JP2006147344A - Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same - Google Patents
Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same Download PDFInfo
- Publication number
- JP2006147344A JP2006147344A JP2004335764A JP2004335764A JP2006147344A JP 2006147344 A JP2006147344 A JP 2006147344A JP 2004335764 A JP2004335764 A JP 2004335764A JP 2004335764 A JP2004335764 A JP 2004335764A JP 2006147344 A JP2006147344 A JP 2006147344A
- Authority
- JP
- Japan
- Prior art keywords
- main surface
- light
- current collector
- curved surface
- transparent conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 title abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 230000003287 optical effect Effects 0.000 claims abstract description 9
- 239000002243 precursor Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 description 13
- 238000002834 transmittance Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Hybrid Cells (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、透明導電板とその製造方法に関し、さらに、この透明導電板を備えた光電変
換素子に関する。
The present invention relates to a transparent conductive plate and a manufacturing method thereof, and further relates to a photoelectric conversion element provided with the transparent conductive plate.
従来、太陽電池等の光電変換素子では、素子の光入射面に、ITO膜やSnO2膜など
の光透過性導電膜を有する透明導電板が配されている。この光透過性導電膜は入射光側の
電極として用いられているが、光透過性導電膜は本来的に、一般的な金属電極と比べてそ
の電気抵抗率が高いため、透明導電板の表面抵抗を高止まりさせる要因となっている。
Conventionally, in a photoelectric conversion element such as a solar cell, a transparent conductive plate having a light-transmitting conductive film such as an ITO film or a SnO 2 film is disposed on the light incident surface of the element. Although this light-transmitting conductive film is used as an electrode on the incident light side, the light-transmitting conductive film inherently has a higher electrical resistivity than a general metal electrode, so the surface of the transparent conductive plate This is a factor that keeps resistance high.
光透過性導電膜の電気抵抗率を引き下げるには、この導電膜を厚く設ければよいが、厚
くするほどその透明性が低下してしまう。他方、光透過性導電膜に金属グリッドを接触さ
せて設けると、その集電作用により当該導電膜の電気抵抗率を引き下げることができるも
のの、金属グリッドが入射光の導波を妨害し、透明導電板の光透過性を悪化させるという
問題がある。
In order to lower the electrical resistivity of the light-transmitting conductive film, the conductive film may be provided thicker, but the greater the thickness, the lower the transparency. On the other hand, when the metal grid is provided in contact with the light-transmitting conductive film, the electrical resistivity of the conductive film can be lowered by the current collecting action, but the metal grid obstructs the waveguide of incident light, and the transparent conductive film There is a problem of deteriorating the light transmittance of the plate.
ここで、このような金属グリッドによる遮光を防止する目的で、鋭角なエッジ形状を有
する金属グリッドを設ける技術がある(特許文献1参照)。
しかしながら、この特許文献1の透明導電板では、ガラス板の表面を、金属グリッドの
エッジ形状に対応させて高精密に加工する必要があるため、透明導電板の製造歩留まりが
低く、またその製造工程数が多いという問題がある。また、この透明導電板では、実用に
十分な程度にまでその電気抵抗性や光透過性を改善できず、電気抵抗をさらに引き下げた
り光透過性をさらに向上したりできる余地がある。
However, in the transparent conductive plate of Patent Document 1, since the surface of the glass plate needs to be processed with high precision in accordance with the edge shape of the metal grid, the manufacturing yield of the transparent conductive plate is low, and the manufacturing process thereof There is a problem that the number is large. In addition, the transparent conductive plate cannot improve its electrical resistance and light transmittance to a practically sufficient level, and there is room for further lowering the electrical resistance and further improving the light transmittance.
そこで、本発明は、透明導電板の電気抵抗を引き下げつつ、その光透過性を向上させう
る新規な構成を提供することを目的とする。また、本発明の別の目的は、この新規な透明
導電板の製造方法、および当該透明導電板を備えた光電変換素子を提供することにある。
Therefore, an object of the present invention is to provide a novel configuration capable of improving the light transmittance while reducing the electrical resistance of a transparent conductive plate. Another object of the present invention is to provide a novel method for producing a transparent conductive plate and a photoelectric conversion element provided with the transparent conductive plate.
従来の、金属グリッドのエッジ形状により入射光の導波経路を制御する技術では、上述
したように限界がある。本発明者は、入射光の導波を精密に制御しうる新たな技術を確立
し、本発明を完成するに至った。
The conventional technique for controlling the waveguide path of incident light by the edge shape of the metal grid has limitations as described above. The inventor has established a new technique capable of precisely controlling the waveguide of incident light, and has completed the present invention.
本発明の透明導電板は、光透過性基板と、前記光透過性基板の第1主面上に設けられた
集光曲面と、前記光透過性基板の第2主面上に設けられた、集電体および光透過性導電膜
と、を含み、前記第2主面が、前記集電体が形成された第1領域と前記集電体が形成され
ていない第2領域とを有し、前記第1主面側から当該第1主面に垂直な方向に沿って前記
第1領域へと入射する光の少なくとも一部を前記第2領域に導くように、前記集光曲面が
形成されていることを特徴とする。
The transparent conductive plate of the present invention is provided on a light transmissive substrate, a condensing curved surface provided on the first main surface of the light transmissive substrate, and a second main surface of the light transmissive substrate. A current collector and a light-transmitting conductive film, and the second main surface has a first region where the current collector is formed and a second region where the current collector is not formed, The condensing curved surface is formed so as to guide at least part of light incident on the first region from the first main surface side along the direction perpendicular to the first main surface to the second region. It is characterized by being.
本発明は、別の側面から、上記透明導電板を製造するに適した方法として、前記第1主
面側から当該第1主面に垂直な方向に沿って前記第1領域へと入射する光の少なくとも一
部を前記第2領域に導くように、前記集光曲面と前記集電体とを配置することを特徴とす
る透明導電板の製造方法を提供する。
In another aspect of the present invention, as a method suitable for manufacturing the transparent conductive plate, light incident on the first region from the first main surface side along a direction perpendicular to the first main surface is provided. A method of manufacturing a transparent conductive plate is provided, wherein the condensing curved surface and the current collector are arranged so that at least a part of the condensing surface is guided to the second region.
本発明によれば、光透過性基板の第2主面上に設けられた集電体を、同じく第2主面上
の光透過性導電膜の集電素子として活用できるため、光透過性導電膜を薄膜化して当該導
電膜部分の光透過性を高めつつ、その電気抵抗を引き下げることができる。さらに、集電
体を避けるように透明導電板への入射光を集光できるため、当該入射光の透過が集電体に
よって妨害されるのを防止できる。この優れた光透過性および低抵抗性は、例えば色素増
感太陽電池等の光電変換素子の入射光電極として極めて有用である。
According to the present invention, since the current collector provided on the second main surface of the light transmissive substrate can be used as a current collecting element of the light transmissive conductive film on the second main surface, the light transmissive conductive material can be used. It is possible to reduce the electrical resistance while increasing the light transmittance of the conductive film portion by reducing the thickness of the film. Furthermore, since the incident light on the transparent conductive plate can be collected so as to avoid the current collector, the transmission of the incident light can be prevented from being obstructed by the current collector. This excellent light transmittance and low resistance are extremely useful as an incident photoelectrode of a photoelectric conversion element such as a dye-sensitized solar cell.
以下、図面を参照しながら、本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図1の断面図で示す透明導電板10は、光透過性基板14を有している。この光透過性
基板14の第1主面に接して集光曲面13を有する2つ以上の集光レンズ19から構成さ
れている集光レンズ群が設けられている。また、光透過性基板14の第1主面に対向する
第2主面上には、開口部12を有する集電体11が当該第2主面に接して設けられている
。そして、この集電体11を覆うように光透過性導電膜15が設けられている。なお、以
下では、集電体11が形成された第2主面部分を第1領域と、この集電体11が形成され
ていない第2主面部分を第2領域と呼ぶ。
The transparent conductive plate 10 shown in the sectional view of FIG. 1 has a light transmissive substrate 14. A condensing lens group including two or more condensing lenses 19 having a condensing curved surface 13 in contact with the first main surface of the light transmissive substrate 14 is provided. On the second main surface facing the first main surface of the light transmissive substrate 14, a current collector 11 having an opening 12 is provided in contact with the second main surface. A light transmissive conductive film 15 is provided so as to cover the current collector 11. Hereinafter, the second main surface portion where the current collector 11 is formed is referred to as a first region, and the second main surface portion where the current collector 11 is not formed is referred to as a second region.
上記光透過性基板14の材料は、当該基板の光透過性を高くできるものほど好ましい。
例えば、ガラス板や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカ
ーボネート、ポリエチレンスルフィド、ポリイミドなどの樹脂シートを用いることができ
る。
The material for the light-transmitting substrate 14 is preferably the one that can increase the light-transmitting property of the substrate.
For example, a glass sheet or a resin sheet such as polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyethylene sulfide, or polyimide can be used.
上記集電体11の材料としては、電気抵抗率が低く、耐腐食性が高いものが好ましい。
例えば、銅、ニッケル、銀、金、白金、タンタル、チタン、ルテニウム、カーボンなどを
用いることができる。また、この集電体11は、光透過性導電膜15を構成する材料より
も電気抵抗率が低い材料から形成することがより好ましい。なお、この集電体11の詳し
い形状については後述する。
As the material of the current collector 11, a material having low electrical resistivity and high corrosion resistance is preferable.
For example, copper, nickel, silver, gold, platinum, tantalum, titanium, ruthenium, carbon, or the like can be used. The current collector 11 is more preferably formed from a material having a lower electrical resistivity than the material constituting the light transmissive conductive film 15. The detailed shape of the current collector 11 will be described later.
上記光透過性導電膜15の材料としては、光透過性が高く、電気抵抗率が低いものが好
ましい。例えば、酸化スズ、酸化亜鉛、ITO(スズドープ酸化インジウム)、FTO(
フッ素ドープ酸化スズ)などを用いることができる。
As the material of the light transmissive conductive film 15, a material having high light transmittance and low electrical resistivity is preferable. For example, tin oxide, zinc oxide, ITO (tin doped indium oxide), FTO (
Fluorine-doped tin oxide) can be used.
なお、上記実施形態では、集電体11が光透過性導電膜15と第2主面との間に設けら
れた構造を示したが、集電体11と光透過性導電膜15とが互いに接するように配する限
り、これに代えて、光透過性導電膜15が集電体11と第2主面との間に設けられた構造
としてもよい。後者の構造とする場合には、集電体の露出を避けるため、当該集電体を公
知の絶縁膜等で覆っておくことが好ましい。
In the above embodiment, the current collector 11 is provided between the light transmissive conductive film 15 and the second main surface. However, the current collector 11 and the light transmissive conductive film 15 are mutually connected. As long as it arrange | positions so that it may contact | connect, it may replace with this and may be set as the structure where the transparent conductive film 15 was provided between the electrical power collector 11 and the 2nd main surface. In the latter structure, it is preferable to cover the current collector with a known insulating film or the like in order to avoid exposure of the current collector.
上記集光レンズ19の形状は、第1主面側から当該第1主面に垂直な方向に沿って第1
領域へと入射する光の少なくとも一部を第2領域に導くという集光性を発揮できる限り特
に限定されない。この集光レンズは、例えば図2で示すマイクロレンズ状や、図6で示す
シリンドリカル状としてもよい。なお、集光曲面13の曲率等は、集電体11の形状や透
明導電板10のサイズに応じて適宜選択してよい。
The shape of the condensing lens 19 is first from the first main surface side along the direction perpendicular to the first main surface.
There is no particular limitation as long as the light condensing property of guiding at least part of the light incident on the region to the second region can be exhibited. For example, the condensing lens may have a microlens shape shown in FIG. 2 or a cylindrical shape shown in FIG. The curvature and the like of the converging curved surface 13 may be appropriately selected according to the shape of the current collector 11 and the size of the transparent conductive plate 10.
集光レンズをマイクロレンズ状とする場合、平面視したときの形状は特に限定されず、
円形、楕円形、矩形、三角形、六角形等とすることができるが、集光レンズを近接して隙
間なく配置するには、矩形、三角形、六角形等や、それらの組み合わせからなる集光レン
ズ群とすることが好ましい。
When the condensing lens is a microlens shape, the shape when viewed in plan is not particularly limited,
Circular, oval, rectangular, triangular, hexagonal, etc., but in order to place the condensing lens close to each other without gaps, a condensing lens made of a rectangle, triangle, hexagon, etc., or a combination thereof A group is preferred.
集光レンズの材料は特に限定されず、無機材料および有機材料のいずれも用いることが
できるが、耐侯性に優れているものが好ましい。
The material of the condensing lens is not particularly limited, and any of inorganic materials and organic materials can be used, but those having excellent weather resistance are preferable.
なお、上記集光性を阻害しない限り、この集光レンズの表面には、光透過性を有する保
護層を設けてもよい。これにより、透明導電板の強度を向上したり、集光曲面の表面を保
護したり、当該表面を平坦化したりできる。
In addition, as long as the said condensing property is not inhibited, you may provide the protective layer which has a light transmittance on the surface of this condensing lens. Thereby, the intensity | strength of a transparent conductive plate can be improved, the surface of a condensing curved surface can be protected, or the said surface can be planarized.
ここで、上記集電体11の配置および形状について詳しく説明する。この集電体11の
配置および形状は、上記集光レンズ19の配置および形状と密接に関連している。すなわ
ち、この集電体11と集光レンズ19とは、第1主面側から当該第1主面に垂直な方向に
沿って第1領域へと入射する光の少なくとも一部、好ましくはその過半を第2領域に導く
ように、両者の配置および形状が相対的に規定されている。
Here, the arrangement and shape of the current collector 11 will be described in detail. The arrangement and shape of the current collector 11 are closely related to the arrangement and shape of the condenser lens 19. In other words, the current collector 11 and the condensing lens 19 are configured such that at least part of light incident on the first region from the first main surface side along the direction perpendicular to the first main surface, preferably a majority of the light. The relative arrangement and shape of the two are so defined as to lead them to the second region.
まず、この集電体11の配置について説明する。本実施形態では、集電体11の開口部
12が、光透過性基板14の第2主面に集光されてくる入射光の幅以上に広い開口幅を有
している。より詳しくは、図9で示すように、開口部の開口端面(集電体11の端面に相
当する)17と、当該開口端面に最近接するとともにこの開口部に向けて光を集光させる
集光曲面の光軸と、の最短距離(w)が、以下の式(1)を満たすように、集電体11と
集光曲面13とが相対的に配置されている。
(F−d)h/F ≦ w <h ・・・(1)
ただし、式中のhは前記開口端面に最近接する集光レンズの光軸と、当該集光レンズの
集光曲面13の集光曲面縁18であって当該開口端面に最近接する集光曲面縁18との間
の距離であり、dは前記光透過性基板の厚みであり、Fは前記光透過性基板の屈折率に等
しい媒質中での前記集光曲面の焦点距離である。
First, the arrangement of the current collector 11 will be described. In the present embodiment, the opening portion 12 of the current collector 11 has an opening width that is wider than the width of incident light that is collected on the second main surface of the light transmissive substrate 14. More specifically, as shown in FIG. 9, the opening end face (corresponding to the end face of the current collector 11) 17 of the opening and the light condensing light that is closest to the opening end face and collects light toward the opening. The current collector 11 and the condensing curved surface 13 are relatively disposed so that the shortest distance (w) between the optical axis of the curved surface satisfies the following formula (1).
(F−d) h / F ≦ w <h (1)
However, h in the formula is the optical axis of the condensing lens closest to the opening end surface and the condensing curved surface edge 18 of the condensing curved surface 13 of the condensing lens, and the condensing curved surface edge 18 closest to the opening end surface. , D is the thickness of the light transmissive substrate, and F is the focal length of the converging curved surface in the medium equal to the refractive index of the light transmissive substrate.
第2領域に対応する第1主面部分には、上記式(1)を満たす限り、この図9や図8で
示す構造のように、上記集光レンズ19を2つ以上設けてもよい。しかしながら、集電体
11と光透過性導電膜15との接触面積を増やして透明導電板を低抵抗化させる側面から
は、図1で示す構造のように、1つの集光曲面の集光曲面縁18の内側近傍に対応する第
2主面部分のそれぞれに集電体を配してあることが好ましい。また、広い接触面積で配す
るほど透明導電板を低抵抗化できるため、上記最短距離(w)を(F−d)h/Fに等し
い態様とするのが最も好ましい。
As long as the above-described formula (1) is satisfied, the first main surface portion corresponding to the second region may be provided with two or more condensing lenses 19 as in the structure shown in FIG. 9 or FIG. However, from the side of increasing the contact area between the current collector 11 and the light-transmitting conductive film 15 and reducing the resistance of the transparent conductive plate, a condensing curved surface of one condensing curved surface as shown in FIG. It is preferable that a current collector is disposed on each of the second main surface portions corresponding to the inside vicinity of the edge 18. Further, since the resistance of the transparent conductive plate can be reduced as the contact area is increased, the shortest distance (w) is most preferably set to an aspect equal to (F−d) h / F.
さらに、入射光の透過が集電体によって妨害されるのを防止する側面からは、第1領域
に対応する第1主面部分には、集光曲面13を配してあることが好ましい。例えば図16
で示すように2つの集光レンズを近接させずに配している場合には、上記式(1)を満た
しつつ、それぞれの集光曲面の集光曲面縁18に対応する第2主面部分からはみ出さない
ように、集光レンズと集電体とを相対的に配してあることが好ましい。
Furthermore, it is preferable that the condensing curved surface 13 is arranged on the first main surface portion corresponding to the first region from the side surface for preventing the transmission of incident light from being disturbed by the current collector. For example, FIG.
In the case where the two condensing lenses are arranged without being close to each other as shown by the following, the second main surface portion corresponding to the condensing curved surface edge 18 of each condensing curved surface while satisfying the above formula (1). It is preferable that the condensing lens and the current collector are relatively arranged so as not to protrude.
なお、上記『集光曲面縁と光軸との距離』とは、この集光レンズが、例えば図2で示す
ような歪みのないマイクロレンズ状である場合には、マイクロレンズの半径がそれに相当
し、例えば図6で示すような歪みのないシリンドリカル状の曲面を有するものである場合
には、このシリンドリカル形状の短手方向の幅の半分の値がそれに相当する。
The “distance between the condensing curved surface edge and the optical axis” refers to the radius of the microlens when the condensing lens is a microlens shape having no distortion as shown in FIG. For example, in the case of a cylindrical curved surface having no distortion as shown in FIG. 6, the half value of the width in the short direction of the cylindrical shape corresponds to this.
また、図9などでは、それぞれの集電体の膜厚や幅が等しい態様を示しているが、上記
集光レンズの形状およびサイズに応じて、それぞれの膜厚および幅が異なる態様としても
よい。
9 and the like show an aspect in which the thickness and width of each current collector are equal, but the thickness and width may be different depending on the shape and size of the condenser lens. .
続いて、この集電体11の形状について説明する。図3は、集光レンズ19がマイクロ
レンズ状である透明導電板の第2主面側からの正面図であって、集電体11と集光曲面1
3との相対配置を示す図である。図4は、当該相対配置の別の例を示す図である。図5は
、当該相対配置のまた別の例を示す図である。図7は、集光レンズ19の集光曲面13が
シリンドリカル状である透明導電板の第2主面側からの正面図であって、集電体11と集
光曲面13との相対配置を示す図である。それぞれの図では、第1主面上に設けられてい
る集光曲面13を破線で示してある。
Subsequently, the shape of the current collector 11 will be described. FIG. 3 is a front view from the second main surface side of the transparent conductive plate in which the condensing lens 19 has a microlens shape, and the current collector 11 and the condensing curved surface 1.
FIG. FIG. 4 is a diagram illustrating another example of the relative arrangement. FIG. 5 is a diagram showing another example of the relative arrangement. FIG. 7 is a front view from the second main surface side of the transparent conductive plate in which the condensing curved surface 13 of the condensing lens 19 is cylindrical, and shows the relative arrangement of the current collector 11 and the condensing curved surface 13. FIG. In each figure, the condensing curved surface 13 provided on the 1st main surface is shown with the broken line.
この集電体11の形状は、集光曲面13による第2主面での集光形状をその内形状とし
、集光曲面13の集光曲面縁の形状をその外形状とする。集光レンズ19が、真円状の正
面形状をした歪みのないマイクロレンズ状であると、この集電体11は、図3で示すよう
に、その内形状および外形状のいずれもが真円状となる。他方、集光レンズ19の集光曲
面が、歪みのないシリンドリカル状であると、この集電体11は、図7で示すように、そ
の内形状および外形状のいずれもが、当該集光曲面のシリンドリカル形状の長手方向に一
致する平行直線状となる。なお、いずれの場合も、上記集光形状と集電体11の開口部1
2の形状とが本質的に一致することが好ましい。
As for the shape of the current collector 11, the condensing shape on the second main surface by the condensing curved surface 13 is the inner shape, and the shape of the condensing curved surface edge of the condensing curved surface 13 is the outer shape. When the condensing lens 19 is a microlens shape having a perfect circle front shape without distortion, the current collector 11 has a perfect circle shape as shown in FIG. It becomes a shape. On the other hand, when the condensing curved surface of the condensing lens 19 is a cylindrical shape without distortion, the current collector 11 has both its inner shape and outer shape as shown in FIG. It becomes a parallel straight line shape that coincides with the longitudinal direction of the cylindrical shape. In any case, the light condensing shape and the opening 1 of the current collector 11 are used.
It is preferred that the shape of 2 essentially matches.
ところで、集電体11と光透過性導電膜15との接触面積を増やして透明導電板を低抵
抗化させる側面からは、第2主面上の集電体の配置面積をできる限り増やすこと、すなわ
ち集光レンズ19の配置密度をできる限り高めることが好ましい。それゆえ、それぞれの
集光レンズを真円状とする場合には、例えば図4で示すような最密度充填配置を集光レン
ズ群にとらせることが好ましい。さらに、上述したように、集光レンズを近接して隙間な
く配置するには、矩形、三角形、六角形等や、それらの組み合わせからなる集光レンズ群
とすることがより好ましい。例えば図5で示すように、正六角形状の集光曲面13に最密
度充填配置させる。
By the way, from the side of increasing the contact area between the current collector 11 and the light transmissive conductive film 15 and reducing the resistance of the transparent conductive plate, increasing the arrangement area of the current collector on the second main surface as much as possible. That is, it is preferable to increase the arrangement density of the condenser lenses 19 as much as possible. Therefore, when each condensing lens is made into a perfect circle, for example, it is preferable that the condensing lens group has the highest density filling arrangement as shown in FIG. Furthermore, as described above, in order to arrange the condensing lenses close to each other without a gap, it is more preferable to use a condensing lens group made of a rectangle, a triangle, a hexagon, or the like, or a combination thereof. For example, as shown in FIG. 5, the regular hexagonal condensing curved surface 13 is filled with the highest density.
なお、このようにして隣り合う集光レンズを近接配置させると、それぞれの集光曲面の
集光曲面縁の近傍に対応する第2主面部分に設けられた集電体は、2つの独立したパター
ンにはならず、例えば図1で示すように一体化することになり、集電体の全体構造がグリ
ッド状となる。
In addition, when the adjacent condensing lenses are arranged close to each other in this way, the current collectors provided on the second main surface portion corresponding to the vicinity of the condensing curved surface edge of each condensing curved surface are two independent For example, as shown in FIG. 1, the entire structure of the current collector has a grid shape.
本実施形態で示した透明導電板であると、集光曲面によって、透明導電板への入射光を
集光させ、集電体を避けるようにその光路を誘導できるため、当該入射光の透過が集電体
によって妨害されるのを防止できる。さらに、入射光の導波を妨害させずに、集電体と光
透過性導電膜との接触面積を大幅に増加できるため、光透過性導電膜を薄膜化して当該導
電膜部分の光透過性を高めつつ、その電気抵抗を引き下げることができる。よって、透明
導電板の光透過性を向上できるとともに、これを低抵抗化できる。この優れた光透過性お
よび低抵抗性は、例えば太陽電池や光学センサ等の光電変換素子の入射光電極として極め
て有用である。なお、色素増感太陽電池においては特に、透明導電板の低抵抗化に対する
要求が強いため、この透明導電板の有用性が高い。
In the case of the transparent conductive plate shown in this embodiment, the incident light to the transparent conductive plate can be condensed by the condensing curved surface, and the optical path can be guided so as to avoid the current collector. It can be prevented from being disturbed by the current collector. Furthermore, since the contact area between the current collector and the light-transmitting conductive film can be greatly increased without obstructing the waveguide of incident light, the light-transmitting conductive film portion is thinned so that the light transmitting property of the conductive film portion is reduced. The electrical resistance can be lowered while increasing the resistance. Therefore, the light transmittance of the transparent conductive plate can be improved and the resistance can be reduced. This excellent light transmittance and low resistance are extremely useful as an incident photoelectrode of a photoelectric conversion element such as a solar cell or an optical sensor. In addition, especially in a dye-sensitized solar cell, since the request | requirement with respect to the low resistance of a transparent conductive plate is strong, the usefulness of this transparent conductive plate is high.
また、光透過性導電膜を厚く設けると、上述したようにその透明性が低下することに加
えて、基板を曲げたときに当該導電膜がひび割れてしまうことがあるため、透明導電板を
フレキシブル化することが容易でないが、本実施形態で示した透明導電板であると、光透
過性導電膜を薄膜化できるため、光透過性基板を樹脂シートで構成することにより、フレ
キシブルな透明導電板を提供することができる。
In addition, when the light-transmitting conductive film is provided thick, the transparency is lowered as described above, and the conductive film may be cracked when the substrate is bent. Although it is not easy to make the transparent conductive plate shown in the present embodiment, since the light transmissive conductive film can be thinned, a flexible transparent conductive plate can be formed by configuring the light transmissive substrate with a resin sheet. Can be provided.
以下に、上記透明導電板の製造方法の好ましい一形態について、図面を参照しながら説
明する。
Below, the preferable one form of the manufacturing method of the said transparent conductive plate is demonstrated, referring drawings.
まず、図10で示すように、光透過性基板10と、この光透過性基板の第1主面上に設
けられた、集光曲面13を有する集光レンズ19と、この光透過性基板の第2主面上に設
けられたネガ型の感光性レジスト膜21とを含む透明導電板前駆体を準備する。
First, as shown in FIG. 10, a light-transmitting substrate 10, a condensing lens 19 having a condensing curved surface 13 provided on the first main surface of the light-transmitting substrate, and the light-transmitting substrate A transparent conductive plate precursor including a negative photosensitive resist film 21 provided on the second main surface is prepared.
この集光レンズ19は、例えば、鋳型を利用して転写する方法や感光性の材料を用いて
形成する方法などによって光透過性基板上に形成することができるが、予め集光レンズ1
9が形成されている光透過性基板を用いてもよい。
The condensing lens 19 can be formed on the light-transmitting substrate by, for example, a transfer method using a mold or a method using a photosensitive material.
A light-transmitting substrate on which 9 is formed may be used.
また、この感光性レジスト膜21は、液状材料の塗布により形成しても、フィルム状材
料を貼り付けて形成してもよいが、予めレジスト膜21が形成されている光透過性基板を
用いてもよい。なお、当該レジスト膜21の材料としては、後工程であるレジストの現像
、剥離工程において、上記集光レンズ19が劣化しにくい材料系のレジストを選ぶことが
好ましい。また、当該レジスト膜21の厚みは、後工程で形成する集電体の設計厚みより
も厚くしておくことが好ましい。
The photosensitive resist film 21 may be formed by application of a liquid material or may be formed by attaching a film-like material, but using a light-transmitting substrate on which the resist film 21 has been formed in advance. Also good. As a material for the resist film 21, it is preferable to select a resist of a material system in which the condensing lens 19 is not easily deteriorated in a resist development and peeling process, which are subsequent processes. In addition, the thickness of the resist film 21 is preferably set to be thicker than the designed thickness of the current collector formed in a subsequent process.
なお、薄い光透過性基板を用いる場合には自立基板としての取り扱いが難しくなるため
、この透明導電板前駆体を次のように作製してもよい。まず、金属製や樹脂製の支持基板
上に薄く形成した光透過性基板の第1主面上に、集光レンズを形成する。次に、当該集光
レンズの上にさらに光透過性の保護膜を形成して強度を十分に高める。続いて、エッチン
グや剥離によって支持基板を引き剥がす。最後に、光透過性基板の第2主面上にレジスト
膜21を形成する。
In addition, since the handling as a self-supporting board | substrate becomes difficult when using a thin light-transmitting board | substrate, you may produce this transparent conductive plate precursor as follows. First, a condenser lens is formed on the first main surface of a light-transmitting substrate that is thinly formed on a metal or resin support substrate. Next, a light-transmitting protective film is further formed on the condensing lens to sufficiently increase the strength. Subsequently, the support substrate is peeled off by etching or peeling. Finally, a resist film 21 is formed on the second main surface of the light transmissive substrate.
上記透明導電板前駆体を以下のように加工し、透明導電板を作製する。まず、集光曲面
側からレジスト膜21へ露光のための光を、好ましくは第1主面に垂直な方向から照射す
る。この露光光は、各集光曲面13によって集光されてから第2主面に到達するため、図
11で示すように、上記レジスト膜21が部分的に露光され、感光したレジスト22とな
る。この露光源としては、プロジェクション露光機やプロキシミティ露光機などの、並行
光を照射できる装置を用いることが好ましい。
The transparent conductive plate precursor is processed as follows to produce a transparent conductive plate. First, light for exposure is applied to the resist film 21 from the converging curved surface side, preferably from a direction perpendicular to the first main surface. Since this exposure light is condensed by each condensing curved surface 13 and reaches the second main surface, the resist film 21 is partially exposed to become a resist 22 as shown in FIG. As this exposure source, it is preferable to use an apparatus capable of irradiating parallel light, such as a projection exposure machine or a proximity exposure machine.
その後、上記レジスト膜21を現像して、所定のレジストパターンを加工する。ネガ型
のレジスト膜を用いるため、図12で示すように、上記感光したレジスト22のみが残存
した島状のレジスト23が形成される。
Thereafter, the resist film 21 is developed to process a predetermined resist pattern. Since a negative resist film is used, as shown in FIG. 12, an island-shaped resist 23 in which only the exposed resist 22 remains is formed.
次に、上記島状のレジスト23を覆うように、すなわち当該島状のレジスト表面とレジ
ストが除去されて露出した第2主面とに接して、図13で示すように導電層16を形成す
る。この導電層16は、蒸着法、スパッタリング法、化学気相成長法(CVD法)、塗布
法、ゾルゲル法などの公知の方法によって形成してよい。また、この導電層16は、銅、
ニッケル、銀、金、白金、タンタル、チタン、ルテニウム、カーボンなどをその材料とす
る。なお、後工程で形成する光透過性導電膜の電気抵抗率を引き下げるためには、当該導
電層16をできる限り厚く形成することが好ましいが、後工程で導電層の一部を除去し易
くするため、島状のレジスト23の厚みよりも薄くしておくことが好ましい。
Next, a conductive layer 16 is formed as shown in FIG. 13 so as to cover the island-shaped resist 23, that is, in contact with the island-shaped resist surface and the second main surface exposed by removing the resist. . The conductive layer 16 may be formed by a known method such as an evaporation method, a sputtering method, a chemical vapor deposition method (CVD method), a coating method, or a sol-gel method. The conductive layer 16 is made of copper,
The material is nickel, silver, gold, platinum, tantalum, titanium, ruthenium, carbon or the like. Note that in order to reduce the electrical resistivity of the light-transmitting conductive film formed in the subsequent step, it is preferable to form the conductive layer 16 as thick as possible, but it is easy to remove a part of the conductive layer in the subsequent step. For this reason, it is preferable that the thickness of the island-shaped resist 23 be smaller than that of the island-shaped resist 23.
続いて、島状のレジスト23の表面に形成されている導電層を、当該レジスト23とと
もに除去し、図14で示すように、開口部12を有する集電体11を形成する。
Subsequently, the conductive layer formed on the surface of the island-shaped resist 23 is removed together with the resist 23 to form a current collector 11 having an opening 12 as shown in FIG.
最後に、集電体11を覆うように、すなわち当該集電体11の表面と、一部の導電層と
ともにレジストを除去することにより露出した第2主面とに接して、図15で示すように
光透過性導電膜15を形成する。これにより、透明導電板10が完成する。なお、この光
透過性導電膜15は、蒸着法、スパッタリング法、化学気相成長法(CVD法)、塗布法
、ゾルゲル法などの公知の方法によって形成してよい。
Finally, as shown in FIG. 15, the current collector 11 is covered so as to cover the surface of the current collector 11 and the second main surface exposed by removing the resist together with a part of the conductive layer. A light transmissive conductive film 15 is formed on the substrate. Thereby, the transparent conductive plate 10 is completed. The light transmissive conductive film 15 may be formed by a known method such as a vapor deposition method, a sputtering method, a chemical vapor deposition method (CVD method), a coating method, or a sol-gel method.
なお、このような、集光曲面を介した露光によりレジスト膜をパターニングする工程を
含む上記実施形態以外にも、例えば集光レンズと集電体とを予め準備しておき、集光曲面
に入射する光の光路が集電体を避けるような相対配置で、光透過性基板の第1主面および
第2主面に、第1主面側から当該第1主面に垂直な方向に沿って上記第1領域へと入射す
る光の少なくとも一部を上記第2領域に導くように、集光曲面と集電体とを配置する態様
としてもよい。
In addition to the above-described embodiment including the step of patterning a resist film by exposure through a condensing curved surface, for example, a condensing lens and a current collector are prepared in advance and incident on the condensing curved surface. The light path of the light to be transmitted is in a relative arrangement so as to avoid the current collector, on the first main surface and the second main surface of the light transmissive substrate along the direction perpendicular to the first main surface from the first main surface side. It is good also as an aspect which arrange | positions a condensing curved surface and a collector so that at least one part of the light which injects into the said 1st area | region may be guide | induced to the said 2nd area | region.
しかしながら、上記実施形態であると、集光曲面によって集光される入射光の光路が確
実に集電体を避けるように集電体を形成することができる、すなわち、集光曲面と集電体
との位置ずれを生じさせることなく、両者を確実かつ簡便に相対配置させることができる
ため特に好ましい。
However, in the above embodiment, the current collector can be formed so that the optical path of incident light collected by the condensing curved surface reliably avoids the current collector, that is, the condensing curved surface and the current collector. This is particularly preferable because they can be reliably and simply disposed relative to each other without causing any positional deviation.
本発明は、電気抵抗を引き下げるとともにその光透過性を向上させた透明導電板、およ
び、この透明導電板を備えた光電変換素子にも適用できる。
The present invention can also be applied to a transparent conductive plate with reduced electrical resistance and improved light transmission, and a photoelectric conversion element provided with the transparent conductive plate.
10 透明導電板
11 集電体
12 開口部
13 集光曲面
14 光透過性基板
15 光透過性導電膜
16 導電層
17 開口端面
18 集光曲面縁
19 集光レンズ
21 レジスト膜
22 感光したレジスト
23 島状のレジスト
DESCRIPTION OF SYMBOLS 10 Transparent conductive plate 11 Current collector 12 Opening part 13 Condensing curved surface 14 Light transmissive substrate 15 Light transmissive conductive film 16 Conductive layer 17 Opening end surface 18 Condensing curved surface edge 19 Condensing lens 21 Resist film 22 Photosensitive resist 23 Island Resist
Claims (8)
前記光透過性基板の第1主面上に設けられた集光曲面と、
前記光透過性基板の第2主面上に設けられた、集電体および光透過性導電膜と、
を含み、
前記第2主面が、前記集電体が形成された第1領域と前記集電体が形成されていない第
2領域とを有し、
前記第1主面側から当該第1主面に垂直な方向に沿って前記第1領域へと入射する光の
少なくとも一部を前記第2領域に導くように、前記集光曲面が形成されている
ことを特徴とする透明導電板。 A light transmissive substrate;
A condensing curved surface provided on the first main surface of the light-transmitting substrate;
A current collector and a light transmissive conductive film provided on the second main surface of the light transmissive substrate;
Including
The second main surface has a first region in which the current collector is formed and a second region in which the current collector is not formed,
The condensing curved surface is formed so as to guide at least part of light incident on the first region from the first main surface side along the direction perpendicular to the first main surface to the second region. A transparent conductive plate characterized by comprising:
す請求項1に記載の透明導電板。
(F−d)h/F ≦ w <h ・・・(1)
ただし、式中のhは前記集光曲面の光軸と、当該集光曲面の集光曲面縁であって当該開
口端面に最近接する集光曲面縁との間の距離であり、dは前記光透過性基板の厚みであり
、Fは前記光透過性基板の屈折率に等しい媒質中での前記集光曲面の焦点距離である。 The transparent conductive plate according to claim 1, wherein a shortest distance (w) between an end face of the current collector and an optical axis of the condensing curved surface satisfies the following expression (1).
(F−d) h / F ≦ w <h (1)
Where h is the distance between the optical axis of the condensing curved surface and the condensing curved surface edge of the condensing curved surface that is closest to the opening end surface, and d is the light The thickness of the transmissive substrate, and F is the focal length of the condensing curved surface in the medium equal to the refractive index of the light transmissive substrate.
電体と光透過性導電膜とが互いに接している、
または、前記光透過性導電膜が前記集電体と前記第2主面との間に設けられており、か
つ当該集電体と光透過性導電膜とが互いに接している
請求項1に記載の透明導電板。 The current collector is provided between the light transmissive conductive film and the second main surface, and the current collector and the light transmissive conductive film are in contact with each other;
The light transmissive conductive film is provided between the current collector and the second main surface, and the current collector and the light transmissive conductive film are in contact with each other. Transparent conductive plate.
性基板の第2主面上に設けられた、集電体および光透過性導電膜と、を含み、前記第2主
面が、前記集電体が形成された第1領域と前記集電体が形成されていない第2領域とを有
する、透明導電板の製造方法であって、
前記第1主面側から当該第1主面に垂直な方向に沿って前記第1領域へと入射する光の
少なくとも一部を前記第2領域に導くように、前記集光曲面と前記集電体とを配置する
ことを特徴とする透明導電板の製造方法。 A light-transmitting substrate; a light collecting curved surface provided on the first main surface of the light-transmitting substrate; and a current collector and light-transmitting conductive material provided on the second main surface of the light-transmitting substrate. A transparent conductive plate manufacturing method, wherein the second main surface includes a first region in which the current collector is formed and a second region in which the current collector is not formed. ,
The condensing curved surface and the current collector so that at least a part of light incident on the first region from the first main surface side along the direction perpendicular to the first main surface is guided to the second region. A method for producing a transparent conductive plate, comprising: arranging a body.
性基板の第2主面上に設けられた感光性レジスト膜とを含む透明導電板前駆体の前記集光
曲面を介して前記感光性レジスト膜の一部を露光する工程と、
前記露光された一部以外の前記感光性レジスト膜を除去して、前記感光性レジスト膜を
所定のレジストパターンに加工する工程と、
前記所定のレジストパターンを覆うように、前記第2主面上に導電層を形成する工程と
、
前記所定のレジストパターン上の導電層を所定のレジストパターンとともに除去して、
前記集電体を形成する工程と
を含む請求項6に記載の透明導電板の製造方法。 A transparent conductive material comprising: a light transmissive substrate; a condensing curved surface provided on the first main surface of the light transmissive substrate; and a photosensitive resist film provided on the second main surface of the light transmissive substrate. Exposing a part of the photosensitive resist film through the condensing curved surface of the plate precursor;
Removing the photosensitive resist film other than the exposed part, and processing the photosensitive resist film into a predetermined resist pattern;
Forming a conductive layer on the second main surface so as to cover the predetermined resist pattern;
Removing the conductive layer on the predetermined resist pattern together with the predetermined resist pattern;
The method for producing a transparent conductive plate according to claim 6, further comprising: forming the current collector.
The photoelectric conversion element provided with the transparent conductive plate of any one of Claims 1-5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004335764A JP2006147344A (en) | 2004-11-19 | 2004-11-19 | Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004335764A JP2006147344A (en) | 2004-11-19 | 2004-11-19 | Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006147344A true JP2006147344A (en) | 2006-06-08 |
Family
ID=36626784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004335764A Pending JP2006147344A (en) | 2004-11-19 | 2004-11-19 | Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006147344A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009084866A (en) * | 2007-09-28 | 2009-04-23 | Kubota Matsushitadenko Exterior Works Ltd | Building material for wall surface |
JP2009193702A (en) * | 2008-02-12 | 2009-08-27 | Seiko Instruments Inc | Solar cell and method of manufacturing the same |
JP2009224105A (en) * | 2008-03-14 | 2009-10-01 | Aruze Corp | Dye-sensitized solar cell |
WO2010089859A1 (en) * | 2009-02-04 | 2010-08-12 | アイランド ジャイアント デベロップメント エルエルピー | Variable light collecting lens device and solar cell device |
JP2012023023A (en) * | 2010-07-16 | 2012-02-02 | Samsung Sdi Co Ltd | Dye-sensitized solar battery |
WO2013134784A1 (en) * | 2012-03-09 | 2013-09-12 | Abrams Ze Ev R | Light deflecting layer for photovoltaic solar panels |
-
2004
- 2004-11-19 JP JP2004335764A patent/JP2006147344A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009084866A (en) * | 2007-09-28 | 2009-04-23 | Kubota Matsushitadenko Exterior Works Ltd | Building material for wall surface |
JP2009193702A (en) * | 2008-02-12 | 2009-08-27 | Seiko Instruments Inc | Solar cell and method of manufacturing the same |
JP2009224105A (en) * | 2008-03-14 | 2009-10-01 | Aruze Corp | Dye-sensitized solar cell |
WO2010089859A1 (en) * | 2009-02-04 | 2010-08-12 | アイランド ジャイアント デベロップメント エルエルピー | Variable light collecting lens device and solar cell device |
JP4612739B2 (en) * | 2009-02-04 | 2011-01-12 | エンパイア テクノロジー ディベロップメント エルエルシー | Variable condensing lens device and solar cell device |
US8058548B2 (en) | 2009-02-04 | 2011-11-15 | Empire Technology Development Llc | Variable light condensing lens apparatus and solar cell apparatus |
JPWO2010089859A1 (en) * | 2009-02-04 | 2012-08-09 | エンパイア テクノロジー ディベロップメント エルエルシー | Variable condensing lens device and solar cell device |
US8404964B2 (en) | 2009-02-04 | 2013-03-26 | Empire Technology Development Llc | Variable light condensing lens apparatus and solar cell apparatus |
CN102301495B (en) * | 2009-02-04 | 2014-03-19 | 英派尔科技开发有限公司 | Variable light collecting lens device and solar cell device |
JP2012023023A (en) * | 2010-07-16 | 2012-02-02 | Samsung Sdi Co Ltd | Dye-sensitized solar battery |
WO2013134784A1 (en) * | 2012-03-09 | 2013-09-12 | Abrams Ze Ev R | Light deflecting layer for photovoltaic solar panels |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107039491B (en) | Organic light emitting display device and method of manufacturing the same | |
US7910928B2 (en) | TFT array substrate and method for fabricating the same | |
JP4404753B2 (en) | Solar cell module | |
CN103811417B (en) | The manufacture method of dot structure | |
US20130056738A1 (en) | Method for Manufacturing Thin Film Transistor, Thin Film Transistor and Image Display Apparatus | |
US20210408304A1 (en) | Thin-film photovoltaic cell with high photoelectric conversion rate and preparation process thereof | |
JP2010263182A (en) | Thin film transistor, and image display unit | |
CN210325749U (en) | Array substrate and display panel | |
CN111244229B (en) | Manufacturing method of flexible transparent thin-film solar cell | |
JP2006147344A (en) | Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same | |
JP2010517313A (en) | Translucent crystalline silicon thin film solar cell | |
US20110157676A1 (en) | Microelectromechanical system substrate and display apparatus having the same | |
CN211554588U (en) | Array substrate and liquid crystal display panel | |
CN111081152A (en) | Display module integrated with thin-film solar cell and preparation method thereof | |
TWM591259U (en) | Thin film solar cell | |
CN112420760B (en) | Light-induced array substrate, preparation method thereof and display | |
TW201308636A (en) | Dye-sensitized solar cell and method for manufacturing dye-sensitized solar cell | |
US9570640B2 (en) | Method of manufacturing solar cell module, and solar cell module | |
US20190378939A1 (en) | Solar cell and manufacturing method therefor | |
WO2020237696A1 (en) | Manufacturing method for thin-film photovoltaic cell and thin-film photovoltaic cell | |
US9076900B2 (en) | Solar cell module and solar cell | |
KR20170007628A (en) | Transparent exothermic film and method of manufacturing the same | |
CN110648965A (en) | Array substrate manufacturing method and array substrate | |
CN111308816A (en) | Organic film, array substrate, display panel and display device | |
JP2014154701A (en) | Thin film transistor and image display device |