WO2020202460A1 - Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite - Google Patents

Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite Download PDF

Info

Publication number
WO2020202460A1
WO2020202460A1 PCT/JP2019/014606 JP2019014606W WO2020202460A1 WO 2020202460 A1 WO2020202460 A1 WO 2020202460A1 JP 2019014606 W JP2019014606 W JP 2019014606W WO 2020202460 A1 WO2020202460 A1 WO 2020202460A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal
carbon fiber
fiber reinforced
film layer
Prior art date
Application number
PCT/JP2019/014606
Other languages
French (fr)
Japanese (ja)
Inventor
植田 浩平
保明 河村
真純 郡
雅晴 茨木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021511825A priority Critical patent/JP7147964B2/en
Priority to PCT/JP2019/014606 priority patent/WO2020202460A1/en
Publication of WO2020202460A1 publication Critical patent/WO2020202460A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/40Applying molten plastics, e.g. hot melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients

Definitions

  • the present invention relates to a method for producing a metal-carbon fiber reinforced resin material composite and a metal-carbon fiber reinforced resin material composite.
  • Fiber reinforced plastic which is a composite of reinforced fibers (for example, glass fiber, carbon fiber, etc.) contained in a matrix resin, is lightweight and has excellent tensile strength and workability. Therefore, it is widely used from the consumer field to industrial applications.
  • FRP Fiber Reinforced Plastics
  • the application of FRP to automobile parts is being considered, focusing on the lightness, tensile strength, workability, etc. of FRP. ..
  • CFRP Carbon Fiber Reinforced Plastics
  • CFRP matrix resin is generally a thermosetting resin such as an epoxy resin and therefore has brittleness, so that it may break brittlely when deformed. Further, since CFRP using a thermosetting resin as a matrix resin does not undergo plastic deformation, it cannot be bent once it is cured. Further, CFRP is generally expensive and causes an increase in cost of various members such as automobile members.
  • the carbon fiber in CFRP is a good conductor. Therefore, a phenomenon in which a metal member in contact with CFRP becomes electrically conductive and corrodes due to electrolytic corrosion (contact corrosion of dissimilar materials) may occur.
  • Several proposals have been made to prevent such contact corrosion of dissimilar materials.
  • Patent Document 1 proposes a carbon fiber reinforced resin molded product in which a particulate or oily silicone compound is dispersed in a matrix resin of a carbon fiber reinforced resin molded product, which is used in contact with a metal part. ..
  • Patent Document 2 proposes a fiber-reinforced resin member in which a non-conductive sleeve and a non-conductive sheet such as a glass fiber reinforced resin are arranged between a metal fastening member and a CFRP laminated plate.
  • Patent Document 3 proposes a fastening structure of a carbon fiber reinforced resin material in which a carbon fiber reinforced resin material and a contact portion of a metal collar are bonded to each other via an insulating adhesive.
  • the molded product described in Patent Document 1 is obtained by imparting water repellency to the surface of the carbon fiber reinforced resin molded product with silicone, and does not prevent conduction between the carbon fiber and the metal part. Therefore, it is difficult to sufficiently suppress contact corrosion of dissimilar materials.
  • the techniques according to Patent Documents 2 and 3 are only related to joining a metal member and a carbon fiber reinforced resin material, and cannot be simply applied to a metal-carbon fiber reinforced resin material composite.
  • the bonded portion between the metal of the metal-carbon fiber reinforced resin material composite and the carbon fiber reinforced resin material needs to be bonded by a relatively thin resin layer in order to maintain the integrity of the composite. Therefore, it is difficult to arrange a relatively thick glass fiber reinforced resin as described in Patent Document 2 in the composite. Further, it is not clear whether the contact corrosion of different materials can be sufficiently suppressed when the insulating resin layer as described in Patent Document 3 is arranged relatively thinly.
  • the present invention has been made in view of the above problems, and corrosion of the metal member, particularly contact corrosion of different materials, is suppressed, and the adhesion between the metal member and the carbon fiber reinforced resin material is excellent. It is an object of the present invention to provide a new and improved method for producing a metal-carbon fiber reinforced resin material composite and a metal-carbon fiber reinforced resin material composite.
  • the present inventors have an insulating property and a rust preventive property in the resin film layer arranged between the metal member and the carbon fiber reinforced resin material.
  • the inorganic salt particles containing a predetermined inorganic salt it is possible to prevent the carbon fibers contained in the carbon fiber reinforced resin material from penetrating the resin film layer and coming into contact with the metal member, and in a corrosive environment. It was found that the rust-preventive inorganic salt particles were eluted to greatly improve the corrosion resistance.
  • the present invention has been made based on such findings, and the gist thereof is as follows.
  • the resin film layer a powder resistivity at 23 ⁇ 27 ° C. is the 7.0 ⁇ 10 7 ⁇ cm greater, and has a rust function, Cr, one or more elements selected from P and V It contains inorganic salt particles composed of inorganic salts, and further contains a binder resin.
  • the inorganic salt includes chromate ion, dichromate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, diphosphate ion, triphosphate ion, orthovanadate ion, and metavanadate ion.
  • the metal-carbon fiber reinforced resin material composite according to (1) which comprises a salt of one or more ions selected from the group consisting of.
  • the inorganic salt comprises one or more selected from the group consisting of aluminum dihydrogen tripolyphosphate, strontium chromate, potassium chromate, calcium chromate, magnesium vanadate, potassium vanadate, and calcium vanadate. , (1) or (2).
  • the metal-carbon fiber reinforced resin material composite The metal-carbon fiber reinforced resin material composite.
  • the metal-carbon fiber reinforced resin material composite according to any one of (1) to (8), wherein the metal member is a steel material or a plated steel material.
  • a step of thermocompression bonding a metal member provided with a resin film layer on at least a part of the surface and a carbon fiber reinforced resin material via the resin film layer is provided.
  • the carbon fiber reinforced resin material includes a matrix resin and a carbon fiber material present in the matrix resin.
  • the resin film layer, a powder resistivity at 23 ⁇ 27 ° C. is the 7.0 ⁇ 10 7 ⁇ cm greater, and has a rust function, Cr, one or more elements selected from P and V Contains inorganic salt particles composed of inorganic salts, and further contains a binder resin.
  • a method for producing a metal-carbon fiber reinforced resin material composite wherein the volume fraction of the inorganic salt particles in the resin film layer is 5.0% or more and 40.0% or less.
  • a new and improved metal that suppresses corrosion of metal members, particularly contact corrosion of dissimilar materials, and has excellent adhesion between metal members and carbon fiber reinforced resin materials.
  • -A method for producing a carbon fiber reinforced resin material composite and a metal-carbon fiber reinforced resin material composite can be provided.
  • FIG. 1 is a schematic view showing a cross-sectional structure of a metal-carbon fiber reinforced resin material composite 1 as an example of the metal-carbon fiber reinforced resin material composite according to the present embodiment in the stacking direction.
  • the metal-carbon fiber reinforced resin material (CFRP) composite 1 includes a metal member 11, a carbon fiber reinforced resin material (CFRP layer) 12, and a resin film layer 13.
  • the metal member 11 and the CFRP layer 12 are composited via the resin film layer 13.
  • composite means that the metal member 11 and the CFRP layer 12 are bonded (bonded) to each other via the resin film layer 13 and integrated.
  • integration means that the metal member 11, the CFRP layer 12, and the resin film layer 13 move as one when processed or deformed.
  • the resin film layer 13 the powder resistivity at 23 ⁇ 27 ° C. is 7.0 ⁇ 10 7 ⁇ cm than has the anti-corrosion function, Cr, is selected from P and V It contains inorganic salt particles 131 composed of inorganic salts of one or more elements (hereinafter, also simply referred to as “inorganic salt particles 131”), and the volume resistivity of the inorganic salt particles 131 is 100, which is the total volume of the resin film layer 13. When it is%, it is 5.0% or more and 40.0% or less. As a result, the corrosion resistance of the metal-CFRP composite 1 is improved, particularly with respect to contact corrosion of different materials.
  • the inorganic salt particles 131 can surely prevent the contact corrosion between the metal member 11 and the carbon fiber material 121. Further, when the volume fraction of the inorganic salt particles 131 is 40.0% or less, the cohesive failure of the resin film layer 13 is prevented, and the adhesion between the resin film layer 13 and the CFRP layer 12 is sufficiently excellent. ..
  • the volume fraction of the inorganic salt particles 131 in the resin film layer 13 is the specific gravity of the film resin by determining the solid content mass ratio of the inorganic salt particles 131 added when the resin film layer 13 is produced in the resin film layer 13. And the volume fraction can be calculated from the specific gravity of the particles. Further, the volume ratio of the inorganic salt particles 131 in the resin film layer 13 is analyzed by analyzing an arbitrary cross section with an electrolytic emission type electron probe microanalyzer (FE-EPMA: Electron Probe Micro Analyzer), and the surface of the metal component contained in the particles. The area ratio obtained by image analysis using the distribution photograph can be used as the volume ratio of the particles in the resin film layer.
  • FE-EPMA Electron Probe Micro Analyzer
  • the material, shape, thickness, and the like of the metal member 11 are not particularly limited as long as they can be molded by a press or the like, but the shape is preferably a thin plate.
  • Examples of the material of the metal member 11 include iron, titanium, aluminum, magnesium, and alloys thereof.
  • examples of alloys include iron-based alloys (including stainless steel), Ti-based alloys, Al-based alloys, Mg alloys, and the like.
  • the material of the metal member 11 is preferably a steel material, an iron-based alloy, titanium and aluminum, and more preferably a steel material having a higher tensile strength than other metal types.
  • steel materials examples include cold-rolled steel sheets for general use, drawing or ultra-deep drawing, which are standardized by the Japan Industrial Standards (JIS) as thin plate-shaped steel sheets used for automobiles, and workability for automobiles.
  • JIS Japan Industrial Standards
  • steel materials such as cold-rolled high-tensile steel sheets, hot-rolled steel sheets for general use and processing, hot-rolled steel sheets for automobile structures, and workable hot-rolled high-tensile steel sheets for automobiles, for general structures and machinery.
  • Carbon steel, alloy steel, high tension steel and the like used for structural purposes can also be mentioned as steel materials not limited to thin plates.
  • any surface treatment may be applied to the steel material.
  • the surface treatment refers to, for example, various plating treatments such as zinc plating and aluminum plating, chemical conversion treatments such as chromate treatment and non-chromate treatment, and chemical surfaces such as physical or chemical etching such as sandblasting. Roughing treatment can be mentioned, but is not limited to these.
  • the plating may be alloyed or a plurality of types of surface treatments may be applied.
  • the surface treatment it is preferable that at least a treatment for the purpose of imparting rust prevention is performed.
  • the plated steel material that has been plated is preferable because it has excellent corrosion resistance.
  • Particularly preferable plated steel materials as the metal member 11 include hot-dip galvanized steel sheets, galvanized galvanized steel sheets, alloyed hot-dip galvanized steel sheets obtained by heat-treating these and alloying them by diffusing Fe during zinc plating, and electrogalvanized steel sheets.
  • Hot-dip Zn-Al alloy-plated steel sheets represented by steel sheets, electric Zn-Ni plated steel sheets, hot-dip Zn-5% Al alloy-plated steel sheets and hot-dip 55% Al-Zn alloy-plated steel sheets, hot-dip Zn-1 to 12% Al-1 Hot-dip Zn-Al-Mg alloy-plated steel sheet represented by ⁇ 4% Mg alloy-plated steel sheet, hot-dip 55% Al-Zn-0.1 ⁇ 3% Mg alloy-plated steel sheet, Ni-plated steel sheet, or heat-treated and Ni-plated. Examples thereof include alloyed Ni-plated steel sheets, Al-plated steel sheets, tin-plated steel sheets, and chrome-plated steel sheets that are alloyed by diffusing Fe.
  • the galvanized steel sheet has excellent corrosion resistance and is suitable. Further, the Zn—Al—Mg alloy plated steel sheet is more suitable because it has further excellent corrosion resistance.
  • the surface of the metal member 11 is treated with a primer in order to enhance the adhesiveness with the CFRP layer 12.
  • a primer for example, a silane coupling agent or a triazine thiol derivative is preferable.
  • silane coupling agents as silane coupling agents, for example, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-amino Ethyl) Aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxy Propylmethyldimethoxysilane, ⁇ -methacryloxypropyltriethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • propyltriethoxysilane particularly improves the process adhesion of the coating. Further, when a triethoxy type silane coupling agent is used, the storage stability of the surface treatment agent (primer) can be improved. It is considered that this is because triethoxysilane is relatively stable in an aqueous solution and the polymerization rate is slow.
  • the silane coupling agent may be used alone or in combination of two or more. Examples of triazine thiol derivatives include 6-diallylamino-2,4-dithiol-1,3,5-triazine, 6-methoxy-2,4-dithiol-1,3,5-triazine monosodium and 6-propyl-2. , 4-Dithiolamino-1,3,5-triazine monosodium and 2,4,6-trithiol-1,3,5-triazine and the like are exemplified.
  • CFRP layer 12 The CFRP layer 12 has a matrix resin 123 and a carbon fiber material 121 contained in the matrix resin 123 and compounded.
  • the carbon fiber material 121 is not particularly limited, but for example, either a PAN type or a pitch type can be used and may be selected according to the purpose and application. Further, as the carbon fiber material 121, the above-mentioned fibers may be used alone or in combination of two or more.
  • the reinforcing fiber base material used as the base material of the carbon fiber material 121 includes, for example, a non-woven fabric base material using chopped fiber, a cloth material using continuous fiber, and a unidirectional reinforcing fiber base material. (UD material) or the like can be used. From the viewpoint of the reinforcing effect, it is preferable to use a cloth material or a UD material as the reinforcing fiber base material.
  • the matrix resin 123 can be a solidified product or a cured product of the resin composition.
  • solidified simply means that the resin component itself is solidified
  • cured product means that the resin component is cured by containing various curing agents. To do.
  • the curing agent that can be contained in the cured product also includes a cross-linking agent as described later, and the above-mentioned "cured product” includes a cross-linked cured product formed by cross-linking.
  • thermosetting resin a thermosetting resin
  • thermoplastic resin a thermoplastic resin
  • the resin composition contains the thermoplastic resin as a main component.
  • the type of thermoplastic resin that can be used for the matrix resin 123 is not particularly limited, and for example, phenoxy resin, polyolefin and its acid-modified product, polystyrene, polymethylmethacrylate, AS resin, ABS resin, polyethylene terephthalate and polybutylene terephthalate.
  • Thermoplastic aromatic polyesters such as polyester, polycarbonate, polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polyphenylene ether and its modifications, polyphenylene sulfide, polyoxymethylene, polyarylate, polyetherketone, polyetheretherketone , Polyetherketone Ketone, and one or more selected from nylon and the like can be used.
  • the "thermoplastic resin” also includes a resin that can be a crosslinked cured product in the second cured state described later. Further, as the thermosetting resin that can be used for the matrix resin 123, for example, one or more selected from epoxy resin, vinyl ester resin, phenol resin, and urethane resin can be used.
  • the matrix resin 123 contains a thermoplastic resin
  • a thermosetting resin is used as the CFRP matrix resin described above, that is, the CFRP layer 12 has brittleness and the tact time is long.
  • Problems such as not being able to bend can be solved.
  • the thermoplastic resin since the thermoplastic resin usually has a high viscosity when melted and cannot be impregnated into the carbon fiber material 121 in a low viscosity state like a thermosetting resin such as an epoxy resin before thermosetting, it cannot be impregnated. Poor impregnation property with respect to the carbon fiber material 121.
  • VF Volume Fraction
  • the CFRP layer 12 it is not possible to increase the reinforcing fiber density (VF: Volume Fraction) in the CFRP layer 12 as in the case where the thermosetting resin is used as the matrix resin 123.
  • the VF can be about 60%, but when a thermoplastic resin such as polypropylene or nylon is used as the matrix resin 123, the VF is 50%. It will be about.
  • the CFRP layer 12 cannot have high heat resistance as in the case where a thermosetting resin such as an epoxy resin is used.
  • a phenoxy resin as the matrix resin 123. Since the phenoxy resin has a molecular structure very similar to that of the epoxy resin, it has the same heat resistance as the epoxy resin, and has good adhesiveness to the metal member 11 and the carbon fiber material 121. Further, by adding a curing component such as an epoxy resin to the phenoxy resin and copolymerizing it, a so-called partially cured resin can be obtained. By using such a partially curable resin as the matrix resin 123, it is possible to obtain a matrix resin having excellent impregnation property into the carbon fiber material 121.
  • thermosetting the cured component in this partially curable resin it is possible to prevent the matrix resin 123 in the CFRP layer 12 from melting or softening when exposed to a high temperature, unlike a normal thermoplastic resin. it can.
  • the amount of the curing component added to the phenoxy resin may be appropriately determined in consideration of the impregnation property of the carbon fiber material 121, the brittleness of the CFRP layer 12, the tact time, the processability, and the like. As described above, by using the phenoxy resin as the matrix resin 123, it is possible to add and control the curing component with a high degree of freedom.
  • the surface of the carbon fiber material 121 is often coated with a sizing agent that is familiar with the epoxy resin. Since the phenoxy resin has a structure very similar to that of the epoxy resin, the sizing agent for the epoxy resin can be used as it is by using the phenoxy resin as the matrix resin 123. Therefore, cost competitiveness can be enhanced.
  • the phenoxy resin has good moldability and is excellent in adhesion to the carbon fiber material 121 and the metal member 11, and by using an acid anhydride, an isocyanate compound, caprolactam, etc. as a cross-linking agent. After molding, it can have the same properties as a highly heat-resistant thermosetting resin. Therefore, in the present embodiment, as the resin component of the matrix resin 123, it is preferable to use a solidified or cured product of a resin composition containing 50 parts by mass or more of phenoxy resin with respect to 100 parts by mass of the resin component. By using such a resin composition, the metal member 11 and the CFRP layer 12 can be firmly bonded to each other.
  • the resin composition contains 55 parts by mass or more of the phenoxy resin out of 100 parts by mass of the resin component.
  • the form of the adhesive resin composition can be, for example, a powder, a liquid such as varnish, or a solid such as a film.
  • the content of the phenoxy resin can be measured by infrared spectroscopy (IR: Infrared spectroscopy) as described below, and when the content ratio of the phenoxy resin is analyzed from the target resin composition by IR. , It can be measured by using a general method of IR analysis such as transmission method and ATR reflection method.
  • IR Infrared spectroscopy
  • the CFRP layer 12 is carved out with a sharp blade or the like, fibers are removed as much as possible with tweezers or the like, and the resin composition to be analyzed is sampled from the CFRP layer 12.
  • a thin film is prepared by crushing the KBr powder and the powder of the resin composition to be analyzed while uniformly mixing them in a mortar or pestle to prepare a sample.
  • a tablet may be prepared by crushing the powder while uniformly mixing it in a mortar as in the transmission method, or a single crystal KBr tablet (for example, diameter 2 mm ⁇ thickness 1.
  • the surface of 8 mm) may be scratched with a pestle or the like, and the powder of the resin composition to be analyzed may be sprinkled and adhered as a sample. In either method, it is important to measure the background of KBr alone before mixing with the resin to be analyzed.
  • the IR measuring device a general commercially available one can be used, but the accuracy is such that the absorption (Absorbance) is in units of 1% and the wave number (Wavenumber) is in units of 1 cm- 1.
  • the apparatus is preferable, and examples thereof include FT / IR-6300 manufactured by JASCO Corporation.
  • the absorption peak of the phenoxy resin for example, 1450 ⁇ 1480cm -1, 1500cm -1 vicinity, since there like 1600 cm -1 vicinity, based on the intensity of the absorption peak, containing It is possible to calculate the quantity.
  • the "phenoxy resin” is a linear polymer obtained from a condensation reaction between a divalent phenol compound and epihalohydrin or a double addition reaction between a divalent phenol compound and a bifunctional epoxy resin, and is an amorphous thermoplastic resin. Is.
  • the phenoxy resin can be obtained in a solution or in a solvent-free manner by a conventionally known method, and can be used in any form of powder, varnish and film.
  • the average molecular weight of the phenoxy resin is, for example, in the range of 10,000 or more and 200,000 or less, preferably in the range of 20,000 or more and 100,000 or less, and more preferably in the mass average molecular weight (Mw). Is in the range of 30,000 or more and 80,000 or less.
  • Mw of the phenoxy resin (A) By setting the Mw of the phenoxy resin (A) to the range of 10,000 or more, the strength of the molded product can be increased, and this effect is to set the Mw to 20,000 or more, further to 30,000 or more. And it will be even higher.
  • Mw of the phenoxy resin By setting the Mw of the phenoxy resin to 200,000 or less, the workability and workability can be improved, and this effect is to set the Mw to 100,000 or less, further to 80,000 or less. And it will be even higher.
  • Mw in this specification is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • the hydroxyl group equivalent (g / eq) of the phenoxy resin used in the present embodiment is, for example, in the range of 50 or more and 1000 or less, preferably in the range of 50 or more and 750 or less, and more preferably 50 or more and 500 or less. It is within the range.
  • the hydroxyl group equivalent of the phenoxy resin By setting the hydroxyl group equivalent of the phenoxy resin to 50 or more, the water absorption rate is lowered by reducing the hydroxyl groups, so that the mechanical properties of the cured product can be improved.
  • the hydroxyl group equivalent of the phenoxy resin to 1,000 or less, it is possible to suppress the decrease in hydroxyl groups, so that the affinity with the adherend is improved and the mechanical properties of the metal-CFRP composite 1 are improved. be able to. This effect is further enhanced by setting the hydroxyl group equivalent to 750 or less, and further to 500 or less.
  • the glass transition temperature (Tg) of the phenoxy resin is preferably in the range of 65 ° C. or higher and 150 ° C. or lower, but preferably in the range of 70 ° C. or higher and 150 ° C. or lower.
  • Tg glass transition temperature
  • the Tg is 65 ° C. or higher, it is possible to prevent the resin from becoming too fluid while ensuring moldability, so that the thickness of the resin film layer 13 can be sufficiently ensured.
  • the Tg is 150 ° C. or lower, the melt viscosity becomes low, so that the carbon-reinforced fiber base material can be easily impregnated without defects such as voids, and a lower temperature bonding process can be performed.
  • the Tg of the resin in the present specification is measured at a temperature in the range of 20 to 280 ° C. using a differential scanning calorimetry device under a heating condition of 10 ° C./min, and is calculated from the peak value of the second scan. It is a numerical value.
  • the phenoxy resin is not particularly limited as long as it satisfies the above physical properties, but preferred ones are bisphenol A type phenoxy resins (for example, Phenototo YP-50 and Phenotote YP-50S manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.).
  • Phenotote YP-55U available
  • bisphenol F type phenoxy resin for example, available as Phenotote FX-316 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • bisphenol A and bisphenol F copolymerized phenoxy resin for example, Nippon Steel & Sumikin
  • Special phenoxy resins such as brominated phenoxy resins other than the phenoxy resins listed above, phosphorus-containing phenoxy resins, and sulfone group-containing phenoxy resins (for example, phenoxy resins manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) (Available as Thoth YPB-43C, Phenotote FX293, YPS-007, etc.) and the like.
  • These resins can be used alone or in admixture of two or more.
  • the thermoplastic resin used as the resin component of the matrix resin 123 is preferably one having a melt viscosity of 3,000 Pa ⁇ s or less in any of the temperature ranges of 160 to 250 ° C., and is 90 Pa ⁇ s or more and 2,900 Pa ⁇ s or more.
  • the melt viscosity in the range of s or less is more preferable, and the melt viscosity in the range of 100 Pa ⁇ s or more and 2,800 Pa ⁇ s or less is further preferable.
  • the melt viscosity is 90 Pa ⁇ s or more
  • the molecular weight of the resin composition can be made appropriate, and embrittlement and the accompanying decrease in mechanical strength of the metal-CFRP composite 1 can be suppressed. Can be done.
  • the resin composition constituting the matrix resin 123 may be a crosslinkable resin composition in which a crosslinking agent is blended with the above-mentioned resin composition.
  • a crosslinkable resin composition is obtained by blending, for example, an acid anhydride, isocyanate, caprolactam or the like as a crosslinker with a resin composition containing a phenoxy resin (hereinafter, also referred to as “phenoxy resin (A)”). It can also be.
  • the crosslinkable resin composition is subjected to a crosslink reaction using a secondary hydroxyl group contained in the phenoxy resin (A) to improve the heat resistance of the resin composition, so that the member can be used in a higher temperature environment. It is advantageous for application.
  • a cross-linking resin composition containing a cross-linking curable resin (B) and a cross-linking agent (C).
  • the crosslinkable curable resin (B) for example, an epoxy resin or the like can be used, but the method is not particularly limited.
  • a crosslinkable resin composition By using such a crosslinkable resin composition, a cured product (crosslinked cured product) in a second cured state in which the Tg of the resin composition is significantly improved as compared with the case of the phenoxy resin (A) alone can be obtained.
  • the Tg of the crosslinked cured product of the crosslinkable resin composition is, for example, 160 ° C. or higher, preferably 170 ° C. or higher and 220 ° C. or lower.
  • an epoxy resin having bifunctionality or higher is preferable.
  • the bifunctional or higher functional epoxy resin include bisphenol A type epoxy resin (for example, available as Epototo YD-011, Epototo YD-7011, and Epototo YD-900 manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) and bisphenol F type epoxy resin (for example). , Nippon Steel & Sumikin Chemical Co., Ltd. Epototo YDF-2001), Diphenyl ether type epoxy resin (for example, Nippon Steel & Sumitomo Metal Chemical Co., Ltd.
  • YSLV-80DE Tetramethylbisphenol F type epoxy resin
  • YSLV-80XY Tetramethylbisphenol F type epoxy resin
  • Hydroquinone type epoxy resin for example, Epototo YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • phenol novolac type epoxy resin for example, available as Epototo YDPN-638 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • orthocresol novolac type epoxy resin for example, Epototo YDCN-701 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the crosslinkable curable resin (B) is not particularly limited, but a crystalline epoxy resin is preferable, and the melt viscosity at 150 ° C. is 2.0 Pa ⁇ in the melting point range of 70 ° C. or higher and 145 ° C. or lower.
  • a crystalline epoxy resin having an s or less is more preferable.
  • Examples of the crystalline epoxy resin suitable as the crosslinkable curable resin (B) include Epototo YSLV-80XY, YSLV-70XY, YSLV-120TE, YDC-1312, and Mitsubishi Chemical Corporation YX-4000 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. , YX-4000H, YX-8800, YL-6121H, YL-6640, etc., HP-4032, HP-4032D, HP-4700, etc. manufactured by DIC Corporation, NC-3000 manufactured by Nippon Kayaku Co., Ltd., etc.
  • the cross-linking agent (C) three-dimensionally cross-links the phenoxy resin (A) by forming an ester bond with the secondary hydroxyl group of the phenoxy resin (A). Therefore, unlike the strong cross-linking such as curing of a thermosetting resin, the cross-linking can be broken by a hydrolysis reaction, so that the metal member 11 and the CFRP layer 12 can be easily peeled off. Therefore, the metal member 11 can be recycled.
  • Acid anhydride is preferable as the cross-linking agent (C).
  • the acid anhydride is not particularly limited as long as it is solid at room temperature and does not have much sublimation property, but it is a phenoxy resin (from the viewpoint of imparting heat resistance to the metal-CFRP complex 1 and reactivity.
  • Aromatic acid anhydrides having two or more acid anhydrides that react with the hydroxyl group of A) are preferable.
  • aromatic compounds having two acid anhydride groups, such as pyromellitic anhydride are preferably used because they have a higher crosslink density and improved heat resistance than a combination of trimellitic anhydride and a hydroxyl group. Will be done.
  • Aromatic acid dianhydrides are also phenoxy resins such as 4,4'-oxydiphthalic acid, ethylene glycol bisuanhydrotrimerite, and 4,4'-(4,4'-isopropyridenediphenoxy) diphthalic anhydride.
  • Aromatic acid dianhydride having compatibility with the epoxy resin has a large effect of improving Tg and is more preferable.
  • aromatic acid dianhydrides having two acid anhydride groups, such as pyromellitic anhydride have improved cross-linking densities as compared to, for example, phthalic anhydride having only one acid anhydride group. It is preferably used because it improves heat resistance.
  • the aromatic acid dianhydride has two acid anhydride groups, so that it has good reactivity, and a crosslinked cured product having sufficient strength for demolding can be obtained in a short molding time, and the phenoxy resin (A). Since four carboxyl groups are generated by the esterification reaction with the secondary hydroxyl group inside, the final crosslink density can be increased.
  • the reaction of the phenoxy resin (A), the epoxy resin as the crosslinkable resin (B), and the crosslinker (C) is carried out with the secondary hydroxyl group in the phenoxy resin (A) and the acid anhydride group of the crosslinker (C). Is crosslinked and cured by the esterification reaction of the above, and further, the reaction of the carboxyl group generated by this esterification reaction with the epoxy group of the epoxy resin.
  • a phenoxy resin crosslinked product can be obtained by the reaction of the phenoxy resin (A) and the cross-linking agent (C), but since the melt viscosity of the resin composition can be lowered by the coexistence of the epoxy resin, the adherend (resin). It exhibits excellent properties such as improvement of impregnation property with the film layer 13), promotion of cross-linking reaction, improvement of cross-linking density, and improvement of mechanical strength.
  • the epoxy resin as the crosslinkable curable resin (B) coexists, but the phenoxy resin (A), which is a thermoplastic resin, is the main component, and the secondary hydroxyl group is used. It is considered that the esterification reaction of the cross-linking agent (C) with the acid anhydride group is prioritized. That is, since the reaction between the acid anhydride used as the cross-linking agent (C) and the epoxy resin used as the cross-linking curable resin (B) takes time (the reaction rate is slow), the cross-linking agent (C) is used.
  • the reaction of the phenoxy resin (A) with the secondary hydroxyl group occurs first, and then the cross-linking agent (C) remaining in the previous reaction and the residual carboxyl group derived from the cross-linking agent (C) react with the epoxy resin.
  • the crosslink density is further increased. Therefore, unlike the resin composition containing an epoxy resin which is a thermosetting resin as a main component, the crosslinked cured product obtained by the crosslinkable resin composition is a thermoplastic resin and is excellent in storage stability.
  • the cross-linking curable resin (B) is in the range of 5 parts by mass or more and 85 parts by mass or less with respect to 100 parts by mass of the phenoxy resin (A). It is preferable that it is contained so as to become.
  • the content of the crosslinkable curable resin (B) with respect to 100 parts by mass of the phenoxy resin (A) is more preferably in the range of 9 parts by mass or more and 83 parts by mass or less, and further preferably 10 parts by mass or more and 80 parts by mass or less. It is within the range.
  • the curing time of the crosslinkable resin (B) can be shortened, so that the strength required for demolding can be easily obtained in a short time.
  • the recyclability of the CFRP layer 12 is improved.
  • This effect is further enhanced by setting the content of the crosslink curable resin (B) to 83 parts by mass or less, further to 80 parts by mass or less.
  • the content of the crosslinkable resin (B) is 5 parts by mass or more, it becomes easy to obtain the effect of improving the crosslink density by adding the crosslinkable resin (B), and the crosslinkable resin composition can be crosslinked and cured.
  • the substance easily expresses Tg at 160 ° C. or higher, and the fluidity becomes good.
  • the content of the crosslinkable resin (B) is measured in the same manner for the peak derived from the epoxy resin by the method using IR as described above to measure the content of the crosslinkable resin (B). it can.
  • the blending amount of the cross-linking agent (C) is usually in the range of 0.6 mol or more and 1.3 mol or less of the acid anhydride group with respect to 1 mol of the secondary hydroxyl group of the phenoxy resin (A), and is preferable.
  • the amount is in the range of 0.7 mol or more and 1.3 mol or less, and more preferably 1.1 mol or more and 1.3 mol or less.
  • the amount of the acid anhydride group is 0.6 mol or more, the crosslink density becomes high, so that the mechanical properties and heat resistance are excellent. This effect is further enhanced by setting the amount of the acid anhydride group to 0.7 mol or more, further 1.1 mol or more.
  • the amount of the acid anhydride group is 1.3 mol or less, it is possible to suppress that the unreacted acid anhydride and the carboxyl group adversely affect the curing characteristics and the cross-linking density. Therefore, it is preferable to adjust the blending amount of the crosslink curable resin (B) according to the blending amount of the crosslinking agent (C).
  • the epoxy resin used as the crosslinkable curable resin (B) is used to react the carboxyl group generated by the reaction between the secondary hydroxyl group of the phenoxy resin (A) and the acid anhydride group of the crosslinker (C).
  • the blending amount of the epoxy resin may be set within the range of 0.5 mol or more and 1.2 mol or less in terms of the equivalent ratio with the cross-linking agent (C).
  • the equivalent ratio of the cross-linking agent (C) to the epoxy resin is in the range of 0.7 mol or more and 1.0 mol or less.
  • a cross-linking resin composition can be obtained, but an accelerator as a catalyst is used to ensure that the cross-linking reaction is carried out.
  • the accelerator (D) is not particularly limited as long as it is solid at room temperature and does not have sublimation properties.
  • a tertiary amine such as triethylenediamine, 2-methylimidazole, 2-phenylimidazole, etc.
  • Examples thereof include imidazoles such as 2-phenyl-4-methylimidazole, organic phosphins such as triphenylphosphine, and tetraphenylborone salts such as tetraphenylphosphonium tetraphenylborate.
  • One type of these accelerators (D) may be used alone, or two or more types may be used in combination.
  • the catalytic activity temperature is set as the accelerator (D). It is preferable to use an imidazole-based latent catalyst that is solid at room temperature of 130 ° C. or higher.
  • the blending amount of the accelerator (D) is 0 with respect to 100 parts by mass of the total amount of the phenoxy resin (A), the crosslinkable resin (B) and the crosslinker (C). It is preferably in the range of 1 part by mass or more and 5 parts by weight or less.
  • the crosslinkable resin composition is solid at room temperature, and its melt viscosity is such that the minimum melt viscosity, which is the lower limit of the melt viscosity in the temperature range of 160 to 250 ° C., is 3,000 Pa ⁇ s or less. It is more preferably 2,900 Pa ⁇ s or less, and even more preferably 2,800 Pa ⁇ s or less.
  • the crosslinkable resin composition can be sufficiently impregnated into the adherend during heat pressure bonding by a hot press or the like.
  • the mechanical properties of the metal-CFRP composite 1 are improved. This effect is further enhanced by setting the minimum melt viscosity in the temperature range of 160 to 250 ° C. to 2,900 Pa ⁇ s or less, and further to 2,800 Pa ⁇ s or less.
  • the resin composition (including the crosslinkable resin composition) for forming the matrix resin 123 includes, for example, natural rubber, synthetic rubber, elastomer, and various inorganic fillers as long as the adhesiveness and physical properties are not impaired. , Solvent, extender pigment, colorant, antioxidant, ultraviolet inhibitor, flame retardant, flame retardant aid and other additives may be blended.
  • the matrix resin 123 preferably has a content of inorganic salt particles, which will be described later, of less than 5.0% by volume.
  • the boundary between the CFRP layer 12 and the resin film layer 13 cannot be determined depending on the composition of the resin or the like, the boundary between the CFRP layer 12 and the resin film layer 13 can be determined based on the content of the inorganic salt particles. ..
  • the impedance of the CFRP layer 12 is preferably less than 1 ⁇ 10 9 ⁇ .
  • the impedance of the CFRP layer 12 is less than 1 ⁇ 10 9 ⁇ , an electrodeposition coating film is likely to be formed on the CFRP layer 12 during electrodeposition coating. Therefore, on the side surface of the metal-CFRP composite 1 (the surface along the stacking direction), the electrodeposition coating film is sufficiently easily formed from the CFRP layer 12 to the metal member 11. This makes it possible to suppress contact corrosion of dissimilar materials on the side surface of the metal-CFRP composite 1. Further, on the side surface of the metal-CFRP composite 1, conduction due to a corrosion factor such as water or salt water can be suppressed, and corrosion of the metal member 11 due to this corrosion factor can be suppressed.
  • the matrix resin 123 of the CFRP layer 12 and the resin constituting the resin film layer 13 may be the same resin or different resins.
  • the matrix resin 123 is contained in a resin or polymer of the same or the same type as the resin forming the resin constituting the resin film layer 13. It is preferable to select a resin type having an approximate ratio of polar groups contained in.
  • the same resin means that it is composed of the same components and has the same composition ratio, and if the main components are the same, the composition ratio is different from that of "the same type of resin”. It means that it is also good.
