JP2006140339A - Silicon-based thin film photoelectric conversion device and its manufacturing method - Google Patents

Silicon-based thin film photoelectric conversion device and its manufacturing method Download PDF

Info

Publication number
JP2006140339A
JP2006140339A JP2004329193A JP2004329193A JP2006140339A JP 2006140339 A JP2006140339 A JP 2006140339A JP 2004329193 A JP2004329193 A JP 2004329193A JP 2004329193 A JP2004329193 A JP 2004329193A JP 2006140339 A JP2006140339 A JP 2006140339A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
amorphous silicon
type semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004329193A
Other languages
Japanese (ja)
Inventor
Mitsuru Ichikawa
満 市川
Toru Sawada
徹 澤田
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004329193A priority Critical patent/JP2006140339A/en
Publication of JP2006140339A publication Critical patent/JP2006140339A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amorphous silicon-based thin film photoelectric conversion device and its manufacturing method, having excellent performance after its optical deterioration when forming a photoelectric conversion layer using a plasma CVD process. <P>SOLUTION: The silicon-based thin film photoelectric conversion apparatus is an amorphous silicon-based photoelectric conversion device composed of, in order from a light incidence side, a transparent conductive oxide layer, a p-type semiconductor layer, a photoelectric conversion initial layer, a photoelectric conversion layer, and an n-type semiconductor layer. Contents of hydrogen atoms in the p-type semiconductor layer, the photoelectric conversion initial layer, and the photoelectric conversion layer are increased in order. The apparatus is manufactured under the conditions that source gas is diluted with dilution gas to a degree where the photoelectric conversion initial layer is prevented from being crystallized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非晶質シリコン系薄膜光電変換装置、及びその製造方法に関し、特に非晶質シリコン系光電変換層を含むシリコン系薄膜光電変換装置の性能改善に関するものである。なお、本願明細書における「結晶質」、「微結晶」との用語は、部分的に非晶質を含んでいるものも含んでいるものとする。   The present invention relates to an amorphous silicon-based thin film photoelectric conversion device and a method for manufacturing the same, and more particularly to improvement in performance of a silicon-based thin film photoelectric conversion device including an amorphous silicon-based photoelectric conversion layer. Note that the terms “crystalline” and “microcrystal” in the present specification include those that partially contain amorphous material.

近年、光電変換装置の低コスト化、高効率化を両立するために資源面での問題もほとんど無い薄膜光電変換装置が注目され、開発が精力的に行われている。薄膜光電変換装置は、太陽電池、光センサ、ディスプレイなど、さまざまな用途への応用が期待されている。薄膜光電変換装置の一つである非晶質シリコン光電変換装置は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。   In recent years, in order to achieve both cost reduction and high efficiency of a photoelectric conversion device, a thin film photoelectric conversion device that has almost no problem in terms of resources has attracted attention and has been vigorously developed. Thin film photoelectric conversion devices are expected to be applied to various applications such as solar cells, optical sensors, and displays. An amorphous silicon photoelectric conversion device, which is one of thin film photoelectric conversion devices, can be formed on a large-area glass substrate or stainless steel substrate at a low temperature, so that cost reduction can be expected.

非晶質シリコン系光電変換装置は、一般にその光入射側から透明導電酸化物層の第一電極と、1以上の半導体薄膜光電変換ユニットと、及び第二電極とを含んでいる。そして1つの薄膜光電変換ユニットはp型半導体層とn型半導体層でサンドイッチされたi型の光電変換層からなる。ここで、光電変換ユニットまたは薄膜太陽電池は、それに含まれるp型とn型の半導体層が非晶質か結晶質かにかかわらず、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットまたは非晶質薄膜太陽電池と称される。   An amorphous silicon-based photoelectric conversion device generally includes a first electrode of a transparent conductive oxide layer, one or more semiconductor thin film photoelectric conversion units, and a second electrode from the light incident side. One thin film photoelectric conversion unit includes an i-type photoelectric conversion layer sandwiched between a p-type semiconductor layer and an n-type semiconductor layer. Here, the photoelectric conversion unit or the thin film solar cell has an amorphous i-type photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type semiconductor layers contained therein are amorphous or crystalline. Are called amorphous photoelectric conversion units or amorphous thin-film solar cells.

p型半導体層やn型半導体層は光電変換ユニット内に拡散電位を生じさせる役割を果たしており、その拡散電位の大きさによって光電変換装置の重要な特性である開放端電圧の値が左右される。非晶質シリコン系光電変換装置においては、p型半導体層の光学的禁制帯幅を拡大してp型層内での光吸収損失を低減するために高周波プラズマCVD法を用いたp型層形成時の原料ガスとして、シラン系ガス、水素ガス、ジボラン等のドーピングガスとともにメタンあるいはエチレンなどの炭化水素系ガスを用いて非晶質シリコンカーバイドとすることが一般的である。さらに上記p型半導体層と光電変換層の間には2つの層の光学禁制帯幅の不整合を緩和するためにバッファ層を挿入することが一般的に行われている。そして、このp型半導体層形成後のバッファ層には実質的に真性半導体の非晶質シリコンカーバイドが広く用いられており、p型半導体層を形成後同一の反応室内で原料ガスの流量を調整することにより形成される。   The p-type semiconductor layer and the n-type semiconductor layer play a role of generating a diffusion potential in the photoelectric conversion unit, and the value of the open end voltage, which is an important characteristic of the photoelectric conversion device, is influenced by the magnitude of the diffusion potential. . In an amorphous silicon-based photoelectric conversion device, p-type layer formation using a high-frequency plasma CVD method is performed to reduce the optical absorption loss in the p-type layer by expanding the optical forbidden band width of the p-type semiconductor layer. In general, amorphous silicon carbide is obtained by using a hydrocarbon gas such as methane or ethylene together with a doping gas such as silane gas, hydrogen gas, and diborane as a raw material gas. Further, a buffer layer is generally inserted between the p-type semiconductor layer and the photoelectric conversion layer in order to alleviate mismatch in the optical forbidden band width of the two layers. Then, substantially intrinsic amorphous silicon carbide is widely used for the buffer layer after the p-type semiconductor layer is formed, and the flow rate of the source gas is adjusted in the same reaction chamber after the p-type semiconductor layer is formed. It is formed by doing.

