JP2006145373A - マルチアングル測色計、照明装置及び受光装置 - Google Patents

マルチアングル測色計、照明装置及び受光装置 Download PDF

Info

Publication number
JP2006145373A
JP2006145373A JP2004335759A JP2004335759A JP2006145373A JP 2006145373 A JP2006145373 A JP 2006145373A JP 2004335759 A JP2004335759 A JP 2004335759A JP 2004335759 A JP2004335759 A JP 2004335759A JP 2006145373 A JP2006145373 A JP 2006145373A
Authority
JP
Japan
Prior art keywords
light
sample surface
toroidal mirror
plane
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004335759A
Other languages
English (en)
Other versions
JP4239955B2 (ja
Inventor
Kenji Imura
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2004335759A priority Critical patent/JP4239955B2/ja
Priority to US11/273,912 priority patent/US7369244B2/en
Publication of JP2006145373A publication Critical patent/JP2006145373A/ja
Application granted granted Critical
Publication of JP4239955B2 publication Critical patent/JP4239955B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0216Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0272Handheld
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/504Goniometric colour measurements, for example measurements of metallic or flake based paints
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】 光学系を大幅に小型化することで、マルチアングル測色計の小型化を達成できるようにする。
【解決手段】 マルチアングル測色計MSは、光学系S1として、試料開口面2の測定用開口2aに置かれた試料面1を照明する照明系10と、該照明系10により照明された試料反射光の分光特性を測定する受光系30とを備える。照明系10は、試料面法線1nを含む測定平面10pに直交すると共に試料面1に接する軸11xに対して回転対称とされたトロイダル鏡11と、前記トロイダル鏡11の焦点群からなる焦点円周11b近傍に配置された第1〜第5の照明系102〜106とを備えている。第1〜第5の照明系102〜106からの光束は、トロイダル鏡11で反射されて平行光束となり、試料面1へ照射される。
【選択図】 図2

Description

本発明は、照明あるいは観察方向によって異なる色彩を呈するメタリック塗装やパールカラー塗装などの特殊効果塗膜を、複数の照明あるいは観察方向で測定するマルチアングル測色計、及び該マルチアングル測色計に好適に用いることができる照明装置並びに受光装置に関するものである。
自動車の塗装などに用いられるメタリック塗装やパールカラー塗装は、塗装塗膜内に光輝材と呼ばれるフレーク状のアルミ片やマイカ片が含まれてなり、いわゆるメタリック効果やパール効果を呈する。これは、反射特性に対する光輝材の寄与が照明および観察方向によって異なることに起因するものである。このようなメタリック塗装やパールカラー塗装の評価(色彩測定)には、複数の方向から照明して一方向から受光する(多方向照明一方向受光)、あるいは一方向から照明して複数の方向から受光する(一方向照明多方向受光)、マルチアングルジオメトリー(光学配置)を備えたマルチアングル測色計が用いられる(例えば特許文献1)。
図12は、従来技術にかかる多方向照明一方向受光タイプのマルチアングル測色計の光学系S0を示す模式図である。この光学系S0は、5方向に配置された光源220〜260(5つの照明系)と、1方向に配置された受光系300(1つの受光系)とを備え、前記5つの照明系及び1つの受光系は、いずれも透過光学系で構成されている。図中の()内に示すように、受光系300による受光方向は試料面1の法線からの角度(対法線角)で45度、光源220〜260による照明方向の対法線角は−30度、−20度、0度、30度、65度である(試料面法線に対し受光方向のある方を正としている)。この受光方向に正反射光を与える照明方向(正反射方向)の対法線角は−45度なので、各照明方向の正反射方向からの角度(対正反射角)は、図に示すように、15度、25度、45度、75度、110度となる。従って、当該光学系S0は、メタリック及びパールペイント測定法の2つの主要な規格であるASTME2194及びDIN6175−2 2001が推奨する光学配置の対正反射角である[15度、45度、110度]及び[25度、45度、75度]を包含している。
このような光学系S0を備えるマルチアングル測色計の動作を説明すると、先ず図示省略の制御手段によって前記光源220〜260が順次点灯される。該光源220〜260からそれぞれ発せられる光束は、コリメータレンズ122〜126によって平行光束とされ、試料面1が前述の照明方向からそれぞれ照明される。そして、対法線角45度方向の試料面反射光(試料光束)が、受光系300の受光レンズ330によってスリット板350の試料用スリット350aに収束され、結像レンズ360によって平行光束となって回折格子370に入射し、波長成分毎に分散反射される。その後、再び結像レンズ360によって収束され、図13(a)に示すセンサーアレイ380の試料用アレイ380a上に、図13(b)に示す試料用スリット350aの分散像を作って入射する。
また、5つの照明系における照明光束の変動をモニターするために、光源220〜260の出力光束の一部が参照光束として、各々モニターファイバー220f〜260fの入射端に取り込まれる。5本のモニターファイバー220f〜260fの射出端は、図13(b)に示すスリット板350の参照用スリット350bに並べて配置される。5つの射出端から順次射出される参照光束は、前記試料光束と同様に、センサーアレイ380の参照用アレイ380b上にスリット350bの分散像を作って入射する。
試料用アレイ380に入射された試料光束および参照光束の分光強度に応じた信号は、図示省略の処理回路によって分光強度データとされ、図示省略の制御演算手段に送られる。前記制御演算手段は、各方向からの照明による、前記試料光束および参照光束の分光強度データから、試料の各方向の分光反射率係数を求め、さらに必要に応じて色彩値などに変換するものである。
特開2001−50817号公報
しかしながら、上述のような光学系S0によれば、光源から試料面までの軸長が長い各方向の照明系を放射状に配置する必要があり、また隣接する2方向のコリメータレンズの干渉(ぶつかり)を避けるため、試料面とコリメータレンズとの間の距離を長くせざるを得ないという問題がある。後者の問題を具体的に説明すると、例えば図12に示す構成で試料面1の照明域を15mmとすると、対正反射角15度と25度の2方向間において、コリメータレンズ122、123が互いに干渉しないようにするために必要となる試料面〜コリメータレンズ122、123間の距離は80mm以上となってしまう。実際には、各コリメータレンズにはレンズを保持する鏡胴が備えられており、この鏡胴同士が干渉しないような距離に設定する必要がある。従って、マルチアングル測色計の大型化が避けられず、このようなマルチアングル測色計をポータブル化した場合、フィールドで使用し難いものとなる不都合がある。
従って本発明は、上記の照明系(受光系)やコリメータレンズなどの配置上の制約を回避し、光学系を大幅に小型化することで、マルチアングル測色計の小型化を達成できるようにすることを目的とする。
本発明の請求項1にかかるマルチアングル測色計は、試料面法線を含む測定平面に直交すると共に前記試料面に接する軸に対して回転対称とされたトロイダル鏡と、前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された光源部とを備え、前記複数の光源部から発せられる光束を前記トロイダル鏡で反射させて平行光束とし、前記測定平面内における異なる方向から前記試料面を照明する照明手段と、前記照明手段によって照明された試料面の特定方向の反射光を受光する受光手段と、前記複数の光源部を順次点灯させ、それぞれの照明方向の試料面反射光を測定して、各照明方向における試料面の反射特性を求める制御演算手段とを具備することを特徴とする。
この構成によれば、照明手段の光源部から発せられた照明光は、トロイダル鏡で反射され、平行光となって試料面へ照射される。つまり光路としては、光源部の配置ポイントであるトロイダル鏡の焦点円周近傍を起点として、トロイダル鏡で折り返され、しかる後試料面に至る折り返し光路となる。従って、図12に示す従来例のように、試料面の周囲に光源とコリメータレンズとを直線的に配列する構成に比べて、照明系が大幅に小型化されるようになる。しかも、トロイダル鏡は連続的な環状反射面を備えていることから、隣接する2方向の照明系でトロイダル鏡の反射面を共用することが可能であり、2方向の照明系を近接させて配置しても従来のようにコリメータレンズの干渉という問題が生じないことも相俟って、一層照明系の小型化が図れるようになる。
上記構成において、前記光源部は、焦点距離に比し十分小さい射出域を具備するものであることが望ましい(請求項2)。この構成によれば、光源部の射出域がトロイダル鏡に対する焦点距離に比べて十分小さいものとされていることから、平行度の高い照明光を試料面へ照射できるようになる。
上記構成において、前記トロイダル鏡の焦点円周が、前記試料面における所定の測定領域を区画する縁部に接し、前記測定平面に平行な面よりも外側に設定されていることが望ましい(請求項3)。この構成によれば、トロイダル鏡の焦点円周近傍に光源部を配置するという構成を採用する請求項1において、試料面の測定領域を区画する縁部に接して、前記測定平面に平行な面よりも外側に光源部が配置されることになるので、トロイダル鏡で反射されることで生成された平行光(照明光)が、光源部で遮断されないようにすることができる。
また、上記構成において、前記トロイダル鏡の焦点円周が、前記測定平面と平行且つ近接した平面内に設定されており、前記複数の光源部の各々が、前記焦点円周上に配置された射出開口と、前記測定平面から離間する側に配置された光源と、前記光源の光束を前記射出開口に導く導光手段とから構成されるようにすることがより望ましい(請求項4)。この構成によれば、トロイダル鏡の焦点円周が、前記測定平面と平行且つ近接した平面内に設定される構成であることから、照明光の光束は前記焦点円周に近い光束の系となるので、測定平面域各方向の照明光束あるいは反射光束の平行性を高くすることができる。さらに、上記構成の如き導光手段を設けているので、前記焦点円周を前記測定平面に近接させた場合でも、前記光源部が照明光束を遮ることがないようにすることができる。
上記構成において、前記トロイダル鏡には、前記回転対称の軸の延伸方向に延長部が設けられ、該延長部により、前記試料面に対して前記測定平面と直交する方向に隣接された参照面を照明可能とされている構成とすることが望ましい(請求項5)。この構成によれば、照明光を発生する光源部の情報を知見するために設定されている、測定平面と直交する方向に隣接された前記参照面に対して、トロイダル鏡の延長部において光源部からの光束を反射させて照明光を照射できるようになる。
上記構成において、前記トロイダル鏡には、その周方向に延長部が設けられ、該延長部により、前記試料面に対して前記測定平面方向に隣接された参照面を照明可能とされている構成とすることが望ましい(請求項6)。この構成によれば、照明光を発生する光源部の情報を知見するために設定されている、測定平面方向に隣接された前記参照面に対して、トロイダル鏡の延長部において光源部からの光束を反射させて照明光を照射できるようになる。
本発明の請求項7にかかるマルチアングル測色計は、試料面を特定方向から照明する照明手段と、前記試料面の法線を含む測定平面に直交すると共に前記試料面に接する軸に対して回転対称とされたトロイダル鏡と、前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された受光部とを備え、前記試料面から反射される前記測定平面内の異なる方向の反射光を前記トロイダル鏡で反射させた上で前記受光部へ入射させる受光手段と、前記照明手段を点灯させ、それぞれの受光方向の試料面反射光を測定して、各受光方向における試料面の反射特性を求める制御演算手段とを具備することを特徴とする。