  • the "same type of resin” includes the "same resin".
  • the "main component” means a component contained in an amount of 50 parts by mass or more out of 100 parts by mass of the total resin component.
  • the "resin component” includes a thermoplastic resin and a thermosetting resin, but does not include a non-resin component such as a cross-linking agent.
  • the CFRP layer 12 is formed by using at least one CFRP molding prepreg.
  • the number of CFRP forming prepregs to be laminated can be selected according to the desired thickness of the CFRP layer 12.
  • the resin film layer 13 is arranged between the metal member 11 of the metal-CFRP composite 1 and the CFRP layer 12 and joins them. Further, the resin film layer 13 has an insulating property in a corrosive environment, and insulates between the metal member 11 and the CFRP layer 12. Specific examples of the corrosive environment include an environment in which water adheres and / or exists around the metal-CFRP composite 1 when the metal-CFRP composite 1 is wet or after it is wet.
  • the resin film layer 13 at least, the powder resistivity at 23 ⁇ 27 ° C. is the 7.0 ⁇ 10 7 ⁇ cm greater, and has a rust function, Cr, 1 kind selected from P and V It contains inorganic salt particles 131 composed of inorganic salts of the above elements, and further contains binder resin 133.
  • the volume fraction of the inorganic salt particles 131 in the resin film layer 13 is 5.0% or more and 40.0% or less. This makes it possible to prevent corrosion of the metal member 11, particularly contact corrosion of different materials.
  • the CFRP layer and the metal member are joined by thermocompression bonding via a resin film layer.
  • some of the carbon fiber materials in the CFRP layer are pressed by the pressure during thermocompression bonding and protrude from the surface of the CFRP layer.
  • the protruding carbon fiber material penetrates the resin film layer, so that the carbon fiber material and the metal member come into contact with each other, and corrosion occurs due to electrolytic corrosion.
  • the inorganic salt particles 131 having a relatively low conductivity are made of resin so that the carbon fiber material 121 protruding from the surface of the CFRP layer 12 does not come into contact with the metal member 11. It is contained in the film layer 13. That is, the inorganic salt particles 131 having relatively low conductivity act as a spacer between the carbon fiber material 121 and the metal member 11, and can insulate between the carbon fiber material 121 and the metal member 11. Since the volume ratio of the inorganic salt particles 131 in the resin film layer 13 is 5.0% or more and 40.0% or less, the inorganic salt particles 131 existing in the resin film layer 13 are appropriately bonded even during thermocompression bonding.
  • the present inventors have determined that by making the inorganic salt particles 131 have a rust preventive function, the components of the inorganic salt particles 131 having rust preventive properties are eluted in a corrosive environment, and the corrosion resistance is greatly improved. I found out.
  • the volume fraction of the inorganic salt particles 131 in the resin film layer 13 is less than 5.0%, the volume concentration of the inorganic salt in the film becomes low, and the inorganic salt particles 131 easily move during thermocompression bonding. Then, the carbon fiber material 121 protruding from the CFRP layer 12 presses and moves the inorganic salt particles 131, and as a result, the carbon fiber material 121 easily penetrates the resin film layer 13. As a result, contact corrosion of dissimilar materials cannot be sufficiently prevented.
  • the volume fraction of the inorganic salt particles 131 in the resin film layer 13 is preferably 10.0% or more, more preferably 20.0% or more.
  • the volume fraction of the inorganic salt particles 131 in the resin film layer 13 exceeds 40.0%, the resin film layer 13 is likely to be aggregated and broken, and the adhesion between the resin film layer 13 and the CFRP layer 12 is sufficient. It doesn't become a plastic.
  • the volume fraction of the inorganic salt particles 131 in the resin film layer 13 is preferably 35.0% or less, more preferably 30.0% or less.
  • the powder resistivity at 23 ⁇ 27 ° C. of the inorganic salt particles 131 are 7.0 ⁇ 10 7 ⁇ cm than as described above. Since the conductivity of the inorganic salt particles 131 is relatively small as described above, the inorganic salt particles 131 function as a spacer having an insulating property between the carbon fiber material 121 and the metal member 11. In contrast, the powder resistivity at 23 ⁇ 27 ° C. of the inorganic salt particles 131 is less than 7.0 ⁇ 10 7 ⁇ cm and a carbon fiber material 121 and the metal member 11 has been conducted through the inorganic salt particles 131 I can't control the electrolytic corrosion. The powder resistance of the inorganic salt particles 131 at 23 to 27 ° C.
  • the powder resistivity can be regarded as equivalent to the volume resistivity of the material itself of the conductive particles 131 to be measured.
  • the inorganic salt particles 131 in the resin film layer 13 have the powder resistivity and rust preventive function as described above, and may be composed of an inorganic salt of one or more elements selected from Cr, P and V.
  • Cr, P and V are dissolved as ions in a corrosive environment, they are likely to be deposited on the surface of the metal member 11 as the anode and the carbon fiber material 121 as the cathode, which is effective in improving the corrosion resistance.
  • the inorganic salt constituting the inorganic salt particles 131 having a rust preventive function for example, the above-mentioned inorganic salt of oxo acid containing a metal atom or element can be used.
  • the inorganic salt particles 131 may be one kind of salt of each of the above-mentioned oxoacid ions, or may be a plurality of kinds of salts.
  • the inorganic particles 131 are formed from the viewpoint of the barrier effect against the corrosion factors of the oxide when the inorganic salt fine particles are eluted and ionized in a wet corrosive environment and deposited as an oxide on the surface of a metal plate or carbon fiber.
  • inorganic salts include, chromate ion (CrO 4 2-), phosphate ion (PO 4 3-), triphosphate ions (P 3 O 10 5-, "tripolyphosphate”), orthovanadate ion (VO It is preferably one or more salts selected from the group consisting of 4 3- ) and metavanadic acid (VO 3- ).
  • each of the above oxoacid ions examples include cations of elements such as alkali metals, alkaline earth metals, Be, Mg, and Al, and one of them may be used alone or in combination of two or more. Can be used.
  • the inorganic salt contained in the inorganic particles 131 is selected from the group consisting of Ca, Na, K, Sr, Mg, and Al as counterions from the viewpoint of elution of fine particles in the resin matrix in a corrosive environment. It is preferably a cation of one or more elements to be formed.
  • examples of the inorganic salt include chromate such as potassium chromate, calcium chromate, and strontium chromate, zinc phosphate, aluminum phosphate, aluminum dihydrogen tripolyphosphate, sodium phosphate, and magnesium phosphate.
  • chromate such as potassium chromate, calcium chromate, and strontium chromate
  • zinc phosphate aluminum phosphate, aluminum dihydrogen tripolyphosphate
  • sodium phosphate and magnesium phosphate.
  • Phosphates such as trimagnesium phosphate and vanadates such as sodium metavanadate, calcium vanadate and magnesium vanadate can be mentioned.
  • the conductive particles 131 are inorganic salts such as aluminum dihydrogen tripolyphosphate, strontium chromate, calcium chromate, potassium chromate, and vanadic acid. It preferably consists of one or more selected from the group consisting of magnesium, potassium vanadate, and calcium vanadate.
  • the average particle size r of the inorganic salt particles 131 is not particularly limited, but is, for example, 0.2 ⁇ m or more and 50.0 ⁇ m or less, preferably 0.2 ⁇ m or more and 10.0 ⁇ m or less.
  • the average particle size r of the inorganic salt particles 131 is 0.2 ⁇ m or more, the function as a spacer between the carbon fiber material 121 and the metal member 11 is fully exhibited.
  • the average particle size r of the inorganic salt particles 131 is 50.0 ⁇ m or less, the inorganic salt particles 131 are more suppressed from protruding onto the surface of the resin film layer 13, and the surface area of all the particles in the film is further suppressed. Since the inorganic salt particles 131 are easily eluted in a corrosive environment, it is also effective in further improving the corrosion resistance.
  • the average particle size of the inorganic salt particles 131 in the resin film layer 13 is measured by a generally known particle distribution measuring device, for example, a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3300EX, manufactured by Nikkiso Co., Ltd.).
  • the particle size (D50) when the cumulative volume becomes 50% as a reference can be measured.
  • an arbitrary cross section of the resin film layer 13 is analyzed by FE-EPMA and has the rust preventive function. It can be obtained by the average value of the particle radii measured by the surface distribution photograph of the components contained in the inorganic salt.
  • the resin film layer 13 contains the binder resin 133.
  • the binder resin 133 functions as a binder for the inorganic salt particles 131 and contributes to the improvement of the insulating property of the resin film layer 13.
  • the binder resin 133 is not particularly limited, and either a thermosetting resin or a thermoplastic resin can be used. Examples of the thermosetting resin include urethane resin, epoxy resin, melamine resin, vinyl ester resin and the like.
  • Thermoplastic resins include phenoxy resins, polyolefins (polypropylene, etc.) and their acid modified products, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate, polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, and polyphenylene ether. And modified products thereof, polyarylate, polyetherketone, polyetheretherketone, polyetherketoneketone, nylon and the like.
  • the phenoxy resin include those similar to those that can be used for the matrix resin 123 in the CFRP layer 12 described above.
  • the binder resin 133 preferably contains one or more selected from the group consisting of urethane resin, epoxy resin, polyester resin and melamine resin. These resins are suitable because they easily flow at room temperature or are easily dissolved in a solvent or the like and applied, although they depend on the molecular weight and the glass transition temperature.
  • the glass transition temperature Tg of the binder resin 133 is, for example, 100 ° C. or lower, preferably 10 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 35 ° C. or lower. As a result, the carbon fiber reinforced resin is less likely to be peeled off even if the molding process is performed after the CFRP is attached.
  • the resin film layer 13 includes, for example, natural rubber, synthetic rubber, elastomer, and various inorganic fillers, solvents, extender pigments, colorants, antioxidants, and ultraviolet antioxidants, as long as the adhesiveness and physical properties are not impaired.
  • Other additives such as a flame retardant and a flame retardant aid may be blended.
  • the average thickness T of the resin film layer 13 is not particularly limited, but is, for example, 5.0 ⁇ m or more, preferably 5.0 ⁇ m or more and less than 200.0 ⁇ m.
  • the average thickness T of the resin film layer 13 is 5.0 ⁇ m or more, it is possible to more reliably perform insulation and prevent contact corrosion of different materials of the metal member. Further, when the average thickness T of the resin film layer 13 is less than 200.0 ⁇ m, the cohesive failure of the resin film layer 13 is prevented, and the adhesion between the resin film layer 13 and the CFRP layer 12 is sufficiently excellent. Become.
  • Each configuration of the metal-CFRP composite 1 has been described above.
  • the glass transition temperature of the resin film layer 13 is, for example, 100 ° C. or lower, preferably 10 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 35 ° C. or lower. As a result, the carbon fiber reinforced resin is less likely to be peeled off even if the molding process is performed after the CFRP is attached.
  • the glass transition temperature of the resin film layer 13 can be measured by thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • the thermomechanical analyzer can be a commercially available device, for example, the "TMA7000 series” manufactured by Hitachi High-Tech Science.
  • the thicknesses of the metal member 11, the CFRP layer 12, and the resin film layer 13 can be measured in accordance with the cross-sectional method of the optical method of JIS K 560-1-7, 5.4 as follows. It can. That is, using a room temperature curing resin that can be embedded without any harmful effect on the sample, using the low-viscosity Epomount 27-777 manufactured by Refine Tech Co., Ltd. as the main agent and 27-772 as the curing agent, the sample is used. Embed. At the point to be observed with a cutting machine, the sample is cut so as to be parallel to the thickness direction to obtain a cross section, and a polishing paper having a count specified in JIS R 6252 or 6253 (for example, 280 count, 400 count or 600 count).
  • polish with a count to prepare an observation surface. If an abrasive is used, it is polished with an appropriate grade diamond paste or similar paste to create an observation surface. Further, if necessary, buffing may be performed to smooth the surface of the sample to a state where it can withstand observation.
  • the size of the visual field may be changed so that the thickness of each can be confirmed (for example, if the thickness of the CFRP layer 12 is 1 mm, the size of the visual field may be changed so that the thickness can be confirmed).
  • the observation field of view is divided into four equal parts, the thickness of the resin film layer 13 is measured at the center of each fraction in the width direction, and the average thickness is measured. The thickness in the field of view.
  • This observation field of view is performed by selecting 5 different places, dividing into 4 equal parts within each observation field of view, measuring the thickness in each fraction, and calculating the average value. Adjacent observation fields should be selected at least 3 cm apart.
  • the thickness of the resin film layer 13 may be obtained by further averaging the average values at these five locations. Further, the thickness of the metal member 11 and the CFRP layer 12 may be measured in the same manner as the measurement of the thickness of the resin film layer 13.
  • the metal-CFRP composite 1 has been described as being composed of the metal member 11, the CFRP layer 12, and the resin film layer 13, but the present invention is not limited thereto.
  • additional layers may be arranged between layers or surfaces of each of these configurations.
  • a chemical conversion treatment layer 14 is arranged between the resin film layer 13 and the metal member 11.
  • the chemical conversion treatment layer 14 is not particularly limited, but is preferably a chemical conversion treatment layer containing Cr, P, Si and / or Zr. As a result, the above-mentioned effect of improving corrosion resistance and adhesion can be obtained more remarkably.
  • Such a chemical conversion treatment layer 14 may be an inorganic type or an inorganic-organic mixed type in which Cr, P, Si and / or Zr are polymerized via C or CO to form a network, or may be contained in a binder such as a resin.
  • a type in which a film to which a compound composed of Cr, P, Si and / or Zr is added is applied and dried may be used.
  • other generally known rust preventive components such as V-acid type, Ti-acid type, and P-acid type, may be added during the chemical conversion treatment.
  • These chemical conversion treatments may be of a reaction type in which a film is precipitated by reacting with a metal on the surface of a metal material when treated, or of a type in which a wet treatment liquid is applied and dried and cured. It can be selected as needed.
  • the chemical conversion treatment layer 14 can contain Cr, P, Si and / or Zr in total, for example, 10 mg / m 2 or more and 500 mg / m 2 or less, preferably 30 g / m 2 or more and 300 g / m 2 or less. ..
  • the adhesion between the metal member 11 and the resin film layer 13 can be made sufficiently excellent while further improving the corrosion resistance.
  • the CFRP layer 12 and the resin film layer 13 have been described as being arranged on one side of the metal member 11, but the present invention is not limited thereto.
  • the CFRP layer 12 and the resin film layer 13 may be arranged on both sides of the metal member 11. Further, in this case, the configurations of the CFRP layer 12 and the resin film layer 13 may be different from each other or may be the same.
  • the CFRP layer is not limited to the above-described embodiment, and may be a plurality of layers.
  • the CFRP layer 12A is not limited to one layer, and may be two or more layers.
  • the number n of the CFRP layer 12A may be appropriately set according to the purpose of use.
  • each layer may have the same configuration or may be different. That is, the resin type of the matrix resin 123 constituting the CFRP layer 12A, the type and the content ratio of the carbon fiber material 121, and the like may be different for each layer.
  • the method for producing a metal-carbon fiber reinforced resin material composite according to an embodiment of the present invention is a method of producing a metal member and a carbon fiber reinforced resin provided on at least a part of the surface of a resin film layer containing inorganic salt particles and a binder resin. It has a step of heat-bonding the material to the material through the resin film layer. Further, before and after the thermocompression bonding step, there may be a step of forming a metal member or a laminate in which the metal member and a carbon fiber reinforced resin material are laminated.
  • the method for producing the metal-CFRP composite 1D according to the first embodiment includes a metal member 11A in which the resin film layer 13A is provided on at least a part of the surface and a carbon fiber reinforced resin material (CFRP or CFRP forming prepreg). At least has a thermocompression bonding step A for obtaining the laminate 100 by thermocompression bonding the resin film layer 13A.
  • the method for producing the metal-CFRP composite 1D according to the present embodiment includes the laminate 100 with the molding step A. Further, the present embodiment may include, if necessary, a resin film layer forming step, a pretreatment step, and / or a post-step of forming the resin film layer 13A on at least a part of the surface of the metal member 11A. Hereinafter, each step will be described.
  • the metal member 11A is prepared (FIG. 5A). It is preferable that the metal member 11 is degreased, which is generally known, if necessary.
  • the degreasing method generally known methods such as wiping with a solvent, washing with water, washing with an aqueous solution containing a surfactant or a detergent, a method of heating to volatilize an oil component, and alkaline degreasing can also be used. Alkaline degreasing is industrially common and is suitable because it has a high degreasing effect. Further, it is more preferable to perform a mold release treatment on the mold to be used and removal of deposits (dust removal) on the surface of the metal member 11A. By these pretreatments, the adhesion between the metal member 11A and the resin film layer 13A is improved.
  • the resin film layer 13A is formed on the surface of the metal member 11A (FIG. 5 (b)).
  • the resin film layer 13A is formed by applying a film layer material composition containing the material of the resin film layer 13A to the surface of the metal member 11A, drying and baking.
  • the resin film layer material composition may be in the form of a liquid or slurry, or may be in the form of powder.
  • a sheet as a resin film layer material composition molded in advance into a plate shape may be attached by thermocompression bonding or the like.
  • the coating method is not particularly limited, and in the case of a sheet type, the pasting method can be a generally known method such as a human or a robot. In the case of a viscous liquid, it can be applied by a generally known method such as coating by a discharge method from a slit nozzle or a circular nozzle, brush coating, plate coating, spatula coating and the like. For those dissolved in a solvent, generally known coating methods such as brush coating, spray coating, bar coater, ejection coating from nozzles of various shapes, die coater coating, curtain coater coating, roll coater coating, screen printing, inkjet Coating or the like can be used. When the resin film layer material composition is in the form of powder, a known method such as powder coating can be adopted.
  • the resin film layer 13A formed by powder coating since the resin film layer material composition is fine particles, the resin component is easily melted, and since the resin film layer 13A has appropriate voids, voids are removed. Cheap. Further, when the CFRP or the prepreg for CFRP molding is thermocompression-bonded, the resin component constituting the resin film layer 13A wets the surface of the metal member 11A well, so that a degassing step such as varnish coating is not required.
  • the resin film layer 13A may be applied to the entire surface of the metal member 11A, or may be partially applied only to the portion to which the carbon fiber reinforced resin material (CFRP) is attached.
  • CFRP carbon fiber reinforced resin material
  • a chemical conversion treatment layer 14 may be provided on the metal member 11A before the resin film layer 13A is applied.
  • a generally known treatment method for example, an immersion drying method, an immersion / water washing / drying method, a spray / water washing / drying method, a coating / drying method, a coating / drying curing method, or the like is used. Can be done.
  • the coating method can be a generally known method such as dipping, brush coating, spraying, roll coater, bar coater, and blade coater.
  • drying and baking can be performed by, for example, heat treatment.
  • the heating conditions are not particularly limited, and can be, for example, 10 seconds or more and 30 minutes or less under the conditions of 100 ° C. or higher and 250 ° C. or lower.
  • the resin film layer material composition may be a room temperature curing type.
  • the resin film layer material composition may be a one-component type in which the main resin and the curing agent are mixed. It may be a two-component curing type in which the main resin and the curing agent are separated and mixed immediately before the coating, or a three-component or more type in which the main resin, the curing agent, and other additives are separated and mixed immediately before the coating. good.
  • the resin film layer 13A is coated or affixed when the CFRP forming prepreg or CFRP to be the CFRP layer 12B and the metal member 11A are placed on top of each other, and these laminated bodies are cured when they are thermally pressure-bonded, which will be described later.
  • the CFRP forming prepreg or CFRP is placed on top of the resin film layer 13A laminated and cured by coating or pasting on the metal member 11A in advance, and then heat-bonded, which will be described later. Is also good.
  • Thermocompression bonding step A Next, the metal member 11A and the carbon fiber reinforced resin material (CFRP or CFRP forming prepreg) are thermocompression bonded via the resin film layer 13A to obtain a metal-CFRP composite 1 (FIG. 5 (c)). Specifically, a laminate in which a CFRP molding prepreg (or CFRP) to be a CFRP layer 12B is laminated on a resin film layer 13A is installed in a pressurizing machine, and pressurization is performed while heating. As a result, the laminated body 100 in which the metal member 11A, the resin film layer 13A, and the CFRP layer 12B are laminated in this order is manufactured.
  • CFRP molding prepreg or CFRP
  • the metal member 11A and the CFRP molding prepreg or CFRP are placed on top of each other via the resin film layer 13A to obtain a laminated body.
  • CFRP CFRP
  • the laminate 100 is obtained by heating and pressurizing (thermocompression bonding) the laminate.
  • thermocompression bonding conditions in this step are as follows.
  • the thermocompression bonding temperature is not particularly limited, but is, for example, 100 ° C. or higher and 400 ° C. or lower, preferably 150 ° C. or higher and 300 ° C. or lower, more preferably 160 ° C. or higher and 270 ° C. or lower, and further preferably 180 ° C. or higher. It is within the range of 250 ° C. or lower. Within such a temperature range, a crystalline resin is more preferably at a temperature equal to or higher than the melting point, and a non-crystalline resin is more preferably at a temperature of Tg + 150 ° C. or higher.
  • the temperature is equal to or lower than the upper limit temperature, it is possible to suppress excessive heat application and prevent the resin from being decomposed. Further, when the temperature is at least the above lower limit temperature, the melt viscosity of the resin can be made appropriate, and the adhesiveness to CFRP and the impregnation property to the CFRP base material can be made excellent.
  • the pressure at the time of thermocompression bonding is, for example, preferably 3 MPa or more, and more preferably 3 MPa or more and 5 MPa or less.
  • the pressure is 5 MPa or less, it is possible to prevent excessive pressure from being applied, and more reliably prevent deformation and damage from occurring. Further, when the pressure is 3 MPa or more, the impregnation property into the CFRP base material can be improved.
  • thermocompression bonding time at least 3 minutes or more is sufficient for thermocompression bonding, and it is preferably within the range of 5 minutes or more and 20 minutes or less.
  • the phenoxy resin (A) contains a crosslinkable curable resin (B) and a crosslinkable agent (C). If the adhesive resin composition is used, an additional heating step may be further included.
  • the resin film layer 13A is formed by a cured product (solidified product) in the first cured state, which is solidified but not crosslinked (cured) in the thermocompression bonding step. Can be formed.
  • the same or the same type as the crosslinkable adhesive resin composition is used as the raw material resin for the matrix resin of the CFRP molding prepreg to be the CFRP layer 12B, the cured product (solidified product) in the first cured state is used.
  • the CFRP layer 12 containing the matrix resin 123 can be formed.
  • the intermediate body (preform) of the metal-CFRP composite 1A in which the metal member 11A, the uncured resin film layer 13A, and the CFRP layer 12B are laminated and integrated through the thermocompression bonding step. ) Can be produced.
  • a CFRP layer 12B in which the matrix resin 123 is a cured product (solidified product) in the first cured state can be used.
  • the intermediate is post-cured to at least the resin film layer 13 made of the cured product (solidified material) in the first cured state by further performing an additional heating step after the heat bonding step.
  • the resin can be cross-linked and cured to change into a cured product (cross-linked cured product) in a second cured state.
  • the CFRP layer 12B is also post-cured to crosslink and cure the matrix resin 123 composed of the cured product (solidified product) in the first cured state, and the cured product (crosslinked cured product) in the second cured state. Can be changed to.
  • the additional heating step for post-cure is preferably performed at a temperature in the range of 200 ° C. or higher and 250 ° C. or lower over a period of about 30 to 60 minutes.
  • the heat history in a post-process such as painting may be used.
  • the Tg after crosslink curing is greatly improved as compared with the phenoxy resin (A) alone. Therefore, before and after performing an additional heating step on the above-mentioned intermediate, that is, the resin changes from a cured product (solidified product) in the first cured state to a cured product (crosslinked cured product) in the second cured state.
  • Tg changes.
  • the Tg of the resin before cross-linking in the intermediate is, for example, 150 ° C. or lower
  • the Tg of the cross-linked resin after the additional heating step is, for example, 160 ° C. or higher, preferably 170 ° C. or lower. Since the temperature is improved within the range of 220 ° C. or lower, the heat resistance can be significantly improved.
  • the following molding step A may be omitted, and the laminate 100 itself may be obtained as a metal-CFRP composite.
  • the laminate 100 is molded (FIG. 6 (d)) to obtain a metal-CFRP composite 1D.
  • the molding method of the laminated body 100 is not particularly limited, and various press workings such as shearing, bending, drawing, and forging can be adopted.
  • These presses may be performed at room temperature, but hot presses are suitable because CFRP does not easily come off from metal members during processing.
  • the temperature of the hot press is preferably the same as that of the thermocompression bonding step described above.
  • thermocompression bonding step A and the molding step A may be performed at the same time. That is, in the pressure molding machine, the metal member 11A and the carbon fiber reinforced resin material (CFRP or CFRP forming prepreg) may be thermocompression bonded via the resin film layer 13A and may be molded at the same time.
  • CFRP CFRP forming prepreg
  • [2.2. Second Embodiment] 7 and 8 are schematic views illustrating a method for producing a metal-CFRP composite according to a second embodiment of the present invention.
  • the method for producing the metal-CFRP composite 1E according to the second embodiment includes a molding step B for molding a metal member 11B provided on at least a part of the surface of the resin film layer 13B, a metal member 11B, and carbon fibers. It has a heat-bonding step B in which the reinforced resin material is heat-bonded via the resin film layer 13B to obtain a metal-CFRP composite 1E.
  • the second embodiment is different from the first embodiment in that the laminated body of the metal member 11B and the resin film layer 13B is molded before the CFRP layer 12C is formed.
  • the first embodiment depending on the matrix resin of CFRP, there is a risk that the resin may be cracked or peeled off from the metal member 11A. In addition, a warm press is required to prevent these.
  • the CFRP when the CFRP is thick, it is necessary to devise a press die after the CFRP is attached. By forming the metal member 11B before forming the CFRP layer 12C in this way, the problems that may occur in the first embodiment described above can be eliminated, and the normally used press die can be diverted.
  • the metal member 11B is prepared (FIG. 7 (a)), and the resin film layer 13B is formed on the surface of the metal member 11B (FIG. 7 (b)). Then, the metal member 11B on which the resin film layer 13B is formed is molded (FIG. 7 (c)). Finally, the carbon fiber reinforced resin material is thermocompression-bonded to the molded metal member 11B via the resin film layer 13B to obtain a metal-CFRP composite 1E (FIGS. 8 (d) and 8 (e)).
  • the method for producing the metal-CFRP composite according to the present embodiment has been described above.
  • the method for producing the metal-CFRP composite according to the present invention is not limited to the above-described embodiment.
  • a cold-dip galvanized steel sheet prepared was prepared by annealing the produced cold-rolled steel sheet under the condition that the maximum temperature reached at 820 ° C. in the annealing step of a continuous hot-dip galvanizing apparatus having an annealing step, and then hot-dip galvanizing in the plating step.
  • the gas atmosphere in the annealing furnace in the annealing step was an N 2 atmosphere containing 1.0% by volume of H 2 .
  • the components of the plating bath in the plating process are Zn-0.2% Al (referred to as "GI"), Zn-0.09% Al (referred to as "GA”), Zn-1.5% Al-1.5.
  • Zn-Al-Mg Zn-11% Al-3% Mg-0.2% Mg
  • Zn-Al-Mg-Si Zn-11% Al-3% Mg-0.2% Mg
  • Al plates aluminum plates
  • Mg alloy plates magnesium alloy plates
  • the prepared metal plate was degreased with an alkaline degreasing agent "Fine Cleaner E6404" manufactured by Nihon Parkerizing Co., Ltd. (Chemical conversion processing process) 2.5 g / L of ⁇ -aminopropyltriethoxysilane, 1 g / L of water-dispersed silica (Nissan Chemical Co., Ltd. "Snowtech N", water-soluble acrylic resin (reagent polyacrylic acid)) on a defatted metal plate An aqueous solution to which 3 g / L was added was applied with a bar coater and dried in a hot air oven under the condition that the reaching plate temperature was 150 ° C.
  • the adhesion amount of each treatment was 30 mg / m 2 .
  • the wet coating amount before drying which is applied to the entire surface of the metal plate, is calculated by [mass of the metal plate after coating]-[mass of the metal plate before coating], and Cr and Si included in the wet coating amount. , Zr, respectively, were calculated and divided by the area of the metal plate. Further, while calculating the adhesion amount by the above-mentioned method, chemical conversion-treated metal plates (dried) having five different adhesion amounts were prepared, and these were measured using fluorescent X-rays, and the obtained detection intensity was calculated. It is also possible to draw a calibration curve from the relationship with the amount of adhesion and obtain the amount of adhesion using this.
  • -Epoxy resin-C Add 20 parts by mass of "Uban (R) 20SB” manufactured by Mitsui Chemicals to 100 parts by mass of solid content of "Epokey (R) 802-30CX” manufactured by Mitsui Chemicals, and mix. did.
  • -Polyester / melamine resin Toyobo's "Byron (R) 300” dissolved in cyclohexanone as a solvent in an amount of 30% by mass, and Mitsui Chemicals' melamine resin "Uban (R) 20SB” was added to 100 parts by mass of solid content. 20 parts by mass of solid content was added and mixed.
  • -Urethane / melamine resin 80 parts by mass of solid content of water-based urethane resin "Superflex (R) 150” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., and 20 parts by mass of solid content of melamine resin "Simel (R) 325" manufactured by Cytec Co., Ltd. Added.
  • a resin film coating liquid was prepared by mixing the following particles with the prepared resin.
  • the amount of particles added is shown in Table 1 by obtaining the mass ratio of the solid content in the film of the particles to be added to the resin film coating liquid, calculating the volume fraction from the specific gravity of the film resin solid content and the specific gravity of the particles. The volume fraction was adjusted to be the same. For the specific gravity, the catalog value or the literature value of each substance was used.
  • -Strontium chromate The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3 ⁇ m.
  • Cr acid Sr The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m, 11.0 ⁇ m, 48.0 ⁇ m, and 100.0 ⁇ m.
  • Mg V acid Mg V acid
  • -Potassium chromate A reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • Cr acid K A reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • -Calcium hydrogen phosphate A reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • Ca Pate -Ammonium dihydrogen phosphate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • P acid NH4 -Sodium hydrogen pyrophosphate hydrate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • Na pyropate A reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • -Calcium vanadate The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 ⁇ m.
  • Ca V acid a sieve to have an average particle size of 3.0 ⁇ m.
  • V acid K a sieve to have an average particle size of 3.0 ⁇ m.
  • -Titanium oxide "Typake (R) CR-95" manufactured by Ishihara Sangyo Co., Ltd., with an average particle size of 0.3 ⁇ m (catalog value) was used.
  • Ti oxide a general-purpose talc "P-6" manufactured by Nippon Talc Co., Ltd. was used with an average particle size of 3.3 ⁇ m (catalog value).
  • talc a general-purpose talc
  • -Kaolin ray A wet kaolin ray “kaolin ray 5M” manufactured by Takehara Chemical Industry Co., Ltd. was classified using a sieve to have an average particle size of 3.0 ⁇ m. Hereinafter referred to as "crate”.
  • -Silica "AEROSIL (R) 50” manufactured by Nippon Aerosil Co., Ltd. was used. When the average particle size was measured with a laser diffraction type particle size distribution measuring device "SALD-2300” manufactured by Shimadzu Corporation, it was less than 0.2 ⁇ m.
  • SALD-2300 laser diffraction type particle size distribution measuring device
  • the above-mentioned alumina, titanium oxide, and silica are oxide particles, which are different from the inorganic salt particles having a rust preventive function. Also, talc and kaolin clay are not inorganic salt particles having a rust preventive function.
  • Table 1 shows the prepared resin film coating liquids, which are distinguished by the labels "Film-1" to "Film-30".
  • the powder resistivity of the particles in Table 1 is the resistance value when each powder is compressed by 10 MPa at 25 ° C. using the powder resistance measurement system MCP-PD51 manufactured by Mitsubishi Chemical Analytech.
  • the glass transition point was measured by drying and curing these resin film coating liquids in an oven at 200 ° C. for 20 minutes with an automatic differential scanning calorimeter “DSC-60A” manufactured by Shimadzu Corporation.
  • the prepared resin film coating liquid is partially coated on a metal plate cut to the size required for evaluation with a blade coater on only one side and only the part to which CFRP is attached, and the reaching plate temperature reaches 230 ° C. in 60 seconds. It was dried and cured under the conditions. Partial application is performed by masking the part other than the part to which CFRP is attached in advance with masking tape (using "Nitto Denko (R) tape” manufactured by Nitto Denko Corporation ) , applying a resin film layer, and peeling off the masking tape after drying and baking. went.
  • the film layer thickness was determined by observing the vertical cross section with a microscope using a sample embedded in resin and polished so that the vertical cross section could be observed in advance, and measuring the film layer thickness.
  • Powder coating was performed. Then, the resin is heat-sealed by heating and melting at 170 ° C. for 1 minute in an oven to heat-fuse the resin, and phenoxy having a thickness of 0.65 mm, an elastic modulus of 75 [GPa], a tensile load of 13500 [N], and a Vf (fiber volume content) of 60%.
  • a resin CFRP prepreg was prepared. The size of the prepreg was the same as that of the metal plate.
  • the average particle size of the pulverized and classified phenoxy resin is the particle size when the cumulative volume is 50% on a volume basis by a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3300EX, manufactured by Nikkiso Co., Ltd.). It was measured.
  • the prepared prepreg was placed on a metal plate on which a resin film layer was laminated, and pressed at 3 MPa for 3 minutes with a press machine having a flat mold heated to 250 ° C. to form a composite as shown in Tables 2 and 3.
  • a metal-CFRP composite was prepared as a body sample.
  • zinc phosphate treatment was performed by immersing the zinc phosphate chemical agent "Palbond L3065” manufactured by Nihon Parkerizing Co., Ltd. at 35 ° C. for 3 minutes. After the zinc phosphate treatment, it was washed with water and dried in an oven at 150 ° C. Then, the electrodeposition paint "Power Float 1200" manufactured by Nippon Paint Co., Ltd. was electrodeposited by 15 ⁇ m and baked in an oven at 170 ° C. for 20 minutes as a sample. The electrodeposition coating was applied only to the metal part to which CFRP was not attached.
  • a cycle corrosion test was performed using the prepared sample.
  • the CCT mode was performed according to the automobile industry standard JASO-M609.
  • the sample was tested by installing it on a testing machine so that salt water was sprayed on the evaluation surface with the CFRP side as the evaluation surface.
  • the appearance of the sample was visually observed every 15 cycles (1 cycle in 8 hours), and the cycle in which red rust occurred was determined.
  • red rust is generated near the edge of the CFRP attached to the metal, we focused on that and observed it.
  • the metal plates used were an aluminum alloy plate and a magnesium alloy plate, red rust, which is an oxide of iron, does not occur, so the number of cycles in which white rust, which is an oxide of aluminum or magnesium, occurs was determined.
  • the corrosion resistance differs depending on the metal plate used. Therefore, the evaluation of corrosion resistance was carried out by setting a standard for each type of metal plate. Specifically, when a cold-rolled steel sheet (CR) is used, if red rust occurs in 30 cycles or less, it is a rejected product, and if it is not, it is a passed product. When a plated steel sheet (GI) is used, if red rust occurs in 60 cycles or less, it is a rejected product, and if it is not, it is a passed product. When a plated steel sheet (GA) is used, if red rust occurs in 60 cycles or less, it is a rejected product, and if it is not, it is a passed product.
  • the metal-CFRP composite of the present invention is superior in corrosion resistance to contact corrosion of different materials between carbon fiber and metal as compared with the composite of Comparative Example. Moreover, the CFRP was not easily peeled off even when a bending test or a hot press was performed, which was excellent.

Abstract

[Problem] To provide: a metal/carbon-fiber-reinforced resin material composite that suppresses corrosion of a metal member, and, in particular, corrosion from contact with other materials, and achieves excellent adhesion between the metal member and a carbon-fiber-reinforced resin material; and a production method for the metal/carbon-fiber-reinforced resin material composite. [Solution] This metal/carbon-fiber-reinforced resin material composite includes a metal member, a resin coating layer that is provided on at least a portion of the surface of the metal member, and a carbon-fiber-reinforced resin material that is provided on the resin coating layer and includes a matrix resin and a carbon fiber material that is in the matrix resin. The resin coating layer includes: inorganic salt particles that have a powder resistivity of greater than 7.0×107 Ωcm at 23°C–27°C, are rust resistant, and comprise an inorganic salt of at least one element selected from among Cr, P, and V; and a binder resin. The inorganic salt particles are 5.0%–40.0% of the volume of the resin coating layer.

Description

金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法Method for manufacturing metal-carbon fiber reinforced resin material composite and metal-carbon fiber reinforced resin material composite
 本発明は、金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法に関する。 The present invention relates to a method for producing a metal-carbon fiber reinforced resin material composite and a metal-carbon fiber reinforced resin material composite.
 強化繊維(例えば、ガラス繊維、炭素繊維など)をマトリックス樹脂に含有させて複合化した繊維強化プラスチック(FRP:Fiber Reinforced Plastics)は、軽量で引張強度や加工性等に優れる。そのため、民生分野から産業用途まで広く利用されている。自動車産業においても、燃費、その他の性能の向上につながる車体軽量化のニーズを満たすため、FRPの軽量性、引張強度、加工性等に着目し、自動車部材へのFRPの適用が検討されている。 Fiber reinforced plastic (FRP: Fiber Reinforced Plastics), which is a composite of reinforced fibers (for example, glass fiber, carbon fiber, etc.) contained in a matrix resin, is lightweight and has excellent tensile strength and workability. Therefore, it is widely used from the consumer field to industrial applications. In the automobile industry as well, in order to meet the needs for weight reduction of vehicle bodies that lead to improvements in fuel efficiency and other performance, the application of FRP to automobile parts is being considered, focusing on the lightness, tensile strength, workability, etc. of FRP. ..
 中でも、炭素繊維を強化繊維として用いる炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)は、炭素繊維の強度に起因して、特に軽量であり、引張強度に特に優れているため、自動車部材をはじめとした様々な用途において有望な材料である。 Among them, carbon fiber reinforced plastic (CFRP: Carbon Fiber Reinforced Plastics), which uses carbon fiber as a reinforcing fiber, is particularly lightweight due to the strength of the carbon fiber and is particularly excellent in tensile strength. It is a promising material for various uses.
 一方で、CFRPのマトリックス樹脂は、一般に、エポキシ樹脂等の熱硬化性樹脂であるため脆性を有していることから、変形すると脆性破壊する可能性がある。また、熱硬化性樹脂をマトリックス樹脂として用いるCFRPは、塑性変形しないことから、一度硬化させてしまうと曲げ加工ができない。さらに、CFRPは、一般に高価であり、自動車部材等の各種部材のコストアップの要因となる。 On the other hand, CFRP matrix resin is generally a thermosetting resin such as an epoxy resin and therefore has brittleness, so that it may break brittlely when deformed. Further, since CFRP using a thermosetting resin as a matrix resin does not undergo plastic deformation, it cannot be bent once it is cured. Further, CFRP is generally expensive and causes an increase in cost of various members such as automobile members.
 一方で、CFRPの上述したような利点を維持しつつ、これらの問題点を解決するため、最近では、金属部材とCFRPとを積層して一体化(複合化)させた金属部材-CFRP複合材料が検討されている。金属部材は延性を有していることから、このような金属部材と複合化することで、脆性が低下し、複合材料を変形・加工できる。さらに、低価格の金属部材とCFRPを複合化することで、CFRPの使用量を減らすことができるため、自動車部材のコストを低下させることができる。 On the other hand, in order to solve these problems while maintaining the above-mentioned advantages of CFRP, recently, a metal member-CFRP composite material in which a metal member and CFRP are laminated and integrated (composite). Is being considered. Since the metal member has ductility, the brittleness is reduced by combining with such a metal member, and the composite material can be deformed and processed. Further, by combining the low-priced metal member and CFRP, the amount of CFRP used can be reduced, so that the cost of the automobile member can be reduced.
 ところで、CFRP中の炭素繊維は、良好な導電体である。したがって、CFRPと接触した金属部材が電気的に導通し、電食作用によって腐食する現象(異種材料接触腐食)が生じうる。このような異種材料接触腐食を防止するために、いくつかの提案がなされている。 By the way, the carbon fiber in CFRP is a good conductor. Therefore, a phenomenon in which a metal member in contact with CFRP becomes electrically conductive and corrodes due to electrolytic corrosion (contact corrosion of dissimilar materials) may occur. Several proposals have been made to prevent such contact corrosion of dissimilar materials.
 特許文献1には、炭素繊維強化樹脂成形品のマトリックス樹脂中に粒子状またはオイル状のシリコーン化合物を分散させた、金属部品と接触状態で使用される炭素繊維強化樹脂成形品が提案されている。 Patent Document 1 proposes a carbon fiber reinforced resin molded product in which a particulate or oily silicone compound is dispersed in a matrix resin of a carbon fiber reinforced resin molded product, which is used in contact with a metal part. ..
 特許文献2には、金属製締結部材とCFRP積層板との間に非導電性スリーブおよびガラス繊維強化樹脂等の非導電性シートを配置した、繊維強化樹脂部材が提案されている。特許文献3には、炭素繊維強化樹脂材と金属製のカラーの当接部とを絶縁性の接着剤を介して接着させた炭素繊維強化樹脂材の締結構造が提案されている。 Patent Document 2 proposes a fiber-reinforced resin member in which a non-conductive sleeve and a non-conductive sheet such as a glass fiber reinforced resin are arranged between a metal fastening member and a CFRP laminated plate. Patent Document 3 proposes a fastening structure of a carbon fiber reinforced resin material in which a carbon fiber reinforced resin material and a contact portion of a metal collar are bonded to each other via an insulating adhesive.
特開2014-162848号公報Japanese Unexamined Patent Publication No. 2014-162848 国際公開第2016/021259号International Publication No. 2016/021259 国際公開第2016/117062号International Publication No. 2016/117062
 しかしながら、特許文献1に記載の成形品は、炭素繊維強化樹脂成形品の表面をシリコーンにより撥水性を付与したものであり、炭素繊維と金属部品との導通を防止したものではない。したがって、十分に異種材料接触腐食を抑制することは困難である。また、特許文献2、3に係る技術は、あくまでも金属部材と炭素繊維強化樹脂材との接合に関するものであり、金属-炭素繊維強化樹脂材料複合体に単純には適用できない。例えば、金属-炭素繊維強化樹脂材料複合体の金属と炭素繊維強化樹脂材料との接着部分は、当該複合体の一体性を維持するために、比較的薄い樹脂層により接着する必要がある。したがって、当該複合体においては、特許文献2に記載されるような比較的厚みのあるガラス繊維強化樹脂を配置することは困難である。また、特許文献3に記載されるような絶縁性の樹脂層を比較的薄く配置した際に異種材料接触腐食を十分に抑制できるか明らかではない。 However, the molded product described in Patent Document 1 is obtained by imparting water repellency to the surface of the carbon fiber reinforced resin molded product with silicone, and does not prevent conduction between the carbon fiber and the metal part. Therefore, it is difficult to sufficiently suppress contact corrosion of dissimilar materials. Further, the techniques according to Patent Documents 2 and 3 are only related to joining a metal member and a carbon fiber reinforced resin material, and cannot be simply applied to a metal-carbon fiber reinforced resin material composite. For example, the bonded portion between the metal of the metal-carbon fiber reinforced resin material composite and the carbon fiber reinforced resin material needs to be bonded by a relatively thin resin layer in order to maintain the integrity of the composite. Therefore, it is difficult to arrange a relatively thick glass fiber reinforced resin as described in Patent Document 2 in the composite. Further, it is not clear whether the contact corrosion of different materials can be sufficiently suppressed when the insulating resin layer as described in Patent Document 3 is arranged relatively thinly.
 さらに、金属部材と炭素繊維強化樹脂材料とを一体化して用いる場合、これらの間において優れた密着性が担保されている必要がある。 Furthermore, when the metal member and the carbon fiber reinforced resin material are used in an integrated manner, it is necessary to ensure excellent adhesion between them.
 そこで、本発明は、上記問題に鑑みてなされたものであり、金属部材の腐食、特に異種材料接触腐食が抑制され、かつ金属部材と炭素繊維強化樹脂材料との間の密着性に優れた、新規かつ改良された金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and corrosion of the metal member, particularly contact corrosion of different materials, is suppressed, and the adhesion between the metal member and the carbon fiber reinforced resin material is excellent. It is an object of the present invention to provide a new and improved method for producing a metal-carbon fiber reinforced resin material composite and a metal-carbon fiber reinforced resin material composite.
 本発明者らは、上記問題を解決すべく鋭意検討した結果、金属部材と炭素繊維強化樹脂材料との間に配置される樹脂皮膜層中に絶縁性を有し、且つ、防錆性を有する所定の無機塩を含む無機塩粒子を配合することにより、炭素繊維強化樹脂材料中に含まれる炭素繊維が樹脂皮膜層を貫通して金属部材と接触することを防止でき、且つ、腐食環境下において防錆性を有する無機塩の粒子が溶出して耐食性を大きく向上することを知見した。これは、腐食環境下で前記粒子から溶出した金属イオンが金属のみならず、カーボンファイバーにも沈着することで両者の間に絶縁皮膜を形成するため、異種材料接触が回避され耐食性が高まるものと推測される。 As a result of diligent studies to solve the above problems, the present inventors have an insulating property and a rust preventive property in the resin film layer arranged between the metal member and the carbon fiber reinforced resin material. By blending the inorganic salt particles containing a predetermined inorganic salt, it is possible to prevent the carbon fibers contained in the carbon fiber reinforced resin material from penetrating the resin film layer and coming into contact with the metal member, and in a corrosive environment. It was found that the rust-preventive inorganic salt particles were eluted to greatly improve the corrosion resistance. This is because the metal ions eluted from the particles in a corrosive environment are deposited not only on the metal but also on the carbon fiber to form an insulating film between the two, so that contact between different materials is avoided and the corrosion resistance is improved. Guess.
 本発明はこのような知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1) 金属部材と、
 前記金属部材の表面の少なくとも一部に配置された樹脂皮膜層と、
 前記樹脂皮膜層上に配置され、マトリックス樹脂および当該マトリックス樹脂中に存在する炭素繊維材料を含む炭素繊維強化樹脂材料と、を有し、
 前記樹脂皮膜層は、23~27℃における粉体抵抗率が7.0×10Ωcm超であり、かつ、防錆機能を有する、Cr、PおよびVから選択される1種以上の元素の無機塩からなる無機塩粒子を含み、さらに、バインダ樹脂を含み、
 前記樹脂皮膜層における前記無機塩粒子の体積率が5.0%以上40.0%以下である、金属-炭素繊維強化樹脂材料複合体。
(2) 前記無機塩は、クロム酸イオン、ニクロム酸イオン、リン酸イオン、リン酸水素イオン、リン酸二水素イオン、二リン酸イオン、三リン酸イオン、オルトバナジン酸イオン、およびメタバナジン酸イオン、からなる群から選択される1種以上のイオンの塩からなる、(1)に記載の金属-炭素繊維強化樹脂材料複合体。
(3) 前記無機塩は、トリポリリン酸二水素アルミニウム、クロム酸ストロンチウム、クロム酸カリウム、クロム酸カルシウム、バナジン酸マグネシウム、バナジン酸カリウム、およびバナジン酸カルシウムからなる群から選択される1種以上からなる、(1)または(2)に記載の金属-炭素繊維強化樹脂材料複合体。
(4) 前記樹脂皮膜層の平均厚みが、5.0μm以上である、(1)~(3)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(5) 前記酸化物および/または無機塩の粒子の平均粒径が、0.2μm以上50.0μm以下である、(1)~(4)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(6) 前記樹脂皮膜層のガラス転移温度が、100℃以下である、(1)~(5)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(7) 前記マトリックス樹脂は、熱可塑性樹脂を含む、(1)~(6)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(8) 前記マトリックス樹脂は、フェノキシ樹脂を含む、(1)~(7)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(9) 前記バインダ樹脂は、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂およびメラミン樹脂からなる群から選択される1種または2種以上を含む、(1)~(8)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(10) 前記金属部材が、鋼材またはめっき鋼材である、(1)~(8)のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。
(11) 樹脂皮膜層が表面の少なくとも一部に設けられた金属部材と、炭素繊維強化樹脂材料とを前記樹脂皮膜層を介して熱圧着する工程を有し、
 前記炭素繊維強化樹脂材料は、マトリックス樹脂および当該マトリックス樹脂中に存在する炭素繊維材料を含み、
 前記樹脂皮膜層は、23~27℃における粉体抵抗率が7.0×10Ωcm超であり、かつ、防錆機能を有する、Cr、PおよびVから選択される1種以上の元素の無機塩からなる無機塩粒子を含み、さらにバインダ樹脂を含み、
 前記樹脂皮膜層における前記無機塩の粒子の体積率が5.0%以上40.0%以下である、金属-炭素繊維強化樹脂材料複合体の製造方法。
(12) さらに、前記熱圧着する工程前に、前記金属部材を成形する工程を有する、(11)に記載の金属-炭素繊維強化樹脂材料複合体の製造方法。
(13) さらに、前記熱圧着する工程後に、前記金属部材と前記炭素繊維強化樹脂材料とが積層した積層体を成形する工程を有する、(11)に記載の金属-炭素繊維強化樹脂材料複合体の製造方法。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) Metal members and
A resin film layer arranged on at least a part of the surface of the metal member,
It has a matrix resin and a carbon fiber reinforced resin material containing a carbon fiber material existing in the matrix resin, which is arranged on the resin film layer.
The resin film layer, a powder resistivity at 23 ~ 27 ° C. is the 7.0 × 10 7 Ωcm greater, and has a rust function, Cr, one or more elements selected from P and V It contains inorganic salt particles composed of inorganic salts, and further contains a binder resin.
A metal-carbon fiber reinforced resin material composite in which the volume fraction of the inorganic salt particles in the resin film layer is 5.0% or more and 40.0% or less.
(2) The inorganic salt includes chromate ion, dichromate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, diphosphate ion, triphosphate ion, orthovanadate ion, and metavanadate ion. The metal-carbon fiber reinforced resin material composite according to (1), which comprises a salt of one or more ions selected from the group consisting of.
(3) The inorganic salt comprises one or more selected from the group consisting of aluminum dihydrogen tripolyphosphate, strontium chromate, potassium chromate, calcium chromate, magnesium vanadate, potassium vanadate, and calcium vanadate. , (1) or (2). The metal-carbon fiber reinforced resin material composite.
(4) The metal-carbon fiber reinforced resin material composite according to any one of (1) to (3), wherein the resin film layer has an average thickness of 5.0 μm or more.
(5) The metal-carbon fiber reinforcement according to any one of (1) to (4), wherein the average particle size of the oxide and / or inorganic salt particles is 0.2 μm or more and 50.0 μm or less. Resin material composite.
(6) The metal-carbon fiber reinforced resin material composite according to any one of (1) to (5), wherein the glass transition temperature of the resin film layer is 100 ° C. or lower.
(7) The metal-carbon fiber reinforced resin material composite according to any one of (1) to (6), wherein the matrix resin contains a thermoplastic resin.
(8) The metal-carbon fiber reinforced resin material composite according to any one of (1) to (7), wherein the matrix resin contains a phenoxy resin.
(9) The item according to any one of (1) to (8), wherein the binder resin contains one or more selected from the group consisting of urethane resin, epoxy resin, polyester resin and melamine resin. Metal-carbon fiber reinforced resin material composite.
(10) The metal-carbon fiber reinforced resin material composite according to any one of (1) to (8), wherein the metal member is a steel material or a plated steel material.
(11) A step of thermocompression bonding a metal member provided with a resin film layer on at least a part of the surface and a carbon fiber reinforced resin material via the resin film layer is provided.
The carbon fiber reinforced resin material includes a matrix resin and a carbon fiber material present in the matrix resin.
The resin film layer, a powder resistivity at 23 ~ 27 ° C. is the 7.0 × 10 7 Ωcm greater, and has a rust function, Cr, one or more elements selected from P and V Contains inorganic salt particles composed of inorganic salts, and further contains a binder resin.
A method for producing a metal-carbon fiber reinforced resin material composite, wherein the volume fraction of the inorganic salt particles in the resin film layer is 5.0% or more and 40.0% or less.
(12) The method for producing a metal-carbon fiber reinforced resin material composite according to (11), further comprising a step of molding the metal member before the thermocompression bonding step.
(13) The metal-carbon fiber reinforced resin material composite according to (11), further comprising a step of forming a laminate in which the metal member and the carbon fiber reinforced resin material are laminated after the thermocompression bonding step. Manufacturing method.
 以上説明したように本発明によれば、金属部材の腐食、特に異種材料接触腐食が抑制され、かつ金属部材と炭素繊維強化樹脂材料との間の密着性に優れた、新規かつ改良された金属-炭素繊維強化樹脂材料複合体および金属-炭素繊維強化樹脂材料複合体の製造方法を提供することができる。 As described above, according to the present invention, a new and improved metal that suppresses corrosion of metal members, particularly contact corrosion of dissimilar materials, and has excellent adhesion between metal members and carbon fiber reinforced resin materials. -A method for producing a carbon fiber reinforced resin material composite and a metal-carbon fiber reinforced resin material composite can be provided.
本発明の一実施形態に係る金属-炭素繊維強化樹脂材料複合体の積層方向における断面模式図である。It is sectional drawing in the stacking direction of the metal-carbon fiber reinforced resin material composite which concerns on one Embodiment of this invention. 本発明の一変形例に係る金属-炭素繊維強化樹脂材料複合体の積層方向における断面模式図である。It is sectional drawing in the stacking direction of the metal-carbon fiber reinforced resin material composite which concerns on one modification of this invention. 本発明の他の変形例に係る金属-炭素繊維強化樹脂材料複合体の積層方向における断面模式図である。It is sectional drawing in the stacking direction of the metal-carbon fiber reinforced resin material composite which concerns on other modification of this invention. 本発明の他の変形例に係る金属-炭素繊維強化樹脂材料複合体の積層方向における断面模式図である。It is sectional drawing in the stacking direction of the metal-carbon fiber reinforced resin material composite which concerns on other modification of this invention. 本発明の第1の実施形態に係る金属-CFRP複合体の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the metal-CFRP composite which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る金属-CFRP複合体の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the metal-CFRP composite which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る金属-CFRP複合体の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the metal-CFRP composite which concerns on 2nd Embodiment of this invention. 本発明の第2の実施形態に係る金属-CFRP複合体の製造方法を説明する模式図である。It is a schematic diagram explaining the manufacturing method of the metal-CFRP composite which concerns on 2nd Embodiment of this invention.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 A preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings below. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals to omit duplicate description.
 また、異なる実施形態の類似する構成要素については、同一の符号の後に異なるアルファベットを付して区別する。ただし、実質的に同一の機能構成を有する複数の構成要素等の各々を特に区別する必要がない場合、同一符号のみを付する。また、説明の容易化のために各図は適宜拡大、縮小しており、図は各部の実際の大きさ及び比率を示すものではない。 Also, similar components of different embodiments are distinguished by adding different alphabets after the same code. However, if it is not necessary to distinguish each of a plurality of components having substantially the same functional configuration, only the same reference numerals are given. In addition, each figure is appropriately enlarged or reduced for ease of explanation, and the figure does not show the actual size and ratio of each part.
<1.金属-炭素繊維強化樹脂材料複合体>
[1.1.金属-炭素繊維強化樹脂材料複合体の構成]
 まず、図1を参照しながら、本発明の一実施形態に係る金属-炭素繊維強化樹脂材料複合体の構成について説明する。図1は、本実施形態に係る金属-炭素繊維強化樹脂材料複合体の一例としての金属-炭素繊維強化樹脂材料複合体1の積層方向における断面構造を示す模式図である。
<1. Metal-Carbon Fiber Reinforced Resin Material Composite>
[1.1. Composition of metal-carbon fiber reinforced resin material composite]
First, the configuration of the metal-carbon fiber reinforced resin material composite according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing a cross-sectional structure of a metal-carbon fiber reinforced resin material composite 1 as an example of the metal-carbon fiber reinforced resin material composite according to the present embodiment in the stacking direction.
 図1に示すように、金属-炭素繊維強化樹脂材料(CFRP)複合体1は、金属部材11と、炭素繊維強化樹脂材料(CFRP層)12と、樹脂皮膜層13と、を備える。金属部材11とCFRP層12とは、樹脂皮膜層13を介して複合化されている。ここで、「複合化」とは、金属部材11とCFRP層12とが、樹脂皮膜層13を介して接着され(貼り合わされ)、一体化していることを意味する。また、「一体化」とは、金属部材11、CFRP層12及び樹脂皮膜層13が、加工や変形の際、一体として動くことを意味する。 As shown in FIG. 1, the metal-carbon fiber reinforced resin material (CFRP) composite 1 includes a metal member 11, a carbon fiber reinforced resin material (CFRP layer) 12, and a resin film layer 13. The metal member 11 and the CFRP layer 12 are composited via the resin film layer 13. Here, "composite" means that the metal member 11 and the CFRP layer 12 are bonded (bonded) to each other via the resin film layer 13 and integrated. Further, "integration" means that the metal member 11, the CFRP layer 12, and the resin film layer 13 move as one when processed or deformed.
 また、本実施形態においては、樹脂皮膜層13は、23~27℃における粉体抵抗率が7.0×10Ωcm超であり、防錆機能を有する、Cr、PおよびVから選択される1種以上の元素の無機塩からなる無機塩粒子131(以下、単に「無機塩粒子131」ともいう)を含み、かつ、無機塩粒子131の体積率が、樹脂皮膜層13の全体積を100%としたとき、5.0%以上40.0%以下である。これにより、金属-CFRP複合体1の耐食性、特に異種材料接触腐食に関する耐食性が向上している。無機塩粒子131の体積率が5.0%以上であることにより、確実に無機塩粒子131が金属部材11と炭素繊維材料121との接触腐食を防止することができる。また、無機塩粒子131の体積率が40.0%以下であることにより、樹脂皮膜層13の凝集破壊が防止され、樹脂皮膜層13とCFRP層12との密着性が十分に優れるものとなる。 In the present embodiment, the resin film layer 13, the powder resistivity at 23 ~ 27 ° C. is 7.0 × 10 7 Ωcm than has the anti-corrosion function, Cr, is selected from P and V It contains inorganic salt particles 131 composed of inorganic salts of one or more elements (hereinafter, also simply referred to as “inorganic salt particles 131”), and the volume resistivity of the inorganic salt particles 131 is 100, which is the total volume of the resin film layer 13. When it is%, it is 5.0% or more and 40.0% or less. As a result, the corrosion resistance of the metal-CFRP composite 1 is improved, particularly with respect to contact corrosion of different materials. When the volume ratio of the inorganic salt particles 131 is 5.0% or more, the inorganic salt particles 131 can surely prevent the contact corrosion between the metal member 11 and the carbon fiber material 121. Further, when the volume fraction of the inorganic salt particles 131 is 40.0% or less, the cohesive failure of the resin film layer 13 is prevented, and the adhesion between the resin film layer 13 and the CFRP layer 12 is sufficiently excellent. ..
 なお、樹脂皮膜層13における無機塩粒子131の体積率は、樹脂皮膜層13を作製する際に添加した無機塩粒子131の樹脂皮膜層13中の固形分質量比率を求めて、皮膜樹脂の比重と粒子の比重から体積率を算出することができる。また、樹脂皮膜層13における無機塩粒子131の体積率は任意の断面を電解放出型電子線マイクロアナライザ(FE-EPMA:Electron Probe Micro Analyzer)にて分析し、前記粒子に含まれる金属成分の面分布写真を用いて画像解析することで求めた面積率を樹脂皮膜層中の粒子の体積率とすることができる。発明者らが鋭意検討したところ、皮膜中の体積率と断面においてFE-EPMAを使って測定された粒子に含まれる金属成分の面積分率は厳密には異なるが近い値となることを知見したため、本願発明では前述のように求めることもできる。 The volume fraction of the inorganic salt particles 131 in the resin film layer 13 is the specific gravity of the film resin by determining the solid content mass ratio of the inorganic salt particles 131 added when the resin film layer 13 is produced in the resin film layer 13. And the volume fraction can be calculated from the specific gravity of the particles. Further, the volume ratio of the inorganic salt particles 131 in the resin film layer 13 is analyzed by analyzing an arbitrary cross section with an electrolytic emission type electron probe microanalyzer (FE-EPMA: Electron Probe Micro Analyzer), and the surface of the metal component contained in the particles. The area ratio obtained by image analysis using the distribution photograph can be used as the volume ratio of the particles in the resin film layer. As a result of diligent studies by the inventors, it was found that the volume fraction in the film and the area fraction of the metal component contained in the particles measured by FE-EPMA in terms of cross section are strictly different but close to each other. , In the present invention, it can also be obtained as described above.
 以下、金属-CFRP複合体1の各構成について詳述する。
(金属部材11)
 金属部材11の材質、形状及び厚みなどは、プレス等による成型加工が可能であれば特に限定されるものではないが、形状は薄板状が好ましい。金属部材11の材質としては、例えば、鉄、チタン、アルミニウム、マグネシウム及びこれらの合金などが挙げられる。ここで、合金の例としては、例えば、鉄系合金(ステンレス鋼含む)、Ti系合金、Al系合金、Mg合金などが挙げられる。金属部材11の材質は、鉄鋼材料、鉄系合金、チタン及びアルミニウムであることが好ましく、他の金属種に比べて引張強度が高い鉄鋼材料であることがより好ましい。そのような鉄鋼材料としては、例えば、自動車に用いられる薄板状の鋼板として日本工業規格(JIS)等で規格された一般用、絞り用あるいは超深絞り用の冷間圧延鋼板、自動車用加工性冷間圧延高張力鋼板、一般用や加工用の熱間圧延鋼板、自動車構造用熱間圧延鋼板、自動車用加工性熱間圧延高張力鋼板をはじめとする鉄鋼材料があり、一般構造用や機械構造用として使用される炭素鋼、合金鋼、高張力鋼等も薄板状に限らない鉄鋼材料として挙げることができる。
Hereinafter, each configuration of the metal-CFRP composite 1 will be described in detail.
(Metal member 11)
The material, shape, thickness, and the like of the metal member 11 are not particularly limited as long as they can be molded by a press or the like, but the shape is preferably a thin plate. Examples of the material of the metal member 11 include iron, titanium, aluminum, magnesium, and alloys thereof. Here, examples of alloys include iron-based alloys (including stainless steel), Ti-based alloys, Al-based alloys, Mg alloys, and the like. The material of the metal member 11 is preferably a steel material, an iron-based alloy, titanium and aluminum, and more preferably a steel material having a higher tensile strength than other metal types. Examples of such steel materials include cold-rolled steel sheets for general use, drawing or ultra-deep drawing, which are standardized by the Japan Industrial Standards (JIS) as thin plate-shaped steel sheets used for automobiles, and workability for automobiles. There are steel materials such as cold-rolled high-tensile steel sheets, hot-rolled steel sheets for general use and processing, hot-rolled steel sheets for automobile structures, and workable hot-rolled high-tensile steel sheets for automobiles, for general structures and machinery. Carbon steel, alloy steel, high tension steel and the like used for structural purposes can also be mentioned as steel materials not limited to thin plates.
 鉄鋼材料には、任意の表面処理が施されていてもよい。ここで、表面処理とは、例えば、亜鉛めっき及びアルミニウムめっきなどの各種めっき処理、クロメート処理及びノンクロメート処理などの化成処理、並びに、サンドブラストのような物理的もしくはケミカルエッチングのような化学的な表面粗化処理が挙げられるが、これらに限られるものではない。また、めっきの合金化や複数種の表面処理が施されていてもよい。表面処理としては、少なくとも防錆性の付与を目的とした処理が行われていることが好ましい。 Any surface treatment may be applied to the steel material. Here, the surface treatment refers to, for example, various plating treatments such as zinc plating and aluminum plating, chemical conversion treatments such as chromate treatment and non-chromate treatment, and chemical surfaces such as physical or chemical etching such as sandblasting. Roughing treatment can be mentioned, but is not limited to these. Further, the plating may be alloyed or a plurality of types of surface treatments may be applied. As the surface treatment, it is preferable that at least a treatment for the purpose of imparting rust prevention is performed.
 特に、鉄鋼材料の中でもめっき処理が施されためっき鋼材は、耐食性に優れていることから好ましい。金属部材11として特に好ましいめっき鋼材としては、溶融亜鉛めっき鋼板、亜鉛合金めっき鋼板もしくはこれらを熱処理して亜鉛めっき中にFeを拡散させることで合金化させた合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、電気Zn-Niめっき鋼板、溶融Zn-5%Al合金めっき鋼板や溶融55%Al-Zn合金めっき鋼板に代表される溶融Zn-Al合金めっき鋼板、溶融Zn-1~12%Al-1~4%Mg合金めっき鋼板や溶融55%Al-Zn-0.1~3%Mg合金めっき鋼板に代表される溶融Zn-Al-Mg合金めっき鋼板、Niめっき鋼板もしくはこれらを熱処理してNiめっき中にFeを拡散させることで合金化させた合金化Niめっき鋼板、Alめっき鋼板、錫めっき鋼板、クロムめっき鋼板等が挙げられる。亜鉛系めっき鋼板は耐食性に優れ好適である。更に、Zn-Al-Mg合金めっき鋼板は更に耐食性が優れるため、より好適である。 Among the steel materials, the plated steel material that has been plated is preferable because it has excellent corrosion resistance. Particularly preferable plated steel materials as the metal member 11 include hot-dip galvanized steel sheets, galvanized galvanized steel sheets, alloyed hot-dip galvanized steel sheets obtained by heat-treating these and alloying them by diffusing Fe during zinc plating, and electrogalvanized steel sheets. Hot-dip Zn-Al alloy-plated steel sheets represented by steel sheets, electric Zn-Ni plated steel sheets, hot-dip Zn-5% Al alloy-plated steel sheets and hot-dip 55% Al-Zn alloy-plated steel sheets, hot-dip Zn-1 to 12% Al-1 Hot-dip Zn-Al-Mg alloy-plated steel sheet represented by ~ 4% Mg alloy-plated steel sheet, hot-dip 55% Al-Zn-0.1 ~ 3% Mg alloy-plated steel sheet, Ni-plated steel sheet, or heat-treated and Ni-plated. Examples thereof include alloyed Ni-plated steel sheets, Al-plated steel sheets, tin-plated steel sheets, and chrome-plated steel sheets that are alloyed by diffusing Fe. The galvanized steel sheet has excellent corrosion resistance and is suitable. Further, the Zn—Al—Mg alloy plated steel sheet is more suitable because it has further excellent corrosion resistance.
 CFRP層12との接着性を高めるために、金属部材11の表面は、プライマーにより処理されていることが好ましい。この処理で用いるプライマーとしては、例えば、シランカップリング剤やトリアジンチオール誘導体が好ましい。シランカップリング剤としては一般に公知のシランカップリング剤、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-アニリノプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、オクタデシルジメチル〔3-(トリメトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3-(メチルジメトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3-(トリエトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3-(メチルジエトキシシリル)プロピル〕アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランなどを挙げることができるが、グリシジルエーテル基を有するシランカップリング剤、例えば、グリシジルエーテル基を有するγ-グリシドキシプロピルトリメトキシシラン及びγ-グリシドキシプロピルトリエトキシシランを使用すると、塗膜の加工密着性は特に向上する。更に、トリエトキシタイプのシランカップリング剤を使用すると、下地処理剤(プライマー)の保存安定性を向上させることができる。これは、トリエトキシシランが水溶液中で比較的安定であり、重合速度が遅いためであると考えられる。シランカップリング剤は1種で使用してもよく、2種以上を併用してもよい。トリアジンチオール誘導体としては、6-ジアリルアミノ-2,4-ジチオール-1,3,5-トリアジン、6-メトキシ-2,4-ジチオール-1,3,5-トリアジンモノナトリウム、6-プロピル-2,4-ジチオールアミノ-1,3,5-トリアジンモノナトリウム及び2,4,6-トリチオール-1,3,5-トリアジンなどが例示される。 It is preferable that the surface of the metal member 11 is treated with a primer in order to enhance the adhesiveness with the CFRP layer 12. As the primer used in this treatment, for example, a silane coupling agent or a triazine thiol derivative is preferable. Generally known silane coupling agents as silane coupling agents, for example, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-amino Ethyl) Aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxy Propylmethyldimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, N-β- ( N-Vinylbenzylaminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltriethoxysilane, N-β- (N-vinylbenzylaminoethyl)- γ-Aminopropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-Mercaptopropyltrimethoxysilane, γ-Mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldiethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxy Silane, vinyl triacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropylmethyldiethoxysilane, hexamethyldisilazane, γ-anilinopropyl Trimethoxysilane, γ-anilinopropylmethyldimethoxysilane, γ-anilinopropyltriethoxysilane, γ-anilinopropylmethyldiethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyltriethoxysilane, vinylmethyldi Ethoxysilane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, octadecyldimethyl [3- (methyldimethoxysilyl) propyl] Ammonium chloride, octadecyldimethyl [3- (triethoxysilyl) propyl] ammonium chloride, octadecyldimethyl [3- (methyldiethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, Examples thereof include methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, etc., and silane coupling agents having a glycidyl ether group, for example, γ-glycidoxypropyltrimethoxysilane and γ-glycidoxy having a glycidyl ether group. The use of propyltriethoxysilane particularly improves the process adhesion of the coating. Further, when a triethoxy type silane coupling agent is used, the storage stability of the surface treatment agent (primer) can be improved. It is considered that this is because triethoxysilane is relatively stable in an aqueous solution and the polymerization rate is slow. The silane coupling agent may be used alone or in combination of two or more. Examples of triazine thiol derivatives include 6-diallylamino-2,4-dithiol-1,3,5-triazine, 6-methoxy-2,4-dithiol-1,3,5-triazine monosodium and 6-propyl-2. , 4-Dithiolamino-1,3,5-triazine monosodium and 2,4,6-trithiol-1,3,5-triazine and the like are exemplified.
(CFRP層12)
 CFRP層12は、マトリックス樹脂123と、当該マトリックス樹脂123中に含有され、複合化された炭素繊維材料121と、を有している。
(CFRP layer 12)
The CFRP layer 12 has a matrix resin 123 and a carbon fiber material 121 contained in the matrix resin 123 and compounded.
 炭素繊維材料121としては、特に制限はないが、例えば、PAN系、ピッチ系のいずれも使用でき、目的や用途に応じて選択すればよい。また、炭素繊維材料121として、上述した繊維を1種類単独で使用してもよいし、複数種類を併用してもよい。 The carbon fiber material 121 is not particularly limited, but for example, either a PAN type or a pitch type can be used and may be selected according to the purpose and application. Further, as the carbon fiber material 121, the above-mentioned fibers may be used alone or in combination of two or more.
 CFRP層12に用いられるCFRPにおいて、炭素繊維材料121の基材となる強化繊維基材としては、例えば、チョップドファイバーを使用した不織布基材や連続繊維を使用したクロス材、一方向強化繊維基材(UD材)などを使用することができる。補強効果の面からは、強化繊維基材としてクロス材やUD材を使用することが好ましい。 In the CFRP used for the CFRP layer 12, the reinforcing fiber base material used as the base material of the carbon fiber material 121 includes, for example, a non-woven fabric base material using chopped fiber, a cloth material using continuous fiber, and a unidirectional reinforcing fiber base material. (UD material) or the like can be used. From the viewpoint of the reinforcing effect, it is preferable to use a cloth material or a UD material as the reinforcing fiber base material.
 マトリックス樹脂123は、樹脂組成物の固化物または硬化物であることができる。ここで、単に「固化物」というときは、樹脂成分自体が固化したものを意味し、「硬化物」というときは、樹脂成分に対して各種の硬化剤を含有させて硬化させたものを意味する。なお、硬化物に含有されうる硬化剤には、後述するような架橋剤も含まれ、上記の「硬化物」は、架橋形成された架橋硬化物を含むものとする。 The matrix resin 123 can be a solidified product or a cured product of the resin composition. Here, the term "solidified" simply means that the resin component itself is solidified, and the term "cured product" means that the resin component is cured by containing various curing agents. To do. The curing agent that can be contained in the cured product also includes a cross-linking agent as described later, and the above-mentioned "cured product" includes a cross-linked cured product formed by cross-linking.
◇樹脂組成物
 マトリックス樹脂123を構成する樹脂組成物は、熱硬化性樹脂と熱可塑性樹脂のいずれも使用することができるが、熱可塑性樹脂を主成分とすることが好ましい。マトリックス樹脂123に用いることができる熱可塑性樹脂の種類は、特に制限されないが、例えば、フェノキシ樹脂、ポリオレフィン及びその酸変性物、ポリスチレン、ポリメチルメタクリレート、AS樹脂、ABS樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート等の熱可塑性芳香族ポリエステル、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリフェニレンスルフィド、ポリオキシメチレン、ポリアリレート、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、並びにナイロン等から選ばれる1種以上を使用できる。なお、「熱可塑性樹脂」には、後述する第2の硬化状態である架橋硬化物となり得る樹脂も含まれる。また、マトリックス樹脂123に用いることができる熱硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、及び、ウレタン樹脂から選ばれる1種以上を使用することができる。
◇ Resin composition As the resin composition constituting the matrix resin 123, either a thermosetting resin or a thermoplastic resin can be used, but it is preferable that the resin composition contains the thermoplastic resin as a main component. The type of thermoplastic resin that can be used for the matrix resin 123 is not particularly limited, and for example, phenoxy resin, polyolefin and its acid-modified product, polystyrene, polymethylmethacrylate, AS resin, ABS resin, polyethylene terephthalate and polybutylene terephthalate. Thermoplastic aromatic polyesters such as polyester, polycarbonate, polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polyphenylene ether and its modifications, polyphenylene sulfide, polyoxymethylene, polyarylate, polyetherketone, polyetheretherketone , Polyetherketone Ketone, and one or more selected from nylon and the like can be used. The "thermoplastic resin" also includes a resin that can be a crosslinked cured product in the second cured state described later. Further, as the thermosetting resin that can be used for the matrix resin 123, for example, one or more selected from epoxy resin, vinyl ester resin, phenol resin, and urethane resin can be used.
 ここで、マトリックス樹脂123が熱可塑性樹脂を含有した場合、上述したCFRPのマトリックス樹脂に熱硬化性樹脂を用いたときの問題点、すなわち、CFRP層12が脆性を有すること、タクトタイムが長いこと、曲げ加工ができないことなどの問題点を解消できる。ただし、通常、熱可塑性樹脂は、溶融したときの粘度が高く、熱硬化前のエポキシ樹脂等の熱硬化性樹脂のように低粘度の状態で炭素繊維材料121に含浸させることができないことから、炭素繊維材料121に対する含浸性に劣る。そのため、熱硬化性樹脂をマトリックス樹脂123として用いた場合のようにCFRP層12中の強化繊維密度(VF:Volume Fraction)を上げることができない。例えば、エポキシ樹脂をマトリックス樹脂123として用いた場合には、VFを60%程度とすることができるが、ポリプロピレンやナイロン等の熱可塑性樹脂をマトリックス樹脂123として用いた場合には、VFが50%程度となってしまう。また、ポリプロピレンやナイロン等の熱可塑性樹脂を用いると、エポキシ樹脂等の熱硬化性樹脂を用いたときのようにCFRP層12が高い耐熱性を有することができない。 Here, when the matrix resin 123 contains a thermoplastic resin, there are problems when a thermosetting resin is used as the CFRP matrix resin described above, that is, the CFRP layer 12 has brittleness and the tact time is long. , Problems such as not being able to bend can be solved. However, since the thermoplastic resin usually has a high viscosity when melted and cannot be impregnated into the carbon fiber material 121 in a low viscosity state like a thermosetting resin such as an epoxy resin before thermosetting, it cannot be impregnated. Poor impregnation property with respect to the carbon fiber material 121. Therefore, it is not possible to increase the reinforcing fiber density (VF: Volume Fraction) in the CFRP layer 12 as in the case where the thermosetting resin is used as the matrix resin 123. For example, when an epoxy resin is used as the matrix resin 123, the VF can be about 60%, but when a thermoplastic resin such as polypropylene or nylon is used as the matrix resin 123, the VF is 50%. It will be about. Further, when a thermoplastic resin such as polypropylene or nylon is used, the CFRP layer 12 cannot have high heat resistance as in the case where a thermosetting resin such as an epoxy resin is used.
 このような熱可塑性樹脂を用いたときの問題を解消するには、マトリックス樹脂123として、フェノキシ樹脂を使用することが好ましい。フェノキシ樹脂は、エポキシ樹脂と分子構造が酷似しているため、エポキシ樹脂と同程度の耐熱性を有し、また、金属部材11や炭素繊維材料121との接着性が良好となる。さらに、フェノキシ樹脂に、エポキシ樹脂のような硬化成分を添加して共重合させることで、いわゆる部分硬化型樹脂とすることができる。このような部分硬化型樹脂をマトリックス樹脂123として使用することにより、炭素繊維材料121への含浸性に優れるマトリックス樹脂とすることができる。さらには、この部分硬化型樹脂中の硬化成分を熱硬化させることで、通常の熱可塑性樹脂のようにCFRP層12中のマトリックス樹脂123が高温に曝された際に溶融又は軟化することを抑制できる。フェノキシ樹脂への硬化成分の添加量は、炭素繊維材料121への含浸性と、CFRP層12の脆性、タクトタイム及び加工性等とを考慮し、適宜決めればよい。このように、フェノキシ樹脂をマトリックス樹脂123として使用することで、自由度の高い硬化成分の添加と制御を行うことが可能となる。 In order to solve the problem when such a thermoplastic resin is used, it is preferable to use a phenoxy resin as the matrix resin 123. Since the phenoxy resin has a molecular structure very similar to that of the epoxy resin, it has the same heat resistance as the epoxy resin, and has good adhesiveness to the metal member 11 and the carbon fiber material 121. Further, by adding a curing component such as an epoxy resin to the phenoxy resin and copolymerizing it, a so-called partially cured resin can be obtained. By using such a partially curable resin as the matrix resin 123, it is possible to obtain a matrix resin having excellent impregnation property into the carbon fiber material 121. Furthermore, by thermosetting the cured component in this partially curable resin, it is possible to prevent the matrix resin 123 in the CFRP layer 12 from melting or softening when exposed to a high temperature, unlike a normal thermoplastic resin. it can. The amount of the curing component added to the phenoxy resin may be appropriately determined in consideration of the impregnation property of the carbon fiber material 121, the brittleness of the CFRP layer 12, the tact time, the processability, and the like. As described above, by using the phenoxy resin as the matrix resin 123, it is possible to add and control the curing component with a high degree of freedom.