光電変換層としてi型非晶質シリコンを用いる非晶質シリコン系薄膜太陽電池では、光照射により太陽電池の光電変換効率が低下するステブラーロンスキー効果と呼ばれる光劣化現象が起こる。ステブラーロンスキー効果が起こる原因は未だ明らかにされていないが、この光劣化現象はi型光電変換層の膜特性に加えてp型半導体層と光電変換層の接合界面付近の特性によって大きく左右されることが分かっている。このため光電変換層の初期層や、p型半導体層のうち光電変換層と接する最近接の層に工夫を加えて、p型半導体層と光電変換層の界面特性を良好なものにしようと様々な検討が行われている。   In an amorphous silicon-based thin film solar cell using i-type amorphous silicon as a photoelectric conversion layer, a photodegradation phenomenon called the Stebleronsky effect occurs in which the photoelectric conversion efficiency of the solar cell is reduced by light irradiation. The cause of the occurrence of the Stebleronsky effect has not yet been clarified, but this photodegradation phenomenon is greatly affected by the characteristics of the p-type semiconductor layer and the photoelectric conversion layer near the junction interface in addition to the film characteristics of the i-type photoelectric conversion layer. I know that For this reason, various attempts are made to improve the interface characteristics between the p-type semiconductor layer and the photoelectric conversion layer by devising the initial layer of the photoelectric conversion layer and the closest layer in contact with the photoelectric conversion layer among the p-type semiconductor layers. Consideration has been made.

非特許文献1には、化学的気相成長法により光電変換層を形成したガラス基板等の透明基板上にp、i、n型半導体層の順に形成した光電変換装置である所謂pin型光電変換装置の製造方法において、光電変換層を形成する際に、p型半導体層との界面側に位置する界面近傍の製膜初期領域では光電変換層を成長速度が遅い条件で形成した後、成長速度を速い条件に切り替えて光電変換層を形成するという手法が記載されている。この手法によれば、p型半導体層と接する領域における光電変換層の欠陥生成を抑制できるため光電変換特性が向上するとしている。しかしながら、光照射後の光電変換効率は100mW/cm2、20時間の光照射後で8%以下の値にとどまっている。   Non-Patent Document 1 discloses a so-called pin-type photoelectric conversion, which is a photoelectric conversion device formed in the order of p, i, and n-type semiconductor layers on a transparent substrate such as a glass substrate on which a photoelectric conversion layer is formed by chemical vapor deposition. In the manufacturing method of the device, when forming the photoelectric conversion layer, after forming the photoelectric conversion layer under a condition where the growth rate is low in the initial film forming region near the interface located on the interface side with the p-type semiconductor layer, the growth rate A method of forming a photoelectric conversion layer by switching to a fast condition is described. According to this method, since the generation of defects in the photoelectric conversion layer in the region in contact with the p-type semiconductor layer can be suppressed, the photoelectric conversion characteristics are improved. However, the photoelectric conversion efficiency after light irradiation is 100 mW / cm 2 and remains at a value of 8% or less after 20 hours of light irradiation.

また、特許文献1は、化学的気相成長法により光電変換層を形成する光電変換装置の製造方法において、光電変換層が形成される下地半導体層(pin型光電変換装置ではp型半導体層に相当)の光電変換層との界面近傍の膜中水素の濃度を、下地半導体層のバルクの膜中水素濃度に比べて相対的に少なくなるように形成した後、光電変換層を形成するという手法が記載されている。この手法によれば、プラズマCVDの初期放電に起因した光電変換層の初期層中に含まれる高濃度の水素が、低水素量の界面付近の下地半導体層に拡散することにより、一定量の水素濃度プロファイルを形成することができる、としている。つまり、特許文献1に記載された製法は、p層の膜中水素量が光電変換層のそれよりも多いことを前提とした技術であり、同文献に記載されたp層の形成温度は120℃と低く、その膜中水素量は21原子%と非常に多い。このような条件で作製したp層は通常ドーパントであるボロンの活性化率が低く、光電変換装置の出力特性に影響を及ぼす。従って、通常はp層の形成温度としては170℃程度以上とすることが多い。そのような形成温度においては、p層の膜中水素量は光電変換層のそれと同等以下となる。
R.E.I. Schropp, Solar Energy Materials and Solar Cells, Vol.34, pp455-463, 1994. 特開2002−270872号公報
Patent Document 1 discloses a method for manufacturing a photoelectric conversion device in which a photoelectric conversion layer is formed by chemical vapor deposition, and a base semiconductor layer on which a photoelectric conversion layer is formed (in a pin type photoelectric conversion device, a p-type semiconductor layer is formed). A method of forming a photoelectric conversion layer after forming the hydrogen concentration in the film near the interface with the photoelectric conversion layer to be relatively lower than the hydrogen concentration in the bulk of the base semiconductor layer. Is described. According to this technique, a high concentration of hydrogen contained in the initial layer of the photoelectric conversion layer caused by the initial discharge of plasma CVD diffuses into the underlying semiconductor layer near the interface with a low hydrogen amount, thereby causing a certain amount of hydrogen. A density profile can be formed. That is, the manufacturing method described in Patent Document 1 is a technique based on the premise that the amount of hydrogen in the p-layer is larger than that of the photoelectric conversion layer, and the formation temperature of the p-layer described in the same document is 120. The amount of hydrogen in the film is as high as 21 atomic%. The p layer manufactured under such conditions has a low activation rate of boron, which is usually a dopant, and affects the output characteristics of the photoelectric conversion device. Therefore, the p-layer formation temperature is usually about 170 ° C. or higher in many cases. At such a formation temperature, the amount of hydrogen in the p layer is equal to or less than that of the photoelectric conversion layer.
REI Schropp, Solar Energy Materials and Solar Cells, Vol.34, pp455-463, 1994. JP 2002-270872 A

上述のような課題を鑑み、本発明はプラズマCVD法を用いて光電変換層を形成する場合に、光劣化後において良好な性能を有する非晶質シリコン系薄膜光電変換装置の製造方法を提供することを目的としている。   In view of the problems as described above, the present invention provides a method for manufacturing an amorphous silicon thin film photoelectric conversion device having good performance after photodegradation when a photoelectric conversion layer is formed using a plasma CVD method. The purpose is that.