この構成によれば、試料面からの反射光(平行光成分)はトロイダル鏡へ入射され、該トロイダル鏡で反射され、トロイダル鏡の焦点円周近傍に複数配置されている受光部へ入射される。つまり光路としては、試料面を起点として、トロイダル鏡で折り返され、しかる後トロイダル鏡の焦点円周近傍に配置された受光部に至る折り返し光路となる。従って、請求項1の構成に比べて受光系と照明系とを逆転させた所謂逆ジオメトリー構成において、受光系を大幅に小型化できるようになる。しかも、トロイダル鏡は連続的な環状反射面を備えていることから、隣接する2方向の照明系でトロイダル鏡の反射面を共用することが可能であり、2方向の受光系を近接させて配置しても干渉の問題が生じないことも相俟って、一層受光系の小型化が図れるようになる。
本発明の請求項8にかかる照明装置は、所定面積を有する第1平面の法線を含む第2平面に直交すると共に前記第1平面に接する軸に対して回転対称とされたトロイダル鏡と、前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された光源部とを備え、前記複数の光源部から発せられる光束を前記トロイダル鏡で反射させて平行光束とし、前記第2平面における異なる方向から前記第1平面を照明可能とされていることを特徴とする。
また、本発明の請求項9にかかる受光装置は、所定面積を有する第1平面の法線を含む第2平面に直交すると共に前記第1平面に接する軸に対して回転対称とされたトロイダル鏡と、前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された受光部とを備え、前記第1平面から発せられる前記第2平面内の異なる方向の反射光を前記トロイダル鏡で反射させた上で、前記受光部へ入射可能とされていることを特徴とする。
請求項1にかかるマルチアングル測色計によれば、照明系の光路をトロイダル鏡で折り返す折り返し光路を採用し、またトロイダル鏡を用いることで隣接する2方向の照明系でトロイダル鏡の反射面を共用することが可能となるので、照明系を大幅に小型化することができる。従って、かかる照明系が組み込まれるマルチアングル測色計の小型化も達成することができるようになる。
請求項2にかかるマルチアングル測色計によれば、平行度の高い照明光を試料面へ照射できるので、誤差の少ない反射特性を求めることができるようになる。
請求項3にかかるマルチアングル測色計によれば、トロイダル鏡で反射されることで生成された平行光(照明光)が、光源部で遮断されないことから、所定量の照明光を的確に試料面へ照射でき、正確な反射特性を求めることができる。
請求項4にかかるマルチアングル測色計によれば、測定平面内各方向の照明光束あるいは反射光束の平行性を高くすることができ、また導光手段を設けているので、前記焦点円周を前記測定平面に近接させた場合でも、前記光源部が照明光束を遮ることがないので、一層正確に反射特性を求めることができる。
請求項5にかかるマルチアングル測色計によれば、先ず参照面を試料面に対して、測定平面と直交する方向に隣接させているので、照明光束と参照光束との近似性が高くなり、試料面に照射されている照明光の変動情報をより正確に参照しつつ(補正しつつ)測定を行える。そして、試料面と参照面とを近接させる場合、従来の照明系ではコリメータレンズの干渉の問題から照明系の大型化が不可避であったが、本発明ではトロイダル鏡の回転対称軸の延伸方向に延長部を設け、該延長部を介して参照面に照明光を照射する構成であるので、特に照明系が大型化することもない。従って、照明系を大幅に小型化しつつ、参照面と試料面とを隣接させることによるメリットを享受できるようになる。
請求項6にかかるマルチアングル測色計によれば、同様にトロイダル鏡の周方向に設けられた延長部により、試料面に対して測定平面方向に隣接された参照面に照射させるので、照明系を大幅に小型化しつつ、参照面と試料面とを隣接させることによるメリットを享受できるようになる。
請求項7にかかるマルチアングル測色計によれば、逆ジオメトリー構成において、受光系の光路をトロイダル鏡で折り返す折り返し光路を採用し、またトロイダル鏡を用いることで隣接する2方向の受光系でトロイダル鏡の反射面を共用することが可能となるので、受光系を大幅に小型化することができる。従って、かかる受光系が組み込まれるマルチアングル測色計の小型化も達成することができるようになる。
請求項8にかかる照明装置によれば、照明系の光路をトロイダル鏡で折り返す折り返し光路を採用し、またトロイダル鏡を用いることで隣接する2方向の照明系でトロイダル鏡の反射面を共用することが可能となるので、照明系を大幅に小型化することができる。従って、かかる照明系が組み込まれる各種計測機器等の小型化も達成することができるようになる。
請求項9にかかる受光装置によれば、受光系の光路をトロイダル鏡で折り返す折り返し光路を採用し、またトロイダル鏡を用いることで隣接する2方向の受光系でトロイダル鏡の反射面を共用することが可能となるので、受光系を大幅に小型化することができる。従って、かかる受光系が組み込まれる各種計測機器等の小型化も達成することができるようになる。
以下図面に基づいて、本発明の実施形態につき説明する。
(マルチアングル測色計の全体構成の説明)
図1(a)は、本実施形態にかかるマルチアングル測色計MSの外観を模式的に示す斜視図である。このマルチアングル測色計MSは、外観的には、後述の照明系及び受光系からなる光学系等の各構成要素が収容された細長い箱形を呈する本体ケース2eで全体が構成され、該本体ケース2eの底壁面が測定開口面2とされており、前記測定開口面2には適宜な形状(例えば楕円形)の測定用開口2aが穿設されている。この他、本体ケース2eには、ターゲットとする試料面を目視可能とするためのファインダ2b、測定結果等を表示すべく頂面に配置されたLCD等からなる表示部2c、オペレータが簡単に握り持ってハンドリングできるようにするためのグリップ部2d等が配設されている。
そして、図1(b)に示すように、マルチアングル測色計MSの測定用開口2aを、測定試料d(例えば、メタリック塗装やパールカラー塗装が施された自動車のボディ)の試料面1(自動車のボディが測定試料dである場合はその塗装塗膜の表面が該当する)に対向させ、当該試料面1の測色評価(例えば、メタリックの色管理のための測色評価等)を行う。
このような概略構成を備えるマルチアングル測色計MSにおいて、本実施形態では当該マルチアングル測色計MSのコンパクト化を図るべく、その光学系Sにトロイダル鏡11を具備させる構成としている。トロイダル鏡は、互いに直交する2軸方向にそれぞれ異なる曲率半径を有する凹面鏡であるが、本実施形態ではそのうちの一方の軸方向(測定平面10p方向)についての曲率半径に関し、図1(b)に示すように、試料面法線1nを含む測定平面10pに直交する(θ=90°)と共に前記試料面1に接するような軸11xを中心軸として、測定平面10p上において回転対称となるような曲率半径rとされたトロイダル鏡11が用いられている。
図2は、本実施形態にかかるマルチアングル測色計MSの内部構造を示す構成図であり、図3は、図2の試料面法線1nにおける側断面図である。このマルチアングル測色計MSは、光学系S1として、試料開口面2の測定用開口2aに置かれた試料面1を照明する照明系10と、該照明系10により照明された試料反射光の分光特性を測定する受光系30とを有し、さらに前記照明系10及び受光系30を制御し、受光系30から出力される測定データに基づいて、試料面1の反射特性を求めて出力する制御処理系としての制御演算手段40を備えて構成されている。なお、図2において描いている測定平面10p及び軸11x(図2では紙面垂直方向となるため点で表示)は、図1の測定平面10p及び軸11xに対応するものである。
(照明系)
照明系10は、前述のトロイダル鏡11と、図2の()内に示す試料面1の法線1nからの角度(対法線角)−30度、−20度、0度、30度、65度の方向にそれぞれ配置された第1〜第5の照明系102〜106とを備えている。このような配置関係とすることにより、メタリック塗装及びパールカラー塗装の評価法における2つの主要な規格であるASTM E2194と、DIN6175−2,2001が推奨する光学配置(ジオメトリー)の対正反射角である、15度、45度、110度の配置と、25度、45度、75度の配置とが包含されていることとなり、メタリック塗装及びパールカラー塗装の評価用として好適なマルチアングル測色計MSとされている。
トロイダル鏡11は、軸11xを中心軸にして測定平面10p上において、第1〜第5の照明系102〜106が配置される対法線角−30度〜65度の方向をカバーするよう、回転対称とされた凹型の曲面111を有している。また図3に示すように、トロイダル鏡11は、軸11xの延伸方向にも所定の曲率とされた凹型の曲面112を備えている。前記曲面112の焦点110bは、前記曲面111の半径方向の略1/2の位置であって、測定用開口2aの縁部(試料面1における所定の測定領域を区画する縁部)に接し、前記測定平面に平行な面よりも外側に設定されている。
また曲面112は、前記焦点110bから前記軸11xに降ろした垂線を対称軸とする放物線の曲面である。これにより、測定平面10p内各方向の照明光束(或いは反射光束)は、測定平面10p内の半径に平行となり、方向依存性の高いメタリック塗装面やパール塗装面に対して精度の高い測定が行えるようになる。前記焦点110bの位置は、曲面112の曲面設定により適宜調整できるが、測定平面10p内各方向の照明光束(或いは反射光束)の平行性をより高くする観点からは、図3に示すように、前記測定平面10pになるべく近接した位置に設定することが望ましい。
トロイダル鏡11は、このような焦点110bをその周方向の各ポイントにおいてそれぞれ備えており、当該焦点110bの群からなる焦点群は曲面111の曲率に応じた円周を形成する。図2では、かかる焦点群が形成する円周を、焦点円周11bとして描いている。前述の通り、焦点110bが測定平面10pに近接した位置に設定されており、また曲面112の曲率は曲面111の周方向で一定とされていることから、結果的に焦点円周11bも測定平面10pに近接し、且つ測定平面10pに平行な平面110p(図3参照)内に存在している。
第1〜第5の照明系102〜106(光源部)は、射出端12a〜16aを有する小直角プリズム12〜16と、この小直角プリズム12〜16の入射端12b〜16bに近接して配置されたクセノンランプからなるフラッシュ光源22〜26とを備えてそれぞれ構成されている。図3には、第3の照明系104における直角プリズム14及びフラッシュ光源24の側面構造が描かれている。フラッシュ光源24は、細長いクセノン管24gの両端に一対の電極24d,24dが配置されてなる光源であり、試料面1を照明する照明光の発生源である。前記クセノン管24gの中央部に、直角プリズム14の入射端14bが当接されており、フラッシュ光源24から発せられる光が前記入射端14bを介して直角プリズム14に入射されるようになっている。
直角プリズム14に入射された光(照明光)は、内部反射面14cで方向を変更され、射出端14aからトロイダル鏡11へ向けて射出される。ここで射出端14aは、トロイダル鏡11における曲面112の焦点110b位置、つまりトロイダル鏡11の焦点円周11b上に配置されている。そして、射出端14aは、曲面112の焦点距離に比し十分小さい射出域を具備するものとされている。この構成によれば、射出端14aの射出域が前記焦点距離に比べて十分小さいものとされていることから、平行度の高い照明光を試料面1へ照射できるようになる。他の照明系102、103、105、106も、以上と同様な構成を備えている。
図1に示すように、第1〜第5の照明系102〜106から射出された光束22a〜26aは、トロイダル鏡11で反射され、前記測定平面10p内で、試料面法線1nからの角度−20度、−30度、0度、30度、65度の半径に平行な光束22a〜26aとなって試料面1を照明することとなる。ここで、光源自体をトロイダル鏡11へ対向配置するようにしても良いが、前述のように小直角プリズム12〜16に設定した射出端12a〜16aから照明光を射出させる構成としているので、前記フラッシュ光源22〜26が照明光束22a〜26aを遮ることはない。従って、焦点円周11bを測定平面10pに近接させて設定することができるので、トロイダル鏡11の収差を抑え、照明光束22a〜26aの平行性を上げることができるという利点がある。
試料面1に隣接させて、第1〜第5の照明系102〜106における照明光束の変動をモニターするための参照面3が設けられている。この実施形態では、前記試料面1に対して測定平面10pと直交する方向に隣接されている。このような参照面3を第1〜第5の照明系102〜106それぞれにおいて照明可能とするために、前記トロイダル鏡11には、前記回転対称の軸11xの延伸方向に延長部11cが設けられている。すなわち、該延長部11cにより反射された光束22a〜26aによって、試料面1に隣接する参照面3が照明される構成となっている。なお、参照面3を照明する光束については、トロイダル鏡11の焦点円周を形成する面から離れた面が用いられるので、収差が若干大きくなるものの、参照系であるため大きな問題にならない。
以上のような構成の照明系10(照明装置)とすることにより、第1〜第5の照明系102〜106から発せられた光束22a〜26aは、トロイダル鏡11で反射されて試料面へ至る折り返し光路を経ることから、試料面の周囲に光源とコリメータレンズとを直線的に配列する構成に比べて、照明系10が大幅に小型化されるようになる。しかも、トロイダル鏡11は連続的な環状反射面を備えていることから、図2に示す第1の照明系102(−30度)と第2の照明系103(−20度)のように、隣接する2方向の照明系でトロイダル鏡11の反射面を共用(共用部分を図中に符合Wで示している)することが可能であり、2方向の照明系を近接させて配置しても従来のようにコリメータレンズの干渉という問題が生じないことも相俟って、一層照明系10の小型化が図れるものである。
(受光系)
続いて、図2及び図4を参照しながら、受光系30について説明する。受光系30は、対物レンズ31、光束絞り板33、フィールドレンズ34、入射スリット板35、結像レンズ36、回折格子37、センサーアレイ38及び光束規制板39などを備えて構成されている。受光系30は、測定平面10p内で試料面1の中心を通る対法線角45度の光軸30xを持つ。対法線角45度の受光方向に対する正反射の方向は−45度であることから、第1〜第5の照明系102〜106による対法線角−30度、−20度、0度、30度、65度の照明方向の正反射方向からの角度(対正反射角)は各々、15度、25度、45度、75度、110度となる。
なお、上記入射スリット板35、結像レンズ36、回折格子37及びセンサーアレイ38により、ポリクロメーターが構成されている。すなわち、結像レンズ36及び回折格子37は、入射スリット板35のスリット35a(及びスリット35b)の分散像を生成するものであり、センサーアレイ38は前記入射スリット分散像の結像位置に置かれている。ポリクロメーターは、当該受光系30において受光された試料面1からの反射光を波長毎に分離して光強度に応じた分光データを作成すべく、測定波長域の全波長を同時測定するためのものである。
対物レンズ31は、トロイダル鏡11に設けられた対法線角45度の開口部11aに配置され、前記光軸30xの方向に沿った反射光を入射スリット板35へ収束させるものである。具体的には対物レンズ31は、図4に示すように、照明系10によって一括して照明された試料面1及び参照面3からの、対法線角45度の方向の反射光(以下、試料光束1c及び参照光束3cという)を、該対物レンズ31の焦点面に置かれたスリット板35へ収束させる。
光束絞り板33は、光束を通過させる開口33aを備え、対物レンズ31の背面側近傍に配置されている。この光束絞り板33は、試料光束1cおよび参照光束3cの径を所定のサイズに規制するためのもので、前記開口33aは、規制すべきサイズに合わせて、所定のサイズに選定されている。
入射スリット板35は、図4及び図5(b)に示すように、試料用スリット35a及びこれに並置された参照用スリット35bを備えている。これらスリット35a、35bは、前記ポリクロメーターの入射スリットとして機能する。すなわち、前記対物レンズ31で集光された試料光束1cは試料用スリット35aへ収束光束1c’として導かれ、また参照光束3cは参照用スリット35bへ収束光束3c’として導かれる。
結像レンズ36は、試料用スリット35a及び参照用スリット35bをそれぞれ通過した試料光束1c及び参照光束3c(試料面反射光及び参照面反射光)を、拡散光束から平行光束に変化させて回折格子37へ導くものである。回折格子37は、結像レンズ36により導かれた平行光束を、波長成分毎に分散反射させるものである。この回折格子37で分散反射された光束は、再び結像レンズ36によって収束され、センサーアレイ38へ結像される。
センサーアレイ38は、試料光束1c及び参照光束3cの分光強度に応じた信号を、後述の信号処理部43に出力する。図5(a)に示すように、センサーアレイ38は、試料用アレイ38a及び参照用アレイ38bを備えている。この試料用アレイ38a及び参照用アレイ38bは、前記試料用スリット35a及び参照用スリット35bのサイズに合わせて設定された、所定サイズの区画に配置された例えば40画素のフォトダイオードアレイにてそれぞれ構成することができる。そして、前記試料用アレイ38aには試料用スリット35aの分散像が、また参照用アレイ38bには参照用スリット35bの分散像がそれぞれ入射される。
上記入射スリット板35の直前(入射スリット板35の対物レンズ31側の面)には、フィールドレンズ34が配置されている。フィールドレンズ34は、光束絞り板33の開口33aの像を結像レンズ36の位置に作る機能を果たす。このようなフィールドレンズ34を配置することにより、試料用スリット35a及び参照用スリット35bを通過した試料光束1cおよび参照光束3cは、全て結像レンズ36及び回折格子37に入射されるようになり、試料用アレイ38a及び参照用アレイ38bへの分散像の形成に寄与する。従って、共通の受光系で効率良く試料光束1c及び参照光束3cの分光特性を測定することができる。
光束規制板39は、入射スリット板35と対物レンズ34との間に配置され、図4における参照光束3c’の一部を遮蔽する役目を果たす。この光束規制板39は、試料面1と参照面3とを隣接配置させた本実施形態にかかる光学系S1において、受光系30の光路長を可及的に短くするために設置される。この点について、具体的に数値を例示して説明する。
図4に示すように、試料光束1cの光軸1xと参照光束3cの光軸3xとの、試料面1(参照面3)上の間隔をD、試料用スリット35aと参照用スリット35bとの間隔をd、入射スリット板35と対物レンズ31との間隔をa、試料面1(及び参照面3)と対物レンズ31との間隔をbとすると、
b=a・D/d ・・・(1)
の関係が成立する。例えば、測定用開口2a(測定域1a)の径を12mm、参照面3の測定径(参照域3a)を8mmとすると、上記(1)式によると、両者が重ならないための間隔Dは、余裕を見越すと12mm程度が必要となる(なお、両者が重なると、参照光束3cのモニターが正確に行えなくなる)。この場合、スリット間隔dを3mm、入射スリット板35〜対物レンズ31の間隔aを25mmとすると、試料面1〜対物レンズ31の間隔bは100mmとなり、比較的長い距離が必要となってしまう。
そこで本実施形態では、光束規制板39を入射スリット板35と対物レンズ31との間に配置して、この部分における参照光束3c’の試料光束1c’から遠い半分を遮蔽している。換言すると光束規制板39は、試料面1の領域から反射された反射光が、入射スリット板35の参照用スリット35bへ入射されないようにしている。これにより、参照面3における参照域3aは、図4に示すように、(試料面1上の)円形の測定域1aに直径を向けた半円形となり、前記間隔Dを遮蔽した半円形部分だけ短縮できるようになる。つまり、測定域1aと参照域3aとを互いに重複(乃至は近接)しない円形同士として考慮(この場合、どうしても間隔D=12mmが必要となる)するのではなく、測定域1aと参照域3aとを重複する円形として設定し、事後的に測定に影響しないよう参照域3aについて重複する部分の光束(参照光束3c)を光束規制板39にて遮蔽するものである。この結果、間隔Dを12mmから8mmに短縮することができ、これに伴い間隔bも100mmから66mmに縮小することができる。而して、受光系30の光路長が大幅に短縮される。なお光束規制板39は、対物レンズ1に入射された試料光束1c’と干渉しない位置(試料光束1cを遮蔽しない位置)に配置される。
上記のような光束規制板39を配置することにより、参照域3aの面積は半分になってしまい、モニターに必要な参照光束が不足する場合がある。この場合、図6に示すような異方性拡散特性を有する反射板を、参照面3として配置することが望ましい。すなわち、図6(a)に示すように、入射した照明光束22a〜26aを、測定平面10p内の方向には大きく拡散反射して拡散反射光3pを形成する一方で、図6(b)に示すように、測定平面10pに直交する方向には小さく拡散反射して拡散反射光3qを形成する異方性拡散反射板である。かかる異方性拡散反射板を用いることで、照明光束22a〜26aを効率よく受光系30に入射させることができ、必要な参照光束を得ることができる。このような異方性拡散反射板としては、例えば米国POC社の楕円プロファイルLSD(Light Shaping Diffuser)を使用することができる。
以上の通り構成された受光系30によれば、参照面3を試料面1に対して、測定平面10pと直交する方向に隣接させているので、照明光束1cと参照光束3cとの近似性が高くなり、試料面1に照射されている照明光の変動に対して精度良く補正しつつ測定を行える。また、光束規制板39を用いることで、照明光束1cと参照光束3cとの分離に必要な試料面1〜対物レンズ31の間隔bを縮小でき、受光系のコンパクト化を図ることができる。さらに、フィールドレンズ34の配置により、共通の受光系30で試料光束1c及び参照光束3cの分光特性を測定することができる。とりわけ、本実施形態のように多方向照明〜一方向受光の光学系S0である場合、図11に示す従来例のように参照用のモニターファイバー220f〜260fを設ける必要がなく、全方向の照明系共通の受光系30で参照光束3cもモニターできることから、光ファイバーを用いることにより生ずる種々の問題(例えば、温度などの影響を受けやすい、光ファイバーの引き回しスペースが必要等)を回避できるようになる。
(制御処理系)
図2に戻って、制御演算手段40は、前述の受光系30から出力される測定データに基づいて、試料面1の反射特性を求めて出力するもので、CPUやメモリなどを備える制御処理部41、フラッシュ制御部42、信号処理部43、測定制御部44及び表示部(図1に示す表示部2cに相当)から構成されている。
制御処理部41は、試料面1の測色に際し、各部へ制御信号を送信し、測定動作を制御する。具体的には制御処理部41は、測定制御部44から測定開始信号を受けると、フラッシュ制御部42に動作シーケンスに応じた駆動信号を与え、フラッシュ光源22〜26の発光を制御する。さらに、試料光束1c及び参照光束3cの分光強度信号を受けた信号処理部43が出力する分光強度データを受けて、照明方向毎の分光反射率係数を求め、必要に応じて色彩値や他の指標に変換して表示部2cに出力表示する。
フラッシュ制御部42は、前記制御処理部41から与えられる駆動信号に基づいて、実際に第1〜第5の照明系102〜106のフラッシュ光源22〜26を順次発光させる制御信号を生成する。
信号処理部43は、照明系10から発せられた照明光が試料面1及び参照面3で反射され、受光系30にて受光された反射光の強度(試料光束1c及び参照光束3cの分光強度信号)に基づいて、試料面1の分光反射特性を算出する(分光強度データを求める)。すなわち信号処理部43は、センサーアレイ38から出力される分光強度信号を用いて、測定平面10pにおける第1〜第5の照明系102〜106による照明方向に対応する分光反射特性を算出する。当該信号処理部43は、例えば電流電圧変換回路、帰還抵抗、マルチプレクサー、可変ゲインアンプ及びアナログ−ディジタル変換器等を備える信号処理回路にて構成することができる。
測定制御部44は、マルチアングル測色計MSの全体の動作を制御するもので、ユーザにより選定された測定メニューに応じた測定開始信号を制御処理部41に与え、測定動作を実行させる、表示部2cは、色彩値等の測定結果データやグラフ、測定メニューなどを表示するものである。
以上の通り構成されたマルチアングル側色計MSの動作について簡単に説明する。先ず、測定制御部44から測定開始信号が発生されると、前記制御処理部41からフラッシュ制御部42に所定の駆動信号が与えられ、フラッシュ制御部42は第1〜第5の照明系102〜106のフラッシュ光源22〜26を順次発光させる。各々のフラッシュ光源22〜26から発せられる光束は、トロイダル鏡11で反射されて試料面1及び参照面3に照射される。
この点を例えば図3に示す第3の照明系104で説明すると、小直角プリズム14の入射端12bに入射され、内部反射面12cで反射して方向を変えられた後、射出端14aからトロイダル鏡11に向けて射出される。射出された光束はトロイダル鏡11で反射され、平行な照明光束24aとされた上で試料面1及び参照面3に照射される。他の照明系102、103、105、106も同様な動作である。
そして、前記試料面1及び参照面3からの反射光のうち、測定平面10p内で対法線角45度の半径に平行な反射光(試料光束1c及び参照光束3c)が、受光系30にて受光される。具体的には、試料光束1c及び参照光束3cは、対物レンズ31を介して入射スリット板35の試料用スリット35a及び参照用スリット35bへそれぞれ収束される。この際、光束絞り板33で光束に所定の絞りが加えられ、光束規制板39により参照光束3cの半円部分が遮蔽される。
前記試料用スリット35a及び参照用スリット35bを通過した試料光束1c及び参照光束3cは、結像レンズ36を経ることで平行光束とされた上で回折格子37へ導かれ、該回折格子37にて波長成分毎に分散反射される。この分散反射された光束は、再び結像レンズ36によって収束され、センサーアレイ38へ結像される。このような受光系30の光路には、フィールドレンズ30が配置されているので、試料用スリット35a及び参照用スリット35bを通過した試料光束1cおよび参照光束3cは、全て結像レンズ36及び回折格子37に入射されるようになる。
しかる後、センサーアレイ38により、受光された試料光束1c及び参照光束3cに応じた分光強度信号が、信号処理部43へ出力される。そして信号処理部43により、前記分光強度信号に基づいて、試料面1の分光強度データを求められ、続いて制御処理部41により、前記分光強度データに基づいて照明方向毎の分光反射率係数を求められ、必要に応じて色彩値や他の指標に変換して表示部2cに出力表示されるものである。
(変形実施形態の説明)
[1]参照域を測定平面方向に隣接させた実施形態
図7は、上述したマルチアングル測色計MSに用いられる光学系の変形実施形態を示す図である。上述の実施形態における光学系S1では、参照面3を試料面1に対し、測定平面10pと直交する方向に隣接させた例を示したが、図7に示す光学系S2のように、これを測定平面10p方向に隣接させる構成とすることもできる。なお、光学系S2以外の構成については、先に説明したマルチアングル測色計MSの構成と同様であるので、説明を省略する。
図7において、この光学系S2は、照明系10’と受光系30’とを備えている。受光系30’は、前述の実施形態と実質的に同様の構成である(一部構成を省略して描いている)。また照明系10’における第1〜第5の照明系102〜106の配置や構成も前述の実施形態と同様であり、第1〜第5の照明系102〜106から発せられる照明光束22a〜26aをトロイダル鏡11で反射させて試料面1及び参照面3へ照射する折り返し光路を採用している点も同様である。
而して、この光学系S2では、参照面3を試料面1に対し、測定平面10p方向に隣接させる構成としている。この場合、各方向から参照面3を照明する光束(照明光束22a〜26a)は、トロイダル鏡11の試料面1を照明する光束が反射される面と同じ周上の面で反射されるので、上述の実施形態における光学系S1のようにトロイダル鏡11を軸11x方向に延長する延長部11cを設ける必要がない。従って、トロイダル鏡11のサイズを小さくすることができる。但し、第1の照明系102(対正反射角15度の照明系)による照明光22aで参照面3を照明可能とするために、トロイダル鏡11の周方向に延長部11dが設けられる。
当該光学系S2においては、参照面3(参照域3a)と試料面1とは、測定平面10p方向に隣接しているので、図7に示すように、受光系30’の入射スリット板35において、試料用スリット35a及び参照用35bも測定平面10p方向に隣接させる必要がある。つまり、入射スリット板35、結像レンズ36、回折格子37及びセンサーアレイ38からなるポリクロメーターは、上述の光学系S1に比べて、光軸30xの周りに90度回転して配置される。また、この光学系S2でも上述の光学系S1と同様に、入射スリット板35と対物レンズ31との間において、対物レンズ31から試料面用入射スリット35aに入射する試料光束を妨げない位置に参照光束規制板38が配置されており、参照光束の半分を遮蔽し、対物レンズ31と試料面1との間の距離を縮小する構成としている。
以上のような光学系S2によれば、コンパクトな照明系(照明装置)とすることができるので、これをマルチアングル測色計MSに組み込むようにすれば、その小型化を達成することができる。
[2]一方向照明、多方向受光の光学系とした実施形態
図8は、上述したマルチアングル測色計MSに用いられる光学系の変形実施形態を示す図であり、図9は図8の試料面法線1nにおける側断面図である。上述の実施形態における光学系S1では、多方向照明/一方向受光の光学系について例示したが、これを図8に示すように、一方向受光/多方向受光の光学系S3(逆ジオメトリーの光学構成)としてもよい。
図8、図9において、この光学系S3は、照明系100と受光系300とを備えている。照明系100は、トロイダル鏡11に設けられた対法線角45度の開口部11aに配置されるコリメータレンズ231と、該コリメータレンズ231の焦点に置かれた開口板234と、該開口板234の開口234aの背後に置かれた光源232とで構成されている。さらに光源232の光束変動をモニタするために、コリメータレンズ231の試料面1側の近傍において光軸に対して若干傾斜して配置された平面ガラス233と、前記開口234aに並んで入射端234bをもつ参照用光学ファイバー234とが備えられている。
受光系300(受光装置)は、トロイダル鏡11と、該トロイダル鏡11の焦点円周11b上に入射端をもつ5本の受光用光学ファイバー212〜216とを備えて構成されている。前記受光用光学ファイバー212〜216の入射端は、測定平面10p内において、試料面法線1nからの角度(対法線角)−30度、−20度、0度、30度、65度の方向にそれぞれ配置されている。
受光用光学ファイバー212〜216の出射端は、図10に示す光マルチプレクサー220にそれぞれ接続される。前記光マルチプレクサー220は図示省略の制御演算手段の制御信号によって制御され、受光用光学ファイバー212〜216の出射端を順次1端ずつ出力光学ファイバー221に光学的に接続させる機能を有している。出力光学ファイバー221及び前記参照用光学ファイバー234の出射端は、ポリクロメーターに導かれる。上記実施形態の構成を採用する場合は、各々入射スリット板35の試料用スリット35a及び参照用スリット35bに直結すればよい。
このように構成された光学系S3の動作を説明する。照明系100の光源232から発せられ、開口234aを通過した光束は、前記コリメータレンズ231によって平行光束232aとなって試料面1へ照射される。また、平面ガラス233によって反射された前記平行光束232a(照明光束)の一部の参照光束232bは、再びコリメータレンズ231によって収束されて、前記開口234aに並んで入射端をもつ参照用光学ファイバー235に入射される。
平行光束232aにより照明された試料面1からの反射光のうち、測定平面10p内の異なる5方向の反射光212a〜216aがトロイダル鏡11によって反射され、前記反射光212a〜216aは焦点円周11b上に入射端をもつ5本の受光用光学ファイバー212〜216に入射される。そして前記光マルチプレクサー220により、受光用光学ファイバー212〜216が順次出力光学ファイバー221と光学的に接続され、対法線角−30度、−20度、0度、30度、65度の方向の反射光が受光用光学ファイバー212〜216から順次試料用スリット35aへ導かれる。この際、参照用光学ファイバー235からは参照光が参照用スリット35bへ導かれる。そしてポリクロメーター等により、所定の対法線角毎(受光方向毎)に分光強度信号を測定し、図2に示したような制御演算手段40により受光方向毎の分光反射率係数等が求められるものである。
このような光学系S3によっても、受光系300の光路をトロイダル鏡11で折り返す折り返し光路を採用し、またトロイダル鏡11を用いることで隣接する2方向の受光系でトロイダル鏡11の反射面を共用することが可能となるので、受光系300を大幅に小型化することができる。従って、かかる受光系300が組み込まれるマルチアングル測色計MSの小型化も達成することができるようになる。
[3]照明系、受光系ともトロイダル鏡を用いる実施形態
図8に示したような一方向照明/多方向受光の光学系において、図11に示す光学系S4のように、照明系400を受光系300と同様に、トロイダル鏡11と、該トロイダル鏡11の焦点円周11b上であって、試料面法線1nから45度の位置に射出端を有する照明用ファイバー401によって構成しても良い。図示省略しているが、前記照明用ファイバー401の入射端には、所定の光源装置が接続される。このように構成された光学系S4では、前記照明用ファイバー401の射出端から射出された光束は、トロイダル鏡11によって、測定平面10p内の対法線角45度の半径に平行な光束401aとなって、試料面1を照明する。試料面1からの各方向の反射光を受光する受光系300の構成並びに動作は、図8に示した光学系S3と同様である。
以上のような光学系S4によれば、レンズなどから別途構成される照明系が不要になると共に、照明系400の光路もトロイダル鏡11で折り返されるので、よりコンパクトにマルチアングル測色計MSを構成することができる。また、照明系400と、これに隣接する受光系300とでトロイダル鏡11の反射面を共用できるので、照明方向に近接した方向の反射光も測定可能となる。
なお図11では、一方向照明/多方向受光の光学系について説明したが、図2に示した多方向照明/一方向受光の光学系においても、受光系を、トロイダル鏡11の焦点円周11b上であって、試料面法線1nから45度の位置に入射端を有する受光用ファイバーによって構成しても良い。
以上、マルチアングル測色計MSについての本発明の実施形態を説明したが、本発明は各種用途に用いる照明装置若しくは受光装置としても実施することができる。例えば、図2に示した光学系S1、或いは図7に示した光学系S2において、受光系30(30’)を除くと共に、トロイダル鏡11の焦点円周 11b上に複数の光源を配置して、所定面積を有する平面(第1平面)を照明する照明装置とすることができる。この場合、前記第1平面の法線を含む第2平面に直交すると共に前記第1平面に接する軸に対して回転対称にトロイダル鏡11が配置される。そして、前記複数の光源部から発せられる光束を前記トロイダル鏡11で反射させて平行光束とし、前記第2平面における異なる方向から前記第1平面を照明することができる。
又は、図8に示した光学系S3において、照明系100を除くと共に、トロイダル鏡11の焦点円周 11b上に複数の受光装置を配置して、所定面積を有する平面(第1平面)から発せられる面発光を受光する受光装置とすることができる。この場合、前記第1平面の法線を含む第2平面に直交すると共に前記第1平面に接する軸に対して回転対称にトロイダル鏡11が配置される。そして、前記第1平面から発せられる前記第2平面内の異なる方向の面発光を前記トロイダル鏡で反射させた上で、前記受光装置で受光することができる。
図1(a)は、本発明にかかるマルチアングル測色計MSの外観を模式的に示す斜視図であり、図1(b)はその内部構造の要部を模式的に示す斜視図である。 本実施形態にかかるマルチアングル測色計MSの内部構造を示す構成図である。 図2の試料面法線1nに垂直な方向の側断面図である。 図2における受光系30の構成を示す、測定平面10pに垂直な方向の断面図である。 図5(a)はセンサーアレイ38の正面図、図5(b)は試料用スリット35の正面図である。 異方性拡散反射板の反射特性を示す模式図である。 変形実施形態にかかる光学系S2を示す構成図である。 変形実施形態にかかる光学系S3を示す構成図である。 図8の試料面法線1nに垂直な方向の側断面図である。 マルチプレクサーの一例を示す平面図である。 変形実施形態にかかる光学系S4を示す構成図である。 従来技術にかかる多方向照明一方向受光タイプのマルチアングル測色計の光学系S0を示す構成図である。 図13(a)は図12におけるセンサーアレイ380の正面図、図13(b)は試料用スリット350の正面図である。
符号の説明
1 試料面
1n 試料面法線
10 照明系(照明手段)
10p 測定平面
102〜106 第1〜第5の照明系(光源部)
11 トロイダル鏡
11b 焦点円周
11c、11d 延長部
11x (トロイダル鏡の)軸
12〜16 小直角プリズム(導光手段)
12a〜16a 射出端(射出開口)
12b〜16b 入射端
2 測定開口面
2a 測定用開口
22〜26 フラッシュ光源(光源)
3 参照面
30 受光系(受光手段)
31 対物レンズ
34 フィールドレンズ
35 入射スリット板
36 結像レンズ
37 回折格子
38 センサーアレイ
39 光束規制板
40 制御演算手段
MS マルチアングル測色計
S1〜S4 光学系

Claims (9)

  1. 試料面法線を含む測定平面に直交すると共に前記試料面に接する軸に対して回転対称とされたトロイダル鏡と、前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された光源部とを備え、前記複数の光源部から発せられる光束を前記トロイダル鏡で反射させて平行光束とし、前記測定平面内における異なる方向から前記試料面を照明する照明手段と、
    前記照明手段によって照明された試料面の特定方向の反射光を受光する受光手段と、
    前記複数の光源部を順次点灯させ、それぞれの照明方向の試料面反射光を測定して、各照明方向における試料面の反射特性を求める制御演算手段と
    を具備することを特徴とするマルチアングル測色計。
  2. 前記光源部は、焦点距離に比し十分小さい射出域を具備するものであることを特徴とする請求項1記載のマルチアングル測色計。
  3. 前記トロイダル鏡の焦点円周が、前記試料面における所定の測定領域を区画する縁部に接し、前記測定平面に平行な面よりも外側に設定されていることを特徴とする請求項1記載のマルチアングル測色計。
  4. 前記トロイダル鏡の焦点円周が、前記測定平面と平行且つ近接した平面内に設定されており、
    前記複数の光源部の各々が、前記焦点円周上に配置された射出開口と、前記測定平面から離間する側に配置された光源と、前記光源の光束を前記射出開口に導く導光手段とから構成されることを特徴とする請求項1記載のマルチアングル測色計。
  5. 前記トロイダル鏡には、前記回転対称の軸の延伸方向に延長部が設けられ、該延長部により、前記試料面に対して前記測定平面と直交する方向に隣接された参照面を照明可能とされていることを特徴とする請求項1記載のマルチアングル測色計。
  6. 前記トロイダル鏡には、その周方向に延長部が設けられ、該延長部により、前記試料面に対して前記測定平面方向に隣接された参照面を照明可能とされていることを特徴とする請求項1記載のマルチアングル測色計。
  7. 試料面を特定方向から照明する照明手段と、
    前記試料面の法線を含む測定平面に直交すると共に前記試料面に接する軸に対して回転対称とされたトロイダル鏡と、前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された受光部とを備え、前記試料面から反射される前記測定平面内の異なる方向の反射光を前記トロイダル鏡で反射させた上で前記受光部へ入射させる受光手段と、
    前記照明手段を点灯させ、それぞれの受光方向の試料面反射光を測定して、各受光方向における試料面の反射特性を求める制御演算手段と
    を具備することを特徴とするマルチアングル測色計。
  8. 所定面積を有する第1平面の法線を含む第2平面に直交すると共に前記第1平面に接する軸に対して回転対称とされたトロイダル鏡と、
    前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された光源部とを備え、
    前記複数の光源部から発せられる光束を前記トロイダル鏡で反射させて平行光束とし、前記第2平面における異なる方向から前記第1平面を照明可能とされていることを特徴とする照明装置。
  9. 所定面積を有する第1平面の法線を含む第2平面に直交すると共に前記第1平面に接する軸に対して回転対称とされたトロイダル鏡と、
    前記トロイダル鏡の焦点群からなる焦点円周近傍に複数配置された受光部とを備え、
    前記第1平面から発せられる前記第2平面内の異なる方向の反射光を前記トロイダル鏡で反射させた上で、前記受光部へ入射可能とされていることを特徴とする受光装置。
JP2004335759A 2004-11-19 2004-11-19 マルチアングル測色計、照明装置及び受光装置 Expired - Fee Related JP4239955B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004335759A JP4239955B2 (ja) 2004-11-19 2004-11-19 マルチアングル測色計、照明装置及び受光装置
US11/273,912 US7369244B2 (en) 2004-11-19 2005-11-15 Optical measuring apparatus, illumination system, and light detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335759A JP4239955B2 (ja) 2004-11-19 2004-11-19 マルチアングル測色計、照明装置及び受光装置

