JP2006143884A - Thermoplastic resin composition and thermoplastic resin molded article - Google Patents

Thermoplastic resin composition and thermoplastic resin molded article Download PDF

Info

Publication number
JP2006143884A
JP2006143884A JP2004335808A JP2004335808A JP2006143884A JP 2006143884 A JP2006143884 A JP 2006143884A JP 2004335808 A JP2004335808 A JP 2004335808A JP 2004335808 A JP2004335808 A JP 2004335808A JP 2006143884 A JP2006143884 A JP 2006143884A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
acrylonitrile
styrene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004335808A
Other languages
Japanese (ja)
Other versions
JP4655598B2 (en
Inventor
Tetsushi Konta
哲史 紺田
Eiichiro Saito
英一郎 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004335808A priority Critical patent/JP4655598B2/en
Publication of JP2006143884A publication Critical patent/JP2006143884A/en
Application granted granted Critical
Publication of JP4655598B2 publication Critical patent/JP4655598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition excellent in a mechanical characteristic, and a thermoplastic resin molded article. <P>SOLUTION: The thermoplastic resin composition contains an aliphatic polyester resin; a thermoplastic resin different from the aliphatic polyester resin; and poly(ethylene-stat-methacrylic glycidyl)-graft-poly(acrylonitrile-stat-styrene). Further, flame retardancy can be enhanced by containing a polyphosphoric acid melamine-based compound and at least one of resorcinol bis(di-2,6-dimethylphenylphosphate) and a phosphazene compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱可塑性樹脂組成物及び熱可塑性樹脂成形品に関する。   The present invention relates to a thermoplastic resin composition and a thermoplastic resin molded article.

四半世紀の間に、高分子の化学と技術は大きく進展し、優れた性能と機能とを兼ね備えた数多くの高分子素材が生み出されてきている。高分子素材の中でも、プラスチックは、現在、世界中において1年間に1億トン以上消費されており、電気機器、自動車部品及び各種構造体の各種用途として使用されている。プラスチックは、原料として主に石油を使用しているため、資源の枯渇が懸念されているだけではなく、自然環境下では分解されないため、廃棄物が増えて環境に悪影響を及ぼす恐れを有している。また、石油由来のプラスチックは、近年盛んに叫ばれている地球温暖化の原因の一つとしても挙げられている。そこで、石油由来のプラスチックに替えて、天然資源を原料とし、自然環境下において分解される生分解性樹脂組成物が注目を集めている。例えば、自然環境下において完全に水と二酸化炭素に分解されるポリ乳酸に代表される脂肪族ポリエステル樹脂が、生分解性樹脂組成物として挙げられる。しかし、ポリ乳酸などの脂肪族ポリエステル樹脂は、低融点であり、加工性が悪く、高コストになる等の問題を有していた。このため、各種の改良が行われており、例えば、ポリ乳酸などの脂肪族ポリエステルに、成形加工性に優れる第2のポリマー成分を所定量混合して、生分解性と熱可塑成形性とを同時に改善した生分解性樹脂組成物が開示されている(例えば、特許文献1参照)。
特開平7−316367号公報
During the quarter century, polymer chemistry and technology have advanced greatly, and many polymer materials with excellent performance and function have been created. Among polymer materials, plastics are currently consumed over 100 million tons per year all over the world, and are used for various uses of electrical equipment, automobile parts and various structures. Since plastics mainly use petroleum as a raw material, it is not only concerned about the depletion of resources, but also because it does not decompose in the natural environment, there is a risk that waste will increase and adversely affect the environment. Yes. Petroleum-derived plastics are also cited as one of the causes of global warming that has been screamed in recent years. Therefore, instead of petroleum-derived plastics, biodegradable resin compositions that use natural resources as raw materials and are decomposed in the natural environment have attracted attention. For example, an aliphatic polyester resin typified by polylactic acid that is completely decomposed into water and carbon dioxide in a natural environment can be used as the biodegradable resin composition. However, aliphatic polyester resins such as polylactic acid have problems such as low melting point, poor processability, and high cost. For this reason, various improvements have been made. For example, a predetermined amount of a second polymer component excellent in molding processability is mixed with an aliphatic polyester such as polylactic acid to obtain biodegradability and thermoplastic moldability. A biodegradable resin composition improved at the same time is disclosed (for example, see Patent Document 1).
JP 7-316367 A

しかしながら、ポリ乳酸などの脂肪族ポリエステル樹脂は、実用性の高い生分解性樹脂組成物として有望視されているが、耐熱性、機械特性、難燃性などに多くの問題があり、実用化するためには未だ多くの課題が残されていた。   However, aliphatic polyester resins such as polylactic acid are considered promising as highly practical biodegradable resin compositions, but they have many problems in heat resistance, mechanical properties, flame retardancy, etc., and are put to practical use. Many challenges still remained for this purpose.

本発明は、上記課題を解決するためになされたものであり、すなわち、本発明の熱可塑性樹脂組成物は、脂肪族ポリエステル樹脂と、脂肪族ポリエステル樹脂とは異なる熱可塑性樹脂と、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)と、を含むことを要旨とする。   The present invention has been made to solve the above-described problems. That is, the thermoplastic resin composition of the present invention includes an aliphatic polyester resin, a thermoplastic resin different from the aliphatic polyester resin, and poly (ethylene). -stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene).

また、本発明の熱可塑性樹脂成形品は、上記記載の熱可塑性樹脂組成物を用いて、押出成形、真空成形、圧空成形、射出成形、ブロー成形及び発泡成形の中から選択されるいずれかの方法を用いて成形されたことを要旨とする。   The thermoplastic resin molded article of the present invention is any one selected from extrusion molding, vacuum molding, pressure molding, injection molding, blow molding, and foam molding using the thermoplastic resin composition described above. The gist is that it was molded using the method.