本発明の非晶質シリコン系光電変換装置は光入射側より順に、透明導電酸化物層、p型半導体層、光電変換初期層、光電変換層、及びn型半導体層が形成されてなり、前記p型半導体層、前記光電変換初期層、及び前記光電変換層中の水素原子含有量が、下記(式1)の関係を満たすことを特徴とする非晶質シリコン系光電変換装置であり、p層が十分ドーパントが活性化されるように形成され、その結果、p層の膜中水素量が光電変換層のそれと同等以下となっている場合においても、光劣化が抑制される。   The amorphous silicon-based photoelectric conversion device of the present invention includes a transparent conductive oxide layer, a p-type semiconductor layer, a photoelectric conversion initial layer, a photoelectric conversion layer, and an n-type semiconductor layer in order from the light incident side. An amorphous silicon photoelectric conversion device characterized in that a hydrogen atom content in a p-type semiconductor layer, the photoelectric conversion initial layer, and the photoelectric conversion layer satisfies the following relationship (formula 1): The layer is formed so that the dopant is sufficiently activated, and as a result, even when the amount of hydrogen in the p layer is equal to or less than that of the photoelectric conversion layer, photodegradation is suppressed.

また、本発明の非晶質シリコン系光電変換装置の製造方法は、光入射側より順に、透明導電酸化物層、p型半導体層、光電変換初期層、光電変換層、及びn型半導体層が形成されてなる非晶質シリコン系光電変換装置の製造方法であって、前記p型半導体層は、前記光電変換初期層および前記光電変換層とは異なる反応室内において形成され、且つ前記光電変換初期層と前記光電変換層の少なくとも一部は同一の反応室内において形成され、さらに前記光電変換初期層は結晶化しない程度にシリコン系原料ガスが希釈ガスで希釈された条件で形成されることを特徴とする非晶質シリコン系光電変換装置の製造方法である。光電変換初期層の作製時にシラン系ガスに対する水素等の希釈ガスの流量比を大きな値とすることにより、形成される光電変換初期層の光安定性を向上させている。光電変換初期層が結晶化すると、その光学バンドギャップはp型半導体層および光電変換層の光学バンドギャップよりも小さな値となるために、光学的な反射損失およびバンドギャップ不整合が生ずる。このため、光電変換初期層は結晶化していないことが必要である。さらに、光電変換初期層の形成を光電変換層の少なくとも一部と同じ反応室内で行い、p型半導体層を形成する反応室とは別の反応室を用いることにより、光電変換初期層の光安定性を阻害するドーピング元素等の不純物の量を抑制することが可能となる。 Moreover, the manufacturing method of the amorphous silicon-type photoelectric conversion device of the present invention includes a transparent conductive oxide layer, a p-type semiconductor layer, a photoelectric conversion initial layer, a photoelectric conversion layer, and an n-type semiconductor layer in order from the light incident side. A method for manufacturing an amorphous silicon photoelectric conversion device formed, wherein the p-type semiconductor layer is formed in a reaction chamber different from the photoelectric conversion initial layer and the photoelectric conversion layer, and the photoelectric conversion initial stage And at least part of the photoelectric conversion layer is formed in the same reaction chamber, and the photoelectric conversion initial layer is formed under the condition that the silicon-based source gas is diluted with a diluent gas to such an extent that it does not crystallize. This is a method for manufacturing an amorphous silicon photoelectric conversion device. The light stability of the formed photoelectric conversion initial layer is improved by increasing the flow ratio of the diluent gas such as hydrogen to the silane-based gas at the time of preparing the photoelectric conversion initial layer. When the photoelectric conversion initial layer is crystallized, the optical band gap becomes smaller than the optical band gap of the p-type semiconductor layer and the photoelectric conversion layer, so that optical reflection loss and band gap mismatch occur. For this reason, it is necessary that the photoelectric conversion initial layer is not crystallized. Furthermore, the photoelectric conversion initial layer is formed in the same reaction chamber as that of at least a part of the photoelectric conversion layer, and a reaction chamber different from the reaction chamber for forming the p-type semiconductor layer is used. It is possible to suppress the amount of impurities such as doping elements that hinder the properties.

また、本発明の光電変換初期層に用いられるシラン系原料ガスに対する希釈ガスの流量比は、具体的には30倍以上かつ100倍以下の範囲であることが望ましい。このような作製条件にすることにより、光電変換装置全体の光安定性を大きく左右する光電変換初期層の光安定性が向上し、結果として作製した非晶質シリコン系薄膜光電変換装置の光安定化特性が向上する。   In addition, the flow rate ratio of the dilution gas to the silane-based source gas used in the photoelectric conversion initial layer of the present invention is desirably in the range of 30 times or more and 100 times or less. By making such a manufacturing condition, the light stability of the photoelectric conversion initial layer which greatly affects the light stability of the entire photoelectric conversion device is improved, and as a result, the light stability of the amorphous silicon-based thin film photoelectric conversion device thus manufactured is improved. Improved characterization characteristics.

本発明によれば、初期特性に優れ、かつ、光劣化後の特性に優れた、非晶質シリコン系光電変換素子、及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the amorphous silicon type photoelectric conversion element excellent in the initial characteristic and the characteristic after photodegradation, and its manufacturing method are provided.

本発明者らは、p層を十分ドーパントが活性化されるように形成温度170℃程度以上で形成し、その結果、p層の膜中水素量が光電変換層のそれと同等以下となっている場合においても、光劣化が抑制された非晶質シリコン系光電変換装置を得るために好ましい各層膜中の水素量について主種検討を実施し、本発明を為すに到った。つまり、前述した特許文献1で開示された手法を用いる限り、p層の膜中水素量が光電変換層のそれと同等以下の場合において、光電変換装置の初期性能および光劣化後の性能を更に改善することにはつながらないので、別な手法が必要であるとの認識から、本発明を為すに到った。   The present inventors formed the p layer at a formation temperature of about 170 ° C. or higher so that the dopant is sufficiently activated, and as a result, the hydrogen content in the p layer is equal to or less than that of the photoelectric conversion layer. Even in this case, in order to obtain an amorphous silicon-based photoelectric conversion device in which photodegradation is suppressed, the main species of the preferable amount of hydrogen in each layer film was studied, and the present invention was achieved. In other words, as long as the method disclosed in Patent Document 1 described above is used, the initial performance of the photoelectric conversion device and the performance after photodegradation are further improved when the amount of hydrogen in the p layer is equal to or less than that of the photoelectric conversion layer. Since it does not lead to doing so, the present invention has been made from the recognition that another method is necessary.

以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.

図1に、本発明の実施形態の一例による光電変換装置の断面図を示す。透明基板1上に、透明導電酸化物層2、p型半導体層31、実質的に真性な光電変換初期層32、光電変換層33、n型半導体層34、および裏面電極層4が順に配置されている。   FIG. 1 is a cross-sectional view of a photoelectric conversion device according to an example of an embodiment of the present invention. On the transparent substrate 1, a transparent conductive oxide layer 2, a p-type semiconductor layer 31, a substantially intrinsic photoelectric conversion initial layer 32, a photoelectric conversion layer 33, an n-type semiconductor layer 34, and a back electrode layer 4 are sequentially arranged. ing.

基板側から光を入射するタイプの光電変換装置にて用いられる透明基板1には、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透明導電酸化物層2は酸化錫等の導電性金属酸化物から成り、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明導電酸化物層2はその表面に高低差が0.05〜0.3μm程度の微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。   A plate-like member or a sheet-like member made of glass, transparent resin or the like is used for the transparent substrate 1 used in a photoelectric conversion device of a type in which light enters from the substrate side. The transparent conductive oxide layer 2 is made of a conductive metal oxide such as tin oxide, and is preferably formed using a method such as CVD, sputtering, or vapor deposition. The transparent conductive oxide layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities with a height difference of about 0.05 to 0.3 μm on the surface.

透明導電体の凹凸の度合いを表す指標としてヘイズ率という値が用いられる。これはある規定されたの光源の光、通常は可視光を含むC光源を用いて光の散乱度合いを測定することにより計算される。本発明の実施形態のうち前記透明導電酸化物層は、このヘイズ率の値が7%以上、より好ましくは15%以上であることが望ましい。   A value called a haze ratio is used as an index representing the degree of unevenness of the transparent conductor. This is calculated by measuring the degree of light scattering using a light source of a specified light source, usually a C light source containing visible light. Of the embodiments of the present invention, the transparent conductive oxide layer preferably has a haze value of 7% or more, more preferably 15% or more.

p型半導体層31としては、たとえば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコン薄膜などが用いられ得る。しかし、p型半導体層31についてのこれらの条件は限定的なものではなく不純物原子としてはたとえばアルミニウムなどでもよく、また非晶質シリコンカーバイドや非晶質シリコンゲルマニウムなどの合金材料の層が用いられてもよい。   As the p-type semiconductor layer 31, for example, a p-type amorphous silicon thin film doped with 0.01 atomic% or more of boron, which is a conductivity determining impurity atom, can be used. However, these conditions for the p-type semiconductor layer 31 are not limited, and the impurity atom may be, for example, aluminum, or a layer of an alloy material such as amorphous silicon carbide or amorphous silicon germanium is used. May be.

次にp型半導体層31の上に実質的に真性な光電変換初期層32を形成するがこの光電変換初期層はプラズマCVD法により形成され、少なくとも前記実質的に真性な光電変換初期層32とp型半導体層31の作製は異なる反応室内において行い、前記実質的に真性な光電変換初期層32は光電変換層作製時と同じ反応室内において形成される。また、この真性な光電変換初期層の製膜条件としては、シラン系ガスに対する希釈ガスの流量比が30倍以上かつ100倍以下の範囲であることが望ましい。   Next, a substantially intrinsic photoelectric conversion initial layer 32 is formed on the p-type semiconductor layer 31, and this photoelectric conversion initial layer is formed by plasma CVD, and at least the substantially intrinsic photoelectric conversion initial layer 32 and The p-type semiconductor layer 31 is produced in a different reaction chamber, and the substantially intrinsic photoelectric conversion initial layer 32 is formed in the same reaction chamber as that for producing the photoelectric conversion layer. In addition, as a film forming condition of the intrinsic photoelectric conversion initial layer, it is desirable that the flow rate ratio of the dilution gas to the silane-based gas is in a range of 30 times or more and 100 times or less.

さらに、実質的に真性な光電変換初期層32を形成したCVD反応室と同じ反応室内で光電変換層33を形成する。前記光電変換層33としてはノンドープの非晶質シリコン薄膜や微小の不純物を含む弱p型もしくは弱n型で光電変換効率を十分に備えているシリコン系薄膜材料が使用され得る。また、光電変換層33はこれらの材料に限定されず、非晶質シリコンカーバイドや非晶質シリコンゲルマニウムなどの合金材料の層が用いられても良い。   Further, the photoelectric conversion layer 33 is formed in the same reaction chamber as the CVD reaction chamber in which the substantially intrinsic photoelectric conversion initial layer 32 is formed. As the photoelectric conversion layer 33, a non-doped amorphous silicon thin film or a silicon-based thin film material having a weak p-type or weak n-type containing a minute impurity and sufficiently having photoelectric conversion efficiency can be used. The photoelectric conversion layer 33 is not limited to these materials, and a layer of an alloy material such as amorphous silicon carbide or amorphous silicon germanium may be used.

またn型半導体層34としては、たとえば導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型非晶質シリコン薄膜などが用いられ得る。しかし、n型半導体層34についてのこれらの条件は限定的なものではなく、微結晶シリコン薄膜あるいは非晶質シリコンカーバイドや非晶質シリコンゲルマニウムなどの合金材料の層が用いられてもよい。   As n-type semiconductor layer 34, for example, an n-type amorphous silicon thin film doped with 0.01 atomic% or more of phosphorus, which is a conductivity determining impurity atom, may be used. However, these conditions for the n-type semiconductor layer 34 are not limited, and a microcrystalline silicon thin film or a layer of an alloy material such as amorphous silicon carbide or amorphous silicon germanium may be used.

裏面電極層4としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニットと裏面電極との間に、ITO、SnO2、ZnO等の導電性酸化物からなる層を形成しても構わない(図示せず)。   As the back electrode layer 4, it is preferable to form at least one metal layer made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Moreover, you may form the layer which consists of electroconductive oxides, such as ITO, SnO2, ZnO, between a photoelectric conversion unit and a back surface electrode (not shown).

以下、本発明のいくつかの実施例による非晶質シリコン系薄膜光電変換装置としての非晶質シリコン系薄膜太陽電池が、比較例による太陽電池とともに説明される。   Hereinafter, amorphous silicon thin film solar cells as amorphous silicon thin film photoelectric conversion devices according to some embodiments of the present invention will be described together with solar cells according to comparative examples.

(実施例1)
図1を参照して説明された第一の実施の形態に対応して、実施例1としての非晶質シリコン太陽電池が作製された。基板1にはガラスを用い、透明導電酸化物層2には熱CVD法により形成されたSnO2を用いた。この際の透明導電酸化物層2の膜厚は800nm、シート抵抗は10オーム/□、ヘイズ率は15〜20%とした。この上に、ボロンドープのp型シリコンカーバイド(SiC)層31を10nm、ノンドープの非晶質シリコン光電変換層33を250nm、リンドープのn型微結晶シリコン層34を20nmの膜厚で、それぞれプラズマCVD法により製膜した。これにより、pin接合の非晶質シリコン光電変換ユニットを形成した。さらに裏面電極層4としてZnO膜を80nm、Ag膜を300nmの膜厚で、それぞれスパッタ法により形成した。
Example 1
Corresponding to the first embodiment described with reference to FIG. 1, an amorphous silicon solar cell as Example 1 was fabricated. Glass was used for the substrate 1, and SnO 2 formed by a thermal CVD method was used for the transparent conductive oxide layer 2. The film thickness of the transparent conductive oxide layer 2 at this time was 800 nm, the sheet resistance was 10 ohm / □, and the haze ratio was 15 to 20%. On top of this, plasma CVD is performed with a boron-doped p-type silicon carbide (SiC) layer 31 having a thickness of 10 nm, a non-doped amorphous silicon photoelectric conversion layer 33 having a thickness of 250 nm, and a phosphorus-doped n-type microcrystalline silicon layer 34 having a thickness of 20 nm. The film was formed by the method. Thereby, an amorphous silicon photoelectric conversion unit having a pin junction was formed. Further, as the back electrode layer 4, a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed by sputtering.

p型シリコンカーバイド層31は、平行平板型高周波プラズマCVD法で堆積した。そのときの製膜条件については、プラズマの励起周波数を27.12MHz、下地温度を190℃、反応室内圧力を3Torrとして形成した。プラズマCVD反応室内に導入される原料ガスとしてシラン、メタン、ジボラン、および水素が用いられ、それらのガスの流量比はシラン1に対してメタンが1.6であり、ジボランが0.01であり、水素が38に設定された。以上の条件で10nmの膜を堆積した後、そのまま放電を切らずにジボランおよびメタンのガス供給を止め、水素のシランに対するガス流量比を80に設定して10nmの膜を続けて堆積した。   The p-type silicon carbide layer 31 was deposited by a parallel plate type high-frequency plasma CVD method. Regarding the film forming conditions at that time, the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C., and the pressure in the reaction chamber was 3 Torr. Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow ratio of these gases is 1.6 for methane and 0.01 for diborane relative to silane 1. , Hydrogen was set to 38. After depositing a 10 nm film under the above conditions, the gas supply of diborane and methane was stopped without turning off the discharge as it was, and a 10 nm film was continuously deposited by setting the gas flow rate ratio of hydrogen to silane to 80.

そして、このp型シリコンカーバイド層31の上に実質的に真性な光電変換初期層32をp型シリコンカーバイド層とは異なる反応室を用いて平行平板型高周波プラズマCVD法で製膜した。その時の製膜条件は、プラズマの励起周波数を27.12MHz、下地温度を215℃、反応室内圧力を3Torrとして形成した。プラズマCVD反応室内に導入される原料ガスとしてシリコン系原料ガスであるシランおよび希釈ガスである水素が用いられ、それらのガスの流量比(希釈ガス/シリコン系原料ガス)50、つまりシラン1に対して水素が80に設定された。このように実質的に真性な光電変換初期層32を製膜した後、真性な光電変換初期層32を製膜したのと同じ反応室を用いて光電変換層33をプラズマCVD法により製膜した。   Then, a substantially intrinsic photoelectric conversion initial layer 32 was formed on the p-type silicon carbide layer 31 by a parallel plate high-frequency plasma CVD method using a reaction chamber different from that of the p-type silicon carbide layer. The film-forming conditions at that time were such that the plasma excitation frequency was 27.12 MHz, the substrate temperature was 215 ° C., and the reaction chamber pressure was 3 Torr. Silane, which is a silicon-based source gas, and hydrogen, which is a diluent gas, are used as source gases introduced into the plasma CVD reaction chamber, and the flow rate ratio of these gases (diluted gas / silicon-based source gas) 50, that is, silane 1 Hydrogen was set to 80. After the intrinsic photoelectric conversion initial layer 32 is formed in this manner, the photoelectric conversion layer 33 is formed by plasma CVD using the same reaction chamber as the intrinsic photoelectric conversion initial layer 32 is formed. .

このような実施例1の非晶質シリコン太陽電池に入射光としてAM1.5の光を100mW/cm2の光照度で照射したときの出力特性は、開放端電圧が0.905V、短絡電流密度が15.8mA/cm2、曲線因子が74.5%そして変換効率が10.7%であった。また、この実施例1で作製した太陽電池に50℃の太陽電池温度の元で500mW/cm2の光照度の光を20時間照射することにより、この非晶質シリコン太陽電池を光劣化させた後に、AM1.5の光を100mW/cm2の光照度で測定した出力特性は、開放端電圧が0.866V、短絡電流密度が15.0mA/cm2、曲線因子が64.2%そして変換効率が8.34%であった。 The output characteristics when such an amorphous silicon solar cell of Example 1 is irradiated with AM 1.5 light as incident light at a light illuminance of 100 mW / cm 2 have an open-circuit voltage of 0.905 V and a short-circuit current density of 15. 0.8 mA / cm2, the fill factor was 74.5%, and the conversion efficiency was 10.7%. In addition, after the solar cell produced in Example 1 was irradiated with light having an illuminance of 500 mW / cm 2 at a solar cell temperature of 50 ° C. for 20 hours, the amorphous silicon solar cell was photodegraded. , output characteristics of light measured with light intensity of 100 mW / cm @ 2 of AM1.5 has an open end voltage is 0.866V, a short circuit current density of 15.0 mA / cm 2, a fill factor is 64.2% and a conversion efficiency 8 34%.

実施例1で作製した太陽電池の中の水素プロファイルを裏面電極層4側からSIMSにより複数箇所測定したところ、水素量は光電変換層33からp型シリコンカーバイド層31にわたってp型シリコンカーバイド層31側に向かってわずかに減少しており、その測定値は5.5×1021atomscm-3〜5.0×1021atomscm-3(11〜10原子%に相当)であった。また、実施例1で作製した太陽電池の断面TEMを撮影したところ、図2に示すように光電変換初期層32は結晶化していないことが確認された。 When the hydrogen profile in the solar cell produced in Example 1 was measured at a plurality of locations by SIMS from the back electrode layer 4 side, the hydrogen amount was from the photoelectric conversion layer 33 to the p-type silicon carbide layer 31 side by the p-type silicon carbide layer 31 side. The measured value was slightly decreased toward 5.5, and the measured value was 5.5 × 10 21 atoms cm −3 to 5.0 × 10 21 atoms cm −3 (corresponding to 11 to 10 atom%). Moreover, when the cross-section TEM of the solar cell produced in Example 1 was image | photographed, it was confirmed that the photoelectric conversion initial layer 32 is not crystallized, as shown in FIG.

(比較例1)
同じく図1に示す構成の非晶質シリコン太陽電池を作製した。実質的に真性な光電変換初期層32の形成のみを省略し、それ以外の製膜条件は実施例1と同一とした。
(Comparative Example 1)
Similarly, an amorphous silicon solar cell having the configuration shown in FIG. 1 was produced. Only the formation of the substantially intrinsic photoelectric conversion initial layer 32 was omitted, and the other film forming conditions were the same as those in Example 1.

このような実施例1の非晶質シリコン太陽電池に入射光としてAM1.5の光を100mW/cm2の光照度で照射したときの出力特性においては、開放端電圧が0.906V、短絡電流密度が15.8mA/cm2、曲線因子が74.5%そして変換効率が10.7%であった。また、この実施例1で作製した太陽電池に50℃の太陽電池温度の元で500mW/cm2の光照度の光を20時間照射することにより、この非晶質シリコン太陽電池を光劣化させた後に、AM1.5の光を100mW/cm2の光照度で測定した出力特性は、開放端電圧が0.868V、短絡電流密度が15.1mA/cm2、曲線因子が62.3%そして変換効率が8.15%であった。 In the output characteristics when the amorphous silicon solar cell of Example 1 is irradiated with AM 1.5 light as incident light at a light illuminance of 100 mW / cm 2, the open-circuit voltage is 0.906 V, and the short-circuit current density is It was 15.8 mA / cm2, the fill factor was 74.5%, and the conversion efficiency was 10.7%. In addition, after the solar cell produced in Example 1 was irradiated with light having an illuminance of 500 mW / cm 2 at a solar cell temperature of 50 ° C. for 20 hours, the amorphous silicon solar cell was photodegraded. The output characteristics of AM 1.5 light measured at 100 mW / cm 2 are as follows. The open circuit voltage is 0.868V, the short-circuit current density is 15.1 mA / cm 2 , the fill factor is 62.3%, and the conversion efficiency is 8 15%.

(比較例2)
同じく図1に示す構成の非晶質シリコン太陽電池を作製した。実質的に真性な光電変換初期層32の製膜条件以外は実施例1と全く同じとした。
(Comparative Example 2)
Similarly, an amorphous silicon solar cell having the configuration shown in FIG. 1 was produced. Except for the film forming conditions of the substantially intrinsic photoelectric conversion initial layer 32, it was exactly the same as Example 1.

実質的に真性な光電変換初期層32の製膜条件は、プラズマの励起周波数を27.12MHz、下地温度を215℃、基板電極間距離を実施例1の0.8倍、反応室内圧力を3Torrとして形成した。プラズマCVD反応室内に導入される原料ガスとしてシランおよび水素が用いられ、それらのガスの流量比はシラン1に対して水素が80に設定された。基板電極間距離を短くすることにより、このような条件で作製された半導体層は一部が結晶化して微結晶状態となる。このように実質的に真性な光電変換初期層32を製膜した後、真性な光電変換初期層32を製膜したのと同じ反応室を用いて光電変換層33をプラズマCVD法により製膜した。   The film formation conditions of the substantially intrinsic photoelectric conversion initial layer 32 are as follows: the plasma excitation frequency is 27.12 MHz, the substrate temperature is 215 ° C., the distance between the substrate electrodes is 0.8 times that of Example 1, and the pressure in the reaction chamber is 3 Torr. Formed as. Silane and hydrogen were used as source gases introduced into the plasma CVD reaction chamber, and the flow rate ratio of these gases was set to 80 for silane 1 and hydrogen. By shortening the distance between the substrate electrodes, a part of the semiconductor layer manufactured under such conditions is crystallized into a microcrystalline state. After the intrinsic photoelectric conversion initial layer 32 is formed in this manner, the photoelectric conversion layer 33 is formed by plasma CVD using the same reaction chamber as the intrinsic photoelectric conversion initial layer 32 is formed. .

このような実施例1の非晶質シリコン太陽電池に入射光としてAM1.5の光を100mW/cm2の光照度で照射したときの出力特性においては、開放端電圧が0.904V、短絡電流密度が15.7mA/cm2、曲線因子が72.9%そして変換効率が10.4%であった。また、この実施例1で作製した太陽電池に50℃の太陽電池温度の元で500mW/cm2の光照度の光を20時間照射することにより、この非晶質シリコン太陽電池を光劣化させた後に、AM1.5の光を100mW/cm2の光照度で測定した出力特性は、開放端電圧が0.864V、短絡電流密度が14.6mA/cm2、曲線因子が63.9%そして変換効率が8.08%となり、実施例1の結果と比較して作製した太陽電池の短絡電流が特に光劣化後の結果で低くなり、特性が低下した。 In the output characteristics when the amorphous silicon solar cell of Example 1 is irradiated with AM 1.5 light as incident light at a light illuminance of 100 mW / cm 2, the open-circuit voltage is 0.904 V and the short-circuit current density is It was 15.7 mA / cm2, the fill factor was 72.9%, and the conversion efficiency was 10.4%. In addition, after the solar cell produced in Example 1 was irradiated with light having an illuminance of 500 mW / cm 2 at a solar cell temperature of 50 ° C. for 20 hours, the amorphous silicon solar cell was photodegraded. , output characteristics of light measured with light intensity of 100 mW / cm @ 2 of AM1.5 has an open end voltage is 0.864V, a short circuit current density of 14.6mA / cm 2, a fill factor is 63.9% the conversion efficiency 8 0.08%, and the short-circuit current of the solar cell produced in comparison with the result of Example 1 was lowered particularly in the result after photodegradation, and the characteristics were deteriorated.

(実施例2、3および比較例3)
図1を参照して説明された第一の実施の形態に対応して、実質的に真性な光電変換初期層32の形成条件として原料ガスに対する希釈ガスの流量比率を変え、それ以外は実施例1あるいは比較例2と同様の方法で非晶質シリコン太陽電池を作製した。製膜条件としては下地温度を190℃、反応室内圧力を3Torr、実質的に真性な光電変換初期層32形成時の反応室内に導入される原料ガスに対する希釈ガスの流量比率の各値に対する光電変換特性を比較した結果を表1および表2に示す。また、同表には実施例1および比較例1〜2の結果についても示している。表1は、作製した初期の非晶質シリコン太陽電池にAM1.5の光を100mW/cm2の光照度で照射したときの出力特性を示しており、表2は、この非晶質シリコン太陽電池に50℃の太陽電池温度の元で500mW/cm2の光照度の光を20時間照射する事により光劣化させた後に、AM1.5の光を100mW/cm2の光照度で測定した出力特性を示している。
(Examples 2 and 3 and Comparative Example 3)
Corresponding to the first embodiment described with reference to FIG. 1, the flow rate ratio of the dilution gas to the raw material gas is changed as the formation condition of the substantially intrinsic photoelectric conversion initial layer 32. An amorphous silicon solar cell was produced by the same method as in Example 1 or Comparative Example 2. As film forming conditions, the substrate temperature is 190 ° C., the pressure in the reaction chamber is 3 Torr, and the photoelectric conversion for each value of the flow rate ratio of the dilution gas to the source gas introduced into the reaction chamber when the substantially intrinsic photoelectric conversion initial layer 32 is formed. The results of comparing the characteristics are shown in Tables 1 and 2. The table also shows the results of Example 1 and Comparative Examples 1 and 2. Table 1 shows the output characteristics when the manufactured amorphous silicon solar cell was irradiated with AM1.5 light at a light illuminance of 100 mW / cm 2. Table 2 shows the output characteristics of this amorphous silicon solar cell. after allowed to photodegradation by the light of the solar cell temperature based at illuminance of 500 mW / cm 2 in 50 ° C. irradiation 20 h, shows the output characteristic of the light of AM1.5 measured with light intensity of 100 mW / cm @ 2 .

以上の結果から、前記実質的に真性の半導体層の製膜条件としては光劣化後の非晶質シリコン太陽電池の特性を向上させるために、最適な原料ガスに対する希釈ガスの流量比が有ることが判った。 From the above results, the film formation conditions for the substantially intrinsic semiconductor layer include an optimum flow ratio of the dilution gas to the source gas in order to improve the characteristics of the amorphous silicon solar cell after photodegradation. I understood.

(実施例4、5および比較例4、5)
また、実施例1の非晶質シリコン太陽電池の光電変換層33の膜厚のみを250nmから300nm、330nmと変えたものを実施例4、5とし、比較例1の光電変換層33の膜厚のみを250nmから300nm、330nmと変えたものを比較例4、5とした。前記の実施例および比較例の光電変換特性を比較した結果を表3および表4に示す。表3は、作製した初期の非晶質シリコン太陽電池にAM1.5の光を100mW/cm2の光照度で照射したときの出力特性を示しており、表4は、この非晶質シリコン太陽電池に50℃の太陽電池温度の元で500mW/cm2の光照度の光を20時間照射する事により光劣化させた後に、AM1.5の光を100mW/cm2の光照度で測定した出力特性を示している。
(Examples 4 and 5 and Comparative Examples 4 and 5)
Moreover, what changed only the film thickness of the photoelectric converting layer 33 of the amorphous silicon solar cell of Example 1 from 250 nm to 300 nm and 330 nm is set to Examples 4 and 5, and the film thickness of the photoelectric converting layer 33 of the comparative example 1 is shown. Comparative Examples 4 and 5 were obtained by changing only the thickness from 250 nm to 300 nm and 330 nm. Tables 3 and 4 show the results of comparing the photoelectric conversion characteristics of the examples and comparative examples. Table 3 shows the output characteristics when the manufactured amorphous silicon solar cell is irradiated with AM 1.5 light at a light illuminance of 100 mW / cm 2. Table 4 shows the output characteristics of the amorphous silicon solar cell. after allowed to photodegradation by the light of the solar cell temperature based at illuminance of 500 mW / cm 2 in 50 ° C. irradiation 20 h, shows the output characteristic of the light of AM1.5 measured with light intensity of 100 mW / cm @ 2 .

本発明の実施形態による光電変換装置の構造断面図。1 is a structural cross-sectional view of a photoelectric conversion device according to an embodiment of the present invention. 本発明の実施例1で作製した光電変換装置の断面TEM像。The cross-sectional TEM image of the photoelectric conversion apparatus produced in Example 1 of this invention.

符号の説明Explanation of symbols

1 透明基板
2 透明導電酸化物層
31 p型半導体層
32 光電変換初期層
33 光電変換層
34 n型半導体層
4 裏面電極層
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent conductive oxide layer 31 P-type semiconductor layer 32 Photoelectric conversion initial layer 33 Photoelectric conversion layer 34 n-type semiconductor layer 4 Back surface electrode layer

Claims (3)

光入射側より順に、透明導電酸化物層、p型半導体層、光電変換初期層、光電変換層、及びn型半導体層が形成されてなる非晶質シリコン系光電変換装置であって、
該p型半導体層、該光電変換初期層、及び該光電変換層中の水素原子含有量が、
下記(式1)の関係を満たすことを特徴とする非晶質シリコン系光電変換装置。
An amorphous silicon photoelectric conversion device in which a transparent conductive oxide layer, a p-type semiconductor layer, a photoelectric conversion initial layer, a photoelectric conversion layer, and an n-type semiconductor layer are formed in order from the light incident side,
The hydrogen atom content in the p-type semiconductor layer, the photoelectric conversion initial layer, and the photoelectric conversion layer is
An amorphous silicon photoelectric conversion device satisfying the following relationship (Formula 1):
光入射側より順に、透明導電酸化物層、p型半導体層、光電変換初期層、光電変換層、及びn型半導体層が形成されてなる非晶質シリコン系光電変換装置の製造方法であって、該p型半導体層は、該光電変換初期層および該光電変換層とは異なる反応室内において形成され、且つ該光電変換初期層と該光電変換層の少なくとも一部は同一の反応室内において形成され、さらに該光電変換初期層は結晶化しない程度にシリコン系原料ガスが希釈ガスで希釈された条件で形成されることを特徴とする請求項1に記載の非晶質シリコン系光電変換装置の製造方法。   A method for manufacturing an amorphous silicon photoelectric conversion device in which a transparent conductive oxide layer, a p-type semiconductor layer, a photoelectric conversion initial layer, a photoelectric conversion layer, and an n-type semiconductor layer are formed in order from the light incident side. The p-type semiconductor layer is formed in a reaction chamber different from the photoelectric conversion initial layer and the photoelectric conversion layer, and at least a part of the photoelectric conversion initial layer and the photoelectric conversion layer is formed in the same reaction chamber. 2. The manufacturing method of an amorphous silicon photoelectric conversion device according to claim 1, wherein the photoelectric conversion initial layer is formed under a condition in which a silicon source gas is diluted with a diluent gas so as not to be crystallized. Method. 前記光電変換初期層層形成時のシリコン系原料ガスに対する希釈ガスの流量比が30倍以上かつ100倍以下の範囲であることを特徴とする前記請求項2に記載の非晶質シリコン系光電変換装置の製造方法。   3. The amorphous silicon photoelectric conversion according to claim 2, wherein a flow rate ratio of a dilution gas to a silicon source gas at the time of forming the photoelectric conversion initial layer is in a range of 30 times or more and 100 times or less. Device manufacturing method.
JP2004329193A 2004-11-12 2004-11-12 Silicon-based thin film photoelectric conversion device and its manufacturing method Pending JP2006140339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329193A JP2006140339A (en) 2004-11-12 2004-11-12 Silicon-based thin film photoelectric conversion device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329193A JP2006140339A (en) 2004-11-12 2004-11-12 Silicon-based thin film photoelectric conversion device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006140339A true JP2006140339A (en) 2006-06-01

Family

ID=36620950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329193A Pending JP2006140339A (en) 2004-11-12 2004-11-12 Silicon-based thin film photoelectric conversion device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006140339A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087811A (en) * 2002-08-27 2004-03-18 Mitsubishi Heavy Ind Ltd Manufacturing method of silicon solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004087811A (en) * 2002-08-27 2004-03-18 Mitsubishi Heavy Ind Ltd Manufacturing method of silicon solar cell

Similar Documents

Publication Publication Date Title
KR100976010B1 (en) Silicon-based thin-film photoelectric converter and method of manufacturing the same
Mazzarella et al. Nanocrystalline silicon emitter optimization for Si‐HJ solar cells: substrate selectivity and CO2 plasma treatment effect
EP2110859A1 (en) Laminate type photoelectric converter and method for fabricating the same
JP2008153646A (en) Manufacturing method of semiconductor device
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP5314697B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
CN111628032B (en) Structure of intrinsic passivation layer of silicon heterojunction solar cell and manufacturing method thereof
JP5222434B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
CN104145344A (en) Photovoltaic device
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JPWO2005109526A1 (en) Thin film photoelectric converter
JP2009117463A (en) Thin-film photoelectric conversion device
Zhang et al. Improved hetero-interface passivation by microcrystalline silicon oxide emitter in silicon heterojunction solar cells
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP6047494B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPWO2006006368A1 (en) Method for manufacturing thin film photoelectric conversion device
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
JP2006140339A (en) Silicon-based thin film photoelectric conversion device and its manufacturing method
US20210296522A1 (en) Solar cell apparatus and method for forming the same for single, tandem and heterojunction systems
JP2005244071A (en) Solar cell and its manufacturing method
JP2006120712A (en) Thin film photoelectric converter and manufacturing method therefor
JP2007189266A (en) Stacked photovoltaic element
JP2007150230A (en) Multijunction silicon thin film photoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608