JP2006137143A - Plastic-based composite material and its manufacturing method - Google Patents

Plastic-based composite material and its manufacturing method Download PDF

Info

Publication number
JP2006137143A
JP2006137143A JP2004330684A JP2004330684A JP2006137143A JP 2006137143 A JP2006137143 A JP 2006137143A JP 2004330684 A JP2004330684 A JP 2004330684A JP 2004330684 A JP2004330684 A JP 2004330684A JP 2006137143 A JP2006137143 A JP 2006137143A
Authority
JP
Japan
Prior art keywords
intermediate layer
reinforced plastic
fiber reinforced
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004330684A
Other languages
Japanese (ja)
Inventor
Sadato Shigemura
貞人 重村
Ai Tanaka
愛 田中
Kazumi Tani
和美 谷
Takayuki Yoshizumi
隆幸 吉積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2004330684A priority Critical patent/JP2006137143A/en
Publication of JP2006137143A publication Critical patent/JP2006137143A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the technology which well conforms to also the special kind of use in which metal quality surface characteristic is required by applying metallizing processing to the surface of the various components made of a fiber-reinforced plastic including various rolls which are used at the time of liquid crystal glass base plate production. <P>SOLUTION: The fiber-reinforced plastic-based composite material comprises: an intermediate layer consisting of a layer of a mixture of the same kind resin which is the resin of this substrate constituent component and ceramic particles on the surface of a fiber reinforced plastic substrate; and a topcoat consisting of a thermal sprayed layer consisting of a metal and an alloy on this intermediate layer. In addition, the manufacturing method thereof is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラスチック基複合材料およびその製造方法に関し、とくに炭素繊維強化プラスチック,ガラス繊維強化プラスチックなどの繊維強化プラスチック基複合材料について、その表面に構造材料に求められる所望の特性を付与するために各種の金属材料およびそれらの合金を被覆してなる複合材料についての提案である。   The present invention relates to a plastic matrix composite material and a method for producing the same, and particularly to impart desired characteristics required for a structural material to the surface of a fiber reinforced plastic matrix composite material such as carbon fiber reinforced plastic and glass fiber reinforced plastic. It is a proposal about the composite material which coat | covers various metal materials and those alloys.

炭素繊維強化プラスチックやガラス繊維強化プラスチックなどの材料は、金属材料に比べると比重が小さく、高い縦弾性係数をもち、比強度に優れるという特徴がある。そのため、こうした繊維強化プラスチック材料は、エンジニアリング用材料として、たとえば、
航空機や自動車などの各種産業機械部品用材料,液晶,半導体製造装置用部材,釣り竿やバットなどのスポーツ用具用材料などの分野において広く使用されている。とくに、機械的特性に優れ、軽量であることから、近年では、種々の産業機械装置、たとえば搬送用ロールの部材として期待されている。
Materials such as carbon fiber reinforced plastic and glass fiber reinforced plastic are characterized by a lower specific gravity, a higher longitudinal elastic modulus, and higher specific strength than metal materials. Therefore, such fiber reinforced plastic materials are used as engineering materials, for example,
It is widely used in various fields such as materials for various industrial machine parts such as aircraft and automobiles, liquid crystal, members for semiconductor manufacturing equipment, and materials for sports equipment such as fishing rods and bats. In particular, since it has excellent mechanical properties and is lightweight, it has been expected in recent years as a member of various industrial machine devices, for example, transport rolls.

しかし、かかる繊維強化プラスチック材料は、構造体用強度部材としては優れた特性を示すものの、表面特性についてはなお克服すべき課題を多く残しているのが実情である。たとえば、その表面は、繊維が分散しているものの本質的に樹脂(エポキシ樹脂等)が主体であることから、耐摩耗性が不十分で、接触する相手材を汚染するという問題があった。   However, although such a fiber reinforced plastic material exhibits excellent characteristics as a structural strength member, it still has many problems to be overcome regarding surface characteristics. For example, although the surface is essentially composed of a resin (epoxy resin or the like) although fibers are dispersed, there is a problem that the wear resistance is insufficient and the mating contact material is contaminated.

これに対し、従来、繊維強化プラスチック材料の上述した問題点を克服するために、その表面に、溶射法によってアルミナやアルミナ/チタニアなどの酸化物セラミックやサーメットを溶射被覆することにより、耐摩耗性などの表面特性を改善して、各種産業機械用部材として用いられるようにした技術がある(特許文献1、特許文献2)。   On the other hand, in order to overcome the above-mentioned problems of the fiber reinforced plastic material, the surface is coated with an oxide ceramic such as alumina or alumina / titania or cermet by a thermal spraying method. There are technologies that improve surface characteristics such as those used for various industrial machine members (Patent Documents 1 and 2).

また、繊維強化プラスチック基材表面を金属化する方法として、金属NiやNi−P合金をめっきする方法がある。ただし、この方法は、被処理基材の形状,大きさなどに制限を受けると共に基材の繊維強化プラスチックとの接着力が不足するという問題がある。
その他の金属化法としては、プラスチック基材の表面に金属スリーブ、例えばオーステナイトステンレス鋼あるいは銅などのスリーブが外挿する技術がある。ただし、この技術については、使用時の円周方向の応力あるいは使用温度などにより繊維強化プラスチックとスリーブ間で緩みが発生するという問題がある。
Further, as a method for metallizing the surface of the fiber reinforced plastic substrate, there is a method for plating metal Ni or Ni-P alloy. However, this method has a problem in that the shape and size of the substrate to be treated are limited and the adhesive strength between the substrate and the fiber-reinforced plastic is insufficient.
As another metallization method, there is a technique in which a metal sleeve such as an austenitic stainless steel or copper sleeve is extrapolated on the surface of a plastic substrate. However, with this technique, there is a problem that loosening occurs between the fiber reinforced plastic and the sleeve due to circumferential stress during use or operating temperature.

さらに、こうしためっき法やスリーブ圧入法による表面金属化法は、使用される材料に限定されるという問題もある。即ち、めっき法の場合、工業的にはCrやNi,Cu,Feなどのめっきが主流となるが、これらは、めっき皮膜内にいずれも比較的大きな引張り応力を生じさせると共に、基材とめっき皮膜との接合技術にも課題を残している。一方、後者のスリーブ圧入法については、適用材料が、実用的にはオーステナイト系ステンレス鋼や銅になるため、その用途が限られるという問題がある。
特開2001−240953号公報 特開2001−270015号公報
Furthermore, there is a problem that the surface metallization method by such plating method or sleeve press-fitting method is limited to the material to be used. That is, in the case of the plating method, plating of Cr, Ni, Cu, Fe, etc. is industrially mainstream, but these all cause a relatively large tensile stress in the plating film, and the substrate and the plating. There are also problems in the technology of joining with the film. On the other hand, the latter sleeve press-fitting method has a problem that its application is limited because the applicable material is practically austenitic stainless steel or copper.
JP 2001-240953 A JP 2001-270015 A

従来の上記繊維強化プラスチック基材は、これを金属板や金属箔,紙,プラスチックスフイルムなどの製造設備などにおける搬送,案内用ロールあるいは液晶ガラス基板製造設備におけるガラス基板用表面部材などとして使用する場合、形状精度の低下あるいは表面への異種材の付着などが発生しやすく、繊維強化プラスチック基材としての本来の特性および寿命を発揮することができないという問題がある。   The conventional fiber reinforced plastic base material is used as a transport member in a production facility such as a metal plate, metal foil, paper, or plastic film, a roll for guiding, or a surface member for a glass substrate in a liquid crystal glass substrate production facility. In this case, there is a problem that the shape accuracy is lowered or the dissimilar material is easily adhered to the surface, and the original characteristics and life as a fiber-reinforced plastic substrate cannot be exhibited.

また、かかる繊維強化プラスチック基材の表面に形成した溶射皮膜,金属NiやNi−Pのめっき皮膜あるいは金属スリーブを圧入した材料についても、接着力不足や耐摩耗性の不足が目立ち、繊維強化プラスチック基材としての本来の特性を発揮できていないのが実情である。   In addition, the thermal spray coating formed on the surface of such fiber reinforced plastic substrate, metal Ni or Ni-P plating film, or the material in which a metal sleeve is press-fitted are conspicuously lacking in adhesion and wear resistance, and fiber reinforced plastic. The actual situation is that the original properties as a substrate cannot be exhibited.

そこで、本発明の主たる目的は、従来技術が抱えている上述したような問題点を解決すること、とくにプラスチック基複合材料、たとえば、液晶ガラス基板製造時に使用される各種ロールをはじめ、繊維強化プラスチック製各種部材の表面を金属化処理を施すことによって、金属質表面特性が求められるような特殊用途にもよく適合する技術を提案することにある。
本発明の他の目的は、高品質で密着性に優れた金属質表面特性を有する溶射皮膜をプラスチック基複合材料の表面に有利に形成する方法を提案するところにある。
Therefore, the main object of the present invention is to solve the above-mentioned problems of the prior art, particularly plastic-based composite materials such as various rolls used in the production of liquid crystal glass substrates, and fiber reinforced plastics. The object of the present invention is to propose a technique that is well suited for special applications where metal surface characteristics are required by metallizing the surfaces of various members.
Another object of the present invention is to propose a method for advantageously forming a thermal spray coating having a metallic surface property with high quality and excellent adhesion on the surface of a plastic matrix composite material.

上掲の目的の実現に向けて鋭意検討した結果、発明者らは、下記の要旨構成にかかるプラスチック基複合材料およびその製造方法が有効な課題解決手段となることを知見し、本発明を開発するに至った。すなわち、本発明は、繊維強化プラスチック基材の表面に、この基材を構成している樹脂と同種の樹脂と、Al2O3,ZrO2,Y2O3,SiO2,TiO2,MgOおよびCr2O3のうちから選ばれる1種以上の酸化物、および/またはWC,Cr3C2,TiCおよびNbCのうちから選ばれる1種以上の炭化物からなるセラミック粒子との混合物からなる中間層を介して、FeやAl,Ni,Cu,Zn等の金属またはそれらの合金の溶射被覆層からなるトップコートを形成してなる、プラスチック基複合材料を提案する。 As a result of diligent investigation toward the realization of the above object, the inventors have developed the present invention by discovering that the plastic matrix composite material and the manufacturing method thereof according to the following summary structure are effective problem solving means. It came to do. That is, the present invention provides a resin reinforced with the same type of resin as that constituting the substrate, Al 2 O 3 , ZrO 2 , Y 2 O 3 , SiO 2 , TiO 2 , MgO on the surface of the fiber reinforced plastic substrate. And one or more oxides selected from Cr 2 O 3 and / or a mixture of ceramic particles made of one or more carbides selected from WC, Cr 3 C 2 , TiC and NbC A plastic-based composite material is proposed in which a top coat made of a thermal spray coating layer of a metal such as Fe, Al, Ni, Cu, Zn or an alloy thereof is formed through the layer.

なお、本発明において、上記トップコートは、溶射材料および工法を選定することにより、また必要に応じ旋削処理などにより、表面粗さを5μmRy以下の鏡面加工を施すことも有効である。   In the present invention, it is also effective to subject the top coat to a mirror finish with a surface roughness of 5 μm Ry or less by selecting a thermal spray material and a construction method and, if necessary, turning.

また、本発明は、繊維強化プラスチック基材の表面に、この基材を構成している樹脂と同種の樹脂と、Al2O3,ZrO2,Y2O3,SiO2,TiO2,MgOおよびCr2O3のうちから選ばれる1種以上の酸化物、および/またはWC,Cr3C2,TiCおよびNbCのうちから選ばれる1種以上の炭化物からなるセラミック粒子との混合物を、粉体吹き付け法によって被覆して中間層を形成し、次いで、この中間層の上に、FeやAl,Ni,Cu,Zn等の金属またはそれらの合金を溶射してトップコートを積層形成することを特徴とするプラスチック基複合材料の製造方法を提案する。 Further, the present invention provides a resin reinforced with the same kind of resin as that constituting the substrate, Al 2 O 3 , ZrO 2 , Y 2 O 3 , SiO 2 , TiO 2 , MgO on the surface of the fiber reinforced plastic substrate. And a mixture of at least one oxide selected from Cr 2 O 3 and / or ceramic particles comprising at least one carbide selected from WC, Cr 3 C 2 , TiC and NbC. An intermediate layer is formed by coating by a body spraying method, and then a top coat is laminated on the intermediate layer by spraying a metal such as Fe, Al, Ni, Cu, Zn or an alloy thereof. We propose a method for manufacturing a plastic matrix composite material.

なお、本発明にかかる上記製造方法においては、中間層形成手段として圧縮空気によるスラリー吹き付け法を適用すること、必要に応じてさらにこの中間層を大気下で70〜120℃にて焼成すること、一方、トップコート形成手段としては、プラズマ炎,ガス燃焼炎,アーク炎を用いた溶射法を適用することもまた有効である。   In the above production method according to the present invention, applying a slurry spraying method with compressed air as an intermediate layer forming means, if necessary, further baking this intermediate layer at 70 to 120 ° C. in the atmosphere, On the other hand, as the top coat forming means, it is also effective to apply a thermal spraying method using a plasma flame, a gas combustion flame, or an arc flame.

以上説明したように、本発明は、繊維強化プラスチック基複合材料表面に、中間層を形成し、さらにその表面に各種金属およびそれらの合金材料を溶射被覆することにより、種々の用途において求められる表面特性、とくに高品質で密着性に優れた金属質の表面特性が付与されたプラスチック基複合材料を得ることができる。従って、本発明によれば、例えば、耐摩耗性は耐食性、皮膜密着強度、耐久性などの諸特性に優れた表面をもつプラスチック基複合材料を提供することができる。   As described above, the present invention provides a surface required for various applications by forming an intermediate layer on the surface of a fiber reinforced plastic matrix composite and further spraying various metals and their alloy materials on the surface. It is possible to obtain a plastic matrix composite having properties, particularly high quality and excellent metallic surface properties. Therefore, according to the present invention, for example, it is possible to provide a plastic matrix composite material having a surface excellent in various properties such as wear resistance, corrosion resistance, film adhesion strength, and durability.

本発明にかかるプラスチック基複合材料は、炭素繊維強化プラスチックやガラス繊維強化プラスチック等を基材とし、その基材表面に、各種の表面特性に優れた表面機能性皮膜を皮形成してなるものであって、金属板,金属箔,紙,樹脂フイルムの製造装置用部材として用いられる他、液晶用ガラス基板搬送用ロールやその基板表面の改質処理用ロール部材などとしても用いられるものである。   The plastic matrix composite material according to the present invention comprises a carbon fiber reinforced plastic, a glass fiber reinforced plastic or the like as a base material, and a surface functional film excellent in various surface characteristics is formed on the surface of the base material. In addition to being used as a metal plate, metal foil, paper, resin film production apparatus member, it is also used as a liquid crystal glass substrate transport roll, a substrate surface modification roll member, and the like.

上述した用途に用いられる繊維強化プラスチック基材の望ましい条件としては、(1)寸法精度の経年変化が小さいこと、(2)基材(ロール)表面に残滓が付着し難く剥離性が良好なこと、(3)表面が非吸着性であること、(4)ロール表面の溶射皮膜粒子が脱落しないこと。などが挙げられる。   Desirable conditions for the fiber reinforced plastic base material used in the above-mentioned applications are (1) small change in dimensional accuracy over time, and (2) good releasability because residue is not easily attached to the surface of the base material (roll). (3) The surface should be non-adsorbing, and (4) the sprayed coating particles on the roll surface should not fall off. Etc.

これらの要求に応えられる繊維強化プラスチック基材として、本発明では、用途や要求性能に応じて各種の強化プラスチック用樹脂と補強材との組合せからなる材料を選択使用する。例えば、補強材としては、ガラス繊維やカーボン繊維の他、ウスカ,アスベスト,マイカなどの無機材料、アラミド繊維,綿,麻,レーヨン,ビニロン,テトロン,アクリルなどの繊維も用いることができる。これらに対し、マトリックスとなる合成樹脂としては、ポリエステル樹脂をはじめ、エポキシ樹脂,フェノール樹脂,フラン樹脂などの熱硬化性樹脂が主に用いられる。一方、ポリプロピレン,ポリアミド,ポリカーボネート,ポリエチレンテレフタレートなどの熱可塑性樹脂も用いられるが、これらは主としてエンジニアリング用として性能を高めるために、ガラス短繊維で強化されたものを用いられるものである。なお、これらはプリプレグ法またはワインディング法によって所定の形に形成され、基材とすることが望ましい。 As a fiber reinforced plastic substrate that can meet these requirements, in the present invention, a material composed of a combination of various types of resin for reinforced plastic and a reinforcing material is selectively used according to the application and required performance. For example, as the reinforcing material, other glass fibers, carbon fibers, c i Ska, asbestos, can be inorganic materials such as mica, aramid fibers, cotton, linen, rayon, vinylon, Tetron, be used fibers such as acrylic. On the other hand, thermosetting resins such as an epoxy resin, a phenol resin, and a furan resin are mainly used as a synthetic resin as a matrix, including a polyester resin. On the other hand, thermoplastic resins such as polypropylene, polyamide, polycarbonate, and polyethylene terephthalate are also used, but these are mainly those reinforced with short glass fibers to improve performance for engineering use. These are preferably formed into a predetermined shape by a prepreg method or a winding method and used as a base material.

本発明において特徴的な構成の1つは、前記繊維強化プラスチック基材の表面に、まず中間層を形成することにある。この中間層の役割りは、主として、基材の表面に所望の特性を付与するための金属質被覆層(トップコート)を、該基材にしっかり密着させるための接着剤としての作用を担うことにある。基本的には、基材とトップコートとの両方に対して相性の良いものが選ばれる。この意味において、この中間層は、プラスチック基材の樹脂成分と同種(全く同じでなくともよい)の樹脂と、酸化物や炭化物セラミック粒子との混合物を、0.02〜0.3mm程度の厚さに被覆形成することが望ましい。例えば、かかる中間層として、ガラス繊維強化エポキシ樹脂基材の表面に、熱可塑性エポキシ樹脂とアルミナやシリカの酸化物セラミック粒子(5〜200μm)の混合物を被覆形成したものが考えられる。こうした混合物の層からなる中間層はその後、焼成すると、基材中のエポキシ樹脂成分と中間層中のエポキシ樹脂成分とが互いに融合し、強固な接着層を形成する。   One of the characteristic structures in the present invention is that an intermediate layer is first formed on the surface of the fiber-reinforced plastic substrate. The role of this intermediate layer is mainly to serve as an adhesive for firmly attaching the metallic coating layer (top coat) for imparting desired properties to the surface of the substrate to the substrate. It is in. Basically, those that are compatible with both the base material and the top coat are selected. In this sense, this intermediate layer is coated with a mixture of a resin of the same type (not necessarily the same) as the resin component of the plastic substrate and an oxide or carbide ceramic particles to a thickness of about 0.02 to 0.3 mm. It is desirable to form. For example, the intermediate layer may be formed by coating a glass fiber reinforced epoxy resin base material with a mixture of thermoplastic epoxy resin and oxide ceramic particles (5 to 200 μm) of alumina or silica. When the intermediate layer composed of such a mixture is then fired, the epoxy resin component in the base material and the epoxy resin component in the intermediate layer are fused together to form a strong adhesive layer.

しかも、このような中間層は、後工程においてこの層の表面に対してさらに最外層(トップコート)が被覆形成されるとき、該中間層の一部を構成するエポキシ樹脂自体は、トップコート施工用溶射噴流の熱によって一部が軟化し、このとき該中間層中にトップコート成分の溶射粒子が中間層のみならず基材中にも入り込んで固形化する。こうした作用により、金属および合金の粒子が該中間層中さらには基材中に食い込んだ構造となる。その結果として、トップコート溶射皮膜とその下の中間層ならびに基材との強固な接合状態が得られるのである。図1は、こうした積層被覆構造を説明する模式図、図2は、本発明にかかるプラスチック基複合材料断面の光学顕微鏡写真である。   In addition, when the outermost layer (top coat) is further formed on the surface of this intermediate layer in a later step, the epoxy resin itself constituting a part of the intermediate layer is subjected to top coat application. Part of the thermal spray jet is softened by the heat of the thermal spray jet, and at this time, the thermal spray particles of the top coat component enter not only the intermediate layer but also the base material and solidify. By such an action, a structure in which the metal and alloy particles have digged into the intermediate layer and further into the substrate. As a result, it is possible to obtain a strong bonding state between the top coat sprayed coating, the intermediate layer below it, and the substrate. FIG. 1 is a schematic diagram for explaining such a laminated coating structure, and FIG. 2 is an optical micrograph of a cross section of the plastic matrix composite material according to the present invention.

上記中間層における樹脂成分とセラミック粒子との混合割合は、樹脂:セラミック粒子=70〜150:20〜60、好ましくは90〜120:30〜40程度とする。このような配合割合とした理由は、上記混合割合で形成した中間層の断面組織を観察した結果、基材の素地中の粒子の分散状態が比較的均一になると考えられるからである。なお、中間層については、基材側に樹脂成分を多くする一方、トップコート側にセラミック粒子を多くした傾斜配合に係る層構造としてもよいし、その割合が段階的に変わる層構造としてもよい。   The mixing ratio of the resin component and ceramic particles in the intermediate layer is resin: ceramic particles = 70 to 150: 20 to 60, preferably about 90 to 120: 30 to 40. The reason for setting such a blending ratio is that, as a result of observing the cross-sectional structure of the intermediate layer formed at the above mixing ratio, it is considered that the dispersed state of the particles in the base material of the base material becomes relatively uniform. Note that the intermediate layer may have a layer structure related to a gradient composition in which the resin component is increased on the substrate side and the ceramic particles are increased on the top coat side, or a layer structure in which the ratio is changed stepwise. .

上記中間層の施工後は、その中間層を必要に応じ、大気下において70〜120℃の温度で1時間程度焼成する。ここで、中間層を焼成する理由は、エポキシ樹脂などからなる樹脂の強度を高めるために行う。   After construction of the intermediate layer, the intermediate layer is baked for about 1 hour at a temperature of 70 to 120 ° C. in the air as necessary. Here, the reason for firing the intermediate layer is to increase the strength of the resin made of epoxy resin or the like.

基材表面に前記中間層を形成する方法としては、圧縮空気を用いたスラリー吹き付け方法が有効であり、この方法により0.02〜0.3mm、好ましくは0.05〜0.15mmの厚さに施工する。このような厚さにする理由は、0.02mmよりも薄いと中間層の連続性を維持することができないし、一方0.3mmよりも厚いと中間層の剪断強度が低下するからである。   As a method for forming the intermediate layer on the surface of the substrate, a slurry spraying method using compressed air is effective, and this method is applied to a thickness of 0.02 to 0.3 mm, preferably 0.05 to 0.15 mm. The reason for this thickness is that if the thickness is less than 0.02 mm, the continuity of the intermediate layer cannot be maintained, whereas if the thickness is greater than 0.3 mm, the shear strength of the intermediate layer decreases.

次に、本発明のもう一つの特徴的な構成であるトップコートについて説明する。このトップコートは、繊維強化プラスチック基材の表面に、上述したようにして、中間層を設けた後、使途によって求められる所望の表面特性、即ち、プラスチック基材の表面をある種の金属的性質を付与する役目を担って行われるものである。即ち、トップコート材料としては、FeやAl,Ni,Cu,Znおよび少なくともこれらの金属を含む合金のうちから選ばれる1種以上が用いられる。これらの金属,合金は、それぞれが有する固有の特性、即ち、耐摩耗性、耐熱性、耐食性,導電性,熱伝導性,磁性を有効に活用するために用いられる。また、かかる金属および合金は、セラミックやサーメットに比較して表面加工、例えば、旋削,研削などにより、高精度な仕上げ加工が容易である。従って、要求表面特性に対して十分な品質を有する製品が得られる。なお、これら材料は、プラズマ炎溶射,ガス燃焼炎溶射,アーク炎溶射などのプロセスにより、基材表面に溶射して被覆するが、これらの方法は、用途や求められる特性に応じて任意の方法が採用できる。また、このトップコートの膜厚は、特に制限を受けないが、工業的には数百μmから数mm程度とすることが一般的である。   Next, a top coat which is another characteristic configuration of the present invention will be described. This top coat is formed on the surface of the fiber reinforced plastic base material, as described above, and after the intermediate layer is formed, the desired surface characteristics required by the intended use, that is, the surface of the plastic base material has certain metallic properties. It is performed with the role of granting. That is, as the topcoat material, at least one selected from Fe, Al, Ni, Cu, Zn and an alloy containing at least these metals is used. These metals and alloys are used in order to make effective use of the inherent characteristics of each metal, that is, wear resistance, heat resistance, corrosion resistance, conductivity, thermal conductivity, and magnetism. In addition, such metals and alloys are easy to finish with high precision by surface processing, for example, turning, grinding, etc., compared to ceramics and cermets. Therefore, a product having sufficient quality for the required surface characteristics can be obtained. These materials are coated by spraying on the surface of the substrate by a process such as plasma flame spraying, gas combustion flame spraying, arc flame spraying, etc. These methods are arbitrary methods depending on applications and required characteristics. Can be adopted. The film thickness of the top coat is not particularly limited, but is generally about several hundred μm to several mm industrially.

上記トップコートは、溶射プロセス,溶射材料,溶射条件により異なるが、例えば、Al溶射皮膜の場合、仕上げ加工後、5μmRy程度の鏡面とすることが可能である。なお、溶射後の表面粗さは使用目的に応じて異なる。   The top coat varies depending on the thermal spraying process, the thermal spray material, and the thermal spraying conditions. For example, in the case of an Al thermal spray coating, it can have a mirror surface of about 5 μm Ry after finishing. The surface roughness after thermal spraying varies depending on the purpose of use.

実施例1
この実施例は、本発明を炭素繊維強化プラスチックで製作された銅箔製造用搬送ロールに適用した例である。
近年、IT産業分野では各種基板に銅箔が用いられる。この銅箔は、圧延法あるいは電解法で製造され,その箔の厚さも最近では5μm程度まで薄膜化している。しかし、このような箔を製造する設備、箔の損傷を防止する目的で搬送ロールの軽量化および低慣性モーメント化が要求されている。
そこで発明者等は、この搬送ロール本体を炭素繊維強化プラスチック基材で製作し、その表面を銅箔搬送に適したものにするようにした。
Example 1
This example is an example in which the present invention is applied to a copper foil manufacturing transport roll made of carbon fiber reinforced plastic.
In recent years, copper foil is used for various substrates in the IT industry. This copper foil is manufactured by a rolling method or an electrolytic method, and the thickness of the foil has recently been reduced to about 5 μm. However, the facilities for manufacturing such foils and the purpose of preventing the foil from being damaged are required to reduce the weight of the transport roll and to reduce the moment of inertia.
Therefore, the inventors made this transport roll body from a carbon fiber reinforced plastic base material, and made the surface suitable for copper foil transport.

搬送ロールは、150φ×800mmlのものとし、ロール本体を炭素繊維強化プラスチック、すなわちCFRPを使用しプリプレグ方式でロール本体を製作した。
上記基材は、その円筒度,母線真直度を修正するために、予め円筒研削盤を用いて被溶射面を研削処理した。そして、中間層の施工に先立つ前処理として、被処理面を白色アルミナ質人造研削材(WA)用いて軽い粗面化処理を施した。その後、該被処理面に、エポキシ樹脂70wt%とSiO2粒子(30μm)30wt%との混合物を、圧縮空気駆動ガンを使って、厚さ:0.03〜0.05mmとなるように吹き付けて、中間層を形成した。次に、中間層の施工を完了した基材を、電気炉内に装入し、大気下80℃,2時間の焼成を実施した。その後、プラズマ溶射装置で、Niを1.0 mmの厚さに溶射被覆して最外層(トップコート)とした。その後さらに、溶射被覆表面を旋削加工し、所定のロール外径に仕上げた。この時の表面粗さ(目標表面粗さ3.0μmRy)は、約1.0μmRyであった。ロール溶射時に同時溶射した試験片の断面組織を図2に示す。尚、図2の組織は溶射後平面加工後のサンプルを観察したものである。
The transport roll was 150φ × 800 mml, and the roll body was manufactured by a prepreg method using carbon fiber reinforced plastic, that is, CFRP.
In order to correct the cylindricality and generatrix straightness of the base material, the sprayed surface was previously ground using a cylindrical grinder. And as a pretreatment prior to the construction of the intermediate layer, the surface to be treated was subjected to a light roughening treatment using a white alumina artificial abrasive (WA). Thereafter, a mixture of 70 wt% epoxy resin and 30 wt% SiO 2 particles (30 μm) is sprayed on the surface to be treated using a compressed air drive gun so that the thickness becomes 0.03 to 0.05 mm. Formed. Next, the base material on which the construction of the intermediate layer was completed was placed in an electric furnace and baked in the atmosphere at 80 ° C. for 2 hours. Thereafter, Ni was spray-coated to a thickness of 1.0 mm with a plasma spraying apparatus to form an outermost layer (top coat). Thereafter, the surface of the thermal spray coating was further turned to finish a predetermined roll outer diameter. The surface roughness at this time (target surface roughness 3.0 μmRy) was about 1.0 μmRy. FIG. 2 shows a cross-sectional structure of the test piece that was simultaneously sprayed during roll spraying. In addition, the structure | tissue of FIG. 2 observes the sample after planarization after spraying.

このようにして製作した炭素繊維強化プラスチック+Ni溶射ロールについて、従来法で製作された炭素鋼鋼管+Crめっきの鉄芯ロールと比較して実操業に供したところ、鉄芯ロールではロール自体の質量、即ち慣性モーメントが大きいために10μm厚の銅箔との間で、すべりが発生して製品に疵が発生した。しかし、本願発明に適合するプラスチック基材ロールでは、その慣性モーメントが小さいこと、およびロール基材表面に被成したトップコートの素地との相性(中間層を有するため)にその表面特性の劣化や破損がなく、長期に安定した操業が可能であった。   The carbon fiber reinforced plastic and Ni sprayed roll produced in this way were put into actual operation in comparison with the carbon steel pipe and Cr-plated iron core roll produced by the conventional method. In other words, due to the large moment of inertia, slip occurred between the copper foil with a thickness of 10 μm and wrinkles occurred in the product. However, the plastic base roll suitable for the present invention has a small moment of inertia and compatibility with the base material of the top coat formed on the surface of the roll base (because it has an intermediate layer). There was no damage and stable operation was possible for a long time.

実施例2
この実施例は、炭素繊維強化プラスチックで製作された液晶用ガラス基板の検査や表面調整用定盤製造装置用部材に適用した例である。
近年、液晶分野では液晶用ガラス基板が大型化する傾向にある。大型化に伴い、関連設備も大型化となり検査用あるいはガラス基板表面調整用定盤も大型となってきている。もともと、この分野での前記基板は高い精度のものが求められているが、大型になるに従い、金属製基板では撓みを含めて対応が困難となっている。このような課題に対して、炭素繊維強化プラスチック基材を用いた基板は非常に有利である。
Example 2
This embodiment is an example applied to a member for an apparatus for producing a surface plate for inspection and surface adjustment of a glass substrate for liquid crystal made of carbon fiber reinforced plastic.
In recent years, in the liquid crystal field, a glass substrate for liquid crystal tends to be enlarged. With the increase in size, related equipment has also increased in size, and the surface plate for inspection or glass substrate surface adjustment has also increased in size. Originally, the substrate in this field is required to have a high accuracy, but as the substrate becomes larger, it is difficult to cope with the metal substrate including bending. For such problems, a substrate using a carbon fiber reinforced plastic substrate is very advantageous.

そこで発明者等は、前記基板本体を、炭素繊維強化プラスチック基材で製作し、この基材表面に液晶ガラス基板製造過程におけるの表面特性に必要な性質(金属質表面)を付与することにした。   Therefore, the inventors made the substrate body with a carbon fiber reinforced plastic base material and gave the surface of the base material with a property (metal surface) necessary for the surface characteristics in the liquid crystal glass substrate manufacturing process. .

基板としては、2000×2000 mmの大きさのものを炭素繊維強化プラスチック、すなわちCFRPを使用しプリプレグ方式で製作したシートをベースとして基板本体を製作した。
上記基材は、その平面度を修正するために、予め円筒研削盤を用いて被溶射面を研削処理した。そして、中間層の施工に先立つ前処理として、被処理面を白色アルミナ質人造研削材(WA)を用いて軽い粗面化処理を施した。その後、該被処理面にエポキシ樹脂70wt%とSiO2粒子(30μm)30wt%との混合物を、圧縮空気駆動ガンを使って、厚さ:0.10〜0.15mmとなるように吹き付けて、中間層を形成した。次に、中間層の施工を完了した基材を電気炉内に装入し、大気下80℃,2時間の焼成を実施した。その後、アーク炎溶射装置で、Alを約1.0 mmの厚さに溶射被覆して、最外層(トップコート)とした。その後さらに、溶射被覆表面を切削加工し、所定の表面状態に仕上げた。この時の表面粗さ(目標表面粗さ5μmRy以下)は約4μmRyであった。仕上げ後の表面粗さ測定結果を図3に示す。
As the substrate, a substrate body was manufactured based on a sheet manufactured by a prepreg method using carbon fiber reinforced plastic, that is, CFRP, having a size of 2000 × 2000 mm.
In order to correct the flatness of the substrate, the sprayed surface was previously ground using a cylindrical grinder. Then, as a pretreatment prior to the construction of the intermediate layer, the surface to be treated was subjected to a light roughening treatment using a white alumina artificial grinding material (WA). After that, a mixture of 70 wt% epoxy resin and 30 wt% SiO 2 particles (30 μm) was sprayed on the surface to be treated using a compressed air drive gun to a thickness of 0.10 to 0.15 mm, and the intermediate layer was Formed. Next, the base material on which the construction of the intermediate layer was completed was placed in an electric furnace and baked at 80 ° C. for 2 hours in the atmosphere. Thereafter, Al was thermally sprayed to a thickness of about 1.0 mm with an arc flame spraying apparatus to form an outermost layer (top coat). Thereafter, the surface of the thermal spray coating was further cut into a predetermined surface state. The surface roughness at this time (target surface roughness 5 μmRy or less) was about 4 μmRy. The surface roughness measurement results after finishing are shown in FIG.

このようにして製作した炭素繊維強化プラスチック+Al溶射基板(本発明適合品)は、従来より製作されている石基板あるいは金属基板に比べて撓みが少なく、かつ、軽量で熱的変化が少なく、使用中も安定しており、また、切削加工面も非常に規則正しい加工目を有していることから、異物付着はもちろん、皮膜の脱落もなく、安定した操業が可能であった。   The carbon fiber reinforced plastic + Al sprayed substrate manufactured in this way (the product conforming to the present invention) is lighter and less thermally changed than conventional stone substrates or metal substrates. The inside was also stable, and the cut surface had a very regular machined surface, so that stable operation was possible with no foreign matter adhering or falling off of the film.

本発明の技術は、航空機や自動車などの各種産業機械部品用材料,液晶,半導体製造装置用部材,釣り竿やバットなどのスポーツ用具用材料などの分野において広く使用されるものである。   The technology of the present invention is widely used in various fields such as materials for various industrial machine parts such as airplanes and automobiles, liquid crystals, members for semiconductor manufacturing equipment, and sports equipment materials such as fishing rods and bats.

本発明にかかる皮膜積層接着構造を示す模式図である。It is a schematic diagram which shows the film | membrane laminated adhesion structure concerning this invention. 本発明にかかる多層溶射皮膜断面の光学顕微鏡写真である。It is an optical microscope photograph of the multilayer sprayed coating cross section concerning this invention. 本発明に適合する実施例における溶射皮膜旋削加工面の表面粗さチャートである。It is a surface roughness chart of the sprayed coating turning surface in the Example suitable for this invention.

Claims (3)

繊維強化プラスチック基材の表面に、この基材を構成している樹脂と同種の樹脂と、Al2O3,ZrO2,Y2O3,SiO2,TiO2,MgOおよびCr2O3のうちから選ばれる1種以上の酸化物、および/またはWC,Cr3C2,TiCおよびNbCのうちから選ばれる1種以上の炭化物からなるセラミック粒子との混合物からなる中間層を介して、FeやAl,Ni,Cu,Zn等の金属またはそれらの合金の溶射被覆層からなるトップコートを形成してなる、プラスチック基複合材料。 On the surface of the fiber reinforced plastic base material, the same kind of resin as that constituting the base material, Al 2 O 3 , ZrO 2 , Y 2 O 3 , SiO 2 , TiO 2 , MgO and Cr 2 O 3 Fe through an intermediate layer composed of a mixture of one or more oxides selected from among them and / or ceramic particles composed of one or more carbides selected from WC, Cr 3 C 2 , TiC and NbC. A plastic matrix composite formed by forming a topcoat consisting of a thermal spray coating layer of a metal such as Al, Ni, Cu, Zn or an alloy thereof. 繊維強化プラスチック基材の表面に、この基材を構成している樹脂と同種の樹脂と、Al2O3,ZrO2,Y2O3,SiO2,TiO2,MgOおよびCr2O3のうちから選ばれる1種以上の酸化物、および/またはWC,Cr3C2,TiCおよびNbCのうちから選ばれる1種以上の炭化物からなるセラミック粒子との混合物を、粉体吹き付け法によって被覆して中間層を形成し、次いで、この中間層の上に、FeやAl,Ni,Cu,Zn等の金属またはそれらの合金を溶射してトップコートを積層形成することを特徴とするプラスチック基複合材料の製造方法。 On the surface of the fiber reinforced plastic base material, the same kind of resin as that constituting the base material, Al 2 O 3 , ZrO 2 , Y 2 O 3 , SiO 2 , TiO 2 , MgO and Cr 2 O 3 A powder spraying method is used to coat a mixture of one or more oxides selected from among them and / or ceramic particles made of one or more carbides selected from WC, Cr 3 C 2 , TiC and NbC. An intermediate layer is formed on the intermediate layer, and then a top coat is laminated on the intermediate layer by spraying a metal such as Fe, Al, Ni, Cu, Zn, or an alloy thereof. Material manufacturing method. 上記中間層は、圧縮空気によるスラリー吹き付け法を採用して形成し、さらに必要に応じてこの中間層を大気下において70〜120℃で焼成し、一方、前記トップコートは、プラズマ溶射,炭化水素または水素燃料燃焼炎溶射,アーク炎溶射のいずれかの溶射法を適用して形成することを特徴とする請求項2に記載の製造方法。
The intermediate layer is formed by adopting a slurry spray method using compressed air, and if necessary, the intermediate layer is fired at 70 to 120 ° C. in the atmosphere, while the top coat is formed by plasma spraying, hydrocarbons. Alternatively, the manufacturing method according to claim 2, wherein the thermal spraying method is one of hydrogen fuel combustion flame spraying and arc flame spraying.
JP2004330684A 2004-11-15 2004-11-15 Plastic-based composite material and its manufacturing method Pending JP2006137143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330684A JP2006137143A (en) 2004-11-15 2004-11-15 Plastic-based composite material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330684A JP2006137143A (en) 2004-11-15 2004-11-15 Plastic-based composite material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006137143A true JP2006137143A (en) 2006-06-01

Family

ID=36618251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330684A Pending JP2006137143A (en) 2004-11-15 2004-11-15 Plastic-based composite material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006137143A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511751A (en) * 2005-10-19 2009-03-19 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Material coating method
GB2486427A (en) * 2010-12-14 2012-06-20 Converteam Technology Ltd A layered material for a vacuum chamber
CN102899662A (en) * 2012-09-23 2013-01-30 湖北汽车工业学院 Preparation method of (Cr, fe)7C3columnar carbide reinforced Fe-based wear-resistant coating
WO2014115251A1 (en) * 2013-01-23 2014-07-31 株式会社 日立製作所 Metal covered resin structure body and method for manufacturing same
JP2015221564A (en) * 2014-05-20 2015-12-10 ザ・ボーイング・カンパニーTheBoeing Company Integrated wiring system for composite structures
WO2016140241A1 (en) * 2015-03-04 2016-09-09 トーカロ株式会社 Fiber-reinforced resin structure and method for producing fiber-reinforced resin structure
CN108559941A (en) * 2018-04-27 2018-09-21 齐鲁工业大学 High-densit gradient metal ceramic coating in a kind of stainless steel mobile muffler surface and preparation method thereof
WO2020202461A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite
WO2020202460A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite
US11493020B2 (en) 2018-11-16 2022-11-08 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and method for manufacturing the same
CN115925434A (en) * 2022-12-20 2023-04-07 湖南金博碳素股份有限公司 Tungsten carbide and chromium carbide composite material, preparation method and application thereof, and cutter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011353A (en) * 1983-06-17 1985-01-21 三菱レイヨン株式会社 Novel composite molded shape
JPS60212348A (en) * 1984-04-09 1985-10-24 三菱レイヨン株式会社 Manufacture of composite molded shape
JP2001240953A (en) * 2000-03-02 2001-09-04 Tocalo Co Ltd Plastic base composite material excellent in surface characteristic such as wear resistance, and its manufacturing method
JP2001270015A (en) * 2000-03-23 2001-10-02 Tocalo Co Ltd Plastic base composite material excellent in abrasion resistance and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011353A (en) * 1983-06-17 1985-01-21 三菱レイヨン株式会社 Novel composite molded shape
JPS60212348A (en) * 1984-04-09 1985-10-24 三菱レイヨン株式会社 Manufacture of composite molded shape
JP2001240953A (en) * 2000-03-02 2001-09-04 Tocalo Co Ltd Plastic base composite material excellent in surface characteristic such as wear resistance, and its manufacturing method
JP2001270015A (en) * 2000-03-23 2001-10-02 Tocalo Co Ltd Plastic base composite material excellent in abrasion resistance and method for manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511751A (en) * 2005-10-19 2009-03-19 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Material coating method
GB2486427A (en) * 2010-12-14 2012-06-20 Converteam Technology Ltd A layered material for a vacuum chamber
GB2486427B (en) * 2010-12-14 2013-08-07 Converteam Technology Ltd A layered material for a vacuum chamber
CN102899662A (en) * 2012-09-23 2013-01-30 湖北汽车工业学院 Preparation method of (Cr, fe)7C3columnar carbide reinforced Fe-based wear-resistant coating
WO2014115251A1 (en) * 2013-01-23 2014-07-31 株式会社 日立製作所 Metal covered resin structure body and method for manufacturing same
JPWO2014115251A1 (en) * 2013-01-23 2017-01-19 株式会社日立製作所 Metal-coated resin structure and its manufacturing method
JP2015221564A (en) * 2014-05-20 2015-12-10 ザ・ボーイング・カンパニーTheBoeing Company Integrated wiring system for composite structures
US10064303B2 (en) 2014-05-20 2018-08-28 The Boeing Company Integrated wiring system for composite structures
WO2016140241A1 (en) * 2015-03-04 2016-09-09 トーカロ株式会社 Fiber-reinforced resin structure and method for producing fiber-reinforced resin structure
JPWO2016140241A1 (en) * 2015-03-04 2017-10-12 トーカロ株式会社 Fiber reinforced resin structure and method for producing fiber reinforced resin structure
CN108559941A (en) * 2018-04-27 2018-09-21 齐鲁工业大学 High-densit gradient metal ceramic coating in a kind of stainless steel mobile muffler surface and preparation method thereof
US11493020B2 (en) 2018-11-16 2022-11-08 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and method for manufacturing the same
US11891976B2 (en) 2018-11-16 2024-02-06 Mitsubishi Heavy Industries, Ltd. Wind turbine blade and method for manufacturing the same
WO2020202461A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite
WO2020202460A1 (en) * 2019-04-02 2020-10-08 日本製鉄株式会社 Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite
JPWO2020202461A1 (en) * 2019-04-02 2020-10-08
JP7173299B2 (en) 2019-04-02 2022-11-16 日本製鉄株式会社 Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
US11969969B2 (en) 2019-04-02 2024-04-30 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite
CN115925434A (en) * 2022-12-20 2023-04-07 湖南金博碳素股份有限公司 Tungsten carbide and chromium carbide composite material, preparation method and application thereof, and cutter
CN115925434B (en) * 2022-12-20 2023-07-25 湖南金博碳素股份有限公司 Tungsten carbide and chromium carbide composite material, preparation method and application thereof, and cutter

Similar Documents

Publication Publication Date Title
JP4436954B2 (en) Plastic matrix composite material excellent in surface properties such as wear resistance and method for producing the same
US6240639B1 (en) Fluid metering roll and method of making the same
RU2423543C2 (en) Procedure for application of coating on part
CN109321861B (en) Corrosion-resistant and wear-resistant coating with lamellar and columnar composite structure and preparation method thereof
JP2006137143A (en) Plastic-based composite material and its manufacturing method
JP6006513B2 (en) Abrasion resistant, heat resistant transport roll and method for producing the same
WO2007023971A1 (en) Structural member coated with spray coating film excellent in thermal emission properties and the like, and method for production thereof
Mohammadi et al. Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications
JP4436957B2 (en) Plastic matrix composite material excellent in wear resistance and method for producing the same
CN105886997B (en) A kind of printing machine anilox roll preparation method based on plasma spray technology
Champagne et al. Magnesium repair by cold spray
JP2004306120A (en) Mold for continuous casting and method for manufacturing and repairing the same
JP6497759B2 (en) Fiber reinforced resin structure and method for producing fiber reinforced resin structure
Zafar et al. Microstructure and mechanical properties of microwave post-processed Ni coating
JP2012091484A (en) Fiber-reinforced plastic-based composite material and method for producing the same
Zhou et al. Surface modification of plasma spraying Al2O3–13 wt% TiO2 coating by laser remelting technique
KR100797827B1 (en) Method of coating on carbon fiber-epoxy composite
JP4206012B2 (en) Formation method of underlayer for thermal spraying of carbon fiber reinforced plastic material surface
Tailor et al. Microstructure evolution and mechanical properties of Al2O3-40% TiO2 coating by Hybrid-Low Velocity OxyFuel process
JP2007153656A (en) Glass carrying member and method for producing the same
Simunovic Thermal spraying
Prakash et al. Laser Microtexturing of NiCrAlY Coated Nickel-based Superalloy for Improved Adhesion Bond Strength.
JP2006150595A (en) Carbon roll and its manufacturing method
CN115572974B (en) Composite coating and preparation method thereof
CN103448321A (en) Fluororesin composite material anchored by spray coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831