本発明の熱可塑性樹脂組成物によれば、機械的特性が優れた成形品を得ることができる。   According to the thermoplastic resin composition of the present invention, a molded product having excellent mechanical properties can be obtained.

本発明の熱可塑性樹脂成形品によれば、機械的特性が優れるため、機械的強度が要求される各種用途に適用することができる。   According to the thermoplastic resin molded article of the present invention, since the mechanical properties are excellent, it can be applied to various uses requiring mechanical strength.

以下、本発明の実施の形態に係る熱可塑性樹脂組成物及び熱可塑性樹脂成形品について説明する。   Hereinafter, the thermoplastic resin composition and the thermoplastic resin molded article according to the embodiment of the present invention will be described.

本発明の実施の形態に係る熱可塑性樹脂組成物は、脂肪族ポリエステル樹脂と、脂肪族ポリエステル樹脂とは異なる熱可塑性樹脂と、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)と、を含むものである。   A thermoplastic resin composition according to an embodiment of the present invention includes an aliphatic polyester resin, a thermoplastic resin different from the aliphatic polyester resin, poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile- stat-styrene).

脂肪族ポリエステル樹脂としては、ポリ乳酸、ポリブチレンサクシネート、乳酸成分と脂肪族ポリエステル成分からなる樹脂、ポリグリコール酸、ポリカプロラクトン、ポリヒドロキシアルカノエート等が挙げられる。これらを単独あるいは二種以上の組み合わせにより用いることができる。なお、資源問題及び環境問題の観点から、脂肪族ポリエステル樹脂として、特に、植物由来のポリ乳酸又はポリグリコール酸を用いることが好ましい。   Examples of the aliphatic polyester resin include polylactic acid, polybutylene succinate, a resin composed of a lactic acid component and an aliphatic polyester component, polyglycolic acid, polycaprolactone, polyhydroxyalkanoate, and the like. These can be used alone or in combination of two or more. In view of resource problems and environmental problems, it is particularly preferable to use plant-derived polylactic acid or polyglycolic acid as the aliphatic polyester resin.

熱可塑性樹脂としては、脂肪族ポリエステル樹脂以外の樹脂であれば特に限定されないが、アクリロニトリル・ブタジエンゴム・スチレン樹脂、ポリカーボネート樹脂、ポリカーボネート/アクリロニトリル・ブタジエンゴム・スチレンアロイ樹脂、ポリエーテルサルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンエーテル樹脂、ポリエチレンテレフタラート樹脂、ポリブチレンテレフタラート樹脂、ポリアミド樹脂、アクリロニトリル・スチレン樹脂、アクリロニトリル・エチレンプロピレンゴム・スチレン樹脂、メタクリルスチレン樹脂、ポリエチレン樹脂、ポリイミド樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、熱可塑性エラストマー樹脂等が挙げられる。これらを単独あるいは二種以上の組み合わせにより用いることができる。なお、樹脂を使用する用途に応じて、ガラスファイバ等の無機物又は植物繊維等により樹脂を強化しても良く、また、非臭素、非塩素、非アンチモン材料により難燃変性された樹脂を用いることもできる。   The thermoplastic resin is not particularly limited as long as it is a resin other than aliphatic polyester resin, but acrylonitrile / butadiene rubber / styrene resin, polycarbonate resin, polycarbonate / acrylonitrile / butadiene rubber / styrene alloy resin, polyethersulfone resin, polyphenylene. Sulfide resin, polyphenylene ether resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyamide resin, acrylonitrile / styrene resin, acrylonitrile / ethylene propylene rubber / styrene resin, methacryl styrene resin, polyethylene resin, polyimide resin, methacryl resin, polyacetal resin , Polypropylene resin, polystyrene resin, thermoplastic elastomer resin and the like. These can be used alone or in combination of two or more. Depending on the application for which the resin is used, the resin may be reinforced with inorganic materials such as glass fibers or plant fibers, etc., and a resin that is flame-retardant modified with a non-bromine, non-chlorine, or non-antimony material is used. You can also.

脂肪族ポリエステル樹脂と熱可塑性樹脂の配合重量比率は、1:0.2〜3が好ましい。この理由は、0.2未満になると成形性を改善する効果が少なく、逆に、3を超えると、生分解性の効果が少なくなるからである。   The blending weight ratio of the aliphatic polyester resin and the thermoplastic resin is preferably 1: 0.2-3. The reason for this is that when it is less than 0.2, the effect of improving the moldability is small, and conversely, when it exceeds 3, the effect of biodegradability is reduced.

また、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)を用いることにより、脂肪族ポリエステル樹脂と熱可塑性樹脂との両者の相溶性が高まり、得られる成形品の曲げ強さ、曲げ弾性率、引張り強さ、引張り伸び及びアイゾット衝撃強さ等の機械的特性が向上する。ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)の添加量は、1重量%〜30重量%の範囲とすることが好ましい。添加量が1重量%未満になると、相溶性が悪くなり機械的強度が低下するからであり、添加量が30重量%を超えると機械的強度が低いことに起因して樹脂の強度が低下すると共に、耐熱性に悪影響を及ぼすからである。   In addition, by using poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene), the compatibility of both aliphatic polyester resin and thermoplastic resin is increased, and the resulting molded product Mechanical properties such as flexural strength, flexural modulus, tensile strength, tensile elongation and Izod impact strength are improved. The addition amount of poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) is preferably in the range of 1 wt% to 30 wt%. If the added amount is less than 1% by weight, the compatibility is deteriorated and the mechanical strength is lowered. If the added amount exceeds 30% by weight, the strength of the resin is lowered due to the low mechanical strength. Moreover, it is because it has a bad influence on heat resistance.

