularly the strength after brazing cannot be obtained. Moreover, the melting start temperature of a core material is reduced, and brazing property is reduced. On the contrary, when it exceeds 0.8 mass%, corrosion resistance will fall. On the other hand, if it exceeds 0.8% by mass, or exceeds 2.4% by mass together with Mn, a large crystallized substance appears during casting and casting cracks are likely to occur. Therefore, from the viewpoint of ensuring hot rollability and castability, and improving strength and corrosion resistance, the Fe content is in the range of 0.3 to 0.8 mass%. Preferably it is 0.4-0.7 mass%.

Mnは、マトリックス中に固溶して強度を向上させる。しかも、SiやCuを多く含むアルミニウム合金において溶融開始温度を上昇させる作用を有している。さらに、MnはFeやSiとともに金属間化合物を形成し、強度を向上させる。その含有量が0.8質量%に満たないと、所望の強度、特にろう付け後の強度が得られない。また芯材の溶融開始温度を低下させ、ろう付け性を低下させる。逆に、1.6質量%を超えるか、Feと合わせて2.4質量%を超えると、鋳造時に巨大な晶出物が出現して鋳造割れを起しやすい。したがって、熱間圧延性や鋳造性の確保、ろう付け性や強度の向上の観点から、Mn含有量は0.8〜1.6質量%の範囲とする。好ましくは0.9〜1.5質量%である。   Mn is dissolved in the matrix to improve the strength. And it has the effect | action which raises a melting start temperature in the aluminum alloy containing many Si and Cu. Furthermore, Mn forms an intermetallic compound with Fe and Si, and improves the strength. If the content is less than 0.8% by mass, desired strength, particularly strength after brazing cannot be obtained. Moreover, the melting start temperature of a core material is reduced, and brazing property is reduced. Conversely, if it exceeds 1.6% by mass or exceeds 2.4% by mass in combination with Fe, a large crystallized substance appears during casting, and casting cracks are likely to occur. Therefore, the Mn content is in the range of 0.8 to 1.6% by mass from the viewpoint of ensuring hot rollability and castability, and improving brazing and strength. Preferably it is 0.9-1.5 mass%.

Cuは、強度や耐食性を向上させる。Cuはマトリックス中に固溶して存在し、強度向上に寄与する。さらに芯材の電位を貴にして耐食性を向上させる。その含有量が0.5質量%に満たないと、所望の強度、特にろう付け後の強度が得られない。また芯材の電位が貴にならず、耐食性を向上させる作用が発現しない。逆に、0.9質量%を超えると、粒界にCu系の金属間化合物が形成されて耐食性が低下するばかりでなく、芯材の溶融開始温度が低下してろう付け性も低下する。したがって、強度,耐食性,或いはろう付け性の向上の観点から、Cu含有量は0.5〜0.9質量%の範囲とする。   Cu improves strength and corrosion resistance. Cu exists as a solid solution in the matrix and contributes to strength improvement. Furthermore, the corrosion resistance is improved by making the potential of the core material noble. If the content is less than 0.5% by mass, desired strength, particularly strength after brazing cannot be obtained. Further, the potential of the core material is not noble, and the effect of improving the corrosion resistance is not exhibited. On the other hand, if it exceeds 0.9 mass%, not only the Cu-based intermetallic compound is formed at the grain boundary and the corrosion resistance is lowered, but also the melting start temperature of the core material is lowered and the brazing property is also lowered. Therefore, from the viewpoint of improving strength, corrosion resistance, or brazing property, the Cu content is set to a range of 0.5 to 0.9 mass%.

Mgは、ろう付け性を阻害する元素である。Mgを含有するアルミニウム合金をフッ化アルミニウム系の非腐食性フラックスを用いてろう付けすると、フラックス成分のFとMgが反応してフラックスの効果を低減する。フラックスの使用量を少なくする意味からは、Mg含有量は0.05質量%、好ましくは0.03質量%を上限とする。   Mg is an element that inhibits brazing. When an aluminum alloy containing Mg is brazed using an aluminum fluoride-based non-corrosive flux, the flux components F and Mg react to reduce the effect of the flux. From the viewpoint of reducing the amount of flux used, the Mg content is 0.05% by mass, preferably 0.03% by mass.

三層構造クラッド材の犠牲陽極材としては、Mg:0.2〜0.6質量%,Zn:0.1〜0.3質量%を含み、残部がAl及び不可避的不純物からなるアルミニウム合金が好ましいことを見出した。
このような合金組成に限定した理由は次の通りである。
As the sacrificial anode material of the three-layer structure clad material, an aluminum alloy containing Mg: 0.2 to 0.6% by mass, Zn: 0.1 to 0.3% by mass with the balance being Al and inevitable impurities is used. I found it preferable.
The reason for limiting to such an alloy composition is as follows.

Mgは、強度及び耐食性を向上させる。Mgはマトリックス中に固溶して強度を向上させる。さらに、犠牲陽極材の電位を卑にして犠牲陽極機能を向上させる。しかし、その含有量が0.2質量%に満たないと、犠牲陽極材の電位が卑にならず、犠牲陽極機能が発揮されない。逆に、0.6質量%を超えると粒界に沿って存在するようになって粒界腐食が起こりやすくなり、かえって耐食性が低下するようになる。したがって強度や耐食性向上の観点から、Mg含有量は0.2〜0.6質量%の範囲とする。好ましくは0.3〜0.5質量%である。   Mg improves strength and corrosion resistance. Mg is dissolved in the matrix to improve the strength. Furthermore, the sacrificial anode function is improved by lowering the potential of the sacrificial anode material. However, if the content is less than 0.2% by mass, the potential of the sacrificial anode material is not low, and the sacrificial anode function is not exhibited. On the contrary, when it exceeds 0.6 mass%, it will exist along a grain boundary and it will become easy to occur intergranular corrosion, and corrosion resistance will fall on the contrary. Therefore, from the viewpoint of improving strength and corrosion resistance, the Mg content is in the range of 0.2 to 0.6 mass%. Preferably it is 0.3-0.5 mass%.

Znは、耐食性を向上させる。Znはマトリックス中に固溶して存在し、犠牲陽極材の電位を卑にして犠牲陽極機能を向上させる。しかし、その含有量が0.1質量%に満たないと、犠牲陽極材の電位が卑にならず、犠牲陽極機能が発揮されない。逆に、0.3質量%を超えると粒界に沿って存在するようになり、繰り返し加圧されて使用されるときに粒界が脆くなり、割れが生じやすくなる。したがって耐食性や繰り返し疲労特性の向上の観点から、Zn含有量は0.1〜0.3質量%の範囲とする。好ましくは0.15〜0.25質量%である。   Zn improves the corrosion resistance. Zn exists as a solid solution in the matrix, and improves the sacrificial anode function by lowering the potential of the sacrificial anode material. However, if the content is less than 0.1% by mass, the potential of the sacrificial anode material is not low, and the sacrificial anode function is not exhibited. On the contrary, when it exceeds 0.3 mass%, it comes to exist along the grain boundary, and when it is repeatedly used under pressure, the grain boundary becomes brittle, and cracking tends to occur. Therefore, from the viewpoint of improving corrosion resistance and repeated fatigue characteristics, the Zn content is in the range of 0.1 to 0.3% by mass. Preferably it is 0.15-0.25 mass%.

三層構造クラッド材のろう材としては、Si:6.5〜8.5質量%,Fe:0.15〜0.6質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金が好ましいことを見出した。
このような合金組成に限定した理由は次の通りである。
The brazing material of the three-layer clad material includes Si: 6.5 to 8.5% by mass, Fe: 0.15 to 0.6% by mass, and Mg as an impurity is regulated to 0.05% by mass or less. Then, the inventors have found that an aluminum alloy whose balance is made of Al and inevitable impurities is preferable.
The reason for limiting to such an alloy composition is as follows.

ろう材に含まれるSiの量は、ろう材層の厚さとともに、ろう付け性に大きく寄与する。Siは、ろう材の流動性に大きく影響する元素である。本発明ではろう付け性の観点からSi含有量を規定した。Si量が6.5質量%に満たないと、ろうの流動性が低下し、ろう付けされない箇所が発生してしまう。逆に8.5質量%を超えて多量に含有させると、ろう付け加熱時にろうの流動性が増して芯材に拡散して芯材を侵食(ろう材と芯材の共融による芯材の融解)させてしまったり、材料同士の熱容量の差異によってろう付け加熱後の冷却時にろう付けに必要な部分よりろうが流れてしまい、ろう付けされなかったりして、ろう付け性が低下する。したがって、ろうの流動性の観点から、Si含有量は6.5〜8.5質量%の範囲とする。好ましくは6.8〜8.0質量%である。   The amount of Si contained in the brazing material greatly contributes to the brazing property as well as the thickness of the brazing material layer. Si is an element that greatly affects the fluidity of the brazing material. In the present invention, the Si content is defined from the viewpoint of brazing. When the amount of Si is less than 6.5% by mass, the fluidity of the braze is lowered, and a portion that is not brazed occurs. On the other hand, if the content exceeds 8.5% by mass, the braze fluidity increases during brazing heating and diffuses into the core material, eroding the core material (of the core material due to eutectic melting of the brazing material and the core material). The brazing property is lowered due to the difference between the heat capacities of the materials and the flow of brazing from the portion necessary for brazing at the time of cooling after brazing heating. Therefore, from the viewpoint of wax fluidity, the Si content is in the range of 6.5 to 8.5 mass%. Preferably it is 6.8-8.0 mass%.

Feは、熱間圧延性やろうの流動性を良くする作用を有する。しかし、Feの含有量が0.15質量%に満たないと、十分な熱間圧延性を有するろう材にはならない。逆に、0.6質量%を超えると、ろうの流動性はかえって低下する。したがって、熱間圧延性やろうの流動性の観点から、Fe含有量は0.15〜0.6質量%の範囲とする。好ましくは0.2〜0.55質量%である。   Fe has the effect | action which improves the hot-rollability and the fluidity | liquidity of a brazing. However, if the Fe content is less than 0.15% by mass, the brazing material will not have sufficient hot rolling properties. On the contrary, when it exceeds 0.6% by mass, the fluidity of the wax is lowered. Therefore, from the viewpoint of hot rollability and brazing fluidity, the Fe content is set to a range of 0.15 to 0.6 mass%. Preferably it is 0.2-0.55 mass%.

Mgは、ろう付け性を阻害する元素である。Mgを含有するアルミニウム合金をフッ化アルミニウム系の非腐食性フラックスを用いてろう付けすると、フラックス成分のFとMgが反応してフラックスの効果を低減する。フラックスの使用量を少なくする意味からは、Mg含有量は0.05質量%、好ましくは0.03質量%を上限とする。   Mg is an element that inhibits brazing. When an aluminum alloy containing Mg is brazed using an aluminum fluoride-based non-corrosive flux, the flux components F and Mg react to reduce the effect of the flux. From the viewpoint of reducing the amount of flux used, the Mg content is 0.05% by mass, preferably 0.03% by mass.

ところで、ヘッダープレートとしての三層構造のブレージングシートは、ろう付けされる前に成型加工されるために、十分なプレス成形性を備えていることが必要である。焼きなましにより軟らかく調質されて(以下、「O材調質」と記す。)使用される場合、十分な成形性を持たせるためには、適正な引張強度を有し、ブレージングシート芯材の結晶粒径を細かく調整する必要がある。
また、O材調質のブレージングシートにはプレス成形等により成形時に歪みが加わるために、その部分がろう付け加熱時に亜結晶組織が生じ、エロージョン(芯材の融解)が局所的に生じる。ブレージングシート芯材のエロージョンを防止するためには、低歪みの領域でもろう材溶融前に再結晶しやすい組織とすることが必要である。
By the way, a brazing sheet having a three-layer structure as a header plate is required to have sufficient press formability in order to be molded before being brazed. When used after being softly tempered by annealing (hereinafter referred to as “O material tempering”), in order to have sufficient formability, it has an appropriate tensile strength and is a crystal of a brazing sheet core material. It is necessary to finely adjust the particle size.
In addition, since a brazing sheet having a tempered O material is distorted during molding by press molding or the like, a subcrystalline structure is formed in the portion during brazing heating, and erosion (melting of the core material) occurs locally. In order to prevent erosion of the brazing sheet core material, it is necessary to make the structure easy to recrystallize before melting the brazing material even in a low strain region.

これらを十分に満足させるために、ブレージングシート芯材に均質化処理を施し、Mn,Fe,Si,Cu等の合金元素の固溶状態を制御するとともに、金属間化合物粒子をある程度粗大に、また分布を疎に制御する必要がある。そのためには、580〜620℃で1〜15時間、またはさらに引き続き440〜490℃で1〜6時間の均質化処理を施す必要がある。
均質化処理温度が580℃に満たないと、微細な金属間化合物が高い密度で存在することになる。このため、O材調質で使用される場合に、最終焼鈍時に粗大な結晶粒となり、また引張強度も高くなってしまう。逆に、均質化処理温度が620℃よりも高温では、金属間化合物粒子が固溶してしまって好ましくないばかりか、エネルギーロスとなってしまう。
In order to satisfactorily satisfy these, the brazing sheet core material is subjected to homogenization treatment to control the solid solution state of alloy elements such as Mn, Fe, Si, Cu, etc., and the intermetallic compound particles are coarsened to some extent. It is necessary to control the distribution sparsely. For this purpose, it is necessary to perform a homogenization treatment at 580 to 620 ° C. for 1 to 15 hours, or further at 440 to 490 ° C. for 1 to 6 hours.
When the homogenization treatment temperature is less than 580 ° C., fine intermetallic compounds exist at a high density. For this reason, when it uses by O material refining, it becomes a coarse crystal grain at the time of final annealing, and tensile strength will also become high. On the other hand, when the homogenization temperature is higher than 620 ° C., the intermetallic compound particles are not preferable because they are dissolved, and energy loss occurs.

また、均質化処理時間が1時間に満たないと、金属間化合物粒子の制御が十分でない。一方、長時間行うことはエネルギーロスとなり好ましくない。
引き続き440〜480℃の温度に降温して保持することで、固溶しているMn,Si,Fe,Cu等の元素が析出してある程度粗大な金属間化合物がより大きくなり、より好ましい。保持温度が440℃に満たないと固溶元素の析出が十分でなく、ある程度粗大化した金属間化合物のさらなる粗大化が起きないばかりか、降温に時間がかかりすぎエネルギーロスになってしまう。逆に480℃よりも高温だと、その前の均質化処理温度との温度差がなく、固溶元素の析出が十分に進行しないためにある程度粗大化した金属間化合物のさらなる粗大化は起きない。
また、降温・保持時間が1時間に満たないと、固溶元素の析出が十分ではなくある程度粗大化した金属間化合物粒子がより大きくなることはない。一方、長時間行うことはエネルギーロスとなり好ましくない。
Moreover, if the homogenization treatment time is less than 1 hour, the control of intermetallic compound particles is not sufficient. On the other hand, it is not preferable to perform the treatment for a long time because energy loss occurs.
Subsequently, by lowering the temperature to 440 to 480 ° C. and holding it, an element such as Mn, Si, Fe, Cu or the like dissolved in the solid precipitates, and a somewhat coarse intermetallic compound becomes more preferable. If the holding temperature is less than 440 ° C., precipitation of solid solution elements is not sufficient, and further coarsening of the intermetallic compound coarsened to some extent does not occur, and it takes too much time to cool down, resulting in energy loss. Conversely, when the temperature is higher than 480 ° C., there is no temperature difference from the previous homogenization treatment temperature, and precipitation of solid solution elements does not proceed sufficiently, so that further coarsening of the intermetallic compound coarsened to some extent does not occur. .
Further, if the temperature lowering / holding time is less than 1 hour, solid solution element precipitation is not sufficient, and the intermetallic compound particles coarsened to some extent do not become larger. On the other hand, it is not preferable to perform the treatment for a long time because energy loss occurs.

なお、芯材に均質化処理を施さないと、クラッド圧延された三層構造ブレージングシートの引張強度が高すぎ、また結晶粒径も大きくなりすぎて成形性が悪く、かしめ成型し難くなる。
ブレージングシートは、芯材の両面にろう材と犠牲陽極材を配し、熱間圧延でクラッドされるが、この熱延前の加熱は通常500℃以下の温度で行われる。この温度の選定理由は、ろう材の固相線温度が577℃程度であるために、ろう材を溶融させることのない温度に止める必要があるからである。この熱延前の加熱温度は、前記した均質化処理温度の内、低すぎるために均質化処理効果が得られなかった温度範囲と一致し、前記所定値未満の温度で均質化処理を行ったと同様に、芯材の金属組織には微細な金属間化合物が高い密度で存在することになって、最終焼鈍時に粗大な結晶粒となり、また引張強度も高くなってしまう。すなわち、好ましいブレージングシートは得られない。
If the core material is not homogenized, the clad-rolled three-layer brazing sheet is too high in tensile strength and too large in crystal grain size, resulting in poor formability and difficulty in caulking.
The brazing sheet is provided with a brazing material and a sacrificial anode material on both sides of a core material, and is clad by hot rolling. The heating before hot rolling is usually performed at a temperature of 500 ° C. or less. The reason for selecting this temperature is that since the solidus temperature of the brazing material is about 577 ° C., it is necessary to stop at a temperature at which the brazing material is not melted. The heating temperature before hot rolling coincides with the temperature range in which the homogenization effect was not obtained because it was too low among the above-mentioned homogenization temperatures, and the homogenization was performed at a temperature lower than the predetermined value. Similarly, a fine intermetallic compound is present in the metal structure of the core material at a high density, resulting in coarse crystal grains during final annealing and a high tensile strength. That is, a preferable brazing sheet cannot be obtained.

以下に、熱交換器用アルミニウム合金ブレージングシートを構成する三層構造クラッド材の各層として、各種のアルミニウム合金を組み合わせたクラッド材を試作し、ろう付け性等の評価を試みた。   Below, as each layer of the three-layer structure clad material constituting the aluminum alloy brazing sheet for a heat exchanger, a clad material combining various aluminum alloys was prototyped, and an evaluation of brazing property and the like was attempted.

実施例1:
芯材用のアルミニウム合金として、表1に示す成分組成を有する各種の合金溶湯を溶製し、セラミック製フィルターを通過させてDC鋳造によりスラブを得た。この芯材用スラブを,50℃/hrで昇温して600℃で10時間保持した後に50℃/hrで冷却して450℃で5時間保持する均質化処理を施して放冷した。
さらに、表2にLで示す犠牲陽極材用アルミニウム合金及び表3にRで示すろう材用アルミニウム合金を、それぞれ個別に面削,均質化処理,熱間圧延した。
Example 1:
As the aluminum alloy for the core material, various alloy melts having the component compositions shown in Table 1 were melted, passed through a ceramic filter, and a slab was obtained by DC casting. The core slab was heated at 50 ° C./hr and held at 600 ° C. for 10 hours, then cooled at 50 ° C./hr and held at 450 ° C. for 5 hours, and allowed to cool.
Furthermore, the aluminum alloy for sacrificial anode materials indicated by L in Table 2 and the aluminum alloy for brazing materials indicated by R in Table 3 were individually face-cut, homogenized, and hot-rolled.

そして、両表面を面削した上記芯材用アルミニウム合金板の両面に、それぞれクラッド率が10%になるように表4に示すような各種の組合せで犠牲陽極材及びろう材を積み重ねた後、50℃/hrで昇温し、480℃で3時間保持した後に熱間でクラッド圧延し、6mm厚の各種クラッド材を得た。
さらに冷間圧延を施して1.5mm厚とした後、400℃まで50℃/hrの速度で昇温して同温度2時間保持した後50℃/hrの冷却速度で100℃まで冷却して軟化させる最終焼鈍を施した。
Then, after stacking the sacrificial anode material and the brazing material in various combinations as shown in Table 4 so that the cladding rate is 10% on both surfaces of the above-mentioned aluminum alloy plate for core material, both surfaces of which are chamfered, The temperature was raised at 50 ° C./hr, held at 480 ° C. for 3 hours, and then hot rolled to obtain various clad materials with a thickness of 6 mm.
Further, after cold rolling to a thickness of 1.5 mm, the temperature was raised to 400 ° C. at a rate of 50 ° C./hr and held for 2 hours, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hr. The final annealing to soften was performed.

Figure 2006152325
Figure 2006152325

Figure 2006152325
Figure 2006152325

Figure 2006152325
Figure 2006152325

上記手段で得た各種クラッド材について、以下に示すような、素材引張試験,ろう付け温度加熱後の引張試験及び耐食性試験,ろう付け性試験,並びにコアのかしめ性試験を行って、各種特性を評価した。
(1)素材引張試験
クラッド材から、圧延方向にJIS 5号試験片を切り出し、引張試験を行って抗張力及び耐力を測定した。
Various clad materials obtained by the above means are subjected to material tensile test, tensile test after brazing temperature heating and corrosion resistance test, brazing test, and caulking test of core as shown below. evaluated.
(1) Material tensile test A JIS No. 5 test piece was cut out from the clad material in the rolling direction, and a tensile test was performed to measure the tensile strength and the yield strength.

(2)ろう付け後の引張試験及び耐食性試験
クラッド材を、ろう付け条件を想定して、窒素ガス雰囲気中で25℃/hrの速度で昇温して600℃になったところで3.5分保持し、その後100℃/hrの冷却速度で室温まで冷却する加熱処理を施した。その後、圧延方向にJIS 5号試験片を切り出し、引張試験を行って抗張力及び耐力を測定した。また、加熱処理を施したクラッド材のろう材面をマスキングした後に、Cl-:195ppm,SO4 2-:60ppm,Cu2+:1ppm,Fe2+:30ppmの室温の溶液中に4週間浸漬した後の最大孔食深さを、光学顕微鏡の焦点深度法で測定した。さらに粒界腐食の有無も観察した。
(2) Tensile test and corrosion resistance test after brazing The clad material was heated at a rate of 25 ° C./hr in a nitrogen gas atmosphere at a rate of 600 ° C. for 3.5 minutes assuming brazing conditions. Then, heat treatment was performed to cool to room temperature at a cooling rate of 100 ° C./hr. Thereafter, a JIS No. 5 test piece was cut out in the rolling direction, and a tensile test was performed to measure the tensile strength and the yield strength. Moreover, after masking the brazing filler metal surface of the heat-treated clad material, it was immersed in a room temperature solution of Cl : 195 ppm, SO 4 2− : 60 ppm, Cu 2+ : 1 ppm, Fe 2+ : 30 ppm for 4 weeks. Then, the maximum pitting depth was measured by the depth of focus method of an optical microscope. Furthermore, the presence or absence of intergranular corrosion was also observed.

(3)ろう付け性試験
溶剤脱脂後、それぞれの表面にKAlF4とK3AlF6の混合組成からなる非腐食性フッ化物系フラックスを2g/m2塗布したJIS A3003アルミニウム合金板を基板としてそれぞれ実施例及び比較例により得られた高さ25mm,長さ40mmの板を垂直に固定し、いわゆる逆T字試験形状にして、以下の条件でろう付けした。窒素ガス雰囲気炉中において、50℃/分の昇温速度で加熱し、600℃になったところで5分間保持した後、ろう付け炉から取り出して室温まで空冷した。
冷却後、ろう付け面を観察し、芯材の侵食状態を調べた。芯材の侵食が軽微なものを良(○)とし、芯材の侵食が激しくろう材と芯材の共融が顕著であったものを不良(×)とした。
(3) Brazing property test After solvent degreasing, JIS A3003 aluminum alloy plate coated with 2 g / m 2 of non-corrosive fluoride flux composed of a mixed composition of KAlF 4 and K 3 AlF 6 on each surface was used as a substrate. The plates having a height of 25 mm and a length of 40 mm obtained according to the examples and comparative examples were fixed vertically to form a so-called inverted T-shaped test shape and brazed under the following conditions. In a nitrogen gas atmosphere furnace, it was heated at a rate of temperature increase of 50 ° C./min, held at 600 ° C. for 5 minutes, then taken out of the brazing furnace and air cooled to room temperature.
After cooling, the brazed surface was observed to examine the erosion state of the core material. Slightly eroded core material was evaluated as good (◯), and core material eroded severely and eutectic between the brazing material and the core material was marked as poor (×).

(4)コアのかしめ性試験
ろう付け後に、ラジエータコアのヘッダープレート部を、ゴムパッキンを用いて樹脂製タンク部材との間でかしめたときの、ヘッダープレートの割れの有無を目視にて観察した。割れがないものを良(○)とし、割れが発生したものを不良(×)とした。
なお、ラジエータコアの作製は、それぞれの表面にKAlF4とK3AlF6の混合組成からなる非腐食性フッ化物系フラックスを2g/m2塗布した後、窒素ガス雰囲気炉中において、25℃/分の昇温速度で加熱し、600℃になったところで5分間保持した後、100℃/分の冷却速度で空冷するろう付けで行った。また、ラジエータコアは、実施例のブレージングシートをヘッダープレートとして成形加工し、成形加工されたフィン材として、JIS 3N03合金の板厚70μmの板を、偏平チューブ材として、JIS 3003合金芯材にJIS 4045合金ろう材とJIS 7072合金犠牲陽極材をクラッドしたB型のチューブを用いた。
それぞれの評価試験結果を表4に併せて示す。
(4) Caulking test of core After brazing, the header plate of the radiator core was visually observed for cracking of the header plate when it was caulked with a resin tank member using rubber packing. . The thing without a crack was made into good ((circle)), and the thing with which the crack generate | occur | produced was made into defect (x).
The radiator core was manufactured by applying 2 g / m 2 of a non-corrosive fluoride-based flux comprising a mixed composition of KAlF 4 and K 3 AlF 6 to each surface, and then in a nitrogen gas atmosphere furnace at 25 ° C. / Heating was performed at a temperature rising rate of 1 minute, and when the temperature reached 600 ° C., holding was performed for 5 minutes, followed by brazing by air cooling at a cooling rate of 100 ° C./minute. In addition, the radiator core is formed by processing the brazing sheet of the embodiment as a header plate, using a JIS 3N03 alloy plate having a thickness of 70 μm as a formed fin material, using a flat tube material as a JIS 3003 alloy core material, and JIS 3003 alloy core material. A B-type tube clad with 4045 alloy brazing material and JIS 7072 alloy sacrificial anode material was used.
Each evaluation test result is shown together in Table 4.

Figure 2006152325
Figure 2006152325

表4に示す結果からわかるように、それぞれ本発明範囲内の合金からなる芯材,ろう材及び犠牲陽極材をクラッド圧延した本発明例1〜3のブレージングシートは、ろう付け前後の強度が適当な値を示し、コアかしめ時に曲げ部に割れが発生することがなく、逆T字ろう付け試験でのろう付け性も良く、しかも耐食性にも優れていた。
これに対して、比較例No.1のブレージングシートは、芯材のSi含有量が少なすぎたために、ろう付け前後の強度が低く、高強度が要求される熱交換器用ブレージングシートとしては適しない。
As can be seen from the results shown in Table 4, the brazing sheets of Invention Examples 1 to 3 in which the core material, the brazing material, and the sacrificial anode material each made of an alloy within the scope of the present invention are clad rolled have appropriate strength before and after brazing. No cracks were generated in the bent portion during caulking of the core, the brazing property in the inverted T-shaped brazing test was good, and the corrosion resistance was also excellent.
In contrast, Comparative Example No. No. 1 brazing sheet is not suitable as a brazing sheet for a heat exchanger that requires low strength before and after brazing because the Si content of the core material is too small.

比較例No.2のブレージングシートは、芯材のSi含有量が逆に多すぎたために、ろう付け前の強度が高すぎ成形性が良くなかった。またろう付け後にあっても強度が高すぎるためコアかしめ時にわれが生じるばかりか、同じく芯材のSiが高すぎることに起因するろう付け性の低下と相俟って、熱交換器用のブレージングシートとして適していない。
比較例No.3のブレージングシートは、芯材のFe含有量が少ないために、ろう付け前の強度が不足するばかりでなく、ろう付け後の強度も不足して、高強度が要求される熱交換器用ブレージングシートとして適していない。しかも、熱間圧延性が悪く、熱間圧延時に曲がりが生じた。
Comparative Example No. The brazing sheet 2 had a too high Si content in the core material, so that the strength before brazing was too high and the moldability was not good. Moreover, even after brazing, the strength is too high, so that not only cracking occurs at the time of caulking the core, but also brazing sheets for heat exchangers, coupled with a decrease in brazing properties due to the core Si being too high. Not suitable as.
Comparative Example No. The brazing sheet of No. 3 is not only insufficient in strength before brazing due to the low Fe content of the core material, but also lacks strength after brazing, and requires a high strength brazing sheet for heat exchangers. Not suitable as. In addition, the hot rolling property was poor, and bending occurred during hot rolling.

比較例No.4のは、芯材のFe含有量が多すぎたために、鋳造時に巨大晶出物が生成して鋳造時に割れが生じてしまった。
比較例No.5のブレージングシートは、芯材のCu含有量が少なすぎたために、ろう付け前後の強度が低く、高強度を要求される熱交換器用ブレージングシートとしては適しない。さらに、耐食性試験で最大孔食深さが深かったことから、熱交換器用ブレージングシートとしては適当でない。
比較例No.6のブレージングシートは、芯材のCu含有量が多すぎるために、ろう付け前の強度が高すぎて成形性が悪いばかりでなく、ろう付け後の強度も高すぎてコアかしめ時に割れが生じていた。また、ろう付け性も良くない。さらに耐食性試験で最大深さが深く、しかも粒界腐食も認められることから、熱交換器用ブレージングシートとしては適当でない。
Comparative Example No. In No. 4, since the core material had too much Fe content, a giant crystallized product was generated during casting and cracking occurred during casting.
Comparative Example No. The brazing sheet of No. 5 is not suitable as a brazing sheet for a heat exchanger that requires low strength before and after brazing because the Cu content of the core material is too small. Furthermore, since the maximum pitting corrosion depth was deep in the corrosion resistance test, it is not suitable as a brazing sheet for a heat exchanger.
Comparative Example No. The brazing sheet of No. 6 has too much Cu content in the core, so that not only is the strength before brazing too high and the moldability is poor, but the strength after brazing is too high and cracks occur when caulking the core. It was. Also, brazability is not good. Furthermore, since the maximum depth is deep in the corrosion resistance test and intergranular corrosion is also observed, it is not suitable as a brazing sheet for a heat exchanger.

比較例No.7のブレージングシートは、芯材のMn含有量が少なすぎるために、ろう付け前後の強度が低く、高強度を要求される熱交換器用ブレージングシートとしては適しない。また、ろう付け性も良くない。さらに耐食性試験で最大深さが若干深いことから、熱交換器用ブレージングシートとしては適当でない。
比較例No.8は、芯材のMn含有量が多すぎるために、鋳造時に巨大晶出物が生成して、鋳造時に割れが発生していた。
Comparative Example No. The brazing sheet of No. 7 is not suitable as a brazing sheet for a heat exchanger that requires low strength before and after brazing because the Mn content of the core material is too small, and requires high strength. Also, brazability is not good. Furthermore, since the maximum depth is slightly deep in the corrosion resistance test, it is not suitable as a brazing sheet for a heat exchanger.
Comparative Example No. In No. 8, since the Mn content of the core material was too large, a giant crystallized product was generated during casting, and cracks occurred during casting.

実施例2:
芯材用のアルミニウム合金として、表1にAで示す成分組成を有する合金溶湯を溶製し、セラミック製フィルターを通過させてDC鋳造によりスラブを得た。この芯材用スラブを,50℃/hrで昇温して600℃で10時間保持した後に50℃/hrで冷却して450℃で5時間保持する均質化処理を施して放冷した。
さらに、表2に示す各種の犠牲陽極材用アルミニウム合金及び表3にRで示すろう材用アルミニウム合金を、それぞれ個別に面削,均質化処理,熱間圧延した。
Example 2:
As an aluminum alloy for the core material, a molten alloy having a component composition indicated by A in Table 1 was melted, passed through a ceramic filter, and a slab was obtained by DC casting. The core slab was heated at 50 ° C./hr and held at 600 ° C. for 10 hours, then cooled at 50 ° C./hr and held at 450 ° C. for 5 hours, and allowed to cool.
Furthermore, the various aluminum alloys for sacrificial anode materials shown in Table 2 and the aluminum alloy for brazing materials shown by R in Table 3 were individually face-cut, homogenized, and hot-rolled.

そして、両表面を面削した上記芯材用アルミニウム合金板の両面に、それぞれクラッド率が10%になるように表5で示すような各種の組合せで犠牲陽極材及びろう材を積み重ねた後、50℃/hrで昇温し、480℃で3時間保持した後に熱間でクラッド圧延し、6mm厚の各種クラッド材を得た。
さらに冷間圧延を施して1.5mm厚とした後、400℃まで50℃/hrの速度で昇温して同温度2時間保持した後50℃/hrの冷却速度で100℃まで冷却して軟化させる最終焼鈍を施した。
上記手段で得た各種クラッド材について、以下に示すような繰り返しの加圧試験、及び実施例1と同じろう付け温度加熱後の耐食性試験を行って、曲げ疲労強度及びろう付け後の耐食性を評価した。
And after stacking the sacrificial anode material and the brazing material in various combinations as shown in Table 5 so that the clad rate is 10% on both surfaces of the above-mentioned aluminum alloy plate for core material, both surfaces of which are chamfered, The temperature was raised at 50 ° C./hr, held at 480 ° C. for 3 hours, and then hot rolled to obtain various clad materials with a thickness of 6 mm.
Further, after cold rolling to a thickness of 1.5 mm, the temperature was raised to 400 ° C. at a rate of 50 ° C./hr and held for 2 hours, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hr. The final annealing to soften was performed.
For the various clad materials obtained by the above means, the repeated pressurization test as shown below and the corrosion resistance test after heating at the same brazing temperature as in Example 1 are performed to evaluate the bending fatigue strength and the corrosion resistance after brazing. did.

(5)繰り返しの加圧試験
ろう付けコアを用いて、水圧による繰り返し加圧を行い、ヘッダープレート部とゴムパッキンを用いてプラスチック製部材との間でかしめられた部分の割れ、漏れの評価を行った。なお、ラジエータコアの作製は、それぞれの表面にKAlF4とK3AlF6の混合組成からなる非腐食性フッ化物系フラックスを2g/m2塗布した後、窒素ガス雰囲気炉中、25℃/分の昇温速度で加熱し、600℃になったところで5分間保持した後、100℃/分の冷却速度で空冷するろう付けで行った。また、ラジエータコアは、実施例のブレージングシートをヘッダープレートとして成形加工し、成形加工されたフィン材として、JIS 3N03合金の板厚70μmの板を、偏平チューブ材として、JIS 3003合金芯材にJIS 4045合金ろう材とJIS 7072合金犠牲陽極材をクラッドしたB型のチューブを用いた。
その評価結果を表5に併せて示す。
(5) Repeated pressurization test Repeated pressurization with water pressure using a brazing core, and evaluation of cracks and leaks in the caulked part between the header plate and rubber parts using a rubber packing went. The radiator core was produced by applying 2 g / m 2 of a non-corrosive fluoride flux composed of a mixed composition of KAlF 4 and K 3 AlF 6 on each surface, and then in a nitrogen gas atmosphere furnace at 25 ° C./min. After heating at a temperature rising rate of 600 ° C. and holding at 600 ° C. for 5 minutes, brazing was performed by air cooling at a cooling rate of 100 ° C./min. In addition, the radiator core is formed by processing the brazing sheet of the embodiment as a header plate, using a JIS 3N03 alloy plate having a thickness of 70 μm as a formed fin material, using a flat tube material as a JIS 3003 alloy core material, and JIS 3003 alloy core material. A B-type tube clad with 4045 alloy brazing material and JIS 7072 alloy sacrificial anode material was used.
The evaluation results are also shown in Table 5.

Figure 2006152325
Figure 2006152325

表5に示す結果からわかるように、それぞれ本発明範囲内の合金からなる芯材,ろう材及び犠牲陽極材をクラッド圧延した本発明例4のブレージングシートは、繰り返し加圧試験では、繰り返し数が高く曲げ疲労強度に優れている。また耐食性にも優れている。
これに対して、比較例No.9のブレージングシートは、犠牲陽極材のZn含有量が多すぎたために、繰り返し加圧試験で繰り返し回数が少ない段階で割れが生じてしまい、曲げ疲労強度が十分ではなかった。このため、熱交換器用のブレージングシートとして適していない。
比較例No.10のブレージングシートは、犠牲陽極材のZn含有量が少なすぎたために、耐食性試験で最大孔食深さが深くなり、熱交換器用のブレージングシートとして適していない。
比較例No.11のブレージングシートは、犠牲陽極材のMg含有量が多すぎたために、耐食性試験で最大孔食深さが深く、しかも粒界腐食が認められ、熱交換器用のブレージングシートとして適していない。
比較例No.12は、犠牲陽極材のMg含有量が少なすぎたために、耐食性試験で最大孔食深さが深くなり、熱交換器用のブレージングシートとして適していない。
As can be seen from the results shown in Table 5, the brazing sheet of Example 4 of the present invention in which the core material, the brazing material, and the sacrificial anode material each made of an alloy within the scope of the present invention are clad rolled has a number of repetitions in the repeated pressure test. High bending fatigue strength. It also has excellent corrosion resistance.
In contrast, Comparative Example No. Since the brazing sheet of No. 9 had too much Zn content in the sacrificial anode material, cracking occurred at a stage where the number of repetitions was small in the repeated pressure test, and the bending fatigue strength was not sufficient. For this reason, it is not suitable as a brazing sheet for a heat exchanger.
Comparative Example No. No. 10 brazing sheet is not suitable as a brazing sheet for a heat exchanger because the sacrificial anode material has too little Zn content, and the maximum pitting corrosion depth becomes deep in the corrosion resistance test.
Comparative Example No. Since the brazing sheet of No. 11 has too much Mg content in the sacrificial anode material, the maximum pitting corrosion depth is deep in the corrosion resistance test, and intergranular corrosion is recognized, and is not suitable as a brazing sheet for a heat exchanger.
Comparative Example No. No. 12 was not suitable as a brazing sheet for a heat exchanger because the Mg content of the sacrificial anode material was too small, and the maximum pitting corrosion depth was increased in the corrosion resistance test.

実施例3:
芯材用のアルミニウム合金として、表1に示す成分組成を有する各種の合金溶湯を溶製し、セラミック製フィルターを通過させてDC鋳造によりスラブを得た。この芯材用スラブを,50℃/hrで昇温して600℃で10時間保持した後に50℃/hrで冷却して450℃で5時間保持する均質化処理を施して放冷した。
さらに、表2にLで示す犠牲陽極材用アルミニウム合金及び表3に示す各種のろう材用アルミニウム合金を、それぞれ個別に面削,均質化処理,熱間圧延した。
Example 3:
As the aluminum alloy for the core material, various alloy melts having the component compositions shown in Table 1 were melted, passed through a ceramic filter, and a slab was obtained by DC casting. The core slab was heated at 50 ° C./hr and held at 600 ° C. for 10 hours, then cooled at 50 ° C./hr and held at 450 ° C. for 5 hours, and allowed to cool.
Furthermore, the aluminum alloy for sacrificial anode materials indicated by L in Table 2 and the various aluminum alloys for brazing materials shown in Table 3 were individually face-cut, homogenized, and hot-rolled.

そして、両表面を面削した上記芯材用アルミニウム合金板の両面に、それぞれクラッド率が10%になるように表6に示すような各種の組合せで犠牲陽極材及びろう材を積み重ねた後、50℃/hrで昇温し、480℃で3時間保持した後に熱間でクラッド圧延し、6mm厚の各種クラッド材を得た。
さらに冷間圧延を施して1.5mm厚とした後、400℃まで50℃/hrの速度で昇温して同温度2時間保持した後50℃/hrの冷却速度で100℃まで冷却して軟化させる最終焼鈍を施した。
上記手段で得た各種クラッド材について、以下に示すようなコアのろう付け試験、及び実施例1と同じ逆T字試験片によるろう付け試験を行って、コアのろう付け性及び逆T字ろう付け性を評価した。
And after stacking the sacrificial anode material and the brazing material in various combinations as shown in Table 6 so that the clad rate is 10% on both surfaces of the above-mentioned aluminum alloy plate for core material, both surfaces of which are chamfered, The temperature was raised at 50 ° C./hr, held at 480 ° C. for 3 hours, and then hot rolled to obtain various clad materials with a thickness of 6 mm.
Further, after cold rolling to a thickness of 1.5 mm, the temperature was raised to 400 ° C. at a rate of 50 ° C./hr and held for 2 hours, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hr. The final annealing to soften was performed.
For the various clad materials obtained by the above means, the core brazing test as shown below and the brazing test using the same inverted T-shaped test piece as in Example 1 were conducted, and the core brazing performance and inverted T-shaped brazing were performed. The applicability was evaluated.

(6)コアのろう付け試験
それぞれの表面にKAlF4とK3AlF6の混合組成からなる非腐食性フッ化物系フラックスを2g/m2塗布した後、窒素ガス雰囲気炉中、25℃/分の昇温速度で加熱し、600℃になったところで5分間保持した後、100℃/分の冷却速度で空冷するろう付けで行った。
冷却後、ヘッダープレートとチューブの嵌合部やB型チューブの合わせ部のろう付け状態を、目視観察及び断面マクロ観察した。そして、フィレットが均一に形成されて芯材が侵食(ろう材と芯材の共融による芯材の融解)されておらず、しかもB型チューブの合わせ部に侵食凹部(ろう材と芯材の共融による芯材の融解・流出に伴って形成された凹部)がないものを良(○)とし、フィレットが均一に形成されていなかったり、芯材が侵食されていたり、或いは例えば図1(a)に示すようにB型チューブの合わせ部に侵食凹部が顕著であったりしたものを不良(×)とした。図1(b)が正常品である。なお、ラジエータコアは、実施例のブレージングシートをヘッダープレートとして成形加工し、成形加工されたフィン材として、JIS 3N03合金の板厚70μmの板を、偏平チューブ材として、JIS 3003合金芯材にJIS 4045合金ろう材とJIS 7072合金犠牲陽極材をクラッドしたB型のチューブを用いた。
その評価結果を表6に併せて示す。
(6) Brazing test of core After applying 2 g / m 2 of a non-corrosive fluoride-based flux composed of a mixed composition of KAlF 4 and K 3 AlF 6 to each surface, it is 25 ° C./min in a nitrogen gas atmosphere furnace. After heating at a temperature rising rate of 600 ° C. and holding at 600 ° C. for 5 minutes, brazing was performed by air cooling at a cooling rate of 100 ° C./min.
After cooling, the brazing state of the fitting portion of the header plate and the tube and the mating portion of the B-type tube was visually observed and observed in a macro section. The fillet is uniformly formed and the core material is not eroded (melting of the core material by eutectic melting of the brazing material and the core material), and the erosion recess (the brazing material and the core material If there is no recess formed due to melting and outflow of the core material by eutectic, it is judged as good (◯), the fillet is not formed uniformly, the core material is eroded, or for example, FIG. As shown to a), what the erosion recessed part was remarkable in the mating part of a B type tube was made into defect (x). FIG. 1B shows a normal product. The radiator core was formed by processing the brazing sheet of the example as a header plate, a JIS 3N03 alloy plate having a thickness of 70 μm as a formed fin material, a flat tube material, and a JIS 3003 alloy core material as JIS. A B-type tube clad with 4045 alloy brazing material and JIS 7072 alloy sacrificial anode material was used.
The evaluation results are also shown in Table 6.

Figure 2006152325
Figure 2006152325

表6に示す結果からわかるように、それぞれ本発明範囲内の合金からなる芯材,ろう材及び犠牲陽極材をクラッド圧延した本発明例5のブレージングシートは、コア形状及び逆T字試験片形状のそれぞれのろう付け試験で十分なろう付けがなされており、ろう付け性が優れている。
これに対して、比較例No.13のブレージングシートは、逆T字試験片形状のろう付けでは侵食が認められなかったが、ろう材のFe含有量が多すぎたために、コア形状のろう付け時には、ろうの流動性が十分でないことに起因してろう付けされていない箇所もあった。このため、熱交換器用のブレージングシートとして適していない。
比較例No.14〜16のブレージングシートは、ろう材のSi含有量が多すぎたために、逆T字試験片形状のろう付けでも侵食が認められるばかりでなく、コア形状のろう付けでも、ろうの流動性が高くなりすぎてB型チューブの合わせ部に侵食凹部が認められ、ろう付け性が十分でなかった。このため、熱交換器用のブレージングシートとして適していない。
As can be seen from the results shown in Table 6, the brazing sheet of Invention Example 5 in which the core material, the brazing material and the sacrificial anode material made of an alloy within the scope of the present invention are clad rolled is the core shape and the inverted T-shaped test piece shape. In each of the brazing tests, sufficient brazing is performed, and the brazing property is excellent.
In contrast, Comparative Example No. In the brazing sheet of No. 13, no erosion was observed in the brazing of the inverted T-shaped specimen, but the braze fluidity was not sufficient when brazing the core because of the excessive Fe content of the brazing material. Some parts were not brazed due to this. For this reason, it is not suitable as a brazing sheet for a heat exchanger.
Comparative Example No. In the brazing sheets of 14 to 16, the Si content of the brazing material was too high, so that not only erosion was observed even in the brazing of the inverted T-shaped test piece, but also the brazing fluidity of the brazing of the core shape was It became too high and an erosion recess was observed at the mating part of the B-type tube, and the brazing property was not sufficient. For this reason, it is not suitable as a brazing sheet for a heat exchanger.

実施例4:
芯材用のアルミニウム合金として、表1にBで示す成分組成を有する合金溶湯を溶製し、セラミック製フィルターを通過させてDC鋳造によりスラブを得た。
本発明例6では、この芯材用スラブを,50℃/hrで昇温して600℃で10時間保持した後に50℃/hrで冷却して450℃で5時間保持する均質化処理を施して放冷した。また本発明例7では、同芯材用スラブを,50℃/hrで昇温して600℃で10時間保持した後に、均質化処理炉より放出して空冷した。
一方、比較例No.17では、上記芯材用スラブを、50℃/hrで昇温して480℃で10時間保持した後に、均質化処理炉より放出して空冷した。さらに、比較例No.18では、この芯材用スラブの均質化処理を実施しなかった。
Example 4:
As an aluminum alloy for the core material, a molten alloy having a component composition indicated by B in Table 1 was melted, passed through a ceramic filter, and a slab was obtained by DC casting.
In Example 6 of the present invention, this slab for core material was heated at 50 ° C./hr and held at 600 ° C. for 10 hours, then cooled at 50 ° C./hr and held at 450 ° C. for 5 hours. And allowed to cool. In Inventive Example 7, the concentric slab was heated at 50 ° C./hr and held at 600 ° C. for 10 hours, and then discharged from the homogenization furnace and air-cooled.
On the other hand, Comparative Example No. In No. 17, the core slab was heated at 50 ° C./hr and held at 480 ° C. for 10 hours, and then discharged from the homogenization furnace and air-cooled. Further, Comparative Example No. In No. 18, the homogenization process of this core material slab was not performed.

さらに、表2にLで示す犠牲陽極材用アルミニウム合金、及び表3にRで示すろう材用アルミニウム合金を、それぞれ個別に面削,均質化処理,熱間圧延して、両表面を面削した上記芯材用アルミニウム合金板の両表面に、それぞれクラッド率が10%になるように積み重ね、引き続き50℃/hrで昇温し、480℃で3時間保持した後に、熱間圧延によりクラッド圧延し、6mm厚の各種クラッド材を得た。
その後、さらに冷間圧延を行って1.5mm厚とした後、速度50℃/hrで昇温し、400℃で2時間保持した後、冷却速度50℃/hrで100℃まで冷却する最終焼鈍を施して軟化させた。
これらの手段で得られた本発明例及び比較例のクラッド材をブレージングシートとして、実施例1と同じ引張強度,ろう付け温度加熱後の引張強度,及びコアのかしめ割れの評価をそれぞれ行った。
その結果を表7に示す。
Further, the aluminum alloy for sacrificial anode material indicated by L in Table 2 and the aluminum alloy for brazing material indicated by R in Table 3 are each individually face-ground, homogenized, and hot-rolled to face both surfaces. The both surfaces of the aluminum alloy plate for core material are stacked so that the cladding ratio is 10%, and then heated at 50 ° C./hr and kept at 480 ° C. for 3 hours, and then clad rolled by hot rolling. As a result, various clad materials having a thickness of 6 mm were obtained.
Then, after further cold rolling to 1.5 mm thickness, the temperature is raised at a rate of 50 ° C./hr, held at 400 ° C. for 2 hours, and then cooled to 100 ° C. at a cooling rate of 50 ° C./hr. To soften.
Using the clad materials of the present invention examples and comparative examples obtained by these means as brazing sheets, the same tensile strength as in Example 1, tensile strength after brazing temperature heating, and caulking crack of the core were evaluated.
The results are shown in Table 7.

Figure 2006152325
Figure 2006152325

表7に示す結果からわかるように、それぞれ本発明範囲内の処理を施した合金からなる芯材,及びろう材及び犠牲陽極材をクラッド圧延した本発明例6,7のブレージングシートは、ろう付け前の引張強度及びろう付け後の引張強度が適当であり、コアのかしめ割れもなく、熱交換器用のブレージングシートとして優れている。
これに対して、比較例No.17のブレージングシートは、芯材の均質化処理温度が低すぎるために、ろう付け前の強度が高く、また芯材の結晶粒サイズも粗大となって、成形性は良くなかった。さらに、ろう付け加熱後にヘッダープレートに部分的にエロージョンが認められるばかりか、コアにかしめ割れが発生してしまう。このため、比較例No.17のブレージングシートは、ろう付けされる熱交換器用の素材として適していない。
また、比較例No.18のブレージングシートは、芯材の均質化処理を行っていないために、ろう付け前の強度が高く、また芯材の結晶粒サイズも粗大となって、成形性は良くなかった。さらに、ろう付け加熱後にヘッダープレートに部分的にエロージョンが認められるばかりか、コアにかしめ割れが発生してしまう。このため、比較例No.17のブレージングシートは、ろう付けされる熱交換器用の素材として適していない。
As can be seen from the results shown in Table 7, the brazing sheets of Examples 6 and 7 of the present invention obtained by clad rolling the core material, the brazing material and the sacrificial anode material each made of an alloy within the scope of the present invention were brazed. The tensile strength before brazing and the tensile strength after brazing are appropriate, and there is no caulking crack of the core, and it is excellent as a brazing sheet for a heat exchanger.
In contrast, Comparative Example No. The brazing sheet of No. 17 was not good in moldability because the homogenization temperature of the core material was too low, the strength before brazing was high, and the crystal grain size of the core material was too large. Further, not only erosion is partially recognized in the header plate after brazing heating, but also caulking cracks occur in the core. For this reason, Comparative Example No. No. 17 brazing sheet is not suitable as a material for the heat exchanger to be brazed.
Comparative Example No. Since the brazing sheet of No. 18 was not subjected to homogenization treatment of the core material, the strength before brazing was high, and the crystal grain size of the core material was coarse, and the moldability was not good. Further, not only erosion is partially recognized in the header plate after brazing heating, but also caulking cracks occur in the core. For this reason, Comparative Example No. No. 17 brazing sheet is not suitable as a material for the heat exchanger to be brazed.

B型チューブを用いて熱交換器をろう付けする際に、B型チューブの合わせ部に形成されやすい侵食凹部の生成状況を説明する部分断面図、ただし(b)が正常品Partial cross-sectional view explaining the state of formation of erosion recesses that are likely to be formed at the mating part of the B-type tube when brazing the heat exchanger using the B-type tube, where (b) is normal

Claims (2)

Si:0.3〜1.0質量%,Fe:0.3〜0.8質量%,Mn:0.8〜1.6質量%,Cu:0.5〜0.9質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金を芯材とし、その片面に、Mg:0.2〜0.6質量%,Zn:0.1〜0.3質量%を含み、残部がAl及び不可避的不純物からなるアルミニウム合金を犠牲陽極材として、他の片面に、Si:6.5〜8.5質量%,Fe:0.15〜0.6質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金をろう材とした三層構造のアルミニウム合金クラッド材からなることを特徴とする熱交換器用アルミニウム合金ブレージングシート。   Si: 0.3-1.0% by mass, Fe: 0.3-0.8% by mass, Mn: 0.8-1.6% by mass, Cu: 0.5-0.9% by mass, Mg as an impurity is regulated to 0.05% by mass or less, and the balance is made of an aluminum alloy composed of Al and inevitable impurities, with Mg: 0.2 to 0.6% by mass and Zn: 0 on one side. 0.1% to 0.3% by mass of aluminum alloy consisting of Al and unavoidable impurities as a sacrificial anode material, Si: 6.5 to 8.5% by mass, Fe: 0.15 on the other surface It is composed of an aluminum alloy clad material having a three-layer structure including Mg alloy as an impurity and containing 0.05 mass% or less, and the balance being Al and an inevitable impurity aluminum alloy. Aluminum alloy brazing sheet for heat exchangers Door. Si:0.3〜1.0質量%,Fe:0.3〜0.8質量%,Mn:0.8〜1.6質量%,Cu:0.5〜0.9質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金を580〜620℃で1〜15時間、又は/さらに引き続き440〜490℃で1〜6時間の均質化処理を施した後、当該アルミニウム合金を芯材とし、その片面に、Mg:0.2〜0.6質量%,Zn:0.1〜0.3質量%を含み、残部がAl及び不可避的不純物からなるアルミニウム合金を犠牲陽極材として、他の片面に、Si:6.5〜8.5質量%,Fe:0.15〜0.6質量%を含み、不純物としてのMgを0.05質量%以下に規制し、残部がAl及び不可避的不純物からなるアルミニウム合金をろう材とした三層構造のアルミニウム合金クラッド材を得ることを特徴とする熱交換器用アルミニウム合金ブレージングシートの製造方法。   Si: 0.3-1.0% by mass, Fe: 0.3-0.8% by mass, Mn: 0.8-1.6% by mass, Cu: 0.5-0.9% by mass, Mg alloy as an impurity is regulated to 0.05% by mass or less, and the balance of aluminum alloy consisting of Al and inevitable impurities is 580 to 620 ° C. for 1 to 15 hours, and / or further 440 to 490 ° C. for 1 to 6 hours. The aluminum alloy is used as a core material, and Mg: 0.2 to 0.6 mass%, Zn: 0.1 to 0.3 mass% is contained on one side, and the balance is Al. In addition, an aluminum alloy composed of inevitable impurities is used as a sacrificial anode material, and Si: 6.5 to 8.5% by mass, Fe: 0.15 to 0.6% by mass on the other side, and Mg as an impurity. Restricted to 0.05% by mass or less, with the balance being Al and inevitable impurities Above aluminum alloy brazing sheet manufacturing method, characterized in that to obtain an aluminum alloy clad material of the three-layer structure um alloy and brazing material.
JP2004340665A 2004-11-25 2004-11-25 Method for producing aluminum alloy brazing sheet for heat exchanger Active JP4432748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340665A JP4432748B2 (en) 2004-11-25 2004-11-25 Method for producing aluminum alloy brazing sheet for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340665A JP4432748B2 (en) 2004-11-25 2004-11-25 Method for producing aluminum alloy brazing sheet for heat exchanger

Publications (2)

Publication Number Publication Date
JP2006152325A true JP2006152325A (en) 2006-06-15
JP4432748B2 JP4432748B2 (en) 2010-03-17

Family

ID=36630964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340665A Active JP4432748B2 (en) 2004-11-25 2004-11-25 Method for producing aluminum alloy brazing sheet for heat exchanger

Country Status (1)

Country Link
JP (1) JP4432748B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012327A (en) * 2009-07-06 2011-01-20 Mitsubishi Alum Co Ltd Brazing sheet having excellent brazability, and method for producing the brazing sheet
WO2015151942A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminium alloy laminated plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012327A (en) * 2009-07-06 2011-01-20 Mitsubishi Alum Co Ltd Brazing sheet having excellent brazability, and method for producing the brazing sheet
WO2015151942A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminium alloy laminated plate
JP2015196858A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy laminate sheet
US10315277B2 (en) 2014-03-31 2019-06-11 Kobe Steel, Ltd. Aluminium alloy laminated plate

Also Published As

Publication number Publication date
JP4432748B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5230231B2 (en) Aluminum alloy brazing sheet, heat exchanger and method for producing the same
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
JPWO2015015767A1 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6047304B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP6033618B2 (en) Aluminum alloy clad material and heat exchanger
JP2014054656A (en) Aluminum alloy heat exchanger and aluminum alloy heat exchanger manufacturing method
JP2009127122A (en) Aluminum alloy material, and aluminum alloy brazing sheet
CN107849645B (en) Aluminum alloy clad material, method for producing same, and heat exchanger using same
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
JP2010209445A (en) Brazing sheet of highly heat-resistant aluminum alloy and method for manufacturing the same
JP5396042B2 (en) Aluminum alloy brazing sheet with excellent brazeability
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP4432748B2 (en) Method for producing aluminum alloy brazing sheet for heat exchanger
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JP2010242112A (en) High-strength aluminum alloy brazing sheet
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JPH11209837A (en) Sacrificial corrosionproof aluminum alloy for heat exchanger and aluminum alloy composite material for heat exchanger using this

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350