 なお、例えば、炭素繊維材料121の表面には、エポキシ樹脂と馴染みのよいサイジング剤が施されていることが多い。フェノキシ樹脂は、エポキシ樹脂の構造と酷似していることから、マトリックス樹脂123としてフェノキシ樹脂を使用することにより、エポキシ樹脂用のサイジング剤をそのまま使用することができる。そのため、コスト競争力を高めることができる。 For example, the surface of the carbon fiber material 121 is often coated with a sizing agent that is familiar with the epoxy resin. Since the phenoxy resin has a structure very similar to that of the epoxy resin, the sizing agent for the epoxy resin can be used as it is by using the phenoxy resin as the matrix resin 123. Therefore, cost competitiveness can be enhanced.
 また、熱可塑性樹脂の中でもフェノキシ樹脂は、良成形性を備え、炭素繊維材料121や金属部材11との接着性に優れる他、酸無水物やイソシアネート化合物、カプロラクタム等を架橋剤として使用することで、成形後に高耐熱性の熱硬化性樹脂と同様の性質を持たせることもできる。よって、本実施形態では、マトリックス樹脂123の樹脂成分として、樹脂成分100質量部に対してフェノキシ樹脂を50質量部以上含む樹脂組成物の固化物又は硬化物を用いることが好ましい。このような樹脂組成物を使用することによって、金属部材11とCFRP層12とを強固に接合することが可能になる。樹脂組成物は、樹脂成分100質量部のうちフェノキシ樹脂を55質量部以上含むことがより好ましい。接着樹脂組成物の形態は、例えば、粉体、ワニスなどの液体、フィルムなどの固体とすることができる。 Among the thermoplastic resins, the phenoxy resin has good moldability and is excellent in adhesion to the carbon fiber material 121 and the metal member 11, and by using an acid anhydride, an isocyanate compound, caprolactam, etc. as a cross-linking agent. After molding, it can have the same properties as a highly heat-resistant thermosetting resin. Therefore, in the present embodiment, as the resin component of the matrix resin 123, it is preferable to use a solidified or cured product of a resin composition containing 50 parts by mass or more of phenoxy resin with respect to 100 parts by mass of the resin component. By using such a resin composition, the metal member 11 and the CFRP layer 12 can be firmly bonded to each other. It is more preferable that the resin composition contains 55 parts by mass or more of the phenoxy resin out of 100 parts by mass of the resin component. The form of the adhesive resin composition can be, for example, a powder, a liquid such as varnish, or a solid such as a film.
 なお、フェノキシ樹脂の含有量は、以下のように、赤外分光法(IR:InfraRed spectroscopy)を用いて測定可能であり、IRで対象とする樹脂組成物からフェノキシ樹脂の含有割合を分析する場合、透過法やATR反射法など、IR分析の一般的な方法を使うことで、測定することができる。 The content of the phenoxy resin can be measured by infrared spectroscopy (IR: Infrared spectroscopy) as described below, and when the content ratio of the phenoxy resin is analyzed from the target resin composition by IR. , It can be measured by using a general method of IR analysis such as transmission method and ATR reflection method.
 鋭利な刃物等でCFRP層12を削り出し、可能な限り繊維をピンセットなどで除去して、CFRP層12から分析対象となる樹脂組成物をサンプリングする。透過法の場合は、KBr粉末と分析対象となる樹脂組成物の粉末とを乳鉢などで均一に混合しながら潰すことで薄膜を作製して、試料とする。ATR反射法の場合は、透過法同様に粉末を乳鉢で均一に混合しながら潰すことで錠剤を作製して、試料を作製しても良いし、単結晶KBr錠剤(例えば直径2mm×厚み1.8mm)の表面にヤスリなどで傷をつけ、分析対象となる樹脂組成物の粉末をまぶして付着させて試料としても良い。いずれの方法においても、分析対象となる樹脂と混合する前のKBr単体におけるバックグラウンドを測定しておくことが重要である。IR測定装置は、市販されている一般的なものを用いることができるが、精度としては吸収(Absorbance)は1%単位で、波数(Wavenumber)は1cm-1単位で区別が出来る分析精度をもつ装置が好ましく、例えば、日本分光株式会社製のFT/IR-6300などが挙げられる。 The CFRP layer 12 is carved out with a sharp blade or the like, fibers are removed as much as possible with tweezers or the like, and the resin composition to be analyzed is sampled from the CFRP layer 12. In the case of the permeation method, a thin film is prepared by crushing the KBr powder and the powder of the resin composition to be analyzed while uniformly mixing them in a mortar or pestle to prepare a sample. In the case of the ATR reflection method, a tablet may be prepared by crushing the powder while uniformly mixing it in a mortar as in the transmission method, or a single crystal KBr tablet (for example, diameter 2 mm × thickness 1. The surface of 8 mm) may be scratched with a pestle or the like, and the powder of the resin composition to be analyzed may be sprinkled and adhered as a sample. In either method, it is important to measure the background of KBr alone before mixing with the resin to be analyzed. As the IR measuring device, a general commercially available one can be used, but the accuracy is such that the absorption (Absorbance) is in units of 1% and the wave number (Wavenumber) is in units of 1 cm- 1. The apparatus is preferable, and examples thereof include FT / IR-6300 manufactured by JASCO Corporation.
 フェノキシ樹脂の含有量を調査する場合、フェノキシ樹脂の吸収ピークは、例えば1450~1480cm-1、1500cm-1近傍、1600cm-1近傍などに存在することから、同吸収ピークの強度に基づいて、含有量を計算することが可能である。 When investigating the content of the phenoxy resin, the absorption peak of the phenoxy resin, for example, 1450 ~ 1480cm -1, 1500cm -1 vicinity, since there like 1600 cm -1 vicinity, based on the intensity of the absorption peak, containing It is possible to calculate the quantity.
 「フェノキシ樹脂」とは、2価フェノール化合物とエピハロヒドリンとの縮合反応、又は2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得られる線形の高分子であり、非晶質の熱可塑性樹脂である。フェノキシ樹脂は、溶液中又は無溶媒下で従来公知の方法で得ることができ、粉体、ワニス及びフィルムのいずれの形態でも使用することができる。フェノキシ樹脂の平均分子量は、質量平均分子量(Mw)として、例えば、10,000以上200,000以下の範囲内であるが、好ましくは20,000以上100,000以下の範囲内であり、より好ましくは30,000以上80,000以下の範囲内である。フェノキシ樹脂(A)のMwを10,000以上の範囲内とすることで、成形体の強度を高めることができ、この効果は、Mwを20,000以上、さらには30,000以上とすることで、さらに高まる。一方、フェノキシ樹脂のMwを200,000以下とすることで、作業性や加工性に優れるものとすることができ、この効果は、Mwを100,000以下、さらには80,000以下とすることで、さらに高まる。なお、本明細書におけるMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン検量線を用いて換算した値とする。 The "phenoxy resin" is a linear polymer obtained from a condensation reaction between a divalent phenol compound and epihalohydrin or a double addition reaction between a divalent phenol compound and a bifunctional epoxy resin, and is an amorphous thermoplastic resin. Is. The phenoxy resin can be obtained in a solution or in a solvent-free manner by a conventionally known method, and can be used in any form of powder, varnish and film. The average molecular weight of the phenoxy resin is, for example, in the range of 10,000 or more and 200,000 or less, preferably in the range of 20,000 or more and 100,000 or less, and more preferably in the mass average molecular weight (Mw). Is in the range of 30,000 or more and 80,000 or less. By setting the Mw of the phenoxy resin (A) to the range of 10,000 or more, the strength of the molded product can be increased, and this effect is to set the Mw to 20,000 or more, further to 30,000 or more. And it will be even higher. On the other hand, by setting the Mw of the phenoxy resin to 200,000 or less, the workability and workability can be improved, and this effect is to set the Mw to 100,000 or less, further to 80,000 or less. And it will be even higher. In addition, Mw in this specification is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
 本実施形態で用いるフェノキシ樹脂の水酸基当量(g/eq)は、例えば、50以上1000以下の範囲内であるが、好ましくは50以上750以下の範囲内であり、より好ましくは50以上500以下の範囲内である。フェノキシ樹脂の水酸基当量を50以上とすることで、水酸基が減ることで吸水率が下がるため、硬化物の機械物性を向上させることができる。一方、フェノキシ樹脂の水酸基当量を1,000以下とすることで、水酸基が少なくなるのを抑制できるので、被着体との親和性を向上させ、金属-CFRP複合体1の機械物性を向上させることができる。この効果は、水酸基当量を750以下、さらには500以下とすることでさらに高まる。 The hydroxyl group equivalent (g / eq) of the phenoxy resin used in the present embodiment is, for example, in the range of 50 or more and 1000 or less, preferably in the range of 50 or more and 750 or less, and more preferably 50 or more and 500 or less. It is within the range. By setting the hydroxyl group equivalent of the phenoxy resin to 50 or more, the water absorption rate is lowered by reducing the hydroxyl groups, so that the mechanical properties of the cured product can be improved. On the other hand, by setting the hydroxyl group equivalent of the phenoxy resin to 1,000 or less, it is possible to suppress the decrease in hydroxyl groups, so that the affinity with the adherend is improved and the mechanical properties of the metal-CFRP composite 1 are improved. be able to. This effect is further enhanced by setting the hydroxyl group equivalent to 750 or less, and further to 500 or less.
 また、フェノキシ樹脂のガラス転移温度(Tg)は、例えば、65℃以上150℃以下の範囲内のものが適するが、好ましくは70℃以上150℃以下の範囲内である。Tgが65℃以上であると、成形性を確保しつつ、樹脂の流動性が大きくなりすぎることを抑制できるため、樹脂皮膜層13の厚みを十分に確保できる。一方、Tgが150℃以下であると、溶融粘度が低くなるため、炭素強化繊維基材にボイドなどの欠陥なく含浸させることが容易となり、より低温の接合プロセスとすることができる。なお、本明細書における樹脂のTgは、示差走査熱量測定装置を用い、10℃/分の昇温条件で、20~280℃の範囲内の温度で測定し、セカンドスキャンのピーク値より計算された数値である。 Further, the glass transition temperature (Tg) of the phenoxy resin is preferably in the range of 65 ° C. or higher and 150 ° C. or lower, but preferably in the range of 70 ° C. or higher and 150 ° C. or lower. When the Tg is 65 ° C. or higher, it is possible to prevent the resin from becoming too fluid while ensuring moldability, so that the thickness of the resin film layer 13 can be sufficiently ensured. On the other hand, when the Tg is 150 ° C. or lower, the melt viscosity becomes low, so that the carbon-reinforced fiber base material can be easily impregnated without defects such as voids, and a lower temperature bonding process can be performed. The Tg of the resin in the present specification is measured at a temperature in the range of 20 to 280 ° C. using a differential scanning calorimetry device under a heating condition of 10 ° C./min, and is calculated from the peak value of the second scan. It is a numerical value.
 フェノキシ樹脂としては、上記の物性を満足するものであれば特に限定されないが、好ましいものとして、ビスフェノールA型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートYP-50、フェノトートYP-50S、フェノトートYP-55Uとして入手可能)、ビスフェノールF型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートFX-316として入手可能)、ビスフェノールAとビスフェノールFの共重合型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製YP-70として入手可能)、上記に挙げたフェノキシ樹脂以外の臭素化フェノキシ樹脂やリン含有フェノキシ樹脂、スルホン基含有フェノキシ樹脂などの特殊フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートYPB-43C、フェノトートFX293、YPS-007等として入手可能)などを挙げることができる。これらの樹脂は、1種を単独で、又は2種以上を混合して使用できる。 The phenoxy resin is not particularly limited as long as it satisfies the above physical properties, but preferred ones are bisphenol A type phenoxy resins (for example, Phenototo YP-50 and Phenotote YP-50S manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.). Phenotote YP-55U available), bisphenol F type phenoxy resin (for example, available as Phenotote FX-316 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), bisphenol A and bisphenol F copolymerized phenoxy resin (for example, Nippon Steel & Sumikin) Special phenoxy resins such as brominated phenoxy resins other than the phenoxy resins listed above, phosphorus-containing phenoxy resins, and sulfone group-containing phenoxy resins (for example, phenoxy resins manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) (Available as Thoth YPB-43C, Phenotote FX293, YPS-007, etc.) and the like. These resins can be used alone or in admixture of two or more.
 マトリックス樹脂123の樹脂成分として用いる熱可塑性樹脂は、160~250℃の範囲内の温度域のいずれかで、溶融粘度が3,000Pa・s以下になるものが好ましく、90Pa・s以上2,900Pa・s以下の範囲内の溶融粘度となるものがより好ましく、100Pa・s以上2,800Pa・s以下の範囲内の溶融粘度となるものがさらに好ましい。160~250℃の範囲内の温度域における溶融粘度が3,000Pa・s以下とすることにより、溶融時の流動性が良くなり、CFRP層12にボイド等の欠陥が生じにくくなる。一方、溶融粘度が90Pa・s以上であることにより樹脂組成物としての分子量を適度とすることができ、脆化およびこれに伴う、金属-CFRP複合体1の機械的強度の低下を抑制することができる。 The thermoplastic resin used as the resin component of the matrix resin 123 is preferably one having a melt viscosity of 3,000 Pa · s or less in any of the temperature ranges of 160 to 250 ° C., and is 90 Pa · s or more and 2,900 Pa · s or more. The melt viscosity in the range of s or less is more preferable, and the melt viscosity in the range of 100 Pa · s or more and 2,800 Pa · s or less is further preferable. By setting the melt viscosity in the temperature range of 160 to 250 ° C. to 3,000 Pa · s or less, the fluidity at the time of melting is improved, and defects such as voids are less likely to occur in the CFRP layer 12. On the other hand, when the melt viscosity is 90 Pa · s or more, the molecular weight of the resin composition can be made appropriate, and embrittlement and the accompanying decrease in mechanical strength of the metal-CFRP composite 1 can be suppressed. Can be done.
 また、マトリックス樹脂123を構成する樹脂組成物は、上述した樹脂組成物に対し、架橋剤が配合された架橋性樹脂組成物であってもよい。例えば、フェノキシ樹脂(以下、「フェノキシ樹脂(A)」ともいう。)を含有する樹脂組成物に、例えば、酸無水物、イソシアネート、カプロラクタムなどを架橋剤として配合することにより、架橋性樹脂組成物とすることもできる。架橋性樹脂組成物は、フェノキシ樹脂(A)に含まれる2級水酸基を利用して架橋反応させることにより、樹脂組成物の耐熱性が向上するため、より高温環境下で使用される部材への適用に有利となる。フェノキシ樹脂(A)の2級水酸基を利用した架橋形成には、架橋硬化性樹脂(B)と架橋剤(C)を配合した架橋性樹脂組成物を用いることが好ましい。架橋硬化性樹脂(B)としては、例えばエポキシ樹脂等を使用できるが、特に限定するものではない。このような架橋性樹脂組成物を用いることによって、樹脂組成物のTgがフェノキシ樹脂(A)単独の場合よりも大きく向上した第2の硬化状態の硬化物(架橋硬化物)が得られる。架橋性樹脂組成物の架橋硬化物のTgは、例えば、160℃以上であり、170℃以上220℃以下の範囲内であることが好ましい。 Further, the resin composition constituting the matrix resin 123 may be a crosslinkable resin composition in which a crosslinking agent is blended with the above-mentioned resin composition. For example, a crosslinkable resin composition is obtained by blending, for example, an acid anhydride, isocyanate, caprolactam or the like as a crosslinker with a resin composition containing a phenoxy resin (hereinafter, also referred to as “phenoxy resin (A)”). It can also be. The crosslinkable resin composition is subjected to a crosslink reaction using a secondary hydroxyl group contained in the phenoxy resin (A) to improve the heat resistance of the resin composition, so that the member can be used in a higher temperature environment. It is advantageous for application. For cross-linking using the secondary hydroxyl group of the phenoxy resin (A), it is preferable to use a cross-linking resin composition containing a cross-linking curable resin (B) and a cross-linking agent (C). As the crosslinkable curable resin (B), for example, an epoxy resin or the like can be used, but the method is not particularly limited. By using such a crosslinkable resin composition, a cured product (crosslinked cured product) in a second cured state in which the Tg of the resin composition is significantly improved as compared with the case of the phenoxy resin (A) alone can be obtained. The Tg of the crosslinked cured product of the crosslinkable resin composition is, for example, 160 ° C. or higher, preferably 170 ° C. or higher and 220 ° C. or lower.
 架橋性樹脂組成物において、フェノキシ樹脂(A)に配合する架橋硬化性樹脂(B)としては、2官能性以上のエポキシ樹脂が好ましい。2官能性以上のエポキシ樹脂としては、ビスフェノールAタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYD-011、エポトートYD-7011、エポトートYD-900として入手可能)、ビスフェノールFタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDF-2001として入手可能)、ジフェニルエーテルタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV-80DEとして入手可能)、テトラメチルビスフェノールFタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV-80XYとして入手可能)、ビスフェノールスルフィドタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV-120TEとして入手可能)、ハイドロキノンタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDC-1312として入手可能)、フェノールノボラックタイプエポキシ樹脂、(例えば、新日鉄住金化学株式会社製エポトートYDPN-638として入手可能)、オルソクレゾールノボラックタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDCN-701、エポトートYDCN-702、エポトートYDCN-703、エポトートYDCN-704として入手可能)、アラルキルナフタレンジオールノボラックタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製ESN-355として入手可能)、トリフェニルメタンタイプエポキシ樹脂(例えば、日本化薬株式会社製EPPN-502Hとして入手可能)等が例示されるが、これらに限定されるものではない。また、これらのエポキシ樹脂は、1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。 In the crosslinkable resin composition, as the crosslinkable curable resin (B) to be blended with the phenoxy resin (A), an epoxy resin having bifunctionality or higher is preferable. Examples of the bifunctional or higher functional epoxy resin include bisphenol A type epoxy resin (for example, available as Epototo YD-011, Epototo YD-7011, and Epototo YD-900 manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) and bisphenol F type epoxy resin (for example). , Nippon Steel & Sumikin Chemical Co., Ltd. Epototo YDF-2001), Diphenyl ether type epoxy resin (for example, Nippon Steel & Sumitomo Metal Chemical Co., Ltd. YSLV-80DE), Tetramethylbisphenol F type epoxy resin (for example, Nippon Steel & Sumitomo Metal Chemical Co., Ltd.) YSLV-80XY manufactured by Nippon Steel & Sumitomo Metal Corporation (available as YSLV-120TE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Hydroquinone type epoxy resin (for example, Epototo YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) (Available as), phenol novolac type epoxy resin (for example, available as Epototo YDPN-638 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), orthocresol novolac type epoxy resin (for example, Epototo YDCN-701 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epototo YDCN-702, Epototo YDCN-703, Epototo YDCN-704 available), Aralquilnaphthalenediol novolac type epoxy resin (for example, available as ESN-355 manufactured by Nippon Steel & Sumitomo Metal Corporation), Triphenylmethane type epoxy resin (for example) , Available as EPPN-502H manufactured by Nippon Kayaku Co., Ltd.), but is not limited thereto. Further, one of these epoxy resins may be used alone, or two or more of these epoxy resins may be mixed and used.
 また、架橋硬化性樹脂(B)としては、特に限定する意味ではないが、結晶性エポキシ樹脂が好ましく、融点が70℃以上145℃以下の範囲内で、150℃における溶融粘度が2.0Pa・s以下である結晶性エポキシ樹脂がより好ましい。このような溶融特性を示す結晶性エポキシ樹脂を使用することにより、樹脂組成物としての架橋性樹脂組成物の溶融粘度を低下させることができ、CFRP層12の接着性を向上させることができる。また、溶融粘度が2.0Pa・s以下であることにより、架橋性樹脂組成物の成形性を十分に優れたものとすることができ、金属-CFRP複合体1の均質性を向上させることができる。 The crosslinkable curable resin (B) is not particularly limited, but a crystalline epoxy resin is preferable, and the melt viscosity at 150 ° C. is 2.0 Pa · in the melting point range of 70 ° C. or higher and 145 ° C. or lower. A crystalline epoxy resin having an s or less is more preferable. By using a crystalline epoxy resin exhibiting such melt characteristics, the melt viscosity of the crosslinkable resin composition as the resin composition can be lowered, and the adhesiveness of the CFRP layer 12 can be improved. Further, when the melt viscosity is 2.0 Pa · s or less, the moldability of the crosslinkable resin composition can be made sufficiently excellent, and the homogeneity of the metal-CFRP composite 1 can be improved. it can.
 架橋硬化性樹脂(B)として好適な結晶性エポキシ樹脂としては、例えば、新日鉄住金化学株式会社製エポトートYSLV-80XY、YSLV-70XY、YSLV-120TE、YDC-1312、三菱化学株式会社製YX-4000、YX-4000H、YX-8800、YL-6121H、YL-6640等、DIC株式会社製HP-4032、HP-4032D、HP-4700等、日本化薬株式会社製NC-3000等が挙げられる。 Examples of the crystalline epoxy resin suitable as the crosslinkable curable resin (B) include Epototo YSLV-80XY, YSLV-70XY, YSLV-120TE, YDC-1312, and Mitsubishi Chemical Corporation YX-4000 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. , YX-4000H, YX-8800, YL-6121H, YL-6640, etc., HP-4032, HP-4032D, HP-4700, etc. manufactured by DIC Corporation, NC-3000 manufactured by Nippon Kayaku Co., Ltd., etc.
 架橋剤(C)は、フェノキシ樹脂(A)の2級水酸基とエステル結合を形成することにより、フェノキシ樹脂(A)を3次元的に架橋させる。そのため、熱硬化性樹脂の硬化のような強固な架橋とは異なり、加水分解反応により架橋を解くことができるので、金属部材11とCFRP層12とを容易に剥離することが可能となる。従って、金属部材11をリサイクルできる。 The cross-linking agent (C) three-dimensionally cross-links the phenoxy resin (A) by forming an ester bond with the secondary hydroxyl group of the phenoxy resin (A). Therefore, unlike the strong cross-linking such as curing of a thermosetting resin, the cross-linking can be broken by a hydrolysis reaction, so that the metal member 11 and the CFRP layer 12 can be easily peeled off. Therefore, the metal member 11 can be recycled.
 架橋剤(C)としては、酸無水物が好ましい。酸無水物は、常温で固体であり、昇華性があまり無いものであれば特に限定されるものではないが、金属-CFRP複合体1への耐熱性付与や反応性の点から、フェノキシ樹脂(A)の水酸基と反応する酸無水物を2つ以上有する芳香族酸無水物が好ましい。特に、ピロメリット酸無水物のように2つの酸無水物基を有する芳香族化合物は、トリメリット酸無水物と水酸基の組み合わせと比べて架橋密度が高くなり、耐熱性が向上するので好適に使用される。芳香族酸二無水物でも、例えば、4,4’-オキシジフタル酸、エチレングリコールビスアンヒドロトリメリテート、4,4’-(4,4’-イソプロピリデンジフェノキシ)ジフタル酸無水物といったフェノキシ樹脂及びエポキシ樹脂に対して相溶性を有する芳香族酸二無水物は、Tgを向上させる効果が大きくより好ましい。特に、ピロメリット酸無水物のように2つの酸無水物基を有する芳香族酸二無水物は、例えば、酸無水物基を1つしか有しない無水フタル酸に比べて架橋密度が向上し、耐熱性が向上するので好適に使用される。すなわち、芳香族酸二無水物は、酸無水物基を2つ有するために反応性が良好で、短い成形時間で脱型に十分な強度の架橋硬化物が得られるとともに、フェノキシ樹脂(A)中の2級水酸基とのエステル化反応により、4つのカルボキシル基を生成させるため、最終的な架橋密度を高くできる。 Acid anhydride is preferable as the cross-linking agent (C). The acid anhydride is not particularly limited as long as it is solid at room temperature and does not have much sublimation property, but it is a phenoxy resin (from the viewpoint of imparting heat resistance to the metal-CFRP complex 1 and reactivity. Aromatic acid anhydrides having two or more acid anhydrides that react with the hydroxyl group of A) are preferable. In particular, aromatic compounds having two acid anhydride groups, such as pyromellitic anhydride, are preferably used because they have a higher crosslink density and improved heat resistance than a combination of trimellitic anhydride and a hydroxyl group. Will be done. Aromatic acid dianhydrides are also phenoxy resins such as 4,4'-oxydiphthalic acid, ethylene glycol bisuanhydrotrimerite, and 4,4'-(4,4'-isopropyridenediphenoxy) diphthalic anhydride. Aromatic acid dianhydride having compatibility with the epoxy resin has a large effect of improving Tg and is more preferable. In particular, aromatic acid dianhydrides having two acid anhydride groups, such as pyromellitic anhydride, have improved cross-linking densities as compared to, for example, phthalic anhydride having only one acid anhydride group. It is preferably used because it improves heat resistance. That is, the aromatic acid dianhydride has two acid anhydride groups, so that it has good reactivity, and a crosslinked cured product having sufficient strength for demolding can be obtained in a short molding time, and the phenoxy resin (A). Since four carboxyl groups are generated by the esterification reaction with the secondary hydroxyl group inside, the final crosslink density can be increased.
 フェノキシ樹脂(A)、架橋硬化性樹脂(B)としてのエポキシ樹脂、及び架橋剤(C)の反応は、フェノキシ樹脂(A)中の2級水酸基と架橋剤(C)の酸無水物基とのエステル化反応、更にはこのエステル化反応により生成したカルボキシル基とエポキシ樹脂のエポキシ基との反応によって架橋及び硬化される。フェノキシ樹脂(A)と架橋剤(C)との反応によってフェノキシ樹脂架橋体を得ることができるが、エポキシ樹脂が共存することで樹脂組成物の溶融粘度を低下させられるため、被着体(樹脂皮膜層13)との含浸性の向上、架橋反応の促進、架橋密度の向上、及び機械強度の向上などの優れた特性を示す。 The reaction of the phenoxy resin (A), the epoxy resin as the crosslinkable resin (B), and the crosslinker (C) is carried out with the secondary hydroxyl group in the phenoxy resin (A) and the acid anhydride group of the crosslinker (C). Is crosslinked and cured by the esterification reaction of the above, and further, the reaction of the carboxyl group generated by this esterification reaction with the epoxy group of the epoxy resin. A phenoxy resin crosslinked product can be obtained by the reaction of the phenoxy resin (A) and the cross-linking agent (C), but since the melt viscosity of the resin composition can be lowered by the coexistence of the epoxy resin, the adherend (resin). It exhibits excellent properties such as improvement of impregnation property with the film layer 13), promotion of cross-linking reaction, improvement of cross-linking density, and improvement of mechanical strength.
 なお、架橋性樹脂組成物においては、架橋硬化性樹脂(B)としてのエポキシ樹脂が共存してはいるが、熱可塑性樹脂であるフェノキシ樹脂(A)を主成分としており、その2級水酸基と架橋剤(C)の酸無水物基とのエステル化反応が優先していると考えられる。すなわち、架橋剤(C)として使用される酸無水物と、架橋硬化性樹脂(B)として使用されるエポキシ樹脂との反応は時間がかかる(反応速度が遅い)ため、架橋剤(C)とフェノキシ樹脂(A)の2級水酸基との反応が先に起こり、次いで、先の反応で残留した架橋剤(C)や、架橋剤(C)に由来する残存カルボキシル基とエポキシ樹脂とが反応することで更に架橋密度が高まる。そのため、熱硬化性樹脂であるエポキシ樹脂を主成分とする樹脂組成物とは異なり、架橋性樹脂組成物によって得られる架橋硬化物は熱可塑性樹脂であり、貯蔵安定性にも優れる。 In the crosslinkable resin composition, the epoxy resin as the crosslinkable curable resin (B) coexists, but the phenoxy resin (A), which is a thermoplastic resin, is the main component, and the secondary hydroxyl group is used. It is considered that the esterification reaction of the cross-linking agent (C) with the acid anhydride group is prioritized. That is, since the reaction between the acid anhydride used as the cross-linking agent (C) and the epoxy resin used as the cross-linking curable resin (B) takes time (the reaction rate is slow), the cross-linking agent (C) is used. The reaction of the phenoxy resin (A) with the secondary hydroxyl group occurs first, and then the cross-linking agent (C) remaining in the previous reaction and the residual carboxyl group derived from the cross-linking agent (C) react with the epoxy resin. As a result, the crosslink density is further increased. Therefore, unlike the resin composition containing an epoxy resin which is a thermosetting resin as a main component, the crosslinked cured product obtained by the crosslinkable resin composition is a thermoplastic resin and is excellent in storage stability.
 フェノキシ樹脂(A)の架橋を利用する架橋性樹脂組成物においては、フェノキシ樹脂(A)100質量部に対して、架橋硬化性樹脂(B)が5質量部以上85質量部以下の範囲内となるように含有されることが好ましい。フェノキシ樹脂(A)100質量部に対する架橋硬化性樹脂(B)の含有量は、より好ましくは9質量部以上83質量部以下の範囲内であり、さらに好ましくは10質量部以上80質量部以下の範囲内である。架橋硬化性樹脂(B)の含有量を85質量部以下とすることにより、架橋硬化性樹脂(B)の硬化時間を短縮できるため、脱型に必要な強度を短時間で得やすくなる他、CFRP層12のリサイクル性が向上する。この効果は、架橋硬化性樹脂(B)の含有量を83質量部以下、更には80質量部以下とすることにより、さらに高まる。一方、架橋硬化性樹脂(B)の含有量を5質量部以上とすることにより、架橋硬化性樹脂(B)の添加による架橋密度の向上効果を得やすくなり、架橋性樹脂組成物の架橋硬化物が160℃以上のTgを発現しやすくなり、また、流動性が良好になる。なお、架橋硬化性樹脂(B)の含有量は、上述したようなIRを用いた方法によって、エポキシ樹脂由来のピークについて同様に測定することで、架橋硬化性樹脂(B)の含有量を測定できる。 In the crosslinkable resin composition utilizing cross-linking of the phenoxy resin (A), the cross-linking curable resin (B) is in the range of 5 parts by mass or more and 85 parts by mass or less with respect to 100 parts by mass of the phenoxy resin (A). It is preferable that it is contained so as to become. The content of the crosslinkable curable resin (B) with respect to 100 parts by mass of the phenoxy resin (A) is more preferably in the range of 9 parts by mass or more and 83 parts by mass or less, and further preferably 10 parts by mass or more and 80 parts by mass or less. It is within the range. By setting the content of the crosslinkable resin (B) to 85 parts by mass or less, the curing time of the crosslinkable resin (B) can be shortened, so that the strength required for demolding can be easily obtained in a short time. The recyclability of the CFRP layer 12 is improved. This effect is further enhanced by setting the content of the crosslink curable resin (B) to 83 parts by mass or less, further to 80 parts by mass or less. On the other hand, when the content of the crosslinkable resin (B) is 5 parts by mass or more, it becomes easy to obtain the effect of improving the crosslink density by adding the crosslinkable resin (B), and the crosslinkable resin composition can be crosslinked and cured. The substance easily expresses Tg at 160 ° C. or higher, and the fluidity becomes good. The content of the crosslinkable resin (B) is measured in the same manner for the peak derived from the epoxy resin by the method using IR as described above to measure the content of the crosslinkable resin (B). it can.
 架橋剤(C)の配合量は、通常、フェノキシ樹脂(A)の2級水酸基1モルに対して酸無水物基0.6モル以上1.3モル以下の範囲内の量であり、好ましくは0.7モル以上1.3モル以下の範囲内の量であり、より好ましくは1.1モル以上1.3モル以下の範囲内である。酸無水物基の量が0.6モル以上であると、架橋密度が高くなるため、機械物性や耐熱性に優れる。この効果は、酸無水物基の量を0.7モル以上、更には1.1モル以上とすることにより、さらに高まる。酸無水物基の量が1.3モル以下であると、未反応の酸無水物やカルボキシル基が硬化特性や架橋密度に悪影響を与えることを抑制できる。このため、架橋剤(C)の配合量に応じて、架橋硬化性樹脂(B)の配合量を調整することが好ましい。具体的には、例えば、架橋硬化性樹脂(B)として用いるエポキシ樹脂により、フェノキシ樹脂(A)の2級水酸基と架橋剤(C)の酸無水物基との反応により生じるカルボキシル基を反応させることを目的に、エポキシ樹脂の配合量を架橋剤(C)との当量比で0.5モル以上1.2モル以下の範囲内となるようにするとよい。好ましくは、架橋剤(C)とエポキシ樹脂の当量比が、0.7モル以上1.0モル以下の範囲内である。 The blending amount of the cross-linking agent (C) is usually in the range of 0.6 mol or more and 1.3 mol or less of the acid anhydride group with respect to 1 mol of the secondary hydroxyl group of the phenoxy resin (A), and is preferable. The amount is in the range of 0.7 mol or more and 1.3 mol or less, and more preferably 1.1 mol or more and 1.3 mol or less. When the amount of the acid anhydride group is 0.6 mol or more, the crosslink density becomes high, so that the mechanical properties and heat resistance are excellent. This effect is further enhanced by setting the amount of the acid anhydride group to 0.7 mol or more, further 1.1 mol or more. When the amount of the acid anhydride group is 1.3 mol or less, it is possible to suppress that the unreacted acid anhydride and the carboxyl group adversely affect the curing characteristics and the cross-linking density. Therefore, it is preferable to adjust the blending amount of the crosslink curable resin (B) according to the blending amount of the crosslinking agent (C). Specifically, for example, the epoxy resin used as the crosslinkable curable resin (B) is used to react the carboxyl group generated by the reaction between the secondary hydroxyl group of the phenoxy resin (A) and the acid anhydride group of the crosslinker (C). For this purpose, the blending amount of the epoxy resin may be set within the range of 0.5 mol or more and 1.2 mol or less in terms of the equivalent ratio with the cross-linking agent (C). Preferably, the equivalent ratio of the cross-linking agent (C) to the epoxy resin is in the range of 0.7 mol or more and 1.0 mol or less.
 架橋剤(C)をフェノキシ樹脂(A)、架橋硬化性樹脂(B)と共に配合すれば、架橋性樹脂組成物を得ることができるが、架橋反応が確実に行われるように触媒としての促進剤(D)をさらに添加してもよい。促進剤(D)は、常温で固体であり、昇華性が無いものであれば特に限定はされるものではなく、例えば、トリエチレンジアミン等の3級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニルー4-メチルイミダゾール等のイミダゾール類、トリフェニルフォスフィン等の有機フォスフィン類、テトラフェニルホスホニウムテトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。これらの促進剤(D)は、1種類を単独で使用してもよく、2種類以上を併用してもよい。なお、架橋性樹脂組成物を微粉末とし、静電場による粉体塗装法を用いて強化繊維基材に付着させてマトリックス樹脂123を形成する場合は、促進剤(D)として、触媒活性温度が130℃以上である常温で固体のイミダゾール系の潜在性触媒を用いることが好ましい。促進剤(D)を使用する場合、促進剤(D)の配合量は、フェノキシ樹脂(A)、架橋硬化性樹脂(B)及び架橋剤(C)の合計量100質量部に対して、0.1質量部以上5重量部以下の範囲内とすることが好ましい。 When the cross-linking agent (C) is blended together with the phenoxy resin (A) and the cross-linking curable resin (B), a cross-linking resin composition can be obtained, but an accelerator as a catalyst is used to ensure that the cross-linking reaction is carried out. (D) may be further added. The accelerator (D) is not particularly limited as long as it is solid at room temperature and does not have sublimation properties. For example, a tertiary amine such as triethylenediamine, 2-methylimidazole, 2-phenylimidazole, etc. Examples thereof include imidazoles such as 2-phenyl-4-methylimidazole, organic phosphins such as triphenylphosphine, and tetraphenylborone salts such as tetraphenylphosphonium tetraphenylborate. One type of these accelerators (D) may be used alone, or two or more types may be used in combination. When the crosslinkable resin composition is made into a fine powder and adhered to the reinforcing fiber base material by a powder coating method using an electrostatic field to form the matrix resin 123, the catalytic activity temperature is set as the accelerator (D). It is preferable to use an imidazole-based latent catalyst that is solid at room temperature of 130 ° C. or higher. When the accelerator (D) is used, the blending amount of the accelerator (D) is 0 with respect to 100 parts by mass of the total amount of the phenoxy resin (A), the crosslinkable resin (B) and the crosslinker (C). It is preferably in the range of 1 part by mass or more and 5 parts by weight or less.
 架橋性樹脂組成物は、常温で固形であり、その溶融粘度は、160~250℃の範囲内の温度域における溶融粘度の下限値である最低溶融粘度が3,000Pa・s以下であることが好ましく、2,900Pa・s以下であることがより好ましく、2,800Pa・s以下であることがさらに好ましい。160~250℃の範囲内の温度域における最低溶融粘度が3,000Pa・s以下とすることにより、熱プレスなどによる加熱圧着時に架橋性樹脂組成物を被着体へ十分に含浸させることができ、CFRP層12にボイド等の欠陥を生じることを抑制できるため、金属-CFRP複合体1の機械物性が向上する。この効果は、160~250℃の範囲内の温度域における最低溶融粘度を2,900Pa・s以下、さらには2,800Pa・s以下とすることにより、さらに高まる。 The crosslinkable resin composition is solid at room temperature, and its melt viscosity is such that the minimum melt viscosity, which is the lower limit of the melt viscosity in the temperature range of 160 to 250 ° C., is 3,000 Pa · s or less. It is more preferably 2,900 Pa · s or less, and even more preferably 2,800 Pa · s or less. By setting the minimum melt viscosity in the temperature range of 160 to 250 ° C. to 3,000 Pa · s or less, the crosslinkable resin composition can be sufficiently impregnated into the adherend during heat pressure bonding by a hot press or the like. Since it is possible to suppress the occurrence of defects such as voids in the CFRP layer 12, the mechanical properties of the metal-CFRP composite 1 are improved. This effect is further enhanced by setting the minimum melt viscosity in the temperature range of 160 to 250 ° C. to 2,900 Pa · s or less, and further to 2,800 Pa · s or less.
 マトリックス樹脂123を形成するための樹脂組成物(架橋性樹脂組成物を含む)には、その接着性や物性を損なわない範囲において、例えば、天然ゴム、合成ゴム、エラストマー等や、種々の無機フィラー、溶剤、体質顔料、着色剤、酸化防止剤、紫外線防止剤、難燃剤、難燃助剤等その他添加物を配合してもよい。 The resin composition (including the crosslinkable resin composition) for forming the matrix resin 123 includes, for example, natural rubber, synthetic rubber, elastomer, and various inorganic fillers as long as the adhesiveness and physical properties are not impaired. , Solvent, extender pigment, colorant, antioxidant, ultraviolet inhibitor, flame retardant, flame retardant aid and other additives may be blended.
 ただし、マトリクス樹脂123は、後述する無機塩粒子の含有量が5.0体積%未満であることが好ましい。なお、CFRP層12と樹脂皮膜層13との境界が樹脂の組成等によっては判別できない場合、無機塩粒子の含有量に基づき、CFRP層12と樹脂皮膜層13との境界を判断することができる。 However, the matrix resin 123 preferably has a content of inorganic salt particles, which will be described later, of less than 5.0% by volume. When the boundary between the CFRP layer 12 and the resin film layer 13 cannot be determined depending on the composition of the resin or the like, the boundary between the CFRP layer 12 and the resin film layer 13 can be determined based on the content of the inorganic salt particles. ..
 また、CFRP層12は、そのインピーダンスが1×10Ω未満であることが好ましい。CFRP層12のインピーダンスが1×10Ω未満であることで、電着塗装時に、CFRP層12に電着塗膜が形成されやすい。そのため、金属-CFRP複合体1の側面(積層方向に沿った面)において、CFRP層12から金属部材11にわたって電着塗膜が十分に形成されやすくなる。これにより、金属-CFRP複合体1の側面における異種材料接触腐食を抑制することが可能となる。さらには、金属-CFRP複合体1の側面において、水や塩水などの腐食因子による導通を抑制することができ、この腐食因子による金属部材11の腐食を抑制することが可能となる。 Further, the impedance of the CFRP layer 12 is preferably less than 1 × 10 9 Ω. When the impedance of the CFRP layer 12 is less than 1 × 10 9 Ω, an electrodeposition coating film is likely to be formed on the CFRP layer 12 during electrodeposition coating. Therefore, on the side surface of the metal-CFRP composite 1 (the surface along the stacking direction), the electrodeposition coating film is sufficiently easily formed from the CFRP layer 12 to the metal member 11. This makes it possible to suppress contact corrosion of dissimilar materials on the side surface of the metal-CFRP composite 1. Further, on the side surface of the metal-CFRP composite 1, conduction due to a corrosion factor such as water or salt water can be suppressed, and corrosion of the metal member 11 due to this corrosion factor can be suppressed.
 金属-CFRP複合体1において、CFRP層12のマトリックス樹脂123と、樹脂皮膜層13を構成する樹脂とは、同一の樹脂であってもよく、異なる樹脂であってもよい。ただし、CFRP層12と樹脂皮膜層13との接着性を十分に確保する観点からは、マトリックス樹脂123として、樹脂皮膜層13を構成する樹脂を形成する樹脂と同一又は同種の樹脂や、ポリマー中に含まれる極性基の比率等が近似した樹脂種を選択することが好ましい。ここで、「同一の樹脂」とは、同じ成分によって構成され、組成比率まで同じであることを意味し、「同種の樹脂」とは、主成分が同じであれば、組成比率は異なっていてもよいことを意味する。「同種の樹脂」の中には、「同一の樹脂」が含まれる。また、「主成分」とは、全樹脂成分100質量部のうち、50質量部以上含まれる成分を意味する。なお、「樹脂成分」には、熱可塑性樹脂や熱硬化性樹脂が含まれるが、架橋剤などの非樹脂成分は含まれない。 In the metal-CFRP composite 1, the matrix resin 123 of the CFRP layer 12 and the resin constituting the resin film layer 13 may be the same resin or different resins. However, from the viewpoint of sufficiently ensuring the adhesiveness between the CFRP layer 12 and the resin film layer 13, the matrix resin 123 is contained in a resin or polymer of the same or the same type as the resin forming the resin constituting the resin film layer 13. It is preferable to select a resin type having an approximate ratio of polar groups contained in. Here, "the same resin" means that it is composed of the same components and has the same composition ratio, and if the main components are the same, the composition ratio is different from that of "the same type of resin". It means that it is also good. The "same type of resin" includes the "same resin". Further, the "main component" means a component contained in an amount of 50 parts by mass or more out of 100 parts by mass of the total resin component. The "resin component" includes a thermoplastic resin and a thermosetting resin, but does not include a non-resin component such as a cross-linking agent.
 金属-CFRP複合体1において、CFRP層12は、少なくとも1枚以上のCFRP成形用プリプレグを用いて形成されたものである。所望されるCFRP層12の厚さに応じて、積層するCFRP成形用プリプレグの数を選択することができる。 In the metal-CFRP composite 1, the CFRP layer 12 is formed by using at least one CFRP molding prepreg. The number of CFRP forming prepregs to be laminated can be selected according to the desired thickness of the CFRP layer 12.
(樹脂皮膜層13)
 樹脂皮膜層13は、金属-CFRP複合体1の金属部材11とCFRP層12との間に配置され、これらを接合する。また、樹脂皮膜層13は、腐食環境下において絶縁性を有し、金属部材11とCFRP層12との間を絶縁する。腐食環境としては、具体的には、金属-CFRP複合体1の水濡れ時や水濡れ後等の金属-CFRP複合体1の周囲に水分が付着および/または存在する環境が挙げられる。
(Resin film layer 13)
The resin film layer 13 is arranged between the metal member 11 of the metal-CFRP composite 1 and the CFRP layer 12 and joins them. Further, the resin film layer 13 has an insulating property in a corrosive environment, and insulates between the metal member 11 and the CFRP layer 12. Specific examples of the corrosive environment include an environment in which water adheres and / or exists around the metal-CFRP composite 1 when the metal-CFRP composite 1 is wet or after it is wet.
 そして、樹脂皮膜層13は、少なくとも、23~27℃における粉体抵抗率が7.0×10Ωcm超であり、かつ、防錆機能を有する、Cr、PおよびVから選択される1種以上の元素の無機塩からなる無機塩粒子131を含み、さらにバインダ樹脂133を含む。
 
Then, the resin film layer 13, at least, the powder resistivity at 23 ~ 27 ° C. is the 7.0 × 10 7 Ωcm greater, and has a rust function, Cr, 1 kind selected from P and V It contains inorganic salt particles 131 composed of inorganic salts of the above elements, and further contains binder resin 133.
 そして、樹脂皮膜層13中における無機塩粒子131の体積率は、5.0%以上40.0%以下である。これにより、金属部材11の腐食、特に異種材料接触腐食を防止することができる。 The volume fraction of the inorganic salt particles 131 in the resin film layer 13 is 5.0% or more and 40.0% or less. This makes it possible to prevent corrosion of the metal member 11, particularly contact corrosion of different materials.
 詳しく説明すると、一般に、CFRP層と金属部材とは、樹脂皮膜層を介した熱圧着により、接合される。この際に、CFRP層中の一部の炭素繊維材料は、熱圧着時の圧力により押圧されてCFRP層の表面より突出する。そして、突出した炭素繊維材料が樹脂皮膜層を貫通してしまうことにより、炭素繊維材料と金属部材が接触してしまい、電食作用により腐食が生じる。 To explain in detail, in general, the CFRP layer and the metal member are joined by thermocompression bonding via a resin film layer. At this time, some of the carbon fiber materials in the CFRP layer are pressed by the pressure during thermocompression bonding and protrude from the surface of the CFRP layer. Then, the protruding carbon fiber material penetrates the resin film layer, so that the carbon fiber material and the metal member come into contact with each other, and corrosion occurs due to electrolytic corrosion.
 これに対し、本実施形態においては、金属-CFRP複合体1において、CFRP層12表面から突出する炭素繊維材料121が金属部材11と接触しないよう、導電率が比較的低い無機塩粒子131が樹脂皮膜層13中にされている。すなわち、導電性が比較的小さい無機塩粒子131が炭素繊維材料121と金属部材11との間のスペーサーとして作用し、炭素繊維材料121と金属部材11との間を絶縁することができる。そして樹脂皮膜層13中における無機塩粒子131の体積率が5.0%以上40.0%以下であることにより、樹脂皮膜層13中に存在する無機塩粒子131は熱圧着時においても適度に固定されており、CFRP層12から突出した炭素繊維材料121の皮膜層13の貫通を防止できる。このため、炭素繊維材料121と金属部材11との接触が防止され、異種材料接触腐食が防止される。更に、本発明者らは、無機塩粒子131を防錆機能を有するものとすることで、腐食環境下において防錆性を有する無機塩粒子131の成分が溶出して耐食性が大きく向上することを知見した。これは腐食環境下で無機塩から溶出した金属または無機イオンが金属部材11のみならず、カーボンファイバー(炭素繊維材料121)にも沈着することで両者の間に絶縁皮膜を形成するため、異種材料接触が回避され耐食性が高まるものと推定される。この結果、樹脂皮膜層13とCFRP層12との剥離により腐食因子が侵入することが防止され、腐食が防止される。 On the other hand, in the present embodiment, in the metal-CFRP composite 1, the inorganic salt particles 131 having a relatively low conductivity are made of resin so that the carbon fiber material 121 protruding from the surface of the CFRP layer 12 does not come into contact with the metal member 11. It is contained in the film layer 13. That is, the inorganic salt particles 131 having relatively low conductivity act as a spacer between the carbon fiber material 121 and the metal member 11, and can insulate between the carbon fiber material 121 and the metal member 11. Since the volume ratio of the inorganic salt particles 131 in the resin film layer 13 is 5.0% or more and 40.0% or less, the inorganic salt particles 131 existing in the resin film layer 13 are appropriately bonded even during thermocompression bonding. It is fixed and can prevent the film layer 13 of the carbon fiber material 121 protruding from the CFRP layer 12 from penetrating. Therefore, contact between the carbon fiber material 121 and the metal member 11 is prevented, and contact corrosion of different materials is prevented. Furthermore, the present inventors have determined that by making the inorganic salt particles 131 have a rust preventive function, the components of the inorganic salt particles 131 having rust preventive properties are eluted in a corrosive environment, and the corrosion resistance is greatly improved. I found out. This is because the metal or inorganic ions eluted from the inorganic salt in a corrosive environment are deposited not only on the metal member 11 but also on the carbon fiber (carbon fiber material 121) to form an insulating film between them, so that different materials are used. It is presumed that contact is avoided and corrosion resistance is improved. As a result, the peeling of the resin film layer 13 and the CFRP layer 12 prevents the invasion of corrosion factors, and the corrosion is prevented.
 樹脂皮膜層13中の無機塩粒子131の体積率が5.0%未満であると皮膜中の無機塩の体積濃度が低くなり熱圧着時において無機塩粒子131が移動しやすくなる。そしてCFRP層12から突出した炭素繊維材料121が無機塩粒子131を押圧し、移動させてしまう結果、炭素繊維材料121が樹脂皮膜層13を貫通しやすくなる。この結果、異種材料接触腐食の防止が十分にはできない。また、無機塩が防錆機能を有していないと、腐食環境下で金属または無機イオンが溶け出さない、もしくは、溶け出しにくくなり、炭素繊維材料121表面や金属部材11表面に沈着する作用が低下する。樹脂皮膜層13中の無機塩粒子131の体積率は、好ましくは10.0%以上、より好ましくは20.0%以上である。 If the volume fraction of the inorganic salt particles 131 in the resin film layer 13 is less than 5.0%, the volume concentration of the inorganic salt in the film becomes low, and the inorganic salt particles 131 easily move during thermocompression bonding. Then, the carbon fiber material 121 protruding from the CFRP layer 12 presses and moves the inorganic salt particles 131, and as a result, the carbon fiber material 121 easily penetrates the resin film layer 13. As a result, contact corrosion of dissimilar materials cannot be sufficiently prevented. Further, if the inorganic salt does not have a rust preventive function, the metal or inorganic ions do not dissolve or become difficult to dissolve in a corrosive environment, and the action of depositing on the surface of the carbon fiber material 121 or the surface of the metal member 11 acts. descend. The volume fraction of the inorganic salt particles 131 in the resin film layer 13 is preferably 10.0% or more, more preferably 20.0% or more.
 また、樹脂皮膜層13中の無機塩粒子131の体積率が40.0%を超えると、樹脂皮膜層13の凝集破壊が生じやすくなり、樹脂皮膜層13とCFRP層12との密着性が十分なものとならない。樹脂皮膜層13中の無機塩粒子131の体積率は、好ましくは35.0%以下、より好ましくは30.0%以下である。 Further, when the volume fraction of the inorganic salt particles 131 in the resin film layer 13 exceeds 40.0%, the resin film layer 13 is likely to be aggregated and broken, and the adhesion between the resin film layer 13 and the CFRP layer 12 is sufficient. It doesn't become a plastic. The volume fraction of the inorganic salt particles 131 in the resin film layer 13 is preferably 35.0% or less, more preferably 30.0% or less.
 なお、無機塩粒子131を含む樹脂皮膜層13に代えて導電性の低い無機塩層や金属酸化物層を形成することも考えられるが、この場合、金属部材と炭素繊維材料との間の絶縁性は担保できる一方で、金属-CFRP複合体自体の加工性が低下してしまったり、密着性を担保することが困難となるため、金属部材とCFRP層との複合化の利点が十分に得られない。 It is conceivable to form an inorganic salt layer or a metal oxide layer having low conductivity instead of the resin film layer 13 containing the inorganic salt particles 131. In this case, the insulation between the metal member and the carbon fiber material is considered. While the properties can be guaranteed, the workability of the metal-CFRP composite itself is reduced and it becomes difficult to guarantee the adhesion. Therefore, the advantage of combining the metal member and the CFRP layer is sufficiently obtained. I can't.
 また、無機塩粒子131の23~27℃における粉体抵抗率は、上述したように7.0×10Ωcm超である。このように無機塩粒子131の導電率が比較的小さいことにより、無機塩粒子131は、炭素繊維材料121と金属部材11との間の絶縁性を有するスペーサーとして機能する。これに対し、無機塩粒子131の23~27℃における粉体抵抗率が7.0×10Ωcm未満であると炭素繊維材料121と金属部材11とが無機塩粒子131を介して導通していまい、電食を抑制できない。なお、無機塩粒子131の23~27℃における粉体抵抗率は、市販の粉体抵抗測定機、例えば三菱ケミカルアナリテック社製「粉体抵抗測定システムMCP-PD51型」などを用いて、10MPaで圧縮された粉体粒子の抵抗を測定することで求めることができる。また、一般に、粉体抵抗率は、測定される導電性粒子131の材料自体の体積抵抗率と同等とみなすことができる。 Also, the powder resistivity at 23 ~ 27 ° C. of the inorganic salt particles 131 are 7.0 × 10 7 Ωcm than as described above. Since the conductivity of the inorganic salt particles 131 is relatively small as described above, the inorganic salt particles 131 function as a spacer having an insulating property between the carbon fiber material 121 and the metal member 11. In contrast, the powder resistivity at 23 ~ 27 ° C. of the inorganic salt particles 131 is less than 7.0 × 10 7 Ωcm and a carbon fiber material 121 and the metal member 11 has been conducted through the inorganic salt particles 131 I can't control the electrolytic corrosion. The powder resistance of the inorganic salt particles 131 at 23 to 27 ° C. is 10 MPa using a commercially available powder resistance measuring machine, for example, "Powder resistance measuring system MCP-PD51 type" manufactured by Mitsubishi Chemical Analytech. It can be obtained by measuring the resistance of the powder particles compressed with. Further, in general, the powder resistivity can be regarded as equivalent to the volume resistivity of the material itself of the conductive particles 131 to be measured.
 樹脂皮膜層13中の無機塩粒子131は、上述したような粉体抵抗率および防錆機能を有し、Cr、PおよびVから選択される1種以上の元素の無機塩からなるものであれば特に限定されない。Cr、PおよびVは腐食環境下でイオンとして溶け出したときにアノードとなる金属部材11やカソードとなる炭素繊維材料121表面に沈着しやすく、耐食性の向上に効果的である。 The inorganic salt particles 131 in the resin film layer 13 have the powder resistivity and rust preventive function as described above, and may be composed of an inorganic salt of one or more elements selected from Cr, P and V. There is no particular limitation. When Cr, P and V are dissolved as ions in a corrosive environment, they are likely to be deposited on the surface of the metal member 11 as the anode and the carbon fiber material 121 as the cathode, which is effective in improving the corrosion resistance.
 本実施形態に係る防錆機能を有する無機塩粒子131を構成する無機塩としては、例えば、前述の金属原子または元素を含むオキソ酸の無機塩を用いることができる。Crを含む無機塩としては、クロム酸イオン(CrO 2-)、二クロム酸イオン(Cr 2-)等のCrのオキソ酸イオンの塩が挙げられる。また、Pを含む無機塩としては、リン酸イオン(PO 3-)、リン酸水素イオン(HPO 2-)、リン酸二水素イオン(HPO )、二リン酸イオン(P 4-)、三リン酸イオン(P10 5-、「トリポリリン酸」)等のPのオキソ酸イオンの塩が挙げられる。また、Vを含む無機塩としては、オルトバナジン酸イオン(VO 3-)、メタバナジン酸(VO3-)等のVのオキソ酸イオンの塩が挙げられる。
 なお、無機塩粒子131は、上述した各オキソ酸イオンの1種の塩でもよいし、複数種の塩でもよい。
As the inorganic salt constituting the inorganic salt particles 131 having a rust preventive function according to the present embodiment, for example, the above-mentioned inorganic salt of oxo acid containing a metal atom or element can be used. The inorganic salt containing Cr, chromate ions (CrO 4 2-), and salts of dichromate ion (Cr 2 O 7 2-) of Cr such oxoacid ions. Examples of the inorganic salt containing P, phosphoric acid ion (PO 4 3-), hydrogen phosphate ions (HPO 4 2-), dihydrogen phosphate ion (H 2 PO 4 -), diphosphate ions (P 2 O 7 4-), triphosphate ions (P 3 O 10 5-, salts "tripolyphosphate") of P such oxoacid ions. Examples of the inorganic salt containing V, orthovanadate ion (VO 4 3-), and salts of metavanadate (VO 3-) of V such oxoacid ions.
The inorganic salt particles 131 may be one kind of salt of each of the above-mentioned oxoacid ions, or may be a plurality of kinds of salts.
 上述した中でもウェットな腐食環境下において無機塩微粒子が溶出してイオン化し、金属板や炭素繊維の表面に酸化物として沈着した際の酸化物の腐食因子に対するバリア効果の観点から、無機粒子131に含まれる無機塩は、クロム酸イオン(CrO 2-)、リン酸イオン(PO 3-)、三リン酸イオン(P10 5-、「トリポリリン酸」)、オルトバナジン酸イオン(VO 3-)、メタバナジン酸(VO3-)からなる群から選択される1種以上の塩であることが好ましい。 Among the above, the inorganic particles 131 are formed from the viewpoint of the barrier effect against the corrosion factors of the oxide when the inorganic salt fine particles are eluted and ionized in a wet corrosive environment and deposited as an oxide on the surface of a metal plate or carbon fiber. inorganic salts include, chromate ion (CrO 4 2-), phosphate ion (PO 4 3-), triphosphate ions (P 3 O 10 5-, "tripolyphosphate"), orthovanadate ion (VO It is preferably one or more salts selected from the group consisting of 4 3- ) and metavanadic acid (VO 3- ).
 上記の各オキソ酸イオンの対イオンとしては、例えば、アルカリ金属、アルカリ土類金属、Be、Mg、Al等の元素のカチオンが挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。 Examples of the counterion of each of the above oxoacid ions include cations of elements such as alkali metals, alkaline earth metals, Be, Mg, and Al, and one of them may be used alone or in combination of two or more. Can be used.
 上述した中でも、腐食環境における樹脂マトリクス中での微粒子の溶出性の観点から、無機粒子131に含まれる無機塩は、対イオンとして、Ca、Na、K、Sr、Mg、Alからなる群から選択される1種以上の元素のカチオンであることが好ましい。 Among the above, the inorganic salt contained in the inorganic particles 131 is selected from the group consisting of Ca, Na, K, Sr, Mg, and Al as counterions from the viewpoint of elution of fine particles in the resin matrix in a corrosive environment. It is preferably a cation of one or more elements to be formed.
 より具体的には、無機塩としては、クロム酸カリウム、クロム酸カルシウム、クロム酸ストロンチウムなどのクロム酸塩、リン酸亜鉛、リン酸アルミニウム、トリポリリン酸2水素アルミニウム、リン酸ナトリウム、リン酸マグネシウム、リン酸三マグネシウムなどのリン酸塩、およびメタバナジン酸ナトリウム、バナジン酸カルシウム、バナジン酸マグネシウムなどのバナジン酸塩等が挙げられる。 More specifically, examples of the inorganic salt include chromate such as potassium chromate, calcium chromate, and strontium chromate, zinc phosphate, aluminum phosphate, aluminum dihydrogen tripolyphosphate, sodium phosphate, and magnesium phosphate. Phosphates such as trimagnesium phosphate and vanadates such as sodium metavanadate, calcium vanadate and magnesium vanadate can be mentioned.
 上述した中でも、腐食環境における樹脂マトリクス中での微粒子の溶出性の観点から、導電性粒子131は、無機塩として、トリポリリン酸二水素アルミニウム、クロム酸ストロンチウム、クロム酸カルシウム、クロム酸カリウム、バナジン酸マグネシウム、バナジン酸カリウム、およびバナジン酸カルシウムからなる群から選択される1種以上からなることが好ましい。 Among the above, from the viewpoint of elution of fine particles in the resin matrix in a corrosive environment, the conductive particles 131 are inorganic salts such as aluminum dihydrogen tripolyphosphate, strontium chromate, calcium chromate, potassium chromate, and vanadic acid. It preferably consists of one or more selected from the group consisting of magnesium, potassium vanadate, and calcium vanadate.
 無機塩粒子131の平均粒径rは、特に限定されないが、例えば0.2μm以上50.0μm以下、好ましくは0.2μm以上10.0μm以下である。無機塩粒子131の平均粒径rが0.2μm以上であることにより、炭素繊維材料121と金属部材11との間のスペーサーとしての機能が十分に発揮される。無機塩粒子131の平均粒径rが50.0μm以下であることにより、無機塩粒子131が樹脂皮膜層13の表面上に突出することがより抑制され、且つ、より皮膜中の全粒子の表面積が大きくなり腐食環境下で無機塩粒子131が溶出しやすいため、耐食性のより一層の向上にも効果的である。 The average particle size r of the inorganic salt particles 131 is not particularly limited, but is, for example, 0.2 μm or more and 50.0 μm or less, preferably 0.2 μm or more and 10.0 μm or less. When the average particle size r of the inorganic salt particles 131 is 0.2 μm or more, the function as a spacer between the carbon fiber material 121 and the metal member 11 is fully exhibited. When the average particle size r of the inorganic salt particles 131 is 50.0 μm or less, the inorganic salt particles 131 are more suppressed from protruding onto the surface of the resin film layer 13, and the surface area of all the particles in the film is further suppressed. Since the inorganic salt particles 131 are easily eluted in a corrosive environment, it is also effective in further improving the corrosion resistance.
 なお、樹脂皮膜層13における無機塩粒子131の平均粒径は、一般に公知の粒子分布測定装置、例えば、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EX、日機装社製)などにより、体積基準で累積体積が50%となるときの粒子径(D50)を測定することができる。また、樹脂皮膜層13中に混入した状態で添加されている粒子の平均粒径を確認したいときは、樹脂皮膜層13の任意の断面をFE-EPMAにて分析し、前記防錆機能を有する無機塩に含まれる成分の面分布写真にて測定した粒子半径の平均値で求めることができる。 The average particle size of the inorganic salt particles 131 in the resin film layer 13 is measured by a generally known particle distribution measuring device, for example, a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3300EX, manufactured by Nikkiso Co., Ltd.). The particle size (D50) when the cumulative volume becomes 50% as a reference can be measured. Further, when it is desired to confirm the average particle size of the particles added in the resin film layer 13 in a mixed state, an arbitrary cross section of the resin film layer 13 is analyzed by FE-EPMA and has the rust preventive function. It can be obtained by the average value of the particle radii measured by the surface distribution photograph of the components contained in the inorganic salt.
 また、樹脂皮膜層13は、バインダ樹脂133を含む。バインダ樹脂133は、無機塩粒子131のバインダとして機能するとともに、樹脂皮膜層13の絶縁性の向上に寄与する。このようなバインダ樹脂133としては、特に限定されず、熱硬化性樹脂と熱可塑性樹脂のいずれも使用することができる。熱硬化性樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂、メラミン樹脂、ビニルエステル樹脂等が挙げられる。熱可塑性樹脂としては、フェノキシ樹脂、ポリオレフィン(ポリプロピレン等)およびその酸変性物、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステル樹脂、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテルおよびその変性物、ポリアリレート、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ナイロン等が挙げられる。なお、フェノキシ樹脂としては、上述したCFRP層12中のマトリックス樹脂123に使用され得るものと同様のものが挙げられる。 Further, the resin film layer 13 contains the binder resin 133. The binder resin 133 functions as a binder for the inorganic salt particles 131 and contributes to the improvement of the insulating property of the resin film layer 13. The binder resin 133 is not particularly limited, and either a thermosetting resin or a thermoplastic resin can be used. Examples of the thermosetting resin include urethane resin, epoxy resin, melamine resin, vinyl ester resin and the like. Thermoplastic resins include phenoxy resins, polyolefins (polypropylene, etc.) and their acid modified products, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polycarbonate, polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, and polyphenylene ether. And modified products thereof, polyarylate, polyetherketone, polyetheretherketone, polyetherketoneketone, nylon and the like. Examples of the phenoxy resin include those similar to those that can be used for the matrix resin 123 in the CFRP layer 12 described above.
 上述した中でも、バインダ樹脂133は、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂およびメラミン樹脂からなる群から選択される1種または2種以上を含むことが好ましい。これら樹脂は分子量やガラス転移温度にもよるが常温で流動しやすい、もしくは溶剤などに溶解して塗布することが容易であるため好適である。 Among the above, the binder resin 133 preferably contains one or more selected from the group consisting of urethane resin, epoxy resin, polyester resin and melamine resin. These resins are suitable because they easily flow at room temperature or are easily dissolved in a solvent or the like and applied, although they depend on the molecular weight and the glass transition temperature.
 また、バインダ樹脂133のガラス転移温度Tgは、例えば100℃以下、好ましくは10℃以上60℃以下、より好ましくは10℃以上35℃以下である。これにより、CFRPを貼り付けた後に成形加工を行っても炭素繊維強化樹脂が剥離しにくくなる。 The glass transition temperature Tg of the binder resin 133 is, for example, 100 ° C. or lower, preferably 10 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 35 ° C. or lower. As a result, the carbon fiber reinforced resin is less likely to be peeled off even if the molding process is performed after the CFRP is attached.
 樹脂皮膜層13は、その接着性や物性を損なわない範囲において、例えば、天然ゴム、合成ゴム、エラストマー等や、種々の無機フィラー、溶剤、体質顔料、着色剤、酸化防止剤、紫外線防止剤、難燃剤、難燃助剤等その他添加物が配合されていてもよい。 The resin film layer 13 includes, for example, natural rubber, synthetic rubber, elastomer, and various inorganic fillers, solvents, extender pigments, colorants, antioxidants, and ultraviolet antioxidants, as long as the adhesiveness and physical properties are not impaired. Other additives such as a flame retardant and a flame retardant aid may be blended.
 樹脂皮膜層13の平均厚みTは、特に限定されないが、例えば、5.0μm以上、好ましくは5.0μm以上200.0μm未満である。樹脂皮膜層13の平均厚みTが、5.0μm以上であることにより、より確実に絶縁を行って金属部材の異種材料接触腐食を防止することができる。また、樹脂皮膜層13の平均厚みTが、200.0μm未満であることにより、樹脂皮膜層13の凝集破壊が防止され、樹脂皮膜層13とCFRP層12との密着性が十分に優れるものとなる。
 以上、金属-CFRP複合体1の各構成について説明した。
The average thickness T of the resin film layer 13 is not particularly limited, but is, for example, 5.0 μm or more, preferably 5.0 μm or more and less than 200.0 μm. When the average thickness T of the resin film layer 13 is 5.0 μm or more, it is possible to more reliably perform insulation and prevent contact corrosion of different materials of the metal member. Further, when the average thickness T of the resin film layer 13 is less than 200.0 μm, the cohesive failure of the resin film layer 13 is prevented, and the adhesion between the resin film layer 13 and the CFRP layer 12 is sufficiently excellent. Become.
Each configuration of the metal-CFRP composite 1 has been described above.
 また、樹脂皮膜層13のガラス転移温度は、例えば100℃以下、好ましくは10℃以上60℃以下、より好ましくは10℃以上35℃以下である。これにより、CFRPを貼り付けた後に成形加工を行っても炭素繊維強化樹脂が剥離しにくくなる。 The glass transition temperature of the resin film layer 13 is, for example, 100 ° C. or lower, preferably 10 ° C. or higher and 60 ° C. or lower, and more preferably 10 ° C. or higher and 35 ° C. or lower. As a result, the carbon fiber reinforced resin is less likely to be peeled off even if the molding process is performed after the CFRP is attached.
 なお、樹脂皮膜層13のガラス転移温度の測定は、熱機械分析(TMA)にて測定することができる。熱機械分析装置は市販の装置、例えば日立ハイテックサイエンス社製の「TMA7000シリーズ」などにより行うことができる。 The glass transition temperature of the resin film layer 13 can be measured by thermomechanical analysis (TMA). The thermomechanical analyzer can be a commercially available device, for example, the "TMA7000 series" manufactured by Hitachi High-Tech Science.
 なお、金属部材11、CFRP層12及び樹脂皮膜層13の厚みは、以下のようにJIS K 5600-1-7、5.4項の光学的方法の断面法に準拠して、測定することができる。すなわち、試料に有害な影響を及ぼさずに、隙間なく埋め込める常温硬化樹脂を用い、リファインテック株式会社製の低粘性エポマウント27-777を主剤に、27-772を硬化剤に用い、試料を埋め込む。切断機にて観察すべき箇所において、厚さ方向と平行となるように試料を切断して断面を出し、JIS R 6252又は6253で規定する番手の研磨紙(例えば、280番手、400番手又は600番手)を用いて研磨して、観察面を作製する。研磨材を用いる場合は、適切な等級のダイヤモンドペースト又は類似のペーストを用いて研磨して、観察面を作製する。また、必要に応じてバフ研磨を実施して、試料の表面を観察に耐えられる状況まで平滑化してもよい。 The thicknesses of the metal member 11, the CFRP layer 12, and the resin film layer 13 can be measured in accordance with the cross-sectional method of the optical method of JIS K 560-1-7, 5.4 as follows. it can. That is, using a room temperature curing resin that can be embedded without any harmful effect on the sample, using the low-viscosity Epomount 27-777 manufactured by Refine Tech Co., Ltd. as the main agent and 27-772 as the curing agent, the sample is used. Embed. At the point to be observed with a cutting machine, the sample is cut so as to be parallel to the thickness direction to obtain a cross section, and a polishing paper having a count specified in JIS R 6252 or 6253 (for example, 280 count, 400 count or 600 count). Polish with a count) to prepare an observation surface. If an abrasive is used, it is polished with an appropriate grade diamond paste or similar paste to create an observation surface. Further, if necessary, buffing may be performed to smooth the surface of the sample to a state where it can withstand observation.
 最適な像のコントラストを与えるのに適切な照明システムを備えた顕微鏡で、1μmの精度の測定が可能な顕微鏡(例えば、オリンパス社製BX51など)を用い、視野の大きさは300μmとなるように選択する。なお、視野の大きさは、それぞれの厚みが確認できるように変えてもよい(例えば、CFRP層12の厚みが1mmであれば、厚みが確認できる視野の大きさに変えてもよい)。例えば、樹脂皮膜層13の厚みを測定するときは、観察視野内を4等分して、各分画点の幅方向中央部において、樹脂皮膜層13の厚みを計測し、その平均の厚みを当該視野における厚みとする。この観察視野は、異なる箇所を5箇所選んで行い、それぞれの観察視野内で4等分して、各分画にて厚みを測定し、平均値を算出する。隣り合う観察視野同士は、3cm以上離して選ぶとよい。この5箇所での平均値を更に平均した値を、樹脂皮膜層13の厚みとすればよい。また、金属部材11やCFRP層12の厚みの測定においても、上記樹脂皮膜層13の厚みの測定と同様に行えばよい。 Use a microscope equipped with an appropriate lighting system to give the optimum image contrast, and use a microscope capable of measuring with an accuracy of 1 μm (for example, BX51 manufactured by Olympus Corporation) so that the field of view is 300 μm. select. The size of the visual field may be changed so that the thickness of each can be confirmed (for example, if the thickness of the CFRP layer 12 is 1 mm, the size of the visual field may be changed so that the thickness can be confirmed). For example, when measuring the thickness of the resin film layer 13, the observation field of view is divided into four equal parts, the thickness of the resin film layer 13 is measured at the center of each fraction in the width direction, and the average thickness is measured. The thickness in the field of view. This observation field of view is performed by selecting 5 different places, dividing into 4 equal parts within each observation field of view, measuring the thickness in each fraction, and calculating the average value. Adjacent observation fields should be selected at least 3 cm apart. The thickness of the resin film layer 13 may be obtained by further averaging the average values at these five locations. Further, the thickness of the metal member 11 and the CFRP layer 12 may be measured in the same manner as the measurement of the thickness of the resin film layer 13.
 [1.2.変形例]
 次に、上述した実施形態に係る金属-炭素繊維強化樹脂材料複合体1の変形例について説明する。なお、以下に説明する各変形例は、単独で本発明の上記実施形態に適用されてもよいし、組み合わせで本発明の上記実施形態に適用されてもよい。また、各変形例は、本発明の上記実施形態で説明した構成に代えて適用されてもよいし、本発明の上記実施形態で説明した構成に対して追加的に適用されてもよい。図2~図4は、それぞれ、本発明の変形例に係る金属-炭素繊維強化樹脂材料複合体を説明する断面模式図である。
[1.2. Modification example]
Next, a modified example of the metal-carbon fiber reinforced resin material composite 1 according to the above-described embodiment will be described. In addition, each modification described below may be applied alone to the said embodiment of the present invention, or may be applied in combination to the said embodiment of the present invention. Further, each modification may be applied in place of the configuration described in the above embodiment of the present invention, or may be additionally applied to the configuration described in the above embodiment of the present invention. 2 to 4 are schematic cross-sectional views for explaining the metal-carbon fiber reinforced resin material composite according to the modified example of the present invention, respectively.
(第1の変形例)
 上述した実施形態においては、金属-CFRP複合体1は、金属部材11、CFRP層12および樹脂皮膜層13とからなるものとして説明したが、本発明はこれに限定されない。本発明に係る金属-CFRP複合体1は、これらの各構成の層間または表面に、さらなる層が配置されていてもよい。例えば、図2に示すように、変形例に係る金属-CFRP複合体1Aは、樹脂皮膜層13と、金属部材11との間に、化成処理層14が配置されている。このような化成処理層14が金属部材11と樹脂皮膜層13との間に配置されることにより、金属部材11の耐食性が向上するとともに、金属-CFRP複合体1Aの金属部材11と樹脂皮膜層13との間の密着性が向上する。
(First modification)
In the above-described embodiment, the metal-CFRP composite 1 has been described as being composed of the metal member 11, the CFRP layer 12, and the resin film layer 13, but the present invention is not limited thereto. In the metal-CFRP composite 1 according to the present invention, additional layers may be arranged between layers or surfaces of each of these configurations. For example, as shown in FIG. 2, in the metal-CFRP composite 1A according to the modified example, a chemical conversion treatment layer 14 is arranged between the resin film layer 13 and the metal member 11. By arranging such a chemical conversion treatment layer 14 between the metal member 11 and the resin film layer 13, the corrosion resistance of the metal member 11 is improved, and the metal member 11 and the resin film layer of the metal-CFRP composite 1A are improved. Adhesion with 13 is improved.
 このような化成処理層14としては、特に限定されないが、Cr、P、Siおよび/またはZrを含む化成処理層であることが好ましい。これにより、上述した耐食性および密着性の向上効果をより顕著に得ることができる。 The chemical conversion treatment layer 14 is not particularly limited, but is preferably a chemical conversion treatment layer containing Cr, P, Si and / or Zr. As a result, the above-mentioned effect of improving corrosion resistance and adhesion can be obtained more remarkably.
 このような化成処理層14はCr、P、Siおよび/またはZrがCやCOを介して重合することでネットワークを形成する無機タイプもしくは無機有機混合タイプでも良いし、樹脂などのバインダーの中にCr、P、Siおよび/またはZrからなる化合物を添加した皮膜を塗布乾燥するタイプでも良い。前記化成処理中には必要に応じて一般に公知の他の防錆成分、例えばV酸系、Ti酸系、P酸系などを添加しても良い。これら化成処理は処理した時に金属材表面の金属と反応して皮膜を析出させる反応型でも良いし、ウェット状態の処理液を塗布して乾燥硬化させるタイプのものでも良い。必要に応じて適宜選定できる。 Such a chemical conversion treatment layer 14 may be an inorganic type or an inorganic-organic mixed type in which Cr, P, Si and / or Zr are polymerized via C or CO to form a network, or may be contained in a binder such as a resin. A type in which a film to which a compound composed of Cr, P, Si and / or Zr is added is applied and dried may be used. If necessary, other generally known rust preventive components, such as V-acid type, Ti-acid type, and P-acid type, may be added during the chemical conversion treatment. These chemical conversion treatments may be of a reaction type in which a film is precipitated by reacting with a metal on the surface of a metal material when treated, or of a type in which a wet treatment liquid is applied and dried and cured. It can be selected as needed.
 この場合、化成処理層14は、Cr、P、Siおよび/またはZrを合計で、例えば10mg/m以上500mg/m以下、好ましくは30g/m以上300g/m以下含むことができる。これにより、耐食性をより一層優れたものとしつつ、金属部材11と樹脂皮膜層13との間の密着性を十分に優れたものとすることができる。 In this case, the chemical conversion treatment layer 14 can contain Cr, P, Si and / or Zr in total, for example, 10 mg / m 2 or more and 500 mg / m 2 or less, preferably 30 g / m 2 or more and 300 g / m 2 or less. .. As a result, the adhesion between the metal member 11 and the resin film layer 13 can be made sufficiently excellent while further improving the corrosion resistance.
(第2の変形例)
 また、上述した実施形態では、金属部材11の片面にCFRP層12および樹脂皮膜層13が配置されているものとして説明したが、本発明はこれに限定されない。例えば、図3に示す金属-CFRP複合体1Bのように。金属部材11の両面にCFRP層12および樹脂皮膜層13が配置されていてもよい。また、この場合において、各CFRP層12および樹脂皮膜層13の構成は、互いに異なっていてもよいし、同一であってもよい。
(Second modification)
Further, in the above-described embodiment, the CFRP layer 12 and the resin film layer 13 have been described as being arranged on one side of the metal member 11, but the present invention is not limited thereto. For example, as in the metal-CFRP composite 1B shown in FIG. The CFRP layer 12 and the resin film layer 13 may be arranged on both sides of the metal member 11. Further, in this case, the configurations of the CFRP layer 12 and the resin film layer 13 may be different from each other or may be the same.
(第3の変形例)
 また、CFRP層は、上述した実施形態に限定されず、複数層であってもよい。例えば、図4に示す金属-CFRP複合体1Cのように、CFRP層12Aは、1層に限らず、2層以上であってもよい。CFRP層12Aを複数層とする場合のCFRP層12Aの層数nは、使用目的に応じて適宜設定すればよい。CFRP層12Aが複数層ある場合、各層は、同一の構成であってもよいし、異なっていてもよい。すなわち、CFRP層12Aを構成するマトリックス樹脂123の樹脂種、炭素繊維材料121の種類や含有比率などは、層ごとに異なっていてもよい。
(Third variant)
Further, the CFRP layer is not limited to the above-described embodiment, and may be a plurality of layers. For example, as in the metal-CFRP composite 1C shown in FIG. 4, the CFRP layer 12A is not limited to one layer, and may be two or more layers. When the CFRP layer 12A is a plurality of layers, the number n of the CFRP layer 12A may be appropriately set according to the purpose of use. When there are a plurality of CFRP layers 12A, each layer may have the same configuration or may be different. That is, the resin type of the matrix resin 123 constituting the CFRP layer 12A, the type and the content ratio of the carbon fiber material 121, and the like may be different for each layer.
(第4の変形例)
 上述した実施形態においては、金属-CFRP複合体1が板状である場合について模式的に説明したが、本発明はこれに限定されず、当然、本発明に係る金属-CFRP複合体は成形されていてもよい。
(Fourth modification)
In the above-described embodiment, the case where the metal-CFRP composite 1 is plate-shaped has been schematically described, but the present invention is not limited to this, and naturally, the metal-CFRP composite according to the present invention is molded. You may be.
<2.金属-炭素繊維強化樹脂材料複合体の製造方法>
 次に、本発明の実施形態に係る金属-炭素繊維強化樹脂材料複合体の製造方法について説明する。本発明の一実施形態に係る金属-炭素繊維強化樹脂材料複合体の製造方法は、無機塩粒子およびバインダ樹脂を含む樹脂皮膜層の表面の少なくとも一部に設けられた金属部材と炭素繊維強化樹脂材料とを上記樹脂皮膜層を介して熱圧着する工程を有する。また、上記熱圧着する工程前後において、金属部材または当該金属部材と炭素繊維強化樹脂材料とが積層した積層体を成形する工程を有してもよい。以下、成形が行われることを前提として、本発明の実施形態に係る金属-炭素繊維強化樹脂材料複合体の製造方法を詳細に説明するが、成形が省略されてもよいことはいうまでもない。
[2.1.第1の実施形態]
 図5および図6は、本発明の第1の実施形態に係る金属-CFRP複合体の製造方法を説明する模式図である。第1の実施形態に係る金属-CFRP複合体1Dの製造方法は、樹脂皮膜層13Aが表面の少なくとも一部に設けられた金属部材11Aと炭素繊維強化樹脂材料(CFRPまたはCFRP形成用プリプレグ)とを樹脂皮膜層13Aを介して熱圧着して、積層体100を得る熱圧着工程Aを少なくとも有する。また、本実施形態に係る金属-CFRP複合体1Dの製造方法は、積層体100を成形工程Aと、を有する。
 さらに、本実施形態においては、必要に応じて、金属部材11Aの表面の少なくとも一部に樹脂皮膜層13Aを形成する樹脂皮膜層形成工程、前処理工程および/または後工程を含み得る。以下、各工程について説明する。
<2. Method for manufacturing metal-carbon fiber reinforced resin material composite>
Next, a method for producing the metal-carbon fiber reinforced resin material composite according to the embodiment of the present invention will be described. The method for producing a metal-carbon fiber reinforced resin material composite according to an embodiment of the present invention is a method of producing a metal member and a carbon fiber reinforced resin provided on at least a part of the surface of a resin film layer containing inorganic salt particles and a binder resin. It has a step of heat-bonding the material to the material through the resin film layer. Further, before and after the thermocompression bonding step, there may be a step of forming a metal member or a laminate in which the metal member and a carbon fiber reinforced resin material are laminated. Hereinafter, the method for producing the metal-carbon fiber reinforced resin material composite according to the embodiment of the present invention will be described in detail on the premise that molding is performed, but it goes without saying that molding may be omitted. ..
[2.1. First Embodiment]
5 and 6 are schematic views illustrating a method for producing a metal-CFRP composite according to the first embodiment of the present invention. The method for producing the metal-CFRP composite 1D according to the first embodiment includes a metal member 11A in which the resin film layer 13A is provided on at least a part of the surface and a carbon fiber reinforced resin material (CFRP or CFRP forming prepreg). At least has a thermocompression bonding step A for obtaining the laminate 100 by thermocompression bonding the resin film layer 13A. Further, the method for producing the metal-CFRP composite 1D according to the present embodiment includes the laminate 100 with the molding step A.
Further, the present embodiment may include, if necessary, a resin film layer forming step, a pretreatment step, and / or a post-step of forming the resin film layer 13A on at least a part of the surface of the metal member 11A. Hereinafter, each step will be described.
(前処理工程)
 まず、金属部材11Aを用意する(図5(a))。金属部材11に対しては、必要に応じて一般に公知の脱脂を行うことが好ましい。脱脂方法は溶剤でふき取る方法、水洗する、界面活性剤を含む水溶液もしくは洗剤で洗う方法、加熱して油成分を揮発させる方法、アルカリ脱脂など一般に公知の方法も用いることができる。アルカリ脱脂が工業的には一般的であり、脱脂効果が高いため好適である。また、使用する金型への離型処理や金属部材11A表面の付着物の除去(ゴミ取り)を行うことがより好ましい。これらの前処理により、金属部材11Aと、樹脂皮膜層13Aとの密着性が向上する。
(Pretreatment process)
First, the metal member 11A is prepared (FIG. 5A). It is preferable that the metal member 11 is degreased, which is generally known, if necessary. As the degreasing method, generally known methods such as wiping with a solvent, washing with water, washing with an aqueous solution containing a surfactant or a detergent, a method of heating to volatilize an oil component, and alkaline degreasing can also be used. Alkaline degreasing is industrially common and is suitable because it has a high degreasing effect. Further, it is more preferable to perform a mold release treatment on the mold to be used and removal of deposits (dust removal) on the surface of the metal member 11A. By these pretreatments, the adhesion between the metal member 11A and the resin film layer 13A is improved.
(皮膜形成工程)
 次に、金属部材11Aの表面に対し、樹脂皮膜層13Aを形成する(図5(b))。樹脂皮膜層13Aの形成は、樹脂皮膜層13Aの材料を含む皮膜層材料組成物を金属部材11Aの表面に対し塗工し、乾燥・焼付することにより行われる。樹脂皮膜層材料組成物は、液状またはスラリー状であってもよいし、粉末状であってもよい。予め板状に成形した樹脂皮膜層材料組成物としてのシートを熱圧着などで貼り付けても良い。
(Film formation process)
Next, the resin film layer 13A is formed on the surface of the metal member 11A (FIG. 5 (b)). The resin film layer 13A is formed by applying a film layer material composition containing the material of the resin film layer 13A to the surface of the metal member 11A, drying and baking. The resin film layer material composition may be in the form of a liquid or slurry, or may be in the form of powder. A sheet as a resin film layer material composition molded in advance into a plate shape may be attached by thermocompression bonding or the like.
 また、塗工方法も特に限定されず、シート状タイプのものの場合、貼付け方法は人手、ロボットなど一般に公知の方法で貼り付けることができる。粘性液体の場合、スリットノズルや円形状のノズルからの吐出方式での塗工、刷毛塗り、ブレート塗り、ヘラ塗りなど一般に公知の方法で塗布することができる。溶剤に溶解したものでは、一般に公知の塗布方法、例えば、刷毛塗り、スプレー塗工、バーコーター、各種形状のノズルからの吐出塗布、ダイコーター塗布、カーテンコーター塗布、ロールコーター塗布、スクリーン印刷、インクジェット塗布などを用いることができる。樹脂皮膜層材料組成物が粉末状である場合、粉体塗装等の公知の方法を採用することができる。特に、粉体塗装により形成された樹脂皮膜層13Aは、樹脂皮膜層材料組成物が微粒子であるために樹脂成分が溶融しやすく、かつ樹脂皮膜層13A内に適度な空隙を持つためボイドが抜けやすい。また、CFRP又はCFRP成形用プリプレグを熱圧着する際に樹脂皮膜層13Aを構成する樹脂成分が金属部材11Aの表面を良く濡らすため、ワニス塗工のような脱気工程が不要である。樹脂皮膜層13Aは金属部材11A全面に塗布しても良いし、炭素繊維強化樹脂材料(CFRP)を貼り付ける箇所のみに部分塗布しても良い。 Further, the coating method is not particularly limited, and in the case of a sheet type, the pasting method can be a generally known method such as a human or a robot. In the case of a viscous liquid, it can be applied by a generally known method such as coating by a discharge method from a slit nozzle or a circular nozzle, brush coating, plate coating, spatula coating and the like. For those dissolved in a solvent, generally known coating methods such as brush coating, spray coating, bar coater, ejection coating from nozzles of various shapes, die coater coating, curtain coater coating, roll coater coating, screen printing, inkjet Coating or the like can be used. When the resin film layer material composition is in the form of powder, a known method such as powder coating can be adopted. In particular, in the resin film layer 13A formed by powder coating, since the resin film layer material composition is fine particles, the resin component is easily melted, and since the resin film layer 13A has appropriate voids, voids are removed. Cheap. Further, when the CFRP or the prepreg for CFRP molding is thermocompression-bonded, the resin component constituting the resin film layer 13A wets the surface of the metal member 11A well, so that a degassing step such as varnish coating is not required. The resin film layer 13A may be applied to the entire surface of the metal member 11A, or may be partially applied only to the portion to which the carbon fiber reinforced resin material (CFRP) is attached.
 樹脂皮膜層13Aを塗工する前に、金属部材11A上に化成処理層14を設けても良い。化成処理層14を設ける方法としては、一般に公知の処理方法、例えば、浸漬乾燥方式、浸漬・水洗・乾燥方式、スプレー・水洗・乾燥方式、塗布・乾燥方式、塗布・乾燥硬化方式などを用いることができる。塗布方法は浸漬、刷毛塗り、スプレー、ロールコーター、バーコーター、ブレードコーターなど一般に公知の方法で塗布することができる。 A chemical conversion treatment layer 14 may be provided on the metal member 11A before the resin film layer 13A is applied. As a method for providing the chemical conversion treatment layer 14, a generally known treatment method, for example, an immersion drying method, an immersion / water washing / drying method, a spray / water washing / drying method, a coating / drying method, a coating / drying curing method, or the like is used. Can be done. The coating method can be a generally known method such as dipping, brush coating, spraying, roll coater, bar coater, and blade coater.
 また、乾燥、焼付は、例えば、加熱処理等により行うことができる。加熱条件としては、特に限定されず、例えば100℃以上250℃以下の条件で、10秒以上30分以下とすることができる。なお、樹脂皮膜層材料組成物を常温硬化型にしても良い。この場合、樹脂皮膜層材料組成物は、主樹脂と硬化剤を混ぜ合わせた状態の1液型でも良い。主樹脂と硬化剤を分離して塗工直前に混ぜ合わせる2液硬化型でも良いし、主樹脂と硬化剤、その他添加剤などをそれぞれ分離して塗工直前に混ぜ合わせる3液以上のタイプでも良い。 Further, drying and baking can be performed by, for example, heat treatment. The heating conditions are not particularly limited, and can be, for example, 10 seconds or more and 30 minutes or less under the conditions of 100 ° C. or higher and 250 ° C. or lower. The resin film layer material composition may be a room temperature curing type. In this case, the resin film layer material composition may be a one-component type in which the main resin and the curing agent are mixed. It may be a two-component curing type in which the main resin and the curing agent are separated and mixed immediately before the coating, or a three-component or more type in which the main resin, the curing agent, and other additives are separated and mixed immediately before the coating. good.
 前記樹脂皮膜層13Aは、CFRP層12BとなるCFRP成形用プリプレグまたはCFRPと金属部材11Aを重ねて配置する際に塗工もしくは貼付けを行い、これら積層体を後述する熱圧着させる際に硬化させても良いし、事前に樹脂皮膜層13Aを金属部材11Aに塗工もしくは貼付けにて積層して硬化させたものの上に、CFRP成形用プリプレグまたはCFRPを重ねて配置し、後述する熱圧着を行っても良い。 The resin film layer 13A is coated or affixed when the CFRP forming prepreg or CFRP to be the CFRP layer 12B and the metal member 11A are placed on top of each other, and these laminated bodies are cured when they are thermally pressure-bonded, which will be described later. Alternatively, the CFRP forming prepreg or CFRP is placed on top of the resin film layer 13A laminated and cured by coating or pasting on the metal member 11A in advance, and then heat-bonded, which will be described later. Is also good.
(熱圧着工程A)
 次に、金属部材11Aと炭素繊維強化樹脂材料(CFRPまたはCFRP形成用プリプレグ)とを樹脂皮膜層13Aを介して熱圧着し、金属-CFRP複合体1を得る(図5(c))。具体的には、CFRP層12BとなるCFRP成形用プリプレグ(またはCFRP)を樹脂皮膜層13A上に積層した積層体を加圧機に設置し、加熱しつつ加圧を行う。これにより、金属部材11Aと、樹脂皮膜層13Aと、CFRP層12Bとがこの順で積層した積層体100が製造される。
(Thermocompression bonding step A)
Next, the metal member 11A and the carbon fiber reinforced resin material (CFRP or CFRP forming prepreg) are thermocompression bonded via the resin film layer 13A to obtain a metal-CFRP composite 1 (FIG. 5 (c)). Specifically, a laminate in which a CFRP molding prepreg (or CFRP) to be a CFRP layer 12B is laminated on a resin film layer 13A is installed in a pressurizing machine, and pressurization is performed while heating. As a result, the laminated body 100 in which the metal member 11A, the resin film layer 13A, and the CFRP layer 12B are laminated in this order is manufactured.
 具体的には、まず、金属部材11Aと、CFRP成形用プリプレグまたはCFRPを、樹脂皮膜層13Aを介して重ねて配置し、積層体を得る。なお、CFRPを用いる場合、CFRPの接着面は、例えば、ブラスト処理等による粗化や、プラズマ処理、コロナ処理などによる活性化がなされていることが好ましい。次に、この積層体を加熱及び加圧(熱圧着)することによって、積層体100が得られる。 Specifically, first, the metal member 11A and the CFRP molding prepreg or CFRP are placed on top of each other via the resin film layer 13A to obtain a laminated body. When CFRP is used, it is preferable that the adhesive surface of CFRP is roughened by, for example, blasting treatment, or activated by plasma treatment, corona treatment, or the like. Next, the laminate 100 is obtained by heating and pressurizing (thermocompression bonding) the laminate.
 ここで、本工程における熱圧着条件は、以下の通りである。
 熱圧着温度は、特に限定されないが、例えば、100℃以上400℃以下の範囲内、好ましくは150℃以上300℃以下、より好ましくは160℃以上270℃以下の範囲内、さらに好ましくは180℃以上250℃以下の範囲内である。このような温度範囲内において、結晶性樹脂であれば融点以上の温度がより好ましく、非結晶性樹脂であればTg+150℃以上の温度がより好ましい。上記上限温度以下であることにより、過剰な熱を加えてしまうことを抑制することができ樹脂の分解を防止できる。また、上記下限温度以上であることにより、樹脂の溶融粘度が適度とすることができ、CFRPへの付着性及びCFRP基材への含浸性を優れたものにすることができる。
Here, the thermocompression bonding conditions in this step are as follows.
The thermocompression bonding temperature is not particularly limited, but is, for example, 100 ° C. or higher and 400 ° C. or lower, preferably 150 ° C. or higher and 300 ° C. or lower, more preferably 160 ° C. or higher and 270 ° C. or lower, and further preferably 180 ° C. or higher. It is within the range of 250 ° C. or lower. Within such a temperature range, a crystalline resin is more preferably at a temperature equal to or higher than the melting point, and a non-crystalline resin is more preferably at a temperature of Tg + 150 ° C. or higher. When the temperature is equal to or lower than the upper limit temperature, it is possible to suppress excessive heat application and prevent the resin from being decomposed. Further, when the temperature is at least the above lower limit temperature, the melt viscosity of the resin can be made appropriate, and the adhesiveness to CFRP and the impregnation property to the CFRP base material can be made excellent.
 熱圧着する際の圧力は、例えば、3MPa以上が好ましく、3MPa以上5MPa以下の範囲内がより好ましい。圧力が5MPa以下であることにより、過剰な圧力を加えることを防止し、変形や損傷の発生をより確実に防止することができる。また、また圧力が3MPa以上であることにより、CFRP基材への含浸性を向上させることができる。 The pressure at the time of thermocompression bonding is, for example, preferably 3 MPa or more, and more preferably 3 MPa or more and 5 MPa or less. When the pressure is 5 MPa or less, it is possible to prevent excessive pressure from being applied, and more reliably prevent deformation and damage from occurring. Further, when the pressure is 3 MPa or more, the impregnation property into the CFRP base material can be improved.
 熱圧着時間については、少なくとも3分以上あれば十分に加熱圧着が可能であり、5分以上20分以下の範囲内であることが好ましい。 Regarding the thermocompression bonding time, at least 3 minutes or more is sufficient for thermocompression bonding, and it is preferably within the range of 5 minutes or more and 20 minutes or less.
(追加の加熱工程)
 皮膜層13Aを形成するための接着樹脂組成物や、マトリックス樹脂123を形成するための原料樹脂として、フェノキシ樹脂(A)に架橋性硬化樹脂(B)及び架橋剤(C)を含有した架橋性接着樹脂組成物を使用する場合、さらに、追加の加熱工程を含めてもよい。
(Additional heating process)
As an adhesive resin composition for forming the film layer 13A and a raw material resin for forming the matrix resin 123, the phenoxy resin (A) contains a crosslinkable curable resin (B) and a crosslinkable agent (C). If the adhesive resin composition is used, an additional heating step may be further included.
 架橋性接着樹脂組成物を使用する場合は、上記熱圧着工程で、固化はしているが架橋形成(硬化)はしていない第1の硬化状態の硬化物(固化物)によって樹脂皮膜層13Aを形成することができる。また、CFRP層12BとなるCFRP成形用プリプレグのマトリックス樹脂の原料樹脂として、架橋性接着樹脂組成物と同一又は同種のものを用いる場合には、第1の硬化状態の硬化物(固化物)からなるマトリックス樹脂123を含むCFRP層12を形成することができる。 When a crosslinkable adhesive resin composition is used, the resin film layer 13A is formed by a cured product (solidified product) in the first cured state, which is solidified but not crosslinked (cured) in the thermocompression bonding step. Can be formed. Further, when the same or the same type as the crosslinkable adhesive resin composition is used as the raw material resin for the matrix resin of the CFRP molding prepreg to be the CFRP layer 12B, the cured product (solidified product) in the first cured state is used. The CFRP layer 12 containing the matrix resin 123 can be formed.
 このように、上記熱圧着工程を経て、金属部材11Aと、未硬化の樹脂皮膜層13Aと、CFRP層12Bと、が積層され一体化された、金属-CFRP複合体1Aの中間体(プリフォーム)を作製できる。この中間体では、必要により、CFRP層12Bとして、マトリックス樹脂123が第1の硬化状態の硬化物(固化物)であるものを用いることもできる。そして、この中間体に対し、熱圧着工程の後で、さらに追加の加熱工程を実施することによって、少なくとも第1の硬化状態の硬化物(固化物)による樹脂皮膜層13に対しポストキュアを行い、樹脂を架橋硬化させて第2の硬化状態の硬化物(架橋硬化物)へ変化させることができる。好ましくは、CFRP層12Bについてもポストキュアを行うことで、第1の硬化状態の硬化物(固化物)からなるマトリックス樹脂123を架橋硬化させて第2の硬化状態の硬化物(架橋硬化物)へ変化させることができる。 As described above, the intermediate body (preform) of the metal-CFRP composite 1A in which the metal member 11A, the uncured resin film layer 13A, and the CFRP layer 12B are laminated and integrated through the thermocompression bonding step. ) Can be produced. In this intermediate, if necessary, a CFRP layer 12B in which the matrix resin 123 is a cured product (solidified product) in the first cured state can be used. Then, the intermediate is post-cured to at least the resin film layer 13 made of the cured product (solidified material) in the first cured state by further performing an additional heating step after the heat bonding step. , The resin can be cross-linked and cured to change into a cured product (cross-linked cured product) in a second cured state. Preferably, the CFRP layer 12B is also post-cured to crosslink and cure the matrix resin 123 composed of the cured product (solidified product) in the first cured state, and the cured product (crosslinked cured product) in the second cured state. Can be changed to.
 ポストキュアのための追加の加熱工程は、例えば、200℃以上250℃以下の範囲内の温度で30分間~60分間程度の時間をかけて行うことが好ましい。なお、ポストキュアに代えて、塗装などの後工程での熱履歴を利用してもよい。 The additional heating step for post-cure is preferably performed at a temperature in the range of 200 ° C. or higher and 250 ° C. or lower over a period of about 30 to 60 minutes. Instead of post-cure, the heat history in a post-process such as painting may be used.
 上述の通り、架橋性接着樹脂組成物を用いると、架橋硬化後のTgが、フェノキシ樹脂(A)単独よりも大きく向上する。そのため、上述した中間体に対して追加の加熱工程を行う前後、すなわち、樹脂が第1の硬化状態の硬化物(固化物)から第2の硬化状態の硬化物(架橋硬化物)へ変化する過程で、Tgが変化する。具体的には、中間体における架橋前の樹脂のTgは、例えば150℃以下であるのに対し、追加の加熱工程後の架橋形成された樹脂のTgは、例えば160℃以上、好ましくは170℃以上220℃以下の範囲内に向上するので、耐熱性を大幅に高めることができる。 As described above, when the crosslinkable adhesive resin composition is used, the Tg after crosslink curing is greatly improved as compared with the phenoxy resin (A) alone. Therefore, before and after performing an additional heating step on the above-mentioned intermediate, that is, the resin changes from a cured product (solidified product) in the first cured state to a cured product (crosslinked cured product) in the second cured state. In the process, Tg changes. Specifically, the Tg of the resin before cross-linking in the intermediate is, for example, 150 ° C. or lower, whereas the Tg of the cross-linked resin after the additional heating step is, for example, 160 ° C. or higher, preferably 170 ° C. or lower. Since the temperature is improved within the range of 220 ° C. or lower, the heat resistance can be significantly improved.
 なお、積層体100の成形が不要である場合、以下の成型工程Aを省略し、積層体100自体を金属-CFRP複合体としても得てもよい。 If molding of the laminate 100 is unnecessary, the following molding step A may be omitted, and the laminate 100 itself may be obtained as a metal-CFRP composite.
(成形工程A)
 次に、積層体100を成形し(図6(d))、金属-CFRP複合体1Dを得る。積層体100の成形方法は、特に限定されず、例えばせん断加工、曲げ加工、絞り加工、鍛造加工等の各種プレス加工を採用することができる。
(Molding step A)
Next, the laminate 100 is molded (FIG. 6 (d)) to obtain a metal-CFRP composite 1D. The molding method of the laminated body 100 is not particularly limited, and various press workings such as shearing, bending, drawing, and forging can be adopted.
 これらプレス加工は常温でも良いが、熱間プレスであると加工時にCFRPが金属部材から剥がれにくく好適である。熱間プレスの温度は前述した熱圧着工程と同じ温度が好適である。 These presses may be performed at room temperature, but hot presses are suitable because CFRP does not easily come off from metal members during processing. The temperature of the hot press is preferably the same as that of the thermocompression bonding step described above.
 なお、本実施形態においては、熱圧着工程Aと成型工程A(金属-CFRP複合体1Dの成形)とが同時に行われてもよい。すなわち、加圧成形機において金属部材11Aと炭素繊維強化樹脂材料(CFRPまたはCFRP形成用プリプレグ)とを樹脂皮膜層13Aを介して熱圧着するとともに、同時に成形を行ってもよい。 In this embodiment, the thermocompression bonding step A and the molding step A (molding of the metal-CFRP composite 1D) may be performed at the same time. That is, in the pressure molding machine, the metal member 11A and the carbon fiber reinforced resin material (CFRP or CFRP forming prepreg) may be thermocompression bonded via the resin film layer 13A and may be molded at the same time.
(後工程)
 金属-CFRP複合体1Dに対する後工程では、必要に応じて、塗装の他、ボルトやリベット留めなどによる他の部材との機械的な接合のため、穴あけ加工、接着接合のための接着剤の塗布などが行われる。
(Post-process)
In the post-process for the metal-CFRP composite 1D, if necessary, in addition to painting, for mechanical joining with other members such as bolts and rivets, drilling and application of adhesive for adhesive joining. And so on.
[2.2.第2の実施形態]
 図7および図8は、本発明の第2の実施形態に係る金属-CFRP複合体の製造方法を説明する模式図である。第2の実施形態に係る金属-CFRP複合体1Eの製造方法は、樹脂皮膜層13Bの表面の少なくとも一部に設けられた金属部材11Bを成形する成形工程Bと、金属部材11Bと、炭素繊維強化樹脂材料とを樹脂皮膜層13Bを介して熱圧着し、金属-CFRP複合体1Eを得る熱圧着工程Bとを有する。
[2.2. Second Embodiment]
7 and 8 are schematic views illustrating a method for producing a metal-CFRP composite according to a second embodiment of the present invention. The method for producing the metal-CFRP composite 1E according to the second embodiment includes a molding step B for molding a metal member 11B provided on at least a part of the surface of the resin film layer 13B, a metal member 11B, and carbon fibers. It has a heat-bonding step B in which the reinforced resin material is heat-bonded via the resin film layer 13B to obtain a metal-CFRP composite 1E.
 すなわち、第2の実施形態は、CFRP層12C形成前に、金属部材11Bと樹脂皮膜層13Bの積層体とを成形する点で、第1の実施形態と異なっている。第1の実施形態の場合、CFRPのマトリクス樹脂によっては樹脂に亀裂が入ったり、金属部材11Aから剥離してしまうなどの恐れがある。また、これらを防止するためには温間プレスが必要である。また、第1の実施形態で、CFRPの厚みが厚い場合、貼り付けた後のプレス金型を工夫する必要がある。このように、CFRP層12C形成前に、金属部材11Bを成形することにより、前述した第一の実施形態に生じ得る不具合を解消し、通常の使用しているプレス金型を流用できる。 That is, the second embodiment is different from the first embodiment in that the laminated body of the metal member 11B and the resin film layer 13B is molded before the CFRP layer 12C is formed. In the case of the first embodiment, depending on the matrix resin of CFRP, there is a risk that the resin may be cracked or peeled off from the metal member 11A. In addition, a warm press is required to prevent these. Further, in the first embodiment, when the CFRP is thick, it is necessary to devise a press die after the CFRP is attached. By forming the metal member 11B before forming the CFRP layer 12C in this way, the problems that may occur in the first embodiment described above can be eliminated, and the normally used press die can be diverted.
 なお、第2の実施形態において使用される各条件は、基本的に第1の実施形態と同様であるため、説明を省略する。 Since each condition used in the second embodiment is basically the same as that in the first embodiment, the description thereof will be omitted.
 具体的には、金属部材11Bを用意し(図7(a))、金属部材11Bの表面上に樹脂皮膜層13Bを形成する(図7(b))。その後、樹脂皮膜層13Bを形成した金属部材11Bについて成形を行う(図7(c))。最後に、成形後の金属部材11Bについて、樹脂皮膜層13Bを介して炭素繊維強化樹脂材料を熱圧着し、金属-CFRP複合体1Eを得る(図8(d)、(e))。 Specifically, the metal member 11B is prepared (FIG. 7 (a)), and the resin film layer 13B is formed on the surface of the metal member 11B (FIG. 7 (b)). Then, the metal member 11B on which the resin film layer 13B is formed is molded (FIG. 7 (c)). Finally, the carbon fiber reinforced resin material is thermocompression-bonded to the molded metal member 11B via the resin film layer 13B to obtain a metal-CFRP composite 1E (FIGS. 8 (d) and 8 (e)).
 以上、本実施形態に係る金属-CFRP複合体の製造方法について説明した。なお、本発明に係る金属-CFRP複合体を製造するための方法は上述した実施形態に限定されない。 The method for producing the metal-CFRP composite according to the present embodiment has been described above. The method for producing the metal-CFRP composite according to the present invention is not limited to the above-described embodiment.
 以下、実施例により本発明をさらに詳細に説明する。なお、以下に説明する実施例は、あくまでも本発明の一例であって、本発明を限定するものではない。 Hereinafter, the present invention will be described in more detail by way of examples. The examples described below are merely examples of the present invention, and do not limit the present invention.
<1.金属-CFRP複合体の製造>
(金属板の準備)
成分がC:0.131質量%、Si:1.19質量%、Mn:1.92%、P:0.009質量%、S:0.0025質量%、Al:0.027質量%、N:0.0032質量%、残分はFeからなる鋼を熱間圧延、酸洗後、冷間圧延を行い、厚さ1.0mmの冷延鋼板を得た。次に、作製した冷延鋼板を連続焼鈍装置で最高到達板温が820℃となる条件で焼鈍した。焼鈍工程の焼鈍炉内のガス雰囲気は、1.0体積%のH2を含むN2雰囲気とした。作製した冷延鋼板を「CR」と称す。
<1. Manufacture of metal-CFRP composite>
(Preparation of metal plate)
The components are C: 0.131% by mass, Si: 1.19% by mass, Mn: 1.92%, P: 0.009% by mass, S: 0.0025% by mass, Al: 0.027% by mass, N : A steel having 0.0032% by mass and a balance of Fe was hot-rolled, pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 1.0 mm. Next, the produced cold-rolled steel sheet was annealed with a continuous annealing device under the condition that the maximum reached plate temperature was 820 ° C. The gas atmosphere in the annealing furnace in the annealing step was an N 2 atmosphere containing 1.0% by volume of H 2 . The produced cold-rolled steel sheet is called "CR".
 また、作製した冷延鋼板を焼鈍工程を有する連続溶融めっき装置の焼鈍工程で最高到達板温が820℃となる条件で焼鈍した後にめっき工程で溶融亜鉛めっきしたものも準備した。焼鈍工程の焼鈍炉内のガス雰囲気は、1.0体積%のH2を含むN2雰囲気とした。めっき工程でのめっき浴の成分はZn-0.2%Al(「GI」と称す)、Zn-0.09%Al(「GA」と称す)、Zn-1.5%Al-1.5%Mg(「Zn-Al-Mg」と称す)、Zn-11%Al-3%Mg-0.2%Mg(「Zn-Al-Mg-Si」と称す)の4種を用いた。なお、Zn-0.09%Alめっき(GA)の溶融めっき浴を用いたものは溶融めっき浴に鋼板を浸漬して、めっき浴から鋼板を引き抜きながら、スリットノズルからNガスを吹き付けてガスワイピングし、付着量を調整した後に、インダクションヒーターにて板温480℃で加熱することで合金化させて、めっき層中へ鋼板中のFeを拡散させた。 Further, a cold-dip galvanized steel sheet prepared was prepared by annealing the produced cold-rolled steel sheet under the condition that the maximum temperature reached at 820 ° C. in the annealing step of a continuous hot-dip galvanizing apparatus having an annealing step, and then hot-dip galvanizing in the plating step. The gas atmosphere in the annealing furnace in the annealing step was an N 2 atmosphere containing 1.0% by volume of H 2 . The components of the plating bath in the plating process are Zn-0.2% Al (referred to as "GI"), Zn-0.09% Al (referred to as "GA"), Zn-1.5% Al-1.5. Four kinds of% Mg (referred to as "Zn-Al-Mg") and Zn-11% Al-3% Mg-0.2% Mg (referred to as "Zn-Al-Mg-Si") were used. Incidentally, those using hot-dip plating bath of Zn-0.09% Al plating (GA) is by dipping the steel sheet in a molten coating bath, while pulling the steel plate from the plating bath, by blowing N 2 gas from the slit nozzle gas After wiping and adjusting the adhesion amount, alloying was performed by heating at a plate temperature of 480 ° C. with an induction heater to diffuse Fe in the steel plate into the plating layer.
 なお、作製した金属板の引張強度を測定したところ、いずれも980MPaであった。
また、めっきした鋼板のめっきの付着量は、GAは45g/m、GA以外のめっきは60g/mとした。また、上記以外に、別途鋼板以外の金属板として、アルミニウム板(以下「Al板」と称する)およびマグネシウム合金板(以下「Mg合金板」と称する)も用意した。
When the tensile strength of the produced metal plate was measured, it was 980 MPa in each case.
The amount of plating on the plated steel sheet was 45 g / m 2 for GA and 60 g / m 2 for plating other than GA. In addition to the above, aluminum plates (hereinafter referred to as "Al plates") and magnesium alloy plates (hereinafter referred to as "Mg alloy plates") were also prepared as metal plates other than steel plates.
(前処理工程)
 作製した金属板を日本パーカライジング社製アルカリ脱脂剤「ファインクリーナーE6404」で脱脂した。
(化成処理工程)
 脱脂した金属板上にγ-アミノプロピルトリエトキシシランを2.5g/L、水分散シリカ(日産化学社製「スノーテックN」を1g/L、水溶性アクリル樹脂(試薬のポリアクリル酸)を3g/L添加した水溶液をバーコーターで塗布し、熱風オーブンで到達板温が150℃となる条件で乾燥させた。また、炭酸ジルコニウムアンモニウム水溶液3g/L水溶液、及び日本パーカライジング社製クロメート処理液「ZM-1300AN」についても同様に、それぞれバーコーターで塗布し、熱風オーブンで到達板温が150℃となる条件で乾燥させた。以降、水分散シリカを含む水溶液を塗布したものを「Si系処理」(または単に「Si系」)、炭酸ジルコニウムアンモニウム水溶液で塗布したものを「Zr系処理」(または単に「Zr系」)、クロメート処理液で処理したものを「Cr系処理」(または単に「Cr系」)と称する。
(Pretreatment process)
The prepared metal plate was degreased with an alkaline degreasing agent "Fine Cleaner E6404" manufactured by Nihon Parkerizing Co., Ltd.
(Chemical conversion processing process)
2.5 g / L of γ-aminopropyltriethoxysilane, 1 g / L of water-dispersed silica (Nissan Chemical Co., Ltd. "Snowtech N", water-soluble acrylic resin (reagent polyacrylic acid)) on a defatted metal plate An aqueous solution to which 3 g / L was added was applied with a bar coater and dried in a hot air oven under the condition that the reaching plate temperature was 150 ° C. Further, a 3 g / L aqueous solution of zirconium carbonate aqueous solution and a chromate treatment solution manufactured by Nippon Parkering Co., Ltd. Similarly, "ZM-1300AN" was also applied with a bar coater and dried in a hot air oven under the condition that the reaching plate temperature was 150 ° C. After that, the product coated with an aqueous solution containing aqueous dispersion silica was treated with "Si-based treatment". (Or simply "Si-based"), "Zr-based treatment" (or simply "Zr-based") coated with an aqueous solution of zirconium carbonate, "Cr-based treatment" (or simply "Cr-based") treated with a chromate treatment solution. It is called "Cr system").
 また、それぞれの処理の付着量は30mg/mとした。金属板に全面に塗布したそれぞれの乾燥前のウェット塗布量を[塗布後の金属板の質量]-[塗布前の金属板の質量]により算出し、そのウエット塗布量中に含まれるCr、Si、Zrそれぞれの質量を算出し、これを金属板の面積で割ることで算出した。また、前述の方法で付着量を算出しながら異なる5種の付着量を有する化成処理金属板(乾燥済み)を作製し、これらを蛍光X線を用いて測定し、得られた検出強度と算出した付着量との関係から検量線を引き、これを用いて付着量を求めることもできる。 The adhesion amount of each treatment was 30 mg / m 2 . The wet coating amount before drying, which is applied to the entire surface of the metal plate, is calculated by [mass of the metal plate after coating]-[mass of the metal plate before coating], and Cr and Si included in the wet coating amount. , Zr, respectively, were calculated and divided by the area of the metal plate. Further, while calculating the adhesion amount by the above-mentioned method, chemical conversion-treated metal plates (dried) having five different adhesion amounts were prepared, and these were measured using fluorescent X-rays, and the obtained detection intensity was calculated. It is also possible to draw a calibration curve from the relationship with the amount of adhesion and obtain the amount of adhesion using this.
(樹脂皮膜層形成工程)
 バインダー樹脂として三菱ケミカル社製エポキシ樹脂「jER(R)828」、三井化学社製ウレタン変性エポキシ樹脂「エポキー(R)802-30CX」、東洋紡社製ポリエステル樹脂「バイロン(R)300」を準備した。また、硬化剤として三菱ガス化学社製アミン「MXDA(メタキシレンジアミン)」、宇部興産社製「1,12-ドデカメチレンジアミン」、三井化学社製メラミン「ユーバン(R)20SB」、第一工業製薬社製水性ウレタン樹脂「スーパーフレックス(R)150」、サイテック社製メラミン樹脂「サイメル(R)325」を準備した。
(Resin film layer forming process)
Epoxy resin "jER (R) 828" manufactured by Mitsubishi Chemical Co., Ltd., urethane-modified epoxy resin "Epokey (R) 802-30CX" manufactured by Mitsui Chemicals Co., Ltd., and polyester resin "Byron (R) 300" manufactured by Toyobo Co., Ltd. were prepared as binder resins. .. In addition, as a curing agent, Mitsubishi Gas Chemical Company's amine "MXDA (methoxylendiamine)", Ube Kosan Co., Ltd. "1,12-dodecamethylenediamine", Mitsui Chemical Company's melamine "Uban (R) 20SB", Daiichi Kogyo A water-based urethane resin "Superflex (R) 150" manufactured by Pharmaceutical Co., Ltd. and a melamine resin "Simel (R) 325" manufactured by Cytec Co., Ltd. were prepared.
 次にこれら樹脂と硬化剤を混合することで、以下の皮膜樹脂サンプルを作製した。
 ・エポキシ樹脂-A:三菱ケミカル社製「jER(R)828」を100質量部に対して宇部興産社製「1,12-ドデカメチレンジアミン」を30質量部添加して混合した。
 ・エポキシ樹脂-B:三菱ケミカル社製「jER(R)828」を100質量部に対して三菱ガス化学社製「MXDA(メタキシレンジアミン)」を30質量部添加して混合した。
Next, the following film resin samples were prepared by mixing these resins with a curing agent.
-Epoxy resin-A: "jER (R) 828" manufactured by Mitsubishi Chemical Corporation was added to 100 parts by mass and 30 parts by mass of "1,12-dodecamethylenediamine" manufactured by Ube Industries, Ltd. was added and mixed.
-Epoxy resin-B: "jER (R) 828" manufactured by Mitsubishi Chemical Corporation was added to 100 parts by mass and 30 parts by mass of "MXDA (methxylylenediamine)" manufactured by Mitsubishi Gas Chemical Company was added and mixed.
 ・エポキシ樹脂-C:三井化学社製「エポキー(R)802-30CX」の固形分100質量部に対して三井化学社製「ユーバン(R)20SB」を固形分で20質量部添加して混合した。
 ・ポリエステル/メラミン樹脂:東洋紡社製「バイロン(R)300」を溶剤であるシクロヘキサノンに30質量%溶解したものの固形分100質量部に対して三井化学社製メラミン樹脂「ユーバン(R)20SB」を固形分で20質量部添加して混合した。
・ウレタン/メラミン樹脂:第一工業製薬社製水性ウレタン樹脂「スーパーフレックス(R)150」の固形分80質量部に、サイテック社製メラミン樹脂「サイメル(R)325」を固形分で20質量部添加した。
-Epoxy resin-C: Add 20 parts by mass of "Uban (R) 20SB" manufactured by Mitsui Chemicals to 100 parts by mass of solid content of "Epokey (R) 802-30CX" manufactured by Mitsui Chemicals, and mix. did.
-Polyester / melamine resin: Toyobo's "Byron (R) 300" dissolved in cyclohexanone as a solvent in an amount of 30% by mass, and Mitsui Chemicals' melamine resin "Uban (R) 20SB" was added to 100 parts by mass of solid content. 20 parts by mass of solid content was added and mixed.
-Urethane / melamine resin: 80 parts by mass of solid content of water-based urethane resin "Superflex (R) 150" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., and 20 parts by mass of solid content of melamine resin "Simel (R) 325" manufactured by Cytec Co., Ltd. Added.
 更に、作製した樹脂に、次に示す粒子を混合することで樹脂皮膜塗布液を作製した。なお、粒子の添加量は、樹脂皮膜塗布液に添加する粒子の皮膜中の固形分質量比率を求めて、皮膜樹脂固形分の比重と粒子の比重から体積率を算出し、表1に記載される体積率となるように調整した。比重は、各物質のカタログ値もしくは文献値を用いた。 Further, a resin film coating liquid was prepared by mixing the following particles with the prepared resin. The amount of particles added is shown in Table 1 by obtaining the mass ratio of the solid content in the film of the particles to be added to the resin film coating liquid, calculating the volume fraction from the specific gravity of the film resin solid content and the specific gravity of the particles. The volume fraction was adjusted to be the same. For the specific gravity, the catalog value or the literature value of each substance was used.
・トリポリリン酸2水素アルミニウム:テイカ社製「K-WHITE#105」、平均粒径1.6μm(カタログ値)を用いた。以降、「P酸Al」と称する。 -Aluminum dihydrogen tripolyphosphate: "K-WHITE # 105" manufactured by TAYCA Corporation, with an average particle size of 1.6 μm (catalog value) was used. Hereinafter, it will be referred to as "Al P acid".
・クロム酸ストロンチウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3μmとしたものを用いた。以降「Cr酸Sr」と称する。
・バナジン酸マグネシウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μm、11.0μm、48.0μm、100.0μmとしたものを用いた。以降「V酸Mg」と称する。
・クロム酸カリウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「Cr酸K」と称する。
・クロム酸カルシウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「Cr酸Ca」と称する。
・ニクロム酸カリウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「二Cr酸K」と称する。
・リン酸ナトリウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「P酸Na」と称する。
・リン酸水素カルシウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「P酸Ca」と称する。
・リン酸二水素アンモニウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「P酸NH4」と称する。
・ピロリン酸水素ナトリウム水和物:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「ピロP酸Na」と称する。
・バナジン酸カルシウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「V酸Ca」と称する。
・メタバナジン酸カリウム:試薬を乳鉢で擦った後、ふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「V酸K」と称する。
-Strontium chromate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3 μm. Hereinafter referred to as "Cr acid Sr".
-Magnesium vanadate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm, 11.0 μm, 48.0 μm, and 100.0 μm. Hereinafter referred to as "Mg V acid".
-Potassium chromate: A reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "Cr acid K".
-Calcium chromate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "Ca acid Cr".
-Potassium dichromate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "diCr acid K".
-Sodium phosphate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "Na Pate".
-Calcium hydrogen phosphate: A reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "Ca Pate".
-Ammonium dihydrogen phosphate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "P acid NH4".
-Sodium hydrogen pyrophosphate hydrate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "Na pyropate".
-Calcium vanadate: The reagent was rubbed with a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "Ca V acid".
-Potassium metavanadate: The reagent was rubbed in a mortar and then classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "V acid K".
・アルミナ:昭和電工社製細粒アルミナ「A-42-2」平均粒径(粒度分布中心径)4.7μm(カタログ値)を用いた。以降「アルミナ」と称する。 -Alumina: Fine-grained alumina "A-42-2" manufactured by Showa Denko KK used an average particle size (particle size distribution center diameter) of 4.7 μm (catalog value). Hereinafter referred to as "alumina".
・酸化チタン:石原産業社製「タイペーク(R)CR-95」、平均粒径0.3μm(カタログ値)を用いた。以降「酸化Ti」と称する。
・導電性酸化チタン:石原産業社製Snドープ型酸化チタン「ET-500W」平均粒径2.0~3.0μm(カタログ値)を用いた。以降「導電Ti」と称する。
・タルク:日本タルク社製の汎用タルク「P-6」平均粒径3.3μm(カタログ値)を用いた。以降「タルク」と称する。
・カオリンクレー:竹原化学工業社製の湿式カオリンクレー「カオリンクレー5M」をふるいを用いて分級し平均粒径3.0μmとしたものを用いた。以降「クレー」と称する。
・シリカ:日本アエロジル社製「AEROSIL(R)50」を用いた。平均粒径を島津製作所社製レーザ回折式粒子径分布測定装置「SALD-2300」で測定したところ、0.2μm未満であった。
 なお、上記の、アルミナ、酸化チタン、及びシリカは、酸化物粒子であり、防錆機能を有する無機塩粒子とは異なるものである。また、タルク、及びカオリンクレーも、防錆機能を有する無機塩粒子ではない。
-Titanium oxide: "Typake (R) CR-95" manufactured by Ishihara Sangyo Co., Ltd., with an average particle size of 0.3 μm (catalog value) was used. Hereinafter referred to as "Ti oxide".
-Conductive titanium oxide: Sn-doped titanium oxide "ET-500W" manufactured by Ishihara Sangyo Co., Ltd. had an average particle size of 2.0 to 3.0 μm (catalog value). Hereinafter referred to as "conductive Ti".
-Talc: A general-purpose talc "P-6" manufactured by Nippon Talc Co., Ltd. was used with an average particle size of 3.3 μm (catalog value). Hereinafter referred to as "talc".
-Kaolin ray: A wet kaolin ray "kaolin ray 5M" manufactured by Takehara Chemical Industry Co., Ltd. was classified using a sieve to have an average particle size of 3.0 μm. Hereinafter referred to as "crate".
-Silica: "AEROSIL (R) 50" manufactured by Nippon Aerosil Co., Ltd. was used. When the average particle size was measured with a laser diffraction type particle size distribution measuring device "SALD-2300" manufactured by Shimadzu Corporation, it was less than 0.2 μm.
The above-mentioned alumina, titanium oxide, and silica are oxide particles, which are different from the inorganic salt particles having a rust preventive function. Also, talc and kaolin clay are not inorganic salt particles having a rust preventive function.
 作製した樹脂皮膜塗布液を、「皮膜-1」~「皮膜―30」なる標識で区別して、表1に示す。なお、表1中の粒子の粉体抵抗率は三菱ケミカルアナリテック社製粉体抵抗測定システムMCP-PD51型を用いて、それぞれの粉体を25℃で10MPa圧縮した時の抵抗値である。また、ガラス転移点は、これら樹脂皮膜塗布液を200℃雰囲気のオーブン内で20分乾燥硬化させたものを島津製作所社製自動示唆走査熱量計「DSC-60A」で測定したものである。 Table 1 shows the prepared resin film coating liquids, which are distinguished by the labels "Film-1" to "Film-30". The powder resistivity of the particles in Table 1 is the resistance value when each powder is compressed by 10 MPa at 25 ° C. using the powder resistance measurement system MCP-PD51 manufactured by Mitsubishi Chemical Analytech. The glass transition point was measured by drying and curing these resin film coating liquids in an oven at 200 ° C. for 20 minutes with an automatic differential scanning calorimeter “DSC-60A” manufactured by Shimadzu Corporation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製した樹脂皮膜塗布液を評価に必要なサイズに切断した金属板の上にブレードコーターにて片面のみ、且つ、CFRPを貼り付ける部分のみ部分塗布し、到達板温が60秒で230℃となる条件で乾燥硬化させた。部分塗布は予めCFRPを貼り付ける部分以外をマスキングテープ(日東電工社製「ニトフロン(R)テープ」を使用)にてマスキングした後に、樹脂皮膜層を塗布し、乾燥焼付後にマスキングテープを剥がすことで行った。 The prepared resin film coating liquid is partially coated on a metal plate cut to the size required for evaluation with a blade coater on only one side and only the part to which CFRP is attached, and the reaching plate temperature reaches 230 ° C. in 60 seconds. It was dried and cured under the conditions. Partial application is performed by masking the part other than the part to which CFRP is attached in advance with masking tape (using "Nitto Denko (R) tape" manufactured by Nitto Denko Corporation ) , applying a resin film layer, and peeling off the masking tape after drying and baking. went.
 皮膜層厚は、予め垂直断面が観察できるように樹脂に埋め込んで研磨したサンプルを用いて垂直断面を顕微鏡で観察し、皮膜層厚を測定して求めた。 The film layer thickness was determined by observing the vertical cross section with a microscope using a sample embedded in resin and polished so that the vertical cross section could be observed in advance, and measuring the film layer thickness.
(熱圧着工程)
 新日鉄住金化学株式会社製ビスフェノールA型フェノキシ樹脂「フェノトートYP-50S」(Mw=40,000、水酸基当量=284g/eq、250℃における溶融粘度=90Pa・s、Tg=83℃)を粉砕、分級した平均粒子径D50が80μmである粉体を、炭素繊維からなる強化繊維基材(クロス材:東邦テナックス社製、IMS60)に、静電場において、電荷70kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させ、厚み0.65mm、弾性率75[GPa]、引張荷重13500[N]、Vf(繊維体積含有率)60%のフェノキシ樹脂CFRPプリプレグを作製した。プリプレグのサイズは金属板と同じサイズとした。
(Thermocompression bonding process)
Crushed bisphenol A type phenoxy resin "Phenototo YP-50S" (Mw = 40,000, hydroxyl group equivalent = 284 g / eq, melt viscosity at 250 ° C. = 90 Pa · s, Tg = 83 ° C.) manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd. The classified powder having an average particle diameter D50 of 80 μm is applied to a reinforcing fiber base material (cloth material: manufactured by Toho Tenax Co., Ltd., IMS60) made of carbon fiber under the conditions of an electric charge of 70 kV and a sprayed air pressure of 0.32 MPa in an electrostatic field. Powder coating was performed. Then, the resin is heat-sealed by heating and melting at 170 ° C. for 1 minute in an oven to heat-fuse the resin, and phenoxy having a thickness of 0.65 mm, an elastic modulus of 75 [GPa], a tensile load of 13500 [N], and a Vf (fiber volume content) of 60%. A resin CFRP prepreg was prepared. The size of the prepreg was the same as that of the metal plate.
 なお、粉砕、分級したフェノキシ樹脂の平均粒子径は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EX、日機装社製)により、体積基準で累積体積が50%となるときの粒子径を測定した。 The average particle size of the pulverized and classified phenoxy resin is the particle size when the cumulative volume is 50% on a volume basis by a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3300EX, manufactured by Nikkiso Co., Ltd.). It was measured.
 次に樹脂皮膜層を積層した金属板上に作製したプリプレグを重ね、250℃に加熱した平金型を有するプレス機で、3MPaで3分間プレスすることで、表2、3に示すような複合体サンプルとしての金属-CFRP複合体を作製した。 Next, the prepared prepreg was placed on a metal plate on which a resin film layer was laminated, and pressed at 3 MPa for 3 minutes with a press machine having a flat mold heated to 250 ° C. to form a composite as shown in Tables 2 and 3. A metal-CFRP composite was prepared as a body sample.
<評価>
1.耐食性
 作製した巾70mm×長さ150mmの複合体サンプルを用いて、脱脂、表面調整、リン酸亜鉛処理を行った後に電着塗装を施した。脱脂は、日本パーカライジング社製脱脂剤「ファインクリーナーE6408」を用いて、60℃の条件で5分間浸漬して脱脂した。脱脂したサンプルを表面調整は日本パーカライジング社製「プレパレンX」を用いて、40℃の条件で5分浸漬した。その後に日本パーカライジング社製リン酸亜鉛化成剤「パルボンドL3065」を用いて35℃の条件で3分間浸漬することで、リン酸亜鉛処理を行った。リン酸亜鉛処理を行った後は水洗して150℃雰囲気のオーブンで乾燥させた。その後、日本ペイント社製の電着塗料「パワーフロート1200」を15μm電着塗装し、170℃雰囲気のオーブンで20分焼き付けたものをサンプルとして用いた。電着塗装はCFRPを貼り付けていない金属部分のみ塗装された。
<Evaluation>
1. 1. Corrosion resistance Using the prepared composite sample having a width of 70 mm and a length of 150 mm, degreasing, surface adjustment, and zinc phosphate treatment were performed, and then electrodeposition coating was applied. For degreasing, a degreasing agent "Fine Cleaner E6408" manufactured by Nihon Parkerizing Co., Ltd. was used and immersed for 5 minutes at 60 ° C. for degreasing. The degreased sample was immersed for 5 minutes at 40 ° C. using "Preparen X" manufactured by Nihon Parkerizing Co., Ltd. for surface adjustment. Then, zinc phosphate treatment was performed by immersing the zinc phosphate chemical agent "Palbond L3065" manufactured by Nihon Parkerizing Co., Ltd. at 35 ° C. for 3 minutes. After the zinc phosphate treatment, it was washed with water and dried in an oven at 150 ° C. Then, the electrodeposition paint "Power Float 1200" manufactured by Nippon Paint Co., Ltd. was electrodeposited by 15 μm and baked in an oven at 170 ° C. for 20 minutes as a sample. The electrodeposition coating was applied only to the metal part to which CFRP was not attached.
 作製したサンプルを用いてサイクル腐食試験(CCT)を行った。CCTのモードは自動車工業規格JASO-M609に準じて行った。サンプルはCFRP側を評価面として、評価面に塩水が噴霧されるように試験機に設置して試験した。
 試験は15サイクル(8時間で1サイクル)毎にサンプル外観を目視観察し、赤錆が発生するサイクルを求めた。赤錆が発生するまでのサイクル数が多いものほど、耐食性に優れる。また、赤錆は金属に貼り付けたCFRPの端付近から発生するため、そこに着目して観察した。なお、用いる金属板がアルミニウム合金板及びマグネシウム合金板の場合は、鉄の酸化物である赤錆が発生しないため、アルミニウムやマグネシウムの酸化物である白錆が発生するサイクル数を求めた。
A cycle corrosion test (CCT) was performed using the prepared sample. The CCT mode was performed according to the automobile industry standard JASO-M609. The sample was tested by installing it on a testing machine so that salt water was sprayed on the evaluation surface with the CFRP side as the evaluation surface.
In the test, the appearance of the sample was visually observed every 15 cycles (1 cycle in 8 hours), and the cycle in which red rust occurred was determined. The larger the number of cycles until red rust occurs, the better the corrosion resistance. In addition, since red rust is generated near the edge of the CFRP attached to the metal, we focused on that and observed it. When the metal plates used were an aluminum alloy plate and a magnesium alloy plate, red rust, which is an oxide of iron, does not occur, so the number of cycles in which white rust, which is an oxide of aluminum or magnesium, occurs was determined.
 なお、耐食性は、用いる金属板によって異なる。したがって、耐食性の評価は、金属板の種類ごとに基準を設けて行った。具体的には、冷延鋼板(CR)を用いた場合30サイクル以下で赤錆が発生した場合を不合格品、それ以外を合格品と、
めっき鋼板(GI)を用いた場合60サイクル以下で赤錆が発生した場合を不合格品、それ以外を合格品と、
めっき鋼板(GA)を用いた場合60サイクル以下で赤錆が発生した場合を不合格品、それ以外を合格品と、
めっき鋼板(Zn-Al-Mg)を用いた場合90サイクル以下で赤錆が発生した場合を不合格品、それ以外を合格品と、
めっき鋼板(Zn-Al-Mg-Si)を用いた場合120サイクル以下で赤錆が発生した場合を不合格品、それ以外を合格品と、
アルミニウム合金板(Al板)を用いた場合120サイクル以下で白錆が発生した場合を不合格品、それ以外を合格品と、
マグネシウム合金板(Mg合金板)を用いた場合120サイクル以下で白錆が発生した場合を不合格品、それ以外を合格品と評価した。
The corrosion resistance differs depending on the metal plate used. Therefore, the evaluation of corrosion resistance was carried out by setting a standard for each type of metal plate. Specifically, when a cold-rolled steel sheet (CR) is used, if red rust occurs in 30 cycles or less, it is a rejected product, and if it is not, it is a passed product.
When a plated steel sheet (GI) is used, if red rust occurs in 60 cycles or less, it is a rejected product, and if it is not, it is a passed product.
When a plated steel sheet (GA) is used, if red rust occurs in 60 cycles or less, it is a rejected product, and if it is not, it is a passed product.
When a plated steel sheet (Zn-Al-Mg) is used, if red rust occurs in 90 cycles or less, it is a rejected product, and if it is not, it is a passed product.
When a plated steel sheet (Zn-Al-Mg-Si) is used, if red rust occurs in 120 cycles or less, it is a rejected product, and if it is not, it is a passed product.
When an aluminum alloy plate (Al plate) is used, if white rust occurs in 120 cycles or less, it is a rejected product, and if it is not, it is a passed product.
When a magnesium alloy plate (Mg alloy plate) was used, the case where white rust occurred in 120 cycles or less was evaluated as a rejected product, and the other cases were evaluated as a passed product.
2.3点曲げ試験
 巾30mm×長さ100mmの複合体サンプルを用いて試験した。本サンプルは金属板の片面側全面にCFRPを貼り付けたものを用いた。サンプルを支点間距離60mmの治具に載せて支点間の中央付近に荷重をかけることで3点曲げ試験を行った。荷重をかける側をCFRP側となるように治具にサンプルを設置して試験した。3点曲げ試験にて荷重を掛けたときにサンプルがたわんだときの金属板とCFRPの剥離状態を観察して評価した。剥離状態はサンプルに応じて異なり、「剥離なし」のもの、変形部が「僅かに剥離」しているもの、CFRPが金属板から全面的に剥離し、「大きく剥離」しているものがあり、これらを評価した。
2.3 Point bending test A composite sample with a width of 30 mm and a length of 100 mm was used for the test. For this sample, CFRP was attached to the entire surface of one side of a metal plate. A three-point bending test was performed by placing the sample on a jig having a distance between fulcrums of 60 mm and applying a load near the center between the fulcrums. The sample was placed on the jig so that the load-applied side was on the CFRP side and tested. In a three-point bending test, the peeling state of the metal plate and CFRP when the sample was bent when a load was applied was observed and evaluated. The peeling state differs depending on the sample, and there are "no peeling", "slightly peeling" of the deformed part, and "large peeling" of CFRP completely peeling from the metal plate. , These were evaluated.
3.プレス加工性
 V字型の凹凸金型を200℃に加熱した状態での熱間加工におけるプレス加工性を、巾50mm×長さ50mmの複合体サンプルを用いて試験した。本サンプルは金属板の片面側全面にCFRPを貼り付けたものを用い、凹金型側をCFRP、凸金型側を金属材となるように金型に設置して、プレスを行った。なおV字型金型のV部の角度は90°の金型を用い、曲げ部のR(曲率半径)の異なる金型を使ったプレス加工をそれぞれ行い、CFRPが剥離しない限界Rを求めた。より小さい曲げRでも剥離しないものほどプレス成形性に優れる。
3. 3. Press workability The press workability in hot working in a state where a V-shaped uneven die was heated to 200 ° C. was tested using a composite sample having a width of 50 mm and a length of 50 mm. In this sample, CFRP was attached to the entire surface of one side of a metal plate, and the concave mold side was set to CFRP and the convex mold side was to be a metal material, and the die was pressed. The angle of the V part of the V-shaped die was 90 °, and press working was performed using dies with different R (radius of curvature) of the bent part to determine the limit R at which CFRP does not peel off. .. The smaller the bending R, the better the press formability.
 以上の評価結果を、複合体サンプルの構成とともに表2~4に示す。 The above evaluation results are shown in Tables 2 to 4 together with the composition of the complex sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本結果より、同一の種の金属板を用いた場合、本発明の金属-CFRP複合体は、比較例の複合体と比較して、炭素繊維と金属との異種材料接触腐食に対する耐食性に優れ、且つ、曲げ試験や熱間プレスを行ってもCFRPが剥離しにくく、優れたものであった。 From this result, when the same kind of metal plate is used, the metal-CFRP composite of the present invention is superior in corrosion resistance to contact corrosion of different materials between carbon fiber and metal as compared with the composite of Comparative Example. Moreover, the CFRP was not easily peeled off even when a bending test or a hot press was performed, which was excellent.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.
1、1A、1B、1C、1D、1E  金属-CFRP複合体
11、11A、11B        金属部材
12、12A、12B、12C    CFRP層
121               炭素繊維材料
123               マトリックス樹脂
13、13A、13B        樹脂皮膜層
131               無機塩粒子
133               バインダ樹脂
14                化成処理層
 
1,1A, 1B, 1C, 1D, 1E Metal- CFRP composite 11, 11A, 11B Metal member 12, 12A, 12B, 12C CFRP layer 121 Carbon fiber material 123 Matrix resin 13, 13A, 13B Resin film layer 131 Inorganic salt Particle 133 Binder resin 14 Chemical conversion treatment layer

Claims (13)

  1.  金属部材と、
     前記金属部材の表面の少なくとも一部に配置された樹脂皮膜層と、
     前記樹脂皮膜層上に配置され、マトリックス樹脂および当該マトリックス樹脂中に存在する炭素繊維材料を含む炭素繊維強化樹脂材料と、を有し、
     前記樹脂皮膜層は、23~27℃における粉体抵抗率が7.0×10Ωcm超であり、かつ、防錆機能を有する、Cr、PおよびVから選択される1種以上の元素の無機塩からなる無機塩粒子を含み、さらに、バインダ樹脂を含み、
     前記樹脂皮膜層における前記無機塩粒子の体積率が5.0%以上40.0%以下である、金属-炭素繊維強化樹脂材料複合体。
    With metal parts
    A resin film layer arranged on at least a part of the surface of the metal member,
    It has a matrix resin and a carbon fiber reinforced resin material containing a carbon fiber material existing in the matrix resin, which is arranged on the resin film layer.
    The resin film layer, a powder resistivity at 23 ~ 27 ° C. is the 7.0 × 10 7 Ωcm greater, and has a rust function, Cr, one or more elements selected from P and V It contains inorganic salt particles composed of inorganic salts, and further contains a binder resin.
    A metal-carbon fiber reinforced resin material composite in which the volume fraction of the inorganic salt particles in the resin film layer is 5.0% or more and 40.0% or less.
  2.  前記無機塩は、クロム酸イオン、ニクロム酸イオン、リン酸イオン、リン酸水素イオン、リン酸二水素イオン、二リン酸イオン、三リン酸イオン、オルトバナジン酸イオン、およびメタバナジン酸イオン、からなる群から選択される1種以上のイオンの塩からなる、請求項1に記載の金属-炭素繊維強化樹脂材料複合体。 The inorganic salt comprises chromate ion, dichromate ion, phosphate ion, hydrogen phosphate ion, dihydrogen phosphate ion, diphosphate ion, triphosphate ion, orthovanadate ion, and metavanadate ion. The metal-carbon fiber reinforced resin material composite according to claim 1, which comprises a salt of one or more ions selected from the group.
  3.  前記無機塩は、トリポリリン酸二水素アルミニウム、クロム酸ストロンチウム、クロム酸カリウム、クロム酸カルシウム、バナジン酸マグネシウム、バナジン酸カリウム、およびバナジン酸カルシウムからなる群から選択される1種以上からなる、請求項1または2に記載の金属-炭素繊維強化樹脂材料複合体。 Claimed that the inorganic salt comprises one or more selected from the group consisting of aluminum dihydrogen tripolyphosphate, strontium chromate, potassium chromate, calcium chromate, magnesium vanadate, potassium vanadate, and calcium vanadate. The metal-carbon fiber reinforced resin material composite according to 1 or 2.
  4.  前記樹脂皮膜層の平均厚みが、5.0μm以上である、請求項1~3のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced resin material composite according to any one of claims 1 to 3, wherein the average thickness of the resin film layer is 5.0 μm or more.
  5.  前記無機塩粒子の平均粒径が、0.2μm以上50.0μm以下である、請求項1~4のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced resin material composite according to any one of claims 1 to 4, wherein the average particle size of the inorganic salt particles is 0.2 μm or more and 50.0 μm or less.
  6.  前記樹脂皮膜層のガラス転移温度が、100℃以下である、請求項1~5のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced resin material composite according to any one of claims 1 to 5, wherein the glass transition temperature of the resin film layer is 100 ° C. or lower.
  7.  前記マトリックス樹脂は、熱可塑性樹脂を含む、請求項1~6のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced resin material composite according to any one of claims 1 to 6, wherein the matrix resin contains a thermoplastic resin.
  8.  前記マトリックス樹脂は、フェノキシ樹脂を含む、請求項1~7のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced resin material composite according to any one of claims 1 to 7, wherein the matrix resin contains a phenoxy resin.
  9.  前記バインダ樹脂は、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂およびメラミン樹脂からなる群から選択される1種または2種以上を含む、請求項1~8のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced according to any one of claims 1 to 8, wherein the binder resin contains one or more selected from the group consisting of urethane resin, epoxy resin, polyester resin and melamine resin. Resin material composite.
  10.  前記金属部材が、鋼材またはめっき鋼材である、請求項1~9のいずれか一項に記載の金属-炭素繊維強化樹脂材料複合体。 The metal-carbon fiber reinforced resin material composite according to any one of claims 1 to 9, wherein the metal member is a steel material or a plated steel material.
  11.  樹脂皮膜層が表面の少なくとも一部に設けられた金属部材と、炭素繊維強化樹脂材料とを前記樹脂皮膜層を介して熱圧着する工程を有し、
     前記炭素繊維強化樹脂材料は、マトリックス樹脂および当該マトリックス樹脂中に存在する炭素繊維材料を含み、
     前記樹脂皮膜層は、23~27℃における粉体抵抗率が7.0×10Ωcm超であり、かつ、防錆機能を有する、Cr、PおよびVから選択される1種以上の元素の無機塩からなる無機塩粒子を含み、さらにバインダ樹脂を含み、
     前記樹脂皮膜層における前記無機塩粒子の体積率が5.0%以上40.0%以下である、金属-炭素繊維強化樹脂材料複合体の製造方法。
    A step of thermocompression bonding a metal member provided with a resin film layer on at least a part of the surface and a carbon fiber reinforced resin material via the resin film layer is provided.
    The carbon fiber reinforced resin material includes a matrix resin and a carbon fiber material present in the matrix resin.
    The resin film layer, a powder resistivity at 23 ~ 27 ° C. is the 7.0 × 10 7 Ωcm greater, and has a rust function, Cr, one or more elements selected from P and V Contains inorganic salt particles composed of inorganic salts, and further contains a binder resin.
    A method for producing a metal-carbon fiber reinforced resin material composite, wherein the volume fraction of the inorganic salt particles in the resin film layer is 5.0% or more and 40.0% or less.
  12.  さらに、前記熱圧着する工程前に、前記金属部材を成形する工程を有する、請求項11に記載の金属-炭素繊維強化樹脂材料複合体の製造方法。 The method for producing a metal-carbon fiber reinforced resin material composite according to claim 11, further comprising a step of molding the metal member before the thermocompression bonding step.
  13.  さらに、前記熱圧着する工程後に、前記金属部材と前記炭素繊維強化樹脂材料とが積層した積層体を成形する工程を有する、請求項11に記載の金属-炭素繊維強化樹脂材料複合体の製造方法。 The method for producing a metal-carbon fiber reinforced resin material composite according to claim 11, further comprising a step of forming a laminate in which the metal member and the carbon fiber reinforced resin material are laminated after the thermocompression bonding step. ..
PCT/JP2019/014606 2019-04-02 2019-04-02 Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite WO2020202460A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021511825A JP7147964B2 (en) 2019-04-02 2019-04-02 Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
PCT/JP2019/014606 WO2020202460A1 (en) 2019-04-02 2019-04-02 Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014606 WO2020202460A1 (en) 2019-04-02 2019-04-02 Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite

Publications (1)

Publication Number Publication Date
WO2020202460A1 true WO2020202460A1 (en) 2020-10-08

Family

ID=72666747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014606 WO2020202460A1 (en) 2019-04-02 2019-04-02 Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite

Country Status (2)

Country Link
JP (1) JP7147964B2 (en)
WO (1) WO2020202460A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137143A (en) * 2004-11-15 2006-06-01 Tocalo Co Ltd Plastic-based composite material and its manufacturing method
JP2010131888A (en) * 2008-12-05 2010-06-17 Taisei Plas Co Ltd Composite of metal alloy and fiber-reinforced plastic and method for producing the same
JP2012052163A (en) * 2010-08-31 2012-03-15 Nisshin Steel Co Ltd Surface treatment solution, surface-treated steel sheet and method for producing the same
WO2013146900A1 (en) * 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member
JP2016007753A (en) * 2014-06-24 2016-01-18 日新製鋼株式会社 Coated metal shaped material, composite body and method of producing the same
JP2017121778A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Coated steel sheet
WO2018124215A1 (en) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112851987A (en) * 2015-03-26 2021-05-28 日铁化学材料株式会社 Material for fiber-reinforced plastic molding, method for producing same, and molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137143A (en) * 2004-11-15 2006-06-01 Tocalo Co Ltd Plastic-based composite material and its manufacturing method
JP2010131888A (en) * 2008-12-05 2010-06-17 Taisei Plas Co Ltd Composite of metal alloy and fiber-reinforced plastic and method for producing the same
JP2012052163A (en) * 2010-08-31 2012-03-15 Nisshin Steel Co Ltd Surface treatment solution, surface-treated steel sheet and method for producing the same
WO2013146900A1 (en) * 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member
JP2016007753A (en) * 2014-06-24 2016-01-18 日新製鋼株式会社 Coated metal shaped material, composite body and method of producing the same
JP2017121778A (en) * 2016-01-08 2017-07-13 新日鐵住金株式会社 Coated steel sheet
WO2018124215A1 (en) * 2016-12-28 2018-07-05 新日鉄住金化学株式会社 Metal/fiber-reinforced resin material composite body, method for producing same and bonding sheet

Also Published As

Publication number Publication date
JPWO2020202460A1 (en) 2021-10-14
JP7147964B2 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
JP7173299B2 (en) Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
JP7311750B2 (en) Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
JP7056779B2 (en) Metal-fiber reinforced resin complex
JP7234748B2 (en) Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite
CN112262040B (en) Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
US11667107B2 (en) Metal-carbon fiber reinforced resin material composite
JP7147965B2 (en) Metal-carbon fiber reinforced resin material composite and method for producing metal-carbon fiber reinforced resin material composite
JP7457123B2 (en) Steel plate-fiber reinforced resin composite and method for manufacturing the steel plate-fiber reinforced resin composite
WO2020202460A1 (en) Metal/carbon-fiber-reinforced resin material composite and production method for metal/carbon-fiber-reinforced resin material composite
US11958268B2 (en) Metal-carbon fiber reinforced plastic material composite and method of producing metal-carbon fiber reinforced plastic material composite
CN113557192A (en) Reinforcing steel member for automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922378

Country of ref document: EP

Kind code of ref document: A1