また、上記熱可塑性樹脂組成物は、難燃剤として、さらに、少なくともポリリン酸メラミン系化合物と、レゾルシノールビス(ジ−2,6−ジメチルフェニルホスフェート)及びホスファゼン系化合物の少なくとも一方と、を含むことが好ましい。ポリリン酸メラミン系化合物は、リン系化合物の難燃剤の中でも難燃成分であるリンと窒素とが多く含有されており、難燃性が著しく向上するが、一方において、樹脂に対して不溶であり有機フィラーとして作用するため、樹脂との密着性が低下し、耐衝撃性をはじめとする機械的特性が悪化してしまう。このため、低分子量である、前述したレゾルシノールビス(ジ−2,6−ジメチルフェニルホスフェート)及びホスファゼン系化合物の少なくとも一方の可塑性難燃剤を添加して、樹脂に柔軟性と耐衝撃性とを付与することが好ましい。例えば、ホスファゼン系化合物としては、フェノキシホスファゼン誘導体を挙げることができる。このように難燃剤として、ポリリン酸メラミン系化合物と可塑性難燃剤との両者を添加することにより、機械的強度を損なうことなく、難燃性を高めることができる。また、ポリリン酸メラミン系化合物の添加量は、5重量%〜60重量%とすることが好ましい。添加量が5重量%未満になると難燃性を維持することができず、逆に、添加量が60重量%を超えると機械的強度が低下するからである。可塑性難燃剤の添加量は、1重量%〜50重量%とすることが好ましい。添加量が1重量%未満になると、機械的強度及び難燃性を維持することができず、逆に、添加量が50重量%を超えると機械的強度が低下するからである。   The thermoplastic resin composition may further contain at least one of a melamine polyphosphate compound and at least one of resorcinol bis (di-2,6-dimethylphenyl phosphate) and a phosphazene compound as a flame retardant. preferable. The melamine polyphosphate compound contains a lot of flame retardant components of phosphorus and nitrogen among the flame retardants of phosphorus compounds, and the flame retardancy is remarkably improved, but on the other hand, it is insoluble in the resin. Since it acts as an organic filler, the adhesion with the resin is lowered, and mechanical properties such as impact resistance are deteriorated. For this reason, at least one plastic flame retardant of the aforementioned resorcinol bis (di-2,6-dimethylphenyl phosphate) and phosphazene compounds having a low molecular weight is added to impart flexibility and impact resistance to the resin. It is preferable to do. For example, as the phosphazene compound, a phenoxyphosphazene derivative can be exemplified. Thus, by adding both the melamine polyphosphate compound and the plastic flame retardant as the flame retardant, the flame retardancy can be enhanced without impairing the mechanical strength. Moreover, it is preferable that the addition amount of a polyphosphate melamine type compound shall be 5 to 60 weight%. This is because if the amount added is less than 5% by weight, the flame retardancy cannot be maintained, and conversely if the amount added exceeds 60% by weight, the mechanical strength decreases. The amount of the plastic flame retardant added is preferably 1% to 50% by weight. This is because if the amount added is less than 1% by weight, the mechanical strength and flame retardancy cannot be maintained. Conversely, if the amount added exceeds 50% by weight, the mechanical strength decreases.

難燃剤として、前述した可塑性難燃剤の他にも、非臭素、非塩素、非アンチモンの観点から、リンを含む可塑性難燃化合物を添加しても良い。可塑性難燃化合物として、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリス(2−エチルヘキシル)ホスフェート、トリス(ブトキシエチル)ホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2−エチルヘキシルジフェニルホスフェート、クレジルジ2,6−キシレニルホスフェート、各種芳香族縮合リン酸エステル化合物を用いることができる。   As the flame retardant, in addition to the above-mentioned plastic flame retardant, a plastic flame retardant compound containing phosphorus may be added from the viewpoint of non-bromine, non-chlorine, and non-antimony. Examples of the plastic flame retardant compound include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tris (2-ethylhexyl) phosphate, tris (butoxyethyl) phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate 2-ethylhexyl diphenyl phosphate, cresyl di 2,6-xylenyl phosphate, and various aromatic condensed phosphate compounds can be used.

また、難燃剤として、ポリリン酸アンモニウム、赤燐、ヒンダートアミン、水和物を含む無機物(例えば、水酸化アルミニウム、水酸化マグネシウム、塩基性硫酸マグネシウム水和物)、層状黒鉛等の難燃性化合物を添加しても良い。これらを単独あるいは二種以上の組み合わせにより用いることができる。   Flame retardants such as ammonium polyphosphate, red phosphorus, hindered amine, inorganic substances including hydrates (for example, aluminum hydroxide, magnesium hydroxide, basic magnesium sulfate hydrate), layered graphite, etc. A compound may be added. These can be used alone or in combination of two or more.

さらに、必要に応じて、難燃助剤を添加することもできる。難燃助剤としては、例えば、シリコン、シリコーン系アクリル強化剤、硼酸亜鉛、ポリテトラフルオロエチレンが挙げられる。これらを単独あるいは二種以上の組み合わせにより用いることができる。   Furthermore, a flame retardant aid can be added as necessary. Examples of the flame retardant aid include silicon, silicone acrylic reinforcing agent, zinc borate, and polytetrafluoroethylene. These can be used alone or in combination of two or more.

なお、耐衝撃性を向上させるために、シリコーン系アクリル強化剤又は各種熱可塑性エラストマー系添加剤を添加しても良い。   In order to improve impact resistance, a silicone acrylic reinforcing agent or various thermoplastic elastomer additives may be added.