Publications (2)

Publication Number Publication Date
JP2006145373A true JP2006145373A (ja) 2006-06-08
JP4239955B2 JP4239955B2 (ja) 2009-03-18

Family

ID=36460641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335759A Expired - Fee Related JP4239955B2 (ja) 2004-11-19 2004-11-19 マルチアングル測色計、照明装置及び受光装置

Country Status (2)

Country Link
US (1) US7369244B2 (ja)
JP (1) JP4239955B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502523A (ja) * 2011-11-04 2015-01-22 アイメックImec 集積フィルタとセンサアレイ上に投影された多重隣接画像コピーとを有するスペクトルカメラ
WO2016093079A1 (ja) * 2014-12-11 2016-06-16 コニカミノルタ株式会社 マルチアングル測色計

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608497B1 (ko) * 2004-08-04 2006-08-09 주식회사 디지탈바이오테크놀러지 광학 장치 및 이를 구비한 미세입자 관찰 장치
CN102057260B (zh) * 2008-06-19 2012-10-31 数据色彩控股股份公司 有模块式45/0头的分光光度计系统
JP5679763B2 (ja) * 2010-10-27 2015-03-04 ルネサスエレクトロニクス株式会社 半導体集積回路及び全周囲映像システム
US20120250022A1 (en) * 2011-04-01 2012-10-04 X-Rite Europe Gmbh Hand-Held Color Measurement Device
CN105300895B (zh) * 2015-11-05 2017-12-26 浙江大学 一种利用特征点切线夹角预警马铃薯发芽缺陷的方法
AT518675A1 (de) * 2016-05-19 2017-12-15 H & P Trading Gmbh Verfahren und Vorrichtung zur Ermittlung zumindest einer Prüfeigenschaft eines Prüfgegenstands
EP4030155A1 (en) 2021-01-19 2022-07-20 Fyla Laser, S.L. System and method for measuring the color of an area of a sample
EP4306922A1 (en) 2022-07-14 2024-01-17 Fyla Laser, S.L. System and method for measuring the color of an area of a sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050817A (ja) * 1999-08-10 2001-02-23 Minolta Co Ltd マルチアングル測色計
JP2006145374A (ja) * 2004-11-19 2006-06-08 Konica Minolta Sensing Inc 反射特性測定装置及びマルチアングル測色計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050817A (ja) * 1999-08-10 2001-02-23 Minolta Co Ltd マルチアングル測色計
JP2006145374A (ja) * 2004-11-19 2006-06-08 Konica Minolta Sensing Inc 反射特性測定装置及びマルチアングル測色計

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502523A (ja) * 2011-11-04 2015-01-22 アイメックImec 集積フィルタとセンサアレイ上に投影された多重隣接画像コピーとを有するスペクトルカメラ
WO2016093079A1 (ja) * 2014-12-11 2016-06-16 コニカミノルタ株式会社 マルチアングル測色計
JPWO2016093079A1 (ja) * 2014-12-11 2017-09-21 コニカミノルタ株式会社 マルチアングル測色計

Also Published As

Publication number Publication date
US20060109474A1 (en) 2006-05-25
JP4239955B2 (ja) 2009-03-18
US7369244B2 (en) 2008-05-06

Similar Documents

Publication Publication Date Title
US7369244B2 (en) Optical measuring apparatus, illumination system, and light detecting system
US20170010096A1 (en) Chromatic confocal range sensor comprising a camera portion
JP4660692B2 (ja) ゴニオ測色計及びゴニオ反射特性測定装置
US20110235036A1 (en) Optical measurement apparatus, optical measurement system, and fiber coupler
JP2016540243A (ja) 非接触式光学的距離測定のための装置
CN110715909A (zh) 多通道多反射气体检测装置
JPH07509315A (ja) レンゾメータ用の分光計
JP6421817B2 (ja) 表面特性測定装置
JP2006145374A (ja) 反射特性測定装置及びマルチアングル測色計
JP2008249521A (ja) 光学特性測定装置、光学特性測定方法
CN107870037B (zh) 分光测定装置
US7248364B2 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
KR101535209B1 (ko) 자기 정렬된 분광기
CN215727622U (zh) 一种适用于多用途便携式光谱检测装置的固定装置
JP2009085600A (ja) 光学特性測定装置及び光学特性測定方法
US11953426B2 (en) Measurement light source and measuring arrangement for detecting a reflection spectrum
US10506922B2 (en) Spectrometer for color spectrally-encoded endoscopy
JP2015224881A (ja) 光放射機構、照明機構及び反射特性測定装置
US10837832B2 (en) Spectrometer and method for measuring the spectral characteristics thereof
CN113503964B (zh) 一种多用途便携式光谱检测装置
RU2334957C2 (ru) Устройство для измерения спектров а.х.купцова
WO2022004147A1 (ja) 光学特性測定光学系および光学特性測定装置
JP2015215296A (ja) 表面特性測定装置
EP4206628A1 (en) Color measurement device having a compact optical system
JP2007139585A (ja) 反射率測定機及び反射率測定機の光軸の調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees