JP2006147657A - Solid-state imaging apparatus and its manufacturing method - Google Patents

Solid-state imaging apparatus and its manufacturing method Download PDF

Info

Publication number
JP2006147657A
JP2006147657A JP2004332186A JP2004332186A JP2006147657A JP 2006147657 A JP2006147657 A JP 2006147657A JP 2004332186 A JP2004332186 A JP 2004332186A JP 2004332186 A JP2004332186 A JP 2004332186A JP 2006147657 A JP2006147657 A JP 2006147657A
Authority
JP
Japan
Prior art keywords
solid
photoelectric conversion
state imaging
imaging device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004332186A
Other languages
Japanese (ja)
Inventor
Naohiro Matsuo
直大 松尾
Shinya Yoshida
慎也 吉田
Yuji Yokozawa
雄二 横沢
Yoshifumi Iwai
敬文 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004332186A priority Critical patent/JP2006147657A/en
Publication of JP2006147657A publication Critical patent/JP2006147657A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state imaging apparatus having a high sensitivity and little after-image, and to provide its manufacturing method. <P>SOLUTION: When light is incident into a photoelectric conversion film 21, paired electron-holes are created and the holes move to the side of a transparent electrode 22 while the electrons are accumulated in an accumulation diode 13 via a pixel electrode 20. At this point, since there is no recombination center nor a trap level inside the crystalline photoelectric conversion film 21, the reduction in photoelectric current due to the absorption of the electrons created by photoelectric conversion by a recombination center or a trap level and the occurrence of after-image due to the emission of the carrier from the trap level can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体撮像装置、特に積層型の固体撮像装置およびその製造方法に関する。   The present invention relates to a solid-state imaging device, in particular, a stacked solid-state imaging device and a method for manufacturing the same.

従来から、CCD(Charge-Coupled Device)型や、MOS(Metal Oxide
Semiconductor)型などの半導体撮像素子を使用する固体撮像装置が広く用いられている。これらの固体撮像装置用の半導体撮像素子は、半導体基板に信号電荷蓄積領域、信号電荷読出し領域、および信号電荷転送領域を平面的に形成している。
Conventionally, CCD (Charge-Coupled Device) type and MOS (Metal Oxide)
2. Description of the Related Art Solid-state imaging devices that use a semiconductor imaging device such as a (Semiconductor) type are widely used. In these semiconductor imaging devices for solid-state imaging devices, a signal charge accumulation region, a signal charge readout region, and a signal charge transfer region are formed in a planar manner on a semiconductor substrate.

近年、半導体基板に信号電荷蓄積領域、信号電荷読出し領域、および信号電荷転送領域を平面的に形成してなる半導体撮像素子に代わり、電荷転送素子上に光電変換膜を形成してなる構造の半導体撮像素子を使用する固体撮像装置が開発されている(たとえば、特許文献1参照)。   In recent years, a semiconductor having a structure in which a photoelectric conversion film is formed on a charge transfer element instead of a semiconductor image pickup element in which a signal charge accumulation region, a signal charge readout region, and a signal charge transfer region are formed in a plane on a semiconductor substrate. A solid-state imaging device using an imaging element has been developed (see, for example, Patent Document 1).

図6は、特許文献1に従来技術として開示されているこの固体撮像装置の構造を示す。半導体基板であるシリコン基板61の上部には、素子分離層62、信号電荷蓄積領域である蓄積ダイオード63、および信号電荷転送領域である垂直CCDチャネル64が形成されている。蓄積ダイオード63と垂直CCDチャネル64との間が信号読出し領域に相当する。   FIG. 6 shows the structure of this solid-state imaging device disclosed in Patent Document 1 as the prior art. An element isolation layer 62, a storage diode 63 that is a signal charge storage region, and a vertical CCD channel 64 that is a signal charge transfer region are formed on the silicon substrate 61 that is a semiconductor substrate. A space between the storage diode 63 and the vertical CCD channel 64 corresponds to a signal readout region.

また、シリコン基板61上には、第1の絶縁層65を介して転送電極66,67が形成されている。第1の絶縁層65に沿って引出し電極68が形成されており、蓄積ダイオード63と電気的に接続されている。引出し電極68上には、第2の絶縁層69および画素電極70が形成されており、引出し電極68と画素電極70とは電気的に接続されている。さらに、この固体撮像装置となる半導体撮像素子上には複数の層が積層されてなる光電変換膜71が設けられており、その上には透明電極72が形成されている。   In addition, transfer electrodes 66 and 67 are formed on the silicon substrate 61 via a first insulating layer 65. A lead electrode 68 is formed along the first insulating layer 65 and is electrically connected to the storage diode 63. A second insulating layer 69 and a pixel electrode 70 are formed on the extraction electrode 68, and the extraction electrode 68 and the pixel electrode 70 are electrically connected. Further, a photoelectric conversion film 71 formed by laminating a plurality of layers is provided on a semiconductor imaging element serving as the solid-state imaging device, and a transparent electrode 72 is formed thereon.

特許文献1に開示されている発明による固体撮像装置は、基本的には図5の固体撮像装置と同等の構成を有し、画素電極を各画素毎に区画する溝部が形成され、溝部に対応する領域の光電変換膜に空隙部が形成される点で異なっている。したがって、光電変換膜に使用する材料は同等のはずであり、非晶質珪素(a−Si)を使用することが記載されている。   The solid-state imaging device according to the invention disclosed in Patent Document 1 basically has the same configuration as that of the solid-state imaging device of FIG. 5, and is formed with a groove portion that partitions the pixel electrode for each pixel. The difference is that a void is formed in the photoelectric conversion film in the region to be processed. Therefore, the materials used for the photoelectric conversion film should be equivalent, and it is described that amorphous silicon (a-Si) is used.

上記構成を有する固体撮像装置は、感光部の開口面積を広くすることができるので、高感度であり、しかも低スミアであるという優れた特性を有する。このため、この固体撮像装置は、各種監視用テレビジョンやHDTV(High Definition TeleVision)等のカメラへの応用が期待される。   The solid-state imaging device having the above-described configuration has an excellent characteristic that it has high sensitivity and low smear because the opening area of the photosensitive portion can be widened. For this reason, this solid-state imaging device is expected to be applied to cameras such as various monitoring televisions and HDTV (High Definition TeleVision).

なお、非晶質半導体膜を加熱処理とレーザ光照射等とによって結晶化させる技術も知られている(たとえば、特許文献2参照)。   A technique for crystallizing an amorphous semiconductor film by heat treatment, laser light irradiation, or the like is also known (see, for example, Patent Document 2).

特開平7−86546公報JP-A-7-86546 特開2002−50575号公報JP 2002-50575 A

しかしながら、従来の固体撮像装置においては、光電変換膜に非晶質珪素(アモルファスシリコン)を用いているので、光電変換膜中に再結合中心やトラップ準位となる欠陥が多く存在する。このため、光電変換により生じたキャリアが再結合中心やトラップ準位に吸収されて光電流が減少したり、トラップ準位からのキャリア放出により残像が発生する等の問題が生じている。   However, in the conventional solid-state imaging device, since amorphous silicon (amorphous silicon) is used for the photoelectric conversion film, there are many defects that become recombination centers and trap levels in the photoelectric conversion film. For this reason, there are problems such that carriers generated by photoelectric conversion are absorbed by recombination centers and trap levels to reduce the photocurrent, and afterimages are generated due to carrier emission from the trap levels.

本発明の目的は、高感度かつ低残像の固体撮像装置およびその製造方法を提供することである。   An object of the present invention is to provide a solid-state imaging device with high sensitivity and low afterimage and a method for manufacturing the same.

本発明は、信号電荷転送領域を有する半導体基板上に、転送電極、光電変換膜および電極を具備する積層型の固体撮像装置において、
光電変換膜は再結晶化した半導体膜であることを特徴とする固体撮像装置である。
The present invention relates to a stacked solid-state imaging device including a transfer electrode, a photoelectric conversion film, and an electrode on a semiconductor substrate having a signal charge transfer region.
The photoelectric conversion film is a solid-state imaging device characterized in that it is a recrystallized semiconductor film.

本発明に従えば、信号電荷転送領域を有する半導体基板と、信号電荷を信号電荷転送領域に転送するための転送電極と、半導体基板および転送電極の上層に形成される光電変換膜と、半導体基板と光電変換膜とを電気的に接続する電極とを具備して積層型の半導体撮像素子による固体撮像装置が形成される。光電変換膜には、再結晶化させた半導体膜を用いるので、光電変換膜中には再結合中心やトラップ準位がなくなり、光電変換によって生じる電子が再結合中心やトラップ準位に吸収されることによる光電流の減少や、トラップ準位からのキャリア放出による残像の発生を抑えることができる。   According to the present invention, a semiconductor substrate having a signal charge transfer region, a transfer electrode for transferring a signal charge to the signal charge transfer region, a photoelectric conversion film formed on the semiconductor substrate and the transfer electrode, and a semiconductor substrate And a solid-state imaging device using a stacked type semiconductor imaging device is formed. Since a recrystallized semiconductor film is used for the photoelectric conversion film, there are no recombination centers and trap levels in the photoelectric conversion film, and electrons generated by photoelectric conversion are absorbed by the recombination centers and trap levels. Accordingly, it is possible to suppress the reduction of the photocurrent due to the above and the generation of an afterimage due to the carrier emission from the trap level.

また本発明で、前記光電変換膜は、再結晶化した結晶粒の大きさが1の画素より大であることを特徴とする。   In the present invention, the photoelectric conversion film has a recrystallized crystal grain size larger than one pixel.

本発明に従えば、光電変換膜内の再結晶化した結晶粒の大きさが1個の画素の大きさより大であるので、画素の領域内での結晶粒界密度を下げ、光電流を低損失で取出すことができる。   According to the present invention, since the size of the recrystallized crystal grains in the photoelectric conversion film is larger than the size of one pixel, the crystal grain boundary density in the pixel region is lowered and the photocurrent is reduced. Can be taken out with loss.

本発明によれば、光電変換膜には、再結晶化させた半導体膜を用いるので、光電変換膜中には非晶質膜に含まれる再結合中心やトラップ準位がなくなり、光電変換によって生じる電子が再結合中心やトラップ準位に吸収されることによる光電流の減少や、トラップ準位からのキャリア放出による残像の発生を抑えることができる。   According to the present invention, since the recrystallized semiconductor film is used for the photoelectric conversion film, the photoelectric conversion film has no recombination center or trap level contained in the amorphous film, and is generated by photoelectric conversion. It is possible to suppress a decrease in photocurrent due to absorption of electrons by recombination centers and trap levels and generation of an afterimage due to carrier emission from the trap levels.

また本発明によれば、光電変換膜内の再結晶化した結晶粒の大きさが1個の画素の大きさより大であるので、画素の領域内での結晶粒界密度を下げ、光電流を低損失で取出すことができる。   Further, according to the present invention, since the size of the recrystallized crystal grains in the photoelectric conversion film is larger than the size of one pixel, the crystal grain boundary density in the pixel region is lowered, and the photocurrent is reduced. Can be taken out with low loss.

図1は、本発明の実施の一形態としての固体撮像装置10の概略的な構成を示す。半導体基板であるp型シリコン基板11の上部には、p+型の素子分離層12、信号電荷蓄積領域であるn−型の蓄積ダイオード13、信号電荷転送領域であるn−型の垂直CCDチャネル14が形成されている。蓄積ダイオード13と垂直CCDチャネル14との間が信号電荷読出し部として機能する。またp型のシリコン基板11上の垂直CCDチャネル14および信号電荷読出し領域には、第1の絶縁層15を介して転送電極16,17が形成されている。転送電極16,17により、光電変換膜で発生した電荷を蓄積した信号電荷蓄積領域から電荷を信号電荷転送領域に転送する。   FIG. 1 shows a schematic configuration of a solid-state imaging device 10 as an embodiment of the present invention. On top of a p-type silicon substrate 11 which is a semiconductor substrate, a p + type element isolation layer 12, an n− type storage diode 13 which is a signal charge storage region, and an n− type vertical CCD channel 14 which is a signal charge transfer region. Is formed. A portion between the storage diode 13 and the vertical CCD channel 14 functions as a signal charge reading unit. In addition, transfer electrodes 16 and 17 are formed in the vertical CCD channel 14 and the signal charge readout region on the p-type silicon substrate 11 via the first insulating layer 15. The transfer electrodes 16 and 17 transfer charges from the signal charge storage region in which charges generated in the photoelectric conversion film are stored to the signal charge transfer region.

この第1の絶縁層15は、垂直CCDチャネル14、信号電荷読出し領域および蓄積ダイオード13の一部までを覆うように形成されている。第1の絶縁層15に沿って引出し電極18が形成されている。引出し電極18は、略V字形状であり、蓄積ダイオード13と電気的に接続されている。引出し電極18上には、第2の絶縁層19が形成されている。さらに、引出し電極18および第2の絶縁層19上には、画素電極20が形成されており、引出し電極18と画素電極20とは電気的に接続されている。   The first insulating layer 15 is formed so as to cover up to the vertical CCD channel 14, the signal charge reading region and a part of the storage diode 13. A lead electrode 18 is formed along the first insulating layer 15. The extraction electrode 18 is substantially V-shaped and is electrically connected to the storage diode 13. A second insulating layer 19 is formed on the extraction electrode 18. Further, a pixel electrode 20 is formed on the extraction electrode 18 and the second insulating layer 19, and the extraction electrode 18 and the pixel electrode 20 are electrically connected.

p型シリコン基板11、素子分離層12、蓄積ダイオード13、垂直CCDチャネル14、第1の絶縁層15、転送電極16,17、引出し電極18、第2の絶縁層19および画素電極20を含むここまでの構成で電荷転送素子111が構成される。電荷転送素子111としての半導体チップ上に、後述する光電変換膜21が堆積して形成されている。そして、光電変換膜21上に、反応性スパッタリング法等により、ITO(Indium Tin
Oxide)や酸化錫等からなる透明電極22が形成されている。
This includes a p-type silicon substrate 11, an element isolation layer 12, a storage diode 13, a vertical CCD channel 14, a first insulating layer 15, transfer electrodes 16 and 17, an extraction electrode 18, a second insulating layer 19 and a pixel electrode 20. The charge transfer element 111 is configured as described above. A photoelectric conversion film 21 to be described later is deposited and formed on a semiconductor chip as the charge transfer element 111. Then, ITO (Indium Tin) is formed on the photoelectric conversion film 21 by a reactive sputtering method or the like.
A transparent electrode 22 made of Oxide) or tin oxide is formed.

光電変換膜21は結晶性を有する珪素膜からなり、その結晶粒径は1画素の大きさよりも大きく成長させてある。固体撮像装置10の1画素の大きさは、1/2型で200万画素のもので約4μmである。   The photoelectric conversion film 21 is made of a crystalline silicon film, and the crystal grain size is grown larger than the size of one pixel. The size of one pixel of the solid-state imaging device 10 is 1/2 type and 2 million pixels, and is about 4 μm.

図2は、図1の固体撮像装置10の光電変換膜21を拡大して示す。固体撮像装置10の1画素分の面積に比して、それよりも大きな結晶粒をもつため、1個の画素112内に存在する結晶粒界密度を下げることができる。したがって、光電流を低損失で取出すことができ、高感度な固体撮像装置10を作成することが可能になる。すなわち、結晶粒径が0.3μmの場合には、後述するように、4μm□の画素中の粒界113の総延長は平均で107μmであるが、結晶粒径が4μmになればその長さは8μmであり、1/14に低減される。   FIG. 2 shows an enlarged view of the photoelectric conversion film 21 of the solid-state imaging device 10 of FIG. Compared to the area of one pixel of the solid-state imaging device 10, the crystal grain is larger than that, so that the density of crystal grain boundaries existing in one pixel 112 can be lowered. Therefore, the photocurrent can be taken out with low loss, and a highly sensitive solid-state imaging device 10 can be created. That is, when the crystal grain size is 0.3 μm, as will be described later, the total extension of the grain boundary 113 in the 4 μm square pixel is 107 μm on average, but when the crystal grain size becomes 4 μm, the length is increased. Is 8 μm and is reduced to 1/14.

図3および図4は、図1の固体撮像装置10を製造する概略的な工程を示す。
図3(a)では、光電変換膜21を形成するために、まず、電荷転送素子111上にプラズマCVD法によりN型の非晶質珪素膜32を形成した状態を示す。図3(b)は、汚れおよび自然酸化膜を取り除くためにフッ酸処理を行い、その後、酸化膜33を成膜している状態を示す。汚れが無視できる場合には、酸化膜33の代わりに自然酸化膜をそのまま用いれば良い。ここでは、酸素雰囲気中での紫外線(UV)光の照射により酸化膜33を成膜する。この酸化膜33の成膜方法としては、熱酸化法を用いるのでもよい。また、過酸化水素による処理によるものでもよい。
3 and 4 show schematic steps for manufacturing the solid-state imaging device 10 of FIG.
FIG. 3A shows a state in which an N-type amorphous silicon film 32 is first formed on the charge transfer element 111 by a plasma CVD method in order to form the photoelectric conversion film 21. FIG. 3B shows a state in which hydrofluoric acid treatment is performed to remove dirt and a natural oxide film, and then an oxide film 33 is formed. If the contamination can be ignored, the natural oxide film may be used as it is instead of the oxide film 33. Here, the oxide film 33 is formed by irradiation with ultraviolet (UV) light in an oxygen atmosphere. As a method for forming the oxide film 33, a thermal oxidation method may be used. Alternatively, treatment with hydrogen peroxide may be used.

この酸化膜33は、後のニッケルを含んだ酢酸塩溶液を塗布する工程で、非晶質珪素膜32の表面全体に酢酸塩溶液を行き渡らせるため、即ち、濡れ性の改善の為のものである。たとえば、非晶質珪素膜32の表面に直接酢酸塩溶液を塗布した場合、非晶質珪素が酢酸塩溶液を弾いてしまうので、非晶質珪素膜32の表面全体にニッケルを導入することができない。即ち、均一な結晶化を行うことができない。   This oxide film 33 is used for spreading the acetate solution over the entire surface of the amorphous silicon film 32 in the subsequent step of applying an acetate solution containing nickel, that is, for improving the wettability. is there. For example, when an acetate solution is applied directly to the surface of the amorphous silicon film 32, amorphous silicon repels the acetate solution, so nickel may be introduced to the entire surface of the amorphous silicon film 32. Can not. That is, uniform crystallization cannot be performed.

図3(c)は、酢酸塩溶液中にニッケルを添加した酢酸塩溶液34を作り、この酢酸塩溶液34を非晶質珪素膜32上の酸化膜33の表面に滴下した状態を示す。そして、図3(d)では、スピナー35を用いてスピンドライを行っている状態を示す。酢酸塩溶液34中におけるニッケルの濃度は、1ppm以上、好ましくは10ppm以上であれば実用になる。また、溶液として2−エチルヘキサン酸ニッケルのトルエン溶液の如き無極性溶媒を用いる場合、酸化膜33は不要であり、直接非晶質珪素膜32上に触媒元素を導入することができる。   FIG. 3C shows a state in which an acetate solution 34 in which nickel is added to an acetate solution is made and this acetate solution 34 is dropped on the surface of the oxide film 33 on the amorphous silicon film 32. FIG. 3D shows a state where spin drying is performed using the spinner 35. If the concentration of nickel in the acetate solution 34 is 1 ppm or more, preferably 10 ppm or more, it is practical. Further, when a nonpolar solvent such as a toluene solution of nickel 2-ethylhexanoate is used as the solution, the oxide film 33 is unnecessary, and the catalytic element can be directly introduced onto the amorphous silicon film 32.

図4(a)は、ニッケルの酢酸塩溶液34の塗布を数回行い、スピンドライ後の非晶質珪素膜32の表面の酸化膜33上に、に数Å〜数百Åの平均の膜厚を有するニッケルを含む層34aを形成している状態を示す。この場合、この層34aのニッケルがその後の加熱工程において、非晶質珪素膜32に拡散し、結晶化を助長する触媒として作用する。   FIG. 4A shows an average film of several to hundreds of gallium on the oxide film 33 on the surface of the amorphous silicon film 32 after the spin-drying of the nickel acetate solution 34 is applied several times. The state where the layer 34a containing nickel having a thickness is formed is shown. In this case, nickel in the layer 34a diffuses into the amorphous silicon film 32 in the subsequent heating step, and acts as a catalyst for promoting crystallization.

図4(b)は、550℃、4時間の加熱処理を窒素雰囲気中で行うことにより、図4(a)に示す非晶質珪素膜32がN型の結晶性珪素膜36に変成している状態を示す。結晶は、図の上下方向、すなわち電荷転送素子111としての半導体チップの厚み方向に成長する。そして、図4(c)に示すように、たとえばKrFエキシマレーザ光を照射することにより、この結晶性珪素膜36の結晶性をさらに助長させる結晶成長のためのレーザ・アニール処理を行う。   In FIG. 4B, the heat treatment at 550 ° C. for 4 hours is performed in a nitrogen atmosphere, whereby the amorphous silicon film 32 shown in FIG. Indicates the state. The crystal grows in the vertical direction in the figure, that is, in the thickness direction of the semiconductor chip as the charge transfer element 111. Then, as shown in FIG. 4C, a laser annealing process for crystal growth that further promotes the crystallinity of the crystalline silicon film 36 is performed, for example, by irradiation with KrF excimer laser light.

図4(d)は、その後、プラズマドーピング法によって、N型の結晶性珪素膜36上に不純物(ボロン)を注入し、P型の結晶性珪素膜37を形成する状態を示す。続いて、図4(e)に示すように、上面からレーザ光を照射して、レーザ・アニール処理を行い、ドーピングされた不純物を活性化する。そして、画素電極20となる透明電極22を形成する。以上の工程によって図1に示す固体撮像装置10が完成する。   FIG. 4D shows a state where an impurity (boron) is implanted on the N-type crystalline silicon film 36 by plasma doping to form a P-type crystalline silicon film 37 thereafter. Subsequently, as shown in FIG. 4E, laser light is irradiated from the upper surface, laser annealing treatment is performed, and the doped impurities are activated. Then, a transparent electrode 22 to be the pixel electrode 20 is formed. The solid-state imaging device 10 shown in FIG. 1 is completed through the above steps.

次に、このような構成における図1の固体撮像装置10の動作を説明する。光電変換膜21に光が入射すると、電子・正孔対が生成され、正孔は透明電極22側へ移動し、電子は画素電極20を経て蓄積ダイオード13に蓄積される。このとき、光電変換膜21中には再結合中心やトラップ準位が無いため、光電変換により生じた電子が再結合中心やトラップ準位に吸収されることによる光電流の減少や、トラップ準位からのキャリア放出による残像の発生を抑制することができる。   Next, the operation of the solid-state imaging device 10 of FIG. 1 having such a configuration will be described. When light enters the photoelectric conversion film 21, an electron / hole pair is generated, the hole moves to the transparent electrode 22 side, and the electron is stored in the storage diode 13 through the pixel electrode 20. At this time, since there is no recombination center or trap level in the photoelectric conversion film 21, the photocurrent is reduced due to absorption of electrons generated by photoelectric conversion in the recombination center or trap level, or the trap level. It is possible to suppress the occurrence of an afterimage due to carrier emission from the.

光電変換膜21のp型表面層は、シリコン基板11と同一電位に設定されており、pn接合部分を除いて非空乏状態に保持される。そして、周知のインターライン転送方式に従って、転送電極16,17に高電圧パルスが印加されると、信号電荷読み出し部が導通し、蓄積ダイオード13に蓄積された信号電荷は、垂直CCDチャネル14に転送される。   The p-type surface layer of the photoelectric conversion film 21 is set to the same potential as that of the silicon substrate 11 and is maintained in a non-depleted state except for the pn junction portion. Then, when a high voltage pulse is applied to the transfer electrodes 16 and 17 according to a known interline transfer method, the signal charge reading unit becomes conductive, and the signal charge stored in the storage diode 13 is transferred to the vertical CCD channel 14. Is done.

図5は、図1の固体撮像装置10で、光電変換膜21に多結晶珪素膜を使用する場合を拡大して示す。多結晶珪素膜の結晶粒径は、結晶粒径が0.3μm程度と比較的小さいため、1個の画素112内に存在する結晶粒界密度が大きい。結晶粒界113では電子が散乱されてしまうため、結晶粒界113を通過する頻度が多くなると光電流のロスが生じ、固体撮像装置の感度低下を生じる。したがって、結晶粒径を大きくすることが好ましい。しかしながら、従来のように、非晶質珪素膜を使用する場合よりは、感度低下を改善することができる。   FIG. 5 is an enlarged view of a case where a polycrystalline silicon film is used for the photoelectric conversion film 21 in the solid-state imaging device 10 of FIG. Since the crystal grain size of the polycrystalline silicon film is relatively small, such as about 0.3 μm, the density of crystal grain boundaries existing in one pixel 112 is large. Since electrons are scattered at the crystal grain boundary 113, a loss of photocurrent occurs when the frequency of passing through the crystal grain boundary 113 increases, resulting in a decrease in sensitivity of the solid-state imaging device. Therefore, it is preferable to increase the crystal grain size. However, the sensitivity reduction can be improved as compared with the conventional case where an amorphous silicon film is used.

以上に説明したとおり、本実施形態の固体撮像装置10は、光電変換膜21として画素112より大きな結晶粒界を有する再結晶半導体を用いているため、アモルファスシリコンに比べて再結合中心やトラップ準位となる欠陥が少ない。このため、光電流の減少による感度低下や、トラップ準位に起因する残像が発生するという問題を解決でき、高感度かつ低残像な固体撮像装置10を提供することができるという、顕著な効果を奏する。   As described above, since the solid-state imaging device 10 of the present embodiment uses a recrystallized semiconductor having a crystal grain boundary larger than that of the pixel 112 as the photoelectric conversion film 21, the recombination center and the trap level are compared with amorphous silicon. There are few defects. For this reason, it is possible to solve the problem that the sensitivity is reduced due to the decrease in photocurrent and the afterimage due to the trap level is generated, and the solid-state imaging device 10 having high sensitivity and low afterimage can be provided. Play.

本発明の実施の一形態としての固体撮像装置10の概略的な構成を示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a solid-state imaging device 10 as an embodiment of the present invention. 図1の固体撮像装置10の光電変換膜21を拡大して示す図である。It is a figure which expands and shows the photoelectric converting film 21 of the solid-state imaging device 10 of FIG. 図1の固体撮像装置10を製造する概略的な工程での状態を示す断面図である。It is sectional drawing which shows the state in the schematic process of manufacturing the solid-state imaging device 10 of FIG. 図1の固体撮像装置10を製造する概略的な工程での状態を示す断面図である。It is sectional drawing which shows the state in the schematic process of manufacturing the solid-state imaging device 10 of FIG. 図1の固体撮像装置10の光電変換膜21に多結晶膜を使用する場合を拡大して示す図である。It is a figure which expands and shows the case where a polycrystalline film is used for the photoelectric converting film 21 of the solid-state imaging device 10 of FIG. 従来の積層型固体撮像蔵置の概略的な構成を示す断面図である。It is sectional drawing which shows the schematic structure of the conventional laminated | stacked solid-state imaging storage.

符号の説明Explanation of symbols

10 固体撮像装置
11 p型シリコン基板
12 素子分離層
13 蓄積ダイオード
14 垂直CCDチャネル
15 第1の絶縁層
16,17 転送電極
18 引出し電極
19 第2の絶縁層
20 画素電極
21 光電変換膜
22 透明電極
32 非晶質珪素膜
33 酸化膜
34 酢酸塩溶液
35 スピナー
36 N型結晶性珪素膜
37 P型結晶性珪素膜
111 電荷転送素子
112 画素
113 結晶粒界
DESCRIPTION OF SYMBOLS 10 Solid-state imaging device 11 P-type silicon substrate 12 Element isolation layer 13 Storage diode 14 Vertical CCD channel 15 1st insulating layer 16, 17 Transfer electrode 18 Extraction electrode 19 2nd insulating layer 20 Pixel electrode 21 Photoelectric conversion film 22 Transparent electrode 32 Amorphous silicon film 33 Oxide film 34 Acetate solution 35 Spinner 36 N-type crystalline silicon film 37 P-type crystalline silicon film 111 Charge transfer element 112 Pixel 113 Grain boundary

Claims (2)

信号電荷転送領域を有する半導体基板上に、転送電極、光電変換膜および電極を具備する積層型の固体撮像装置において、
光電変換膜は再結晶化した半導体膜であることを特徴とする固体撮像装置。
In a stacked solid-state imaging device including a transfer electrode, a photoelectric conversion film, and an electrode on a semiconductor substrate having a signal charge transfer region,
A solid-state imaging device, wherein the photoelectric conversion film is a recrystallized semiconductor film.
前記光電変換膜は、再結晶化した結晶粒の大きさが1の画素より大であることを特徴とする請求項1に記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the photoelectric conversion film has a recrystallized crystal grain size larger than one pixel.
JP2004332186A 2004-11-16 2004-11-16 Solid-state imaging apparatus and its manufacturing method Pending JP2006147657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332186A JP2006147657A (en) 2004-11-16 2004-11-16 Solid-state imaging apparatus and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332186A JP2006147657A (en) 2004-11-16 2004-11-16 Solid-state imaging apparatus and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006147657A true JP2006147657A (en) 2006-06-08

Family

ID=36627023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332186A Pending JP2006147657A (en) 2004-11-16 2004-11-16 Solid-state imaging apparatus and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006147657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227448A (en) * 2007-03-14 2008-09-25 Dongbu Hitek Co Ltd Image sensor and its manufacturing method
JP2012019146A (en) * 2010-07-09 2012-01-26 Sony Corp Imaging device, display image device and electronic equipment
JP2015216271A (en) * 2014-05-12 2015-12-03 日本放送協会 Solid state image pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227448A (en) * 2007-03-14 2008-09-25 Dongbu Hitek Co Ltd Image sensor and its manufacturing method
JP2012019146A (en) * 2010-07-09 2012-01-26 Sony Corp Imaging device, display image device and electronic equipment
JP2015216271A (en) * 2014-05-12 2015-12-03 日本放送協会 Solid state image pickup device

Similar Documents

Publication Publication Date Title
KR101093926B1 (en) Method of producing solid-state imaging device
JP5458156B2 (en) CMOS image sensor and manufacturing method thereof
CN1288761C (en) Production method for solid imaging device
US7985658B2 (en) Method of forming substrate for use in imager devices
US8614112B2 (en) Method of damage-free impurity doping for CMOS image sensors
JP5538922B2 (en) Method for manufacturing solid-state imaging device
JP2015046477A (en) Solid-state image-capturing device, method for manufacturing the same, and electronic device
JP6763406B2 (en) Light receiving element, manufacturing method of light receiving element, image sensor and electronic device
TWI431765B (en) Solid-state image pick-up device and manufacturing method thereof, image-pickup apparatus, semiconductor device and manufacturing method thereof, and semiconductor substrate
US20230343883A1 (en) Full well capacity for image sensor
JP2015220255A (en) Backside irradiation type cmos imaging device, and method for manufacturing thereof
WO2017098769A1 (en) Light-receiving element, manufacturing method for light-receiving element, imaging element, and electronic device
JP2006186118A (en) Solid-state imaging element, manufacturing method thereof, and imaging device
JP2006147657A (en) Solid-state imaging apparatus and its manufacturing method
US11721774B2 (en) Full well capacity for image sensor
JP2008294479A (en) Solid-state imaging apparatus
US7387952B2 (en) Semiconductor substrate for solid-state image pickup device and producing method therefor
JP2641416B2 (en) Photoelectric conversion device
JPS61187267A (en) Solid-state image pickup device
JP4067265B2 (en) Solid-state imaging device and manufacturing method thereof
JP2004047985A (en) Solid state imaging device
JP2002289534A (en) Method for fabricating semiconductor device and method for sorting solid-state imaging device
JP2014127514A (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic equipment
JP2001189286A (en) Solid-stage image pickup element and manufacturing method therefor
JP2003229558A (en) Method for manufacturing solid-state imaging device