[熱可塑性樹脂成形品]
上述した熱可塑性樹脂組成物を用いて、押出成形、真空成形、圧空成形、射出成形、ブロー成形、発泡成形のいずれかの方法を用いて、調製した樹脂組成物を成形する。成形条件としては、射出成形においてはシリンダ部温度を150℃〜210℃とすることが好ましい。このようにして得られた熱可塑性樹脂成形品は、優れた機械的強度を得ることができる。
[Thermoplastic resin molded product]
Using the thermoplastic resin composition described above, the prepared resin composition is molded using any one of extrusion molding, vacuum molding, pressure molding, injection molding, blow molding, and foam molding. As molding conditions, in the injection molding, the cylinder part temperature is preferably 150 ° C. to 210 ° C. The thermoplastic resin molded article thus obtained can have excellent mechanical strength.

以下、実施例により具体的に説明する。   Hereinafter, specific examples will be described.

(実施例1)
ポリ乳酸ペレット(レイシアH−100J、三井化学(株)社製)100重量部に対して、ポリブチレンサクシネートペレット(ビオノーレ♯1020、昭和高分子(株)社製)11.1重量部、アクリロニトリル・ブタジエンゴム・スチレン樹脂(スタイラックABS、VN−30、旭化成(株)社製)88.9重量部、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)(モディパー4400、日本油脂(株)社製)22.2重量部を添加して、材料を調製した。ニーダ(S1ニーダ、(株)栗本鐵工所製)を用いて、調製した材料を混練温度200℃、回転数100rpm、吐出量3kg/hrの条件下で混練して樹脂混合物を得た。得られた樹脂混合物を射出成形機(日精樹脂工業(株)社製)を用いて射出成形し、各種物性測定用のサンプルを得た。なお、射出成形機のシリンダ温度は、ノズル部180℃、前部190℃、中間部180℃、後部170℃とし、金型温度を約30℃付近に設定した。
Example 1
Polybutylene succinate pellets (Bionore # 1020, Showa Polymer Co., Ltd.) 11.1 parts by weight, acrylonitrile butadiene with 100 parts by weight of polylactic acid pellets (Lacia H-100J, Mitsui Chemicals, Inc.) 88.9 parts by weight of rubber / styrene resin (Stylac ABS, VN-30, manufactured by Asahi Kasei Corporation), poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) (Modiper 4400, Japan The material was prepared by adding 22.2 parts by weight (Oil & Fats Co., Ltd.). Using a kneader (S1 kneader, manufactured by Kurimoto Seiko Co., Ltd.), the prepared material was kneaded under conditions of a kneading temperature of 200 ° C., a rotation speed of 100 rpm, and a discharge rate of 3 kg / hr to obtain a resin mixture. The obtained resin mixture was injection-molded using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) to obtain samples for measuring various physical properties. The cylinder temperature of the injection molding machine was set to a nozzle portion of 180 ° C., a front portion of 190 ° C., an intermediate portion of 180 ° C., and a rear portion of 170 ° C., and the mold temperature was set to about 30 ° C.

(実施例2)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリカーボネート/アクリロニトリル・ブタジエンゴム・スチレンアロイ樹脂(ノバロイS,S1500、ダイセルポリマー(株)社製)を用いた。それ以外は実施例1と同様の方法を用いてサンプルを得た。
(Example 2)
Instead of the acrylonitrile / butadiene rubber / styrene resin used in Example 1, polycarbonate / acrylonitrile / butadiene rubber / styrene alloy resin (Novaloy S, S1500, manufactured by Daicel Polymer Co., Ltd.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例3)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリカーボネート樹脂(タフロンAZ1900、出光石油化学(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
(Example 3)
Instead of acrylonitrile / butadiene rubber / styrene resin used in Example 1, polycarbonate resin (Taflon AZ1900, manufactured by Idemitsu Petrochemical Co., Ltd.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例4)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリフェニレンエーテル樹脂(ユピエースAH40、三菱エンジニアリングプラスチックス(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
(Example 4)
Instead of acrylonitrile / butadiene rubber / styrene resin used in Example 1, polyphenylene ether resin (Iupiace AH40, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例5)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリフェニレンサルファイド樹脂(C220SC、出光石油化学(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
(Example 5)
Instead of the acrylonitrile / butadiene rubber / styrene resin used in Example 1, polyphenylene sulfide resin (C220SC, manufactured by Idemitsu Petrochemical Co., Ltd.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例6)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリエーテルサルフォン樹脂(スミカエクセルPES、住友化学工業(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
(Example 6)
Instead of acrylonitrile / butadiene rubber / styrene resin used in Example 1, polyethersulfone resin (Sumika Excel PES, manufactured by Sumitomo Chemical Co., Ltd.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例7)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリアミド樹脂(アミラン、CMlO17、東レ(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
(Example 7)
Instead of the acrylonitrile / butadiene rubber / styrene resin used in Example 1, a polyamide resin (Amilan, CMlO17, manufactured by Toray Industries, Inc.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例8)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリブチレンテレフタラート樹脂(トレコン、1401X06、東レ(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
(Example 8)
Instead of the acrylonitrile / butadiene rubber / styrene resin used in Example 1, polybutylene terephthalate resin (Toraycon, 1401X06, manufactured by Toray Industries, Inc.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例9)
実施例1で用いたアクリロニトリル・ブタジエンゴム・スチレン樹脂の代わりに、ポリエチレンテレフタラート樹脂(パイロペット、EMC532、東洋紡(株)社製)を用いた。それ以外は、実施例1と同様の方法を用いてサンプルを得た。
Example 9
Instead of the acrylonitrile / butadiene rubber / styrene resin used in Example 1, polyethylene terephthalate resin (Pyropet, EMC532, manufactured by Toyobo Co., Ltd.) was used. Otherwise, a sample was obtained using the same method as in Example 1.

(実施例10)
ポリ乳酸ペレット(レイシアH−100J、三井化学(株)社製)100重量部に対して、ポリブチレンサクシネートペレット(ビオノーレ♯1020、昭和高分子(株)社製)25重量部、アクリロニトリル・ブタジエンゴム・スチレン樹脂(スタイラックABS、VN−30、旭化成(株)社製)18.75重量部、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)(モディパー4400、日本油脂(株)社製)12.5重量部、さらに、ポリリン酸メラミン系化合物(FP2100、旭電化(株)社製)68.75重量部及びレゾルシノールビス(ジ−2,6−ジメチルフェニルホスフェート)(アデカスタブFP500、旭電化(株)社製)12.5重量部を添加して、材料を調製した。ニーダ(S1ニーダ、(株)栗本鐵工所製)を用いて、調製した材料を混練温度200℃、回転数100rpm、吐出量3kg/hrの条件下で混練して樹脂混合物を得た。得られた樹脂混合物を射出成形機(日精樹脂工業(株)社製)を用いて射出成形し、各種物性測定用のサンプルを得た。なお、射出成形機のシリンダ温度は、ノズル部180℃、前部190℃、中間部180℃、後部170℃とし、金型温度を約30℃付近に設定した。
(Example 10)
25 parts by weight of polybutylene succinate pellets (Bionore # 1020, Showa Polymer Co., Ltd.), 100 parts by weight of polylactic acid pellets (Lacia H-100J, Mitsui Chemicals, Inc.), acrylonitrile butadiene Rubber / styrene resin (Stylac ABS, VN-30, manufactured by Asahi Kasei Corporation) 18.75 parts by weight, poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) (Modiper 4400, Japan 12.5 parts by weight of Fat and Oil Co., Ltd.), 68.75 parts by weight of melamine polyphosphate compound (FP2100, manufactured by Asahi Denka Co., Ltd.) and resorcinol bis (di-2,6-dimethylphenyl phosphate) (ADK STAB FP500, Asahi Denka Co., Ltd. (12.5 parts by weight) was added to prepare the material. Using a kneader (S1 kneader, manufactured by Kurimoto Seiko Co., Ltd.), the prepared material was kneaded under conditions of a kneading temperature of 200 ° C., a rotation speed of 100 rpm, and a discharge rate of 3 kg / hr to obtain a resin mixture. The obtained resin mixture was injection-molded using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) to obtain samples for measuring various physical properties. The cylinder temperature of the injection molding machine was set to a nozzle portion of 180 ° C., a front portion of 190 ° C., an intermediate portion of 180 ° C., and a rear portion of 170 ° C., and the mold temperature was set to about 30 ° C.

(実施例11)
ポリ乳酸ペレット(レイシアH−100J、三井化学(株)社製)100重量部に対して、ポリブチレンサクシネートペレット(ビオノーレ♯1020、昭和高分子(株)社製)25重量部、アクリロニトリル・ブタジエンゴム・スチレン樹脂(スタイラックABS、VN−30、旭化成(株)社製)18.75重量部、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)(モディパー4400、日本油脂(株)社製)12.5重量部、さらに、ポリリン酸メラミン系化合物(FP2100、旭電化(株)社製)68.75重量部及びフェノキシホスファゼン誘導体(SPSlOO、大塚化学(株)社製)12.5重部を添加して、材料を調製した。ニーダ(S1ニーダ、(株)栗本鐵工所製)を用いて、調製した材料を混練温度200℃、回転数100rpm、吐出量3kg/hrの条件下で混練して樹脂混合物を得た。得られた樹脂混合物を射出成形機(日精樹脂工業(株)社製)を用いて射出成形し、各種物性測定用のサンプルを得た。なお、射出成形機のシリンダ温度は、ノズル部180℃、前部190℃、中間部180℃、後部170℃とし、金型温度を約30℃付近に設定した。
(Example 11)
25 parts by weight of polybutylene succinate pellets (Bionore # 1020, Showa Polymer Co., Ltd.), 100 parts by weight of polylactic acid pellets (Lacia H-100J, Mitsui Chemicals, Inc.), acrylonitrile butadiene Rubber / styrene resin (Stylac ABS, VN-30, manufactured by Asahi Kasei Corporation) 18.75 parts by weight, poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) (Modiper 4400, Japan 12.5 parts by weight of Fat and Oil Co., Ltd.), 68.75 parts by weight of melamine polyphosphate compound (FP2100, manufactured by Asahi Denka Co., Ltd.) and 12.5 parts of phenoxyphosphazene derivative (SPSlOO, manufactured by Otsuka Chemical Co., Ltd.) Heavy material was added to prepare the material. Using a kneader (S1 kneader, manufactured by Kurimoto Seiko Co., Ltd.), the prepared material was kneaded under conditions of a kneading temperature of 200 ° C., a rotation speed of 100 rpm, and a discharge rate of 3 kg / hr to obtain a resin mixture. The obtained resin mixture was injection-molded using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) to obtain samples for measuring various physical properties. The cylinder temperature of the injection molding machine was set to a nozzle portion of 180 ° C., a front portion of 190 ° C., an intermediate portion of 180 ° C., and a rear portion of 170 ° C., and the mold temperature was set to about 30 ° C.

(実施例12)
ポリ乳酸ペレット(レイシアH−100J、三井化学(株)社製)100重量部に対して、ポリブチレンサクシネートペレット(ビオノーレ♯1020、昭和高分子(株)社製)25重量部、アクリロニトリル・ブタジエンゴム・スチレン樹脂(スタイラックABS、VN−30、旭化成(株)社製)25重量部、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)(モディパー4400、日本油脂(株)社製)12.5重量部、さらに、ポリリン酸メラミン系化合物(FP2100、旭電化(株)社製)75重量部を添加して、材料を調製した。ニーダ(S1ニーダ、(株)栗本鐵工所製)を用いて、調製した材料を混練温度200℃、回転数100rpm、吐出量3kg/hrの条件下で混練して樹脂混合物を得た。得られた樹脂混合物を射出成形機(日精樹脂工業(株)社製)を用いて射出成形し、各種物性測定用のサンプルを得た。なお、射出成形機のシリンダ温度は、ノズル部180℃、前部190℃、中間部180℃、後部170℃とし、金型温度を約30℃付近に設定した。
(Example 12)
25 parts by weight of polybutylene succinate pellets (Bionore # 1020, Showa Polymer Co., Ltd.), 100 parts by weight of polylactic acid pellets (Lacia H-100J, Mitsui Chemicals, Inc.), acrylonitrile butadiene 25 parts by weight of rubber / styrene resin (Stylac ABS, VN-30, manufactured by Asahi Kasei Corporation), poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) (Modiper 4400, Japan The material was prepared by adding 12.5 parts by weight of Fat and Oil Co., Ltd.) and 75 parts by weight of melamine polyphosphate compound (FP2100, manufactured by Asahi Denka Co., Ltd.). Using a kneader (S1 kneader, manufactured by Kurimoto Seiko Co., Ltd.), the prepared material was kneaded under conditions of a kneading temperature of 200 ° C., a rotation speed of 100 rpm, and a discharge rate of 3 kg / hr to obtain a resin mixture. The obtained resin mixture was injection-molded using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd.) to obtain samples for measuring various physical properties. The cylinder temperature of the injection molding machine was set to a nozzle portion of 180 ° C., a front portion of 190 ° C., an intermediate portion of 180 ° C., and a rear portion of 170 ° C., and the mold temperature was set to about 30 ° C.

(比較例1)
ポリ乳酸ペレット(レイシアH−100J、三井化学(株)社製)100重量部に対して、ポリブチレンサクシネートペレット(ビオノーレ♯1020、昭和高分子(株)社製)25重量部、アクリロニトリル・ブタジエンゴム・スチレン樹脂(スタイラックABS、VN−30、旭化成(株)社製)125重量部を添加して、材料を調製した。調製した材料を用いて、実施例1と同様の方法により各種物性測定用のサンプルを得た。
(Comparative Example 1)
25 parts by weight of polybutylene succinate pellets (Bionore # 1020, Showa Polymer Co., Ltd.), 100 parts by weight of polylactic acid pellets (Lacia H-100J, Mitsui Chemicals, Inc.), acrylonitrile butadiene 125 parts by weight of rubber / styrene resin (Stylac ABS, VN-30, manufactured by Asahi Kasei Co., Ltd.) was added to prepare a material. Samples for measuring various physical properties were obtained by the same method as in Example 1 using the prepared materials.

(比較例2)
ポリ乳酸ペレット(レイシアH−100J、三井化学(株)社製)100重量部に対して、ポリブチレンサクシネートペレット(ビオノーレ♯1020、昭和高分子(株)社製)25重量部、アクリロニトリル・ブタジエンゴム・スチレン樹脂(スタイラックABS、VN−30、旭化成(株)社製)25重量部、ポリリン酸メラミン系化合物(FP2100、旭電化(株)社製)75重量部を添加して、材料を調製した。調製した材料を用いて、実施例1と同様の方法により各種物性測定用のサンプルを得た。
(Comparative Example 2)
25 parts by weight of polybutylene succinate pellets (Bionore # 1020, Showa Polymer Co., Ltd.), 100 parts by weight of polylactic acid pellets (Lacia H-100J, Mitsui Chemicals, Inc.), acrylonitrile butadiene Add 25 parts by weight of rubber / styrene resin (Stylac ABS, VN-30, manufactured by Asahi Kasei Co., Ltd.), 75 parts by weight of melamine polyphosphate compound (FP2100, manufactured by Asahi Denka Co., Ltd.) Prepared. Samples for measuring various physical properties were obtained by the same method as in Example 1 using the prepared materials.

上述した実施例1〜実施例12及び比較例1〜比較例2から得られた各サンプルを用いて、ASTM規格に基づき、曲げ強さ(ASTMD790)、曲げ弾性率(ASTMD790)、引張り強さ(ASTMD638)、引張り伸び(ASTMD638)及びアイゾット衝撃強さ(ASTMD256)の機械的特性を評価した。また、UL規格に基づき難燃性を評価した。機械的特性と難燃性の評価結果を表1に示す。

Figure 2006143884
Using each sample obtained from Examples 1 to 12 and Comparative Examples 1 to 2 described above, bending strength (ASTMD790), flexural modulus (ASTMD790), tensile strength (based on ASTM standards) The mechanical properties of ASTM D638), tensile elongation (ASTMD638) and Izod impact strength (ASTMD256) were evaluated. In addition, flame retardancy was evaluated based on UL standards. Table 1 shows the evaluation results of mechanical properties and flame retardancy.
Figure 2006143884

表1に示すように、比較例1及び比較例2は、実施例1〜実施例12の各実施例に比べていずれもの機械的特性が低下していることが判明した。この理由は、比較例1と比較例2の各サンプルには、いずれも相溶化剤であるポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)を添加していないため、脂肪族ポリエステル樹脂と熱可塑性樹脂との相溶性が低下し、機械的特性が低下したものと考えられる。これに対して実施例1〜実施例12の各実施例は、いずれも相溶化剤として(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)を添加していたため、機械的特性が良好であった。なお、実施例1〜実施例9の機械的特性にもばらつきが生じたが、この理由は、脂肪族ポリエステルとは異なる熱可塑性樹脂として添加された材料の種類に起因するものであり、熱可塑性樹脂として、ポリフェニレンサルファイド樹脂(実施例5)、ポリエチレンテレフタラート樹脂(実施例9)を添加した場合に、特に、機械的特性が向上していることが判明した。さらに、実施例10〜実施例12は難燃剤を添加したため、難燃性はいずれもV-2を示していた。特に、ポリリン酸メラミン系化合物と、可塑性難燃剤との両者を添加した実施例10及び実施例11は、可塑性難燃剤を添加せずにポリリン酸メラミン系化合物のみを添加した実施例12に比べて、機械的特性が向上していることが判明した。   As shown in Table 1, it was found that the mechanical characteristics of Comparative Example 1 and Comparative Example 2 were lower than those of Examples 1 to 12. The reason for this is that none of the compatibilizers poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) is added to the samples of Comparative Example 1 and Comparative Example 2. Therefore, it is considered that the compatibility between the aliphatic polyester resin and the thermoplastic resin is lowered, and the mechanical properties are lowered. In contrast, in each of Examples 1 to 12, since (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene) was added as a compatibilizer, The mechanical characteristics were good. The mechanical properties of Examples 1 to 9 also varied, but this reason is due to the type of material added as a thermoplastic resin different from the aliphatic polyester, and the thermoplasticity. It was found that the mechanical properties were improved particularly when polyphenylene sulfide resin (Example 5) and polyethylene terephthalate resin (Example 9) were added as the resin. Furthermore, since Example 10-12 added the flame retardant, all flame retardant showed V-2. In particular, Example 10 and Example 11 in which both the melamine polyphosphate compound and the plastic flame retardant were added were compared to Example 12 in which only the melamine polyphosphate compound was added without adding the plastic flame retardant. It was found that the mechanical properties were improved.

