JP2006145158A - Intake air temperature control method and device for indoor boiler - Google Patents

Intake air temperature control method and device for indoor boiler Download PDF

Info

Publication number
JP2006145158A
JP2006145158A JP2004338538A JP2004338538A JP2006145158A JP 2006145158 A JP2006145158 A JP 2006145158A JP 2004338538 A JP2004338538 A JP 2004338538A JP 2004338538 A JP2004338538 A JP 2004338538A JP 2006145158 A JP2006145158 A JP 2006145158A
Authority
JP
Japan
Prior art keywords
air
boiler
temperature
cold air
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004338538A
Other languages
Japanese (ja)
Other versions
JP4218631B2 (en
Inventor
Yasufumi Mochizuki
靖文 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004338538A priority Critical patent/JP4218631B2/en
Publication of JP2006145158A publication Critical patent/JP2006145158A/en
Application granted granted Critical
Publication of JP4218631B2 publication Critical patent/JP4218631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake air temperature control method and device for an indoor boiler capable of preventing unnecessary rising of a temperature of intake air sucked in by a blower and supplied to a boiler body in the summer, eliminating a need for a load limit in the boiler body accompanying constraints in temperatures of various apparatuses, and capable of reducing running costs by suppressing increase of auxiliary machine power due to volume increase of exhaust gas. <P>SOLUTION: A hot air damper 7 controlling a hot air flow rate is provided in an intake line 6 midway part, a cold air line 8 taking in cold air of a building 1 exterior is connected to an intake line 6 midway part in a more downstream side, and a cold air damper 9 controlling a cold air flow rate is provided in a cold air line 8 midway part. A temperature detector 10 is provided for detecting an inlet side air temperature T of a forced draft fan 5, and a controller 11 is provided for outputting opening commands A1' and A2' to the hot air damper 7 and the cold air damper 9 such that the inlet side air temperature T becomes an inlet side air temperature set value T' based upon a boiler output MW. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、建屋内に設置される屋内ボイラの吸気温度制御方法及び装置に関するものである。   The present invention relates to an intake air temperature control method and apparatus for an indoor boiler installed in a building.

一般に、火力発電所やその他の各種プラントにはボイラが設けられるが、該ボイラを建屋内に設置する場合がある。   Generally, a thermal power plant and other various plants are provided with a boiler, but the boiler may be installed in a building.

図5は従来の建屋内に設置されるボイラの一例を示すものであって、1は建屋、2は建屋1内に設置され且つ石炭或いは重油等の燃料を燃焼させ蒸気を発生させるボイラ本体、3はボイラ本体2から排出される燃焼排ガスとボイラ本体2へ供給される燃焼用空気等の空気とを熱交換させるための空気予熱器(GAH)、4は空気予熱器3へ供給される燃焼用空気等の空気を蒸気で加熱して酸露点以上の温度とし、燃焼排ガス中に含まれる硫黄分による空気予熱器3の腐食を防止するためのスチームエアヒータ(SAH)、5は空気をスチームエアヒータ4と空気予熱器3を介してボイラ本体2へ送風するための押込通風機(FDF)であり、該押込通風機5の入側には、建屋1内上部における暖空気を吸い込むための吸気ライン6が接続されている。   FIG. 5 shows an example of a boiler installed in a conventional building, in which 1 is a building, 2 is a boiler body installed in the building 1 and generates steam by burning fuel such as coal or heavy oil, 3 is an air preheater (GAH) for exchanging heat between combustion exhaust gas discharged from the boiler body 2 and air such as combustion air supplied to the boiler body 2, and 4 is combustion supplied to the air preheater 3. Steam air heater (SAH) for heating air such as industrial air with steam to a temperature above the acid dew point and preventing corrosion of the air preheater 3 due to sulfur contained in the combustion exhaust gas, 5 is a steam air heater 4 and a forced draft fan (FDF) for blowing air to the boiler body 2 via the air preheater 3, and an intake line for sucking warm air in the upper part of the building 1 at the entry side of the forced draft fan 5 6 is connected There.

図5に示されるような従来の建屋内に設置されるボイラにおいては、建屋1内上部における30〜40[℃]程度の暖空気が押込通風機5の作動により吸気ライン6から吸い込まれ、スチームエアヒータ4と空気予熱器3を介してボイラ本体2へ送風され、該ボイラ本体2で石炭等の燃料の燃焼が行われて蒸気が発生され、その際にボイラ本体2から排出される燃焼排ガスは、空気予熱器3において、前記押込通風機5によりボイラ本体2へ供給される燃焼用空気等の空気と熱交換して温度降下した後、煙突から大気中へ放出されるようになっている。   In the boiler installed in the conventional building as shown in FIG. 5, warm air of about 30 to 40 [° C.] in the upper part of the building 1 is sucked from the intake line 6 by the operation of the forced draft fan 5, and steam The combustion exhaust gas discharged from the boiler body 2 is blown to the boiler body 2 through the air heater 4 and the air preheater 3, and fuel such as coal is burned in the boiler body 2 to generate steam. In the air preheater 3, the temperature is lowered by exchanging heat with air such as combustion air supplied to the boiler body 2 by the forced air blower 5, and then discharged from the chimney to the atmosphere.

尚、前記ボイラ本体2から排出される燃焼排ガス中に含まれる窒素酸化物、煤塵、並びに硫黄酸化物は、図示していない脱硝装置、電気集塵機、並びに脱硫装置で除去され、清浄化されたガスが前記煙突から大気中へ放出される形となる。   Note that nitrogen oxides, soot, and sulfur oxides contained in the combustion exhaust gas discharged from the boiler body 2 are removed and purified by a denitration device, an electrostatic precipitator, and a desulfurization device (not shown). Is released from the chimney into the atmosphere.

そして、前述の如く、建屋1内上部における暖空気を押込通風機5の作動により吸気ライン6から吸い込むようにしているのは、前記ボイラ本体2からの放熱を回収し、効率を高めるためである。   As described above, the reason why the warm air in the upper part of the building 1 is sucked from the intake line 6 by the operation of the push-in ventilator 5 is to recover the heat radiation from the boiler body 2 and increase the efficiency. .

尚、系外に捨てられてしまう熱を最小限に抑えるようにボイラの空気温度を制御する技術を示すものとしては、例えば、特許文献1がある。
特開2003−214621号公報
For example, Patent Document 1 discloses a technique for controlling the air temperature of a boiler so as to minimize heat that is discarded outside the system.
JP 2003-214621 A

しかしながら、前述の如き屋内ボイラの場合、夏場においては、建屋1内上部における暖空気の温度は50[℃]以上に達することがあり、空気予熱器3の出側ガス温度が上昇し、該空気予熱器3の下流側に設けられる各種機器(例えば、電気集塵機や脱硫装置等)の温度上の制約から、ボイラ本体2における負荷制限を行う必要が生じ、特に発電所等では、得られる電気が減少してしまい大きな損失につながる虞があり、又、前記空気予熱器3の出側ガス温度の上昇に伴って、排ガスのボリュームが増加し、空気予熱器3の下流側に設けられる誘引通風機(IDF)等の補機動力が増加し、ランニングコストが嵩んでしまうという欠点をも有していた。   However, in the case of the indoor boiler as described above, in summer, the temperature of warm air in the upper part of the building 1 may reach 50 [° C.] or more, and the outlet gas temperature of the air preheater 3 rises, and the air Due to temperature restrictions of various devices (for example, an electrostatic precipitator and a desulfurization device) provided on the downstream side of the preheater 3, it is necessary to limit the load on the boiler body 2. There is a possibility that it may decrease and lead to a large loss, and the volume of exhaust gas increases as the outlet side gas temperature of the air preheater 3 rises, and the induction fan provided downstream of the air preheater 3 Auxiliary power such as (IDF) is increased, and the running cost is increased.

本発明は、斯かる実情に鑑み、夏場に押込通風機により吸い込まれてボイラ本体へ供給される吸気の温度が必要以上に上昇してしまうことを防止でき、各種機器の温度上の制約に伴うボイラ本体における負荷制限を不要とし得、且つ排ガスのボリューム増加による補機動力の増加を抑えてランニングコストの削減を図り得る屋内ボイラの吸気温度制御方法及び装置を提供しようとするものである。   In view of such a situation, the present invention can prevent the temperature of the intake air that is sucked by the forced air blower in the summer and supplied to the boiler body from rising more than necessary, and is associated with temperature limitations of various devices. It is an object of the present invention to provide an indoor boiler intake air temperature control method and apparatus which can eliminate the load limitation in the boiler body and can reduce the running cost by suppressing an increase in auxiliary power due to an increase in exhaust gas volume.

本発明は、ボイラ本体が設置された建屋内上部における暖空気を吸い込んでボイラ本体へ送り込む押込通風機を備えた屋内ボイラの吸気温度制御方法であって、
前記押込通風機の入側空気温度を検出し、該入側空気温度がボイラ出力に基づく入側空気温度設定値となるよう、押込通風機の入側に建屋外部の冷空気を導入することを特徴とする屋内ボイラの吸気温度制御方法にかかるものである。
The present invention is an intake air temperature control method for an indoor boiler equipped with a forced air blower that draws warm air in the upper part of the building where the boiler body is installed and sends it to the boiler body,
Detecting the incoming air temperature of the forced air blower, and introducing the cold air of the outdoor part of the building to the incoming side of the forced air fan so that the incoming air temperature becomes an incoming air temperature set value based on the boiler output. The present invention relates to a feature of an indoor boiler intake air temperature control method.

又、本発明は、ボイラ本体が設置された建屋内上部における暖空気を吸気ラインから吸い込んでボイラ本体へ送り込む押込通風機を備えた屋内ボイラの吸気温度制御装置であって、
前記吸気ライン途中に設けられ且つ押込通風機によって吸い込まれる暖空気の流量を調節するための暖空気ダンパと、
前記建屋外部の冷空気を取り込んで吸気ラインの暖空気ダンパより下流側に導くための冷空気ラインと、
該冷空気ライン途中に設けられ且つ押込通風機によって吸い込まれる冷空気の流量を調節するための冷空気ダンパと、
前記押込通風機の入側空気温度を検出する温度検出器と、
該温度検出器で検出された押込通風機の入側空気温度がボイラ出力に基づく入側空気温度設定値となるよう、前記暖空気ダンパと冷空気ダンパへ開度指令を出力する制御器と
を備えたことを特徴とする屋内ボイラの吸気温度制御装置にかかるものである。
In addition, the present invention is an intake air temperature control device for an indoor boiler equipped with a forced air blower that draws warm air in the upper part of the building where the boiler body is installed from the intake line and sends it to the boiler body,
A warm air damper for adjusting the flow rate of warm air provided in the middle of the intake line and sucked by the forced air blower;
A cold air line for taking in cold air from the outdoor part of the building and guiding it downstream from the warm air damper of the intake line;
A cold air damper for adjusting the flow rate of the cold air provided in the middle of the cold air line and sucked by the forced air blower;
A temperature detector for detecting the inlet air temperature of the forced draft fan;
A controller that outputs an opening degree command to the warm air damper and the cold air damper so that the inlet air temperature of the forced air fan detected by the temperature detector becomes an inlet air temperature set value based on the boiler output. The present invention relates to an intake air temperature control device for an indoor boiler, characterized in that it is provided.

前記屋内ボイラの吸気温度制御装置においては、ボイラ出力に基づき押込通風機の入側空気温度設定値を求めて出力する第一関数発生器と、
温度検出器で検出された押込通風機の入側空気温度と前記第一関数発生器から出力される入側空気温度設定値との温度差を求めて出力する減算器と、
該減算器から出力される温度差に基づき暖空気ダンパ開度バイアス指令を求めて出力する第二関数発生器と、
暖空気ダンパ実開度に対し前記第二関数発生器から出力される暖空気ダンパ開度バイアス指令を加えて暖空気ダンパ開度指令を暖空気ダンパへ出力する加算器と、
前記加算器から出力される暖空気ダンパ開度指令に基づき冷空気ダンパ開度指令を求めて冷空気ダンパへ出力する第三関数発生器と
から前記制御器を構成することができる。
In the indoor boiler intake air temperature control device, a first function generator for obtaining and outputting the inlet air temperature set value of the forced air blower based on the boiler output;
A subtractor that calculates and outputs a temperature difference between the inlet air temperature of the forced draft fan detected by the temperature detector and the inlet air temperature set value output from the first function generator;
A second function generator for obtaining and outputting a warm air damper opening bias command based on the temperature difference output from the subtractor;
An adder for adding the warm air damper opening bias command output from the second function generator to the warm air damper actual opening and outputting the warm air damper opening command to the warm air damper;
The controller can be configured from a third function generator that obtains a cold air damper opening command based on the warm air damper opening command output from the adder and outputs the command to the cold air damper.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

運転時には、ボイラ本体が設置された建屋内上部における暖空気が押込通風機により吸い込まれてボイラ本体へ送り込まれるが、このとき、前記押込通風機の入側空気温度が検出され、該入側空気温度がボイラ出力に基づく入側空気温度設定値となるよう、押込通風機の入側に建屋外部の冷空気が導入されるため、夏場において、建屋内上部における暖空気の温度が仮に50[℃]以上に達したとしても、押込通風機の入側空気温度は常にボイラ出力に基づく入側空気温度設定値に保持されることから、空気予熱器の出側ガス温度が上昇し過ぎるようなことが回避され、該空気予熱器の下流側に設けられる各種機器(例えば、電気集塵機や脱硫装置等)に影響が及ぶ心配もなく、ボイラ本体における負荷制限を行わなくて済み、特に発電所等では、得られる電気が減少せず、大きな損失をこうむることがなくなると共に、前記空気予熱器の出側ガス温度の上昇に伴う排ガスのボリュームの増加が避けられ、空気予熱器の下流側に設けられる誘引通風機等の補機動力も増加せず、ランニングコストが嵩んでしまう心配もなくなる。   During operation, warm air in the upper part of the building in which the boiler body is installed is sucked in by the forced draft fan and sent to the boiler body. At this time, the inlet air temperature of the forced draft fan is detected, and the inlet air is detected. Since the cold air in the outdoor part of the building is introduced to the inlet side of the forced draft fan so that the temperature becomes the inlet side air temperature setting value based on the boiler output, the temperature of the warm air in the upper part of the building is assumed to be 50 [° C. in summer. ] Even if it reaches the above, the inlet side air temperature of the forced draft fan is always kept at the inlet side air temperature set value based on the boiler output, so that the outlet side gas temperature of the air preheater is too high. Is avoided, and there is no concern of affecting the various equipment (for example, an electrostatic precipitator or a desulfurization device) provided downstream of the air preheater, and it is not necessary to limit the load on the boiler body. Is provided on the downstream side of the air preheater, so that the electricity obtained does not decrease and does not suffer a large loss, and an increase in the volume of exhaust gas accompanying an increase in the outlet gas temperature of the air preheater is avoided. Auxiliary power such as an induction fan does not increase, and there is no need to worry about increased running costs.

本発明の屋内ボイラの吸気温度制御方法及び装置によれば、夏場に押込通風機により吸い込まれてボイラ本体へ供給される吸気の温度が必要以上に上昇してしまうことを防止でき、各種機器の温度上の制約に伴うボイラ本体における負荷制限を不要とし得、且つ排ガスのボリューム増加による補機動力の増加を抑えてランニングコストの削減を図り得るという優れた効果を奏し得る。   According to the intake air temperature control method and apparatus for an indoor boiler of the present invention, it is possible to prevent the temperature of the intake air that is sucked in by a forced air blower in the summer and supplied to the boiler body from rising more than necessary. It is possible to eliminate the load restriction on the boiler body due to the temperature restriction, and to achieve an excellent effect that the running cost can be reduced by suppressing an increase in auxiliary power due to an increase in the volume of exhaust gas.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明を実施する形態の一例であって、図中、図5と同一の符号を付した部分は同一物を表わしており、吸気ライン6途中に、押込通風機5によって吸い込まれる暖空気の流量を調節するための暖空気ダンパ7を設けると共に、該暖空気ダンパ7より下流側の吸気ライン6途中に、建屋1外部の冷空気を取り込むための冷空気ライン8を接続し、該冷空気ライン8途中に、前記押込通風機5によって吸い込まれる冷空気の流量を調節するための冷空気ダンパ9を設け、更に、前記押込通風機5の入側空気温度Tを検出する温度検出器10と、該温度検出器10で検出された押込通風機5の入側空気温度Tがボイラ出力MWに基づく入側空気温度設定値T′となるよう、前記暖空気ダンパ7と冷空気ダンパ9へ開度指令A1′,A2′を出力する制御器11とを設けるようにしたものである。   1 to 4 show an example of an embodiment for carrying out the present invention. In the figure, the same reference numerals as those in FIG. 5 denote the same components. A warm air damper 7 for adjusting the flow rate of the warm air to be sucked in is provided, and a cold air line 8 for taking in cold air outside the building 1 is connected to the intake line 6 downstream of the warm air damper 7. In the middle of the cold air line 8, a cold air damper 9 for adjusting the flow rate of the cold air sucked in by the forced air blower 5 is provided, and the incoming air temperature T of the forced air fan 5 is detected. The warm air damper 7 and the cool air damper 7 are cooled so that the inlet side air temperature T of the temperature detector 10 and the forced air blower 5 detected by the temperature detector 10 becomes the inlet side air temperature set value T ′ based on the boiler output MW. Opening command A1 ', A to air damper 9 'It is obtained by the provided and a controller 11 for outputting.

前記制御器11は、
ボイラ出力MWに基づき押込通風機5の入側空気温度設定値T′を求めて出力する第一関数発生器12と、
温度検出器10で検出された押込通風機5の入側空気温度Tと前記第一関数発生器12から出力される入側空気温度設定値T′との温度差(T−T′)を求めて出力する減算器13と、
該減算器13から出力される温度差(T−T′)に基づき暖空気ダンパ開度バイアス指令ΔA1を求めて出力する第二関数発生器14と、
暖空気ダンパ実開度A1に対し前記第二関数発生器14から出力される暖空気ダンパ開度バイアス指令ΔA1を加えて暖空気ダンパ開度指令A1′を暖空気ダンパ7へ出力する加算器15と、
前記加算器15から出力される暖空気ダンパ開度指令A1′に基づき冷空気ダンパ開度指令A2′を求めて冷空気ダンパ9へ出力する第三関数発生器16と
を備えてなる構成を有している。
The controller 11
A first function generator 12 for obtaining and outputting an inlet air temperature set value T ′ of the forced draft fan 5 based on the boiler output MW;
A temperature difference (T−T ′) between the inlet air temperature T of the forced air blower 5 detected by the temperature detector 10 and the inlet air temperature set value T ′ output from the first function generator 12 is obtained. A subtractor 13 for outputting
A second function generator 14 for obtaining and outputting a warm air damper opening bias command ΔA1 based on a temperature difference (T−T ′) output from the subtractor 13;
An adder 15 for adding a warm air damper opening command A1 'output from the second function generator 14 to the warm air damper actual opening A1 and outputting a warm air damper opening command A1' to the warm air damper 7 When,
And a third function generator 16 for obtaining a cold air damper opening command A2 ′ based on the warm air damper opening command A1 ′ output from the adder 15 and outputting it to the cold air damper 9. is doing.

尚、前記第一関数発生器12には、図2に示す如く、ボイラ出力MWの増減に対し略反比例させる形で押込通風機5の入側空気温度設定値T′を増減させるような関数を入力し、ボイラ出力MWが高いときほど、押込通風機5の入側空気温度設定値T′を低く設定するようにしてある。   As shown in FIG. 2, the first function generator 12 has a function for increasing or decreasing the inlet side air temperature set value T ′ of the forced draft fan 5 in a manner that is approximately inversely proportional to the increase or decrease of the boiler output MW. The higher the boiler output MW is, the lower the inlet side air temperature set value T ′ of the forced draft fan 5 is set.

又、前記第二関数発生器14には、図3に示す如く、温度差(T−T′)が正負の値で所定の許容範囲内に収まっている場合には、暖空気ダンパ開度バイアス指令ΔA1を0とし、前記温度差(T−T′)が正の値で許容範囲から逸脱している場合には、該温度差(T−T′)が正の方向で大きくなる(押込通風機5の入側空気温度Tが高くなる)ほど、暖空気ダンパ開度バイアス指令ΔA1を負の方向(暖空気ダンパ7の開度を絞る方向)に増加させ、前記温度差(T−T′)が負の値で許容範囲から逸脱している場合には、該温度差(T−T′)が負の方向で大きくなる(押込通風機5の入側空気温度Tが低くなる)ほど、暖空気ダンパ開度バイアス指令ΔA1を正の方向(暖空気ダンパ7の開度を広げる方向)に増加させるような関数を入力してある。   Further, as shown in FIG. 3, when the temperature difference (T−T ′) is a positive / negative value and falls within a predetermined allowable range, the second function generator 14 has a warm air damper opening bias. When the command ΔA1 is set to 0 and the temperature difference (T−T ′) is a positive value and deviates from the allowable range, the temperature difference (T−T ′) increases in the positive direction (indentation ventilation) As the incoming air temperature T of the machine 5 becomes higher), the warm air damper opening bias command ΔA1 is increased in the negative direction (direction in which the opening of the warm air damper 7 is reduced), and the temperature difference (T−T ′ ) Is a negative value and deviates from the permissible range, the larger the temperature difference (T−T ′) is in the negative direction (the inlet air temperature T of the forced air blower 5 is lower), A function for increasing the warm air damper opening bias command ΔA1 in the positive direction (in the direction of increasing the opening degree of the warm air damper 7). It is the force.

更に又、前記第三関数発生器16には、図4に示す如く、暖空気ダンパ開度指令A1′が0から所定の値までは、冷空気ダンパ開度指令A2′を全開(100[%])とし、前記暖空気ダンパ開度指令A1′が増加するにしたがって、冷空気ダンパ開度指令A2′を減少させるような関数を入力してある。   Further, as shown in FIG. 4, when the warm air damper opening command A1 'is from 0 to a predetermined value, the third function generator 16 fully opens the cold air damper opening command A2' (100 [% )), And a function is input to decrease the cold air damper opening command A2 'as the warm air damper opening command A1' increases.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

運転時には、ボイラ本体2が設置された建屋1内上部における暖空気が押込通風機5により吸気ライン6から吸い込まれてボイラ本体2へ送り込まれるが、このとき、前記押込通風機5の入側空気温度Tが温度検出器10によって検出され、制御器11の減算器13へ入力されると共に、その時点での暖空気ダンパ7の実際の開度、即ち暖空気ダンパ実開度A1が前記制御器11の加算器15へ入力される。   During operation, warm air in the upper part of the building 1 in which the boiler body 2 is installed is sucked from the intake line 6 by the forced draft fan 5 and sent to the boiler body 2. At this time, the inlet air of the forced draft fan 5 The temperature T is detected by the temperature detector 10 and input to the subtracter 13 of the controller 11, and the actual opening degree of the warm air damper 7 at that time, that is, the actual opening degree A1 of the warm air damper is determined by the controller. 11 adders 15.

前記制御器11においては、その第一関数発生器12でボイラ出力MWに基づき押込通風機5の入側空気温度設定値T′が求められて減算器13へ出力され、該減算器13において、前記温度検出器10で検出された押込通風機5の入側空気温度Tと前記第一関数発生器12から出力される入側空気温度設定値T′との温度差(T−T′)が求められて第二関数発生器14へ出力され、該第二関数発生器14において、前記減算器13から出力される温度差(T−T′)に基づき暖空気ダンパ開度バイアス指令ΔA1が求められて加算器15へ出力され、該加算器15において、暖空気ダンパ実開度A1に対し前記第二関数発生器14から出力される暖空気ダンパ開度バイアス指令ΔA1が加えられて暖空気ダンパ開度指令A1′が暖空気ダンパ7並びに第三関数発生器16へ出力され、該第三関数発生器16において、前記加算器15から出力される暖空気ダンパ開度指令A1′に基づき冷空気ダンパ開度指令A2′が求められて冷空気ダンパ9へ出力される。   In the controller 11, the first function generator 12 obtains the inlet side air temperature set value T ′ of the forced draft fan 5 based on the boiler output MW and outputs it to the subtractor 13. A temperature difference (T−T ′) between the inlet air temperature T of the forced air blower 5 detected by the temperature detector 10 and the inlet air temperature set value T ′ output from the first function generator 12 is obtained. It is obtained and outputted to the second function generator 14, and the second function generator 14 obtains the warm air damper opening bias command ΔA1 based on the temperature difference (T−T ′) outputted from the subtractor 13. The warm air damper opening bias command ΔA1 output from the second function generator 14 is added to the warm air damper actual opening A1, and the warm air damper is output to the adder 15. Opening command A1 'is warm air The third function generator 16 outputs a cold air damper opening command A2 'based on the warm air damper opening command A1' output from the adder 15. And output to the cold air damper 9.

これにより、前記温度検出器10によって検出された入側空気温度Tがボイラ出力MWに基づく入側空気温度設定値T′となるよう、押込通風機5の入側に建屋1外部の冷空気が導入されるため、夏場において、建屋1内上部における暖空気の温度が仮に50[℃]以上に達したとしても、押込通風機5の入側空気温度Tは常にボイラ出力MWに基づく入側空気温度設定値T′に保持されることから、空気予熱器3の出側ガス温度が上昇し過ぎるようなことが回避され、該空気予熱器3の下流側に設けられる各種機器(例えば、電気集塵機や脱硫装置等)に影響が及ぶ心配もなく、ボイラ本体2における負荷制限を行わなくて済み、特に発電所等では、得られる電気が減少せず、大きな損失をこうむることがなくなると共に、前記空気予熱器3の出側ガス温度の上昇に伴う排ガスのボリュームの増加が避けられ、空気予熱器3の下流側に設けられる誘引通風機(IDF)等の補機動力も増加せず、ランニングコストが嵩んでしまう心配もなくなる。   Thereby, the cold air outside the building 1 is placed on the entry side of the forced air blower 5 so that the entry side air temperature T detected by the temperature detector 10 becomes the entry side air temperature set value T ′ based on the boiler output MW. Therefore, even if the temperature of the warm air in the upper part of the building 1 reaches 50 [° C.] or higher in summer, the incoming air temperature T of the forced draft fan 5 is always the incoming air based on the boiler output MW. Since the temperature is maintained at the temperature setting value T ′, it is avoided that the outlet gas temperature of the air preheater 3 is excessively increased, and various devices (for example, an electric dust collector) provided on the downstream side of the air preheater 3 are avoided. And the load on the boiler body 2 does not have to be affected. Especially in a power plant or the like, the obtained electricity does not decrease and does not suffer a large loss. Preheater The increase in the volume of the exhaust gas accompanying the rise in the outlet side gas temperature is avoided, and the auxiliary power such as an induction fan (IDF) provided on the downstream side of the air preheater 3 is not increased, which may increase the running cost. Also disappear.

尚、前記押込通風機5の入側空気温度設定値T′を、空気予熱器3の冷端平均メタル温度を維持するために必要最低限の温度としておけば、冬場のどうしても必要な場合にのみ、スチームエアヒータ4を起動するだけで、燃焼排ガス中に含まれる硫黄分による空気予熱器3の腐食を防止することが可能となるため、スチームエアヒータ4の使用頻度が最小限に抑えられ、効率を高める上で有効となる。   In addition, if the inlet side air temperature set value T ′ of the push-in ventilator 5 is set to a minimum temperature necessary for maintaining the cold end average metal temperature of the air preheater 3, it is only necessary when it is absolutely necessary in winter. Since it becomes possible to prevent the air preheater 3 from corroding due to sulfur contained in the combustion exhaust gas simply by starting the steam air heater 4, the frequency of use of the steam air heater 4 can be minimized and the efficiency can be improved. It becomes effective in raising.

こうして、夏場に押込通風機5により吸気ライン6から吸い込まれてボイラ本体2へ供給される吸気の温度が必要以上に上昇してしまうことを防止でき、各種機器の温度上の制約に伴うボイラ本体2における負荷制限を不要とし得、且つ排ガスのボリューム増加による補機動力の増加を抑えてランニングコストの削減を図り得る。   In this way, it is possible to prevent the temperature of the intake air sucked from the intake line 6 by the forced air blower 5 and supplied to the boiler main body 2 from rising more than necessary in the summer, and the boiler main body due to temperature restrictions of various devices. The load limit in 2 can be made unnecessary, and the running cost can be reduced by suppressing the increase in auxiliary power due to the increase in the volume of exhaust gas.

尚、本発明の屋内ボイラの吸気温度制御方法及び装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the indoor boiler intake air temperature control method and apparatus of the present invention are not limited to the illustrated examples described above, and various modifications may be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows an example of the form which implements this invention. 図1の第一関数発生器に入力された関数を示す線図である。It is a diagram which shows the function input into the 1st function generator of FIG. 図1の第二関数発生器に入力された関数を示す線図である。It is a diagram which shows the function input into the 2nd function generator of FIG. 図1の第三関数発生器に入力された関数を示す線図である。It is a diagram which shows the function input into the 3rd function generator of FIG. 従来の建屋内に設置されるボイラの一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the boiler installed in the conventional building.

符号の説明Explanation of symbols

1 建屋
2 ボイラ本体
5 押込通風機
6 吸気ライン
7 暖空気ダンパ
8 冷空気ライン
9 冷空気ダンパ
10 温度検出器
11 制御器
12 第一関数発生器
13 減算器
14 第二関数発生器
15 加算器
16 第三関数発生器
MW ボイラ出力
A1 暖空気ダンパ実開度
ΔA1 暖空気ダンパ開度バイアス指令
A1′ 暖空気ダンパ開度指令
A2′ 冷空気ダンパ開度指令
T 入側空気温度
T′ 入側空気温度設定値
T−T′ 温度差
DESCRIPTION OF SYMBOLS 1 Building 2 Boiler body 5 Push-in ventilator 6 Intake air line 7 Intake line 7 Warm air damper 8 Cold air line 9 Cold air damper 10 Temperature detector 11 Controller 12 First function generator 13 Subtractor 14 Second function generator 15 Adder 16 Third function generator MW Boiler output A1 Warm air damper actual opening ΔA1 Warm air damper opening bias command A1 ′ Warm air damper opening command A2 ′ Cold air damper opening command T Incoming air temperature T ′ Incoming air temperature Set value TT 'Temperature difference

Claims (3)

ボイラ本体が設置された建屋内上部における暖空気を吸い込んでボイラ本体へ送り込む押込通風機を備えた屋内ボイラの吸気温度制御方法であって、
前記押込通風機の入側空気温度を検出し、該入側空気温度がボイラ出力に基づく入側空気温度設定値となるよう、押込通風機の入側に建屋外部の冷空気を導入することを特徴とする屋内ボイラの吸気温度制御方法。
An intake air temperature control method for an indoor boiler equipped with a forced air blower that sucks warm air in the upper part of the building where the boiler body is installed and sends it to the boiler body,
Detecting the incoming air temperature of the forced air blower, and introducing the cold air of the outdoor part of the building to the incoming side of the forced air fan so that the incoming air temperature becomes the incoming air temperature set value based on the boiler output. An indoor boiler intake air temperature control method.
ボイラ本体が設置された建屋内上部における暖空気を吸気ラインから吸い込んでボイラ本体へ送り込む押込通風機を備えた屋内ボイラの吸気温度制御装置であって、
前記吸気ライン途中に設けられ且つ押込通風機によって吸い込まれる暖空気の流量を調節するための暖空気ダンパと、
前記建屋外部の冷空気を取り込んで吸気ラインの暖空気ダンパより下流側に導くための冷空気ラインと、
該冷空気ライン途中に設けられ且つ押込通風機によって吸い込まれる冷空気の流量を調節するための冷空気ダンパと、
前記押込通風機の入側空気温度を検出する温度検出器と、
該温度検出器で検出された押込通風機の入側空気温度がボイラ出力に基づく入側空気温度設定値となるよう、前記暖空気ダンパと冷空気ダンパへ開度指令を出力する制御器と
を備えたことを特徴とする屋内ボイラの吸気温度制御装置。
An intake air temperature control device for an indoor boiler equipped with a forced air blower that draws warm air in the upper part of the building where the boiler body is installed from the intake line and sends it to the boiler body,
A warm air damper for adjusting a flow rate of warm air provided in the middle of the intake line and sucked by a forced air blower;
A cold air line for taking in cold air from the outdoor part of the building and guiding it downstream from the warm air damper of the intake line;
A cold air damper for adjusting the flow rate of the cold air provided in the middle of the cold air line and sucked by the forced air blower;
A temperature detector for detecting the inlet air temperature of the forced draft fan;
A controller that outputs an opening degree command to the warm air damper and the cold air damper so that the inlet air temperature of the forced draft fan detected by the temperature detector becomes an inlet air temperature set value based on the boiler output. An intake air temperature control device for an indoor boiler, comprising:
ボイラ出力に基づき押込通風機の入側空気温度設定値を求めて出力する第一関数発生器と、
温度検出器で検出された押込通風機の入側空気温度と前記第一関数発生器から出力される入側空気温度設定値との温度差を求めて出力する減算器と、
該減算器から出力される温度差に基づき暖空気ダンパ開度バイアス指令を求めて出力する第二関数発生器と、
暖空気ダンパ実開度に対し前記第二関数発生器から出力される暖空気ダンパ開度バイアス指令を加えて暖空気ダンパ開度指令を暖空気ダンパへ出力する加算器と、
前記加算器から出力される暖空気ダンパ開度指令に基づき冷空気ダンパ開度指令を求めて冷空気ダンパへ出力する第三関数発生器と
から前記制御器を構成した請求項2記載の屋内ボイラの吸気温度制御装置。
A first function generator for determining and outputting the inlet air temperature set value of the forced draft fan based on the boiler output;
A subtractor that calculates and outputs a temperature difference between the inlet air temperature of the forced draft fan detected by the temperature detector and the inlet air temperature set value output from the first function generator;
A second function generator for obtaining and outputting a warm air damper opening bias command based on the temperature difference output from the subtractor;
An adder for adding the warm air damper opening bias command output from the second function generator to the warm air damper actual opening and outputting the warm air damper opening command to the warm air damper;
The indoor boiler according to claim 2, wherein the controller is configured by a third function generator that obtains a cold air damper opening command based on a warm air damper opening command output from the adder and outputs the cold air damper opening command to the cold air damper. Intake air temperature control device.
JP2004338538A 2004-11-24 2004-11-24 Intake air temperature control method and apparatus for indoor boiler Active JP4218631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004338538A JP4218631B2 (en) 2004-11-24 2004-11-24 Intake air temperature control method and apparatus for indoor boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004338538A JP4218631B2 (en) 2004-11-24 2004-11-24 Intake air temperature control method and apparatus for indoor boiler

Publications (2)

Publication Number Publication Date
JP2006145158A true JP2006145158A (en) 2006-06-08
JP4218631B2 JP4218631B2 (en) 2009-02-04

Family

ID=36625055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004338538A Active JP4218631B2 (en) 2004-11-24 2004-11-24 Intake air temperature control method and apparatus for indoor boiler

Country Status (1)

Country Link
JP (1) JP4218631B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333348A (en) * 2006-06-19 2007-12-27 Chugoku Electric Power Co Inc:The Ventilation system and ventilation method for indoor boiler
JP2016508862A (en) * 2012-11-22 2016-03-24 アクセンス Low temperature heat recovery method and its application to aromatics complex
CN109519963A (en) * 2018-12-28 2019-03-26 启明星宇节能科技股份有限公司 Boiler temperature controls equipment
CN112923393A (en) * 2021-03-31 2021-06-08 西安热工研究院有限公司 Induced draft fan guide vane control system and method in auxiliary machine fault load reduction process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333348A (en) * 2006-06-19 2007-12-27 Chugoku Electric Power Co Inc:The Ventilation system and ventilation method for indoor boiler
JP4698497B2 (en) * 2006-06-19 2011-06-08 中国電力株式会社 Indoor boiler ventilation system and method
JP2016508862A (en) * 2012-11-22 2016-03-24 アクセンス Low temperature heat recovery method and its application to aromatics complex
CN109519963A (en) * 2018-12-28 2019-03-26 启明星宇节能科技股份有限公司 Boiler temperature controls equipment
CN109519963B (en) * 2018-12-28 2023-12-01 启明星宇节能科技股份有限公司 Boiler temperature control device
CN112923393A (en) * 2021-03-31 2021-06-08 西安热工研究院有限公司 Induced draft fan guide vane control system and method in auxiliary machine fault load reduction process

Also Published As

Publication number Publication date
JP4218631B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP6490466B2 (en) Waste treatment facility and method of operating waste treatment facility
JPWO2013136782A1 (en) Oxy-combustion boiler system
JP4218631B2 (en) Intake air temperature control method and apparatus for indoor boiler
JP2005321120A (en) Ash melting furnace system
JP2018165583A (en) Method and device for avoiding surge of supercharger attached to incinerator
JP6678265B1 (en) Apparatus and method for treating flue gas
JP5402624B2 (en) Boiler ventilation pressure control device and operation method thereof
JP4147728B2 (en) Number control method of boiler
JP2014206329A (en) Exhaust gas treatment device
JP5137598B2 (en) Ventilation system in steam power generation facilities
JP2002370012A (en) Exhaust gas treatment apparatus
JP6251329B1 (en) Waste incinerator
JP7316925B2 (en) Waste treatment equipment and operation method of waste treatment equipment
CN105423289B (en) A kind of condensation prevention system and method for flue gas outer circulation combustion apparatus
JP2013096685A (en) Combustion method of waste incinerator
JP6947608B2 (en) How to operate waste treatment equipment and waste treatment equipment
JP4133929B2 (en) Furnace pressure control method for heating furnace
JP2002106831A (en) Pulverized coal fired boiler facility
JP2010060156A (en) NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE
JPH0749231Y2 (en) Exhaust equipment for refuse incinerator
JP3941405B2 (en) Boiler automatic control apparatus and method
JP3882294B2 (en) Combustion air flow rate control method and apparatus in exhaust recombustion combined cycle power plant
JPH0835606A (en) Temperature controller for exhaust gas in boiler equipment
JP6728983B2 (en) Current control method and current control system for ventilator in exhaust gas treatment facility
JPS6060418A (en) Controller for coal firing boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4218631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250