Claims (4)

脂肪族ポリエステル樹脂と、前記脂肪族ポリエステル樹脂とは異なる熱可塑性樹脂と、ポリ(エチレン-stat-メタクリル酸グリシジル)-graft-ポリ(アクリロニトリル-stat-スチレン)と、を含むことを特徴とする熱可塑性樹脂組成物。   A heat comprising: an aliphatic polyester resin; a thermoplastic resin different from the aliphatic polyester resin; and poly (ethylene-stat-glycidyl methacrylate) -graft-poly (acrylonitrile-stat-styrene). Plastic resin composition. さらに、ポリリン酸メラミン系化合物と、レゾルシノールビス(ジ−2,6−ジメチルフェニルホスフェート)及びホスファゼン系化合物の少なくとも一方と、を含むことを特徴とする請求項1記載の熱可塑性樹脂組成物。   The thermoplastic resin composition according to claim 1, further comprising a melamine polyphosphate compound and at least one of resorcinol bis (di-2,6-dimethylphenyl phosphate) and a phosphazene compound. 前記熱可塑性樹脂は、アクリロニトリル・ブタジエンゴム・スチレン樹脂、ポリカーボネート樹脂、ポリカーボネート/アクリロニトリル・ブタジエンゴム・スチレンアロイ樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリアミド樹脂、ポリエチレンテレフタラート樹脂及びポリブチレンテレフタラート樹脂の中から選択される少なくとも一種又は二種以上を組み合わせた樹脂であることを特徴とする請求項1又は2記載の熱可塑性樹脂組成物。   The thermoplastic resin includes acrylonitrile / butadiene rubber / styrene resin, polycarbonate resin, polycarbonate / acrylonitrile / butadiene rubber / styrene alloy resin, polyphenylene ether resin, polyphenylene sulfide resin, polyether sulfone resin, polyamide resin, polyethylene terephthalate resin, and the like. The thermoplastic resin composition according to claim 1 or 2, wherein the thermoplastic resin composition is a resin in which at least one selected from polybutylene terephthalate resins or a combination of two or more thereof. 請求項1乃至3のいずれか1項に記載の熱可塑性樹脂組成物を用いて、押出成形、真空成形、圧空成形、射出成形、ブロー成形及び発泡成形の中から選択されるいずれかの方法を用いて成形された熱可塑性樹脂成形品。

Using the thermoplastic resin composition according to any one of claims 1 to 3, any method selected from extrusion molding, vacuum molding, pressure molding, injection molding, blow molding, and foam molding. Thermoplastic resin molded product molded using.

JP2004335808A 2004-11-19 2004-11-19 Thermoplastic resin composition and thermoplastic resin molded article Expired - Fee Related JP4655598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335808A JP4655598B2 (en) 2004-11-19 2004-11-19 Thermoplastic resin composition and thermoplastic resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335808A JP4655598B2 (en) 2004-11-19 2004-11-19 Thermoplastic resin composition and thermoplastic resin molded article

Publications (2)

Publication Number Publication Date
JP2006143884A true JP2006143884A (en) 2006-06-08
JP4655598B2 JP4655598B2 (en) 2011-03-23

Family

ID=36623951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335808A Expired - Fee Related JP4655598B2 (en) 2004-11-19 2004-11-19 Thermoplastic resin composition and thermoplastic resin molded article

Country Status (1)

Country Link
JP (1) JP4655598B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
JP2007217448A (en) * 2006-02-14 2007-08-30 Advanced Plastics Compounds Co Aliphatic polyester-based resin composition
JP2008045045A (en) * 2006-08-17 2008-02-28 Mitsubishi Plastics Ind Ltd Flame-retardant lactic acid-based resin composition
JP2008088315A (en) * 2006-10-03 2008-04-17 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin molded article
JP2008101125A (en) * 2006-10-19 2008-05-01 Ps Japan Corp Resin composition composed of styrene resin and polylactic acid
JP2008106091A (en) * 2006-10-23 2008-05-08 Sumitomo Bakelite Co Ltd Resin composition containing polylactic acid
JP2008127452A (en) * 2006-11-20 2008-06-05 Mitsubishi Chemicals Corp Antistatic resin composition and molded article
JP2008201830A (en) * 2007-02-16 2008-09-04 Nippon A & L Kk Thermoplastic resin composition
WO2010004799A1 (en) 2008-07-10 2010-01-14 日本電気株式会社 Polylactic acid resin composition and polylactic acid resin molded body
JP2010516852A (en) * 2007-01-29 2010-05-20 アルケマ フランス Composite material based on polyamide / polylactic acid, its production method and its use
JP2011006605A (en) * 2009-06-26 2011-01-13 Fuji Xerox Co Ltd Resin composition, molded article and method for producing resin composition
JP2013151704A (en) * 2013-05-13 2013-08-08 Olympus Corp Thermoplastic resin composition, camera, medical fixture, and acoustic device
EP2363434B1 (en) * 2010-03-02 2020-05-27 Fuji Xerox Co., Ltd. Resin composition and molded product
CN115010502A (en) * 2022-05-25 2022-09-06 松山湖材料实验室 Method for rapidly preparing nano vanadium nitride coated carbon fiber composite ceramic powder, product and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123055A (en) * 1999-10-27 2001-05-08 Shimadzu Corp Polylactic acid resin composition
JP2001335688A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Thermoplastic resin composition, method of producing the same, and package for housing up semi-conductor elements
JP2002220517A (en) * 2001-01-25 2002-08-09 Dainippon Ink & Chem Inc Thermoplastic resin composition
JP2004190026A (en) * 2002-11-29 2004-07-08 Toray Ind Inc Resin composition and molded article made thereof
JP2005248160A (en) * 2004-02-06 2005-09-15 Osaka Gas Co Ltd Biodegradable plastic material and molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123055A (en) * 1999-10-27 2001-05-08 Shimadzu Corp Polylactic acid resin composition
JP2001335688A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Thermoplastic resin composition, method of producing the same, and package for housing up semi-conductor elements
JP2002220517A (en) * 2001-01-25 2002-08-09 Dainippon Ink & Chem Inc Thermoplastic resin composition
JP2004190026A (en) * 2002-11-29 2004-07-08 Toray Ind Inc Resin composition and molded article made thereof
JP2005248160A (en) * 2004-02-06 2005-09-15 Osaka Gas Co Ltd Biodegradable plastic material and molded article

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
JP2007217448A (en) * 2006-02-14 2007-08-30 Advanced Plastics Compounds Co Aliphatic polyester-based resin composition
JP2008045045A (en) * 2006-08-17 2008-02-28 Mitsubishi Plastics Ind Ltd Flame-retardant lactic acid-based resin composition
JP2008088315A (en) * 2006-10-03 2008-04-17 Mitsubishi Chemicals Corp Thermoplastic resin composition and resin molded article
JP2008101125A (en) * 2006-10-19 2008-05-01 Ps Japan Corp Resin composition composed of styrene resin and polylactic acid
JP2008106091A (en) * 2006-10-23 2008-05-08 Sumitomo Bakelite Co Ltd Resin composition containing polylactic acid
JP2008127452A (en) * 2006-11-20 2008-06-05 Mitsubishi Chemicals Corp Antistatic resin composition and molded article
JP2010516852A (en) * 2007-01-29 2010-05-20 アルケマ フランス Composite material based on polyamide / polylactic acid, its production method and its use
JP2008201830A (en) * 2007-02-16 2008-09-04 Nippon A & L Kk Thermoplastic resin composition
WO2010004799A1 (en) 2008-07-10 2010-01-14 日本電気株式会社 Polylactic acid resin composition and polylactic acid resin molded body
US9550876B2 (en) 2008-07-10 2017-01-24 Nec Corporation Polylactic acid resin composition and polylactic acid resin molded body
JP2011006605A (en) * 2009-06-26 2011-01-13 Fuji Xerox Co Ltd Resin composition, molded article and method for producing resin composition
EP2363434B1 (en) * 2010-03-02 2020-05-27 Fuji Xerox Co., Ltd. Resin composition and molded product
JP2013151704A (en) * 2013-05-13 2013-08-08 Olympus Corp Thermoplastic resin composition, camera, medical fixture, and acoustic device
CN115010502A (en) * 2022-05-25 2022-09-06 松山湖材料实验室 Method for rapidly preparing nano vanadium nitride coated carbon fiber composite ceramic powder, product and application thereof

Also Published As

Publication number Publication date
JP4655598B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4655598B2 (en) Thermoplastic resin composition and thermoplastic resin molded article
KR101596180B1 (en) Flame-retardant composition of a polyamide and polyester resin alloy
KR101999081B1 (en) Composition of a blend of polyamide and polyester resins
KR101389782B1 (en) Impact modified thermoplastic resin composition and molded article
JP5129044B2 (en) Flame retardant thermoplastic resin composition
KR100787750B1 (en) Flameproof Thermoplastic Resin Composition
JP2012111855A (en) Natural fiber composite composition, molded body obtained from natural fiber composite composition, and method for producing natural fiber composite composition
JP4878895B2 (en) Conductive resin composition
JP6007337B2 (en) Heat resistant, flame retardant polylactic acid compound
EP2706090A1 (en) Resin composition and resin molded article
JP2006348246A (en) Thermoplastic resin composition and molded article
JP5853674B2 (en) Method for producing thermoplastic resin composition
JP4382259B2 (en) Thermoplastic resin pellet composition and molded product obtained by injection molding
JP2015214615A (en) Pc/pet resin composition and resin molding thereof
Hwang et al. Poly (2, 6-dimethyl-1, 4-phenylene ether)/poly (phenylene sulfide)/styrenic block copolymer blends compatibilized with reactive polystyrene
JP2001172501A (en) Thermoplastic resin composition
CN110951205A (en) Resin composition and resin molded article
JPH09328589A (en) Method for modifying aromatic plastic
JP6233116B2 (en) Polyester resin composition and polyester resin molded body
JP2006182798A (en) Resin composition
KR102183907B1 (en) Thermoplastic flame retardant resin composition, method for preparing the resin composition and molding product comprising the resin composition
KR20120078584A (en) Thermoplastic resin composition and article comprising the same
JP2015172169A (en) Resin composition and resin molded article
JP6398481B2 (en) Resin composition and resin molded body
JP5836703B2 (en) Polylactic acid resin composition and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees