JP2006131962A - Method for separating and recovering heavy metal contained in molten flying ash - Google Patents

Method for separating and recovering heavy metal contained in molten flying ash Download PDF

Info

Publication number
JP2006131962A
JP2006131962A JP2004323049A JP2004323049A JP2006131962A JP 2006131962 A JP2006131962 A JP 2006131962A JP 2004323049 A JP2004323049 A JP 2004323049A JP 2004323049 A JP2004323049 A JP 2004323049A JP 2006131962 A JP2006131962 A JP 2006131962A
Authority
JP
Japan
Prior art keywords
fly ash
granulated product
molten fly
separating
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004323049A
Other languages
Japanese (ja)
Inventor
Katsuya Nakayama
勝也 中山
Mitsuru Takada
満 高田
Yoshinao Tajima
善直 田島
Hitoki Matsuda
仁樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2004323049A priority Critical patent/JP2006131962A/en
Publication of JP2006131962A publication Critical patent/JP2006131962A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for volatilize-separating or wash-separating lead, zinc and copper contained in molten flying ash by heating pellet of the molten flying ash. <P>SOLUTION: The molten flying ash is granulated to make the pellet of the molten flying ash, and eutectic mixture having two or more components among CaCl<SB>2</SB>, NaCl and KCl, is generated by heating the above pellet at 800-1100°C and also, lead oxide contained in the eutectic mixture and the pellet is chlorinate-reacted to make lead chloride, or unburnt carbon dust and iron oxide, zinc oxide contained in the pellet are reduction-reacted and the respective materials are volatilized and separated as a single zinc, or the unburnt carbon and copper oxide contained in the pellet are reduction-reacted and a single copper is generated, and this pellet is washed with water and soluble components are removed, and the residue of the pellet containing the single copper is recovered. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶融飛灰に含まれる鉛等の重金属を分離して回収する方法に関し、より詳しくは、加熱するだけで重金属分を揮発分離又は加熱した後洗浄分離して回収する方法に関する。   The present invention relates to a method of separating and recovering heavy metals such as lead contained in molten fly ash, and more particularly to a method of recovering by separating and recovering heavy metals by volatilization or heating after heating.

溶融固化処理は、廃棄物の減容化に優れていると共に、溶融スラグを再資源として有効利用できるという利点を有することから、様々な廃棄物へ広く適用されている。その一方で、溶融固化処理は、人体ならびに自然生態系に有害な重金属を含む溶融飛灰を発生させるため、その処理方法が問題となっている。溶融飛灰は、粗鉱並みの重金属を含んでいるにもかかわらずNaCl,KCl,CaClなどの無機塩素化合物が主成分であることから、非鉄製錬への山元還元が困難であり、ほとんどが重金属安定化処理の後、埋立て処分されている。しかし、近年の埋立て処分場の枯渇化や、また金属資源の可採年数(Pb:21年, Zn:20年,Cu:39年)も少なくなっていることから、溶融飛灰に含まれる重金属をNaCl,KCl,CaClから分離回収する技術が求められていた。 The melt-solidification process is widely applied to various wastes because it has the advantage of being excellent in volume reduction of waste and being able to effectively use molten slag as a resource. On the other hand, the melting and solidifying treatment generates molten fly ash containing heavy metals that are harmful to the human body and the natural ecosystem. Although molten fly ash contains heavy metals similar to crude ore, inorganic chlorinated compounds such as NaCl, KCl, and CaCl 2 are the main components, so it is difficult to reduce Yamamoto to non-ferrous smelting. Has been disposed of in landfills after stabilization of heavy metals. However, it is included in molten fly ash due to the recent depletion of landfill sites and the reduction of metal resources (Pb: 21 years, Zn: 20 years, Cu: 39 years). A technique for separating and recovering heavy metals from NaCl, KCl, and CaCl 2 has been desired.

上記の問題点に対し、例えば、廃棄物の燃焼により発生する塩素をCaClとして含有している飛灰からの金属の回収方法として、飛灰を酸化雰囲気下で剪断力を加えながら加熱し、CaClの分解により発生する塩素および塩化水素と飛灰中に含有される金属成分とを反応させる重金属の回収方法が提案されている(特開平8―35018号公報)。
また、少なくとも亜鉛を酸化物の状態で含有する廃棄物及び粒子径が200μm以下の還元剤を混合する混合工程と、この混合物を中心から表面までの最短距離が25mm以下となるように造粒品を製造する造粒工程と、該造粒品を真空下で加熱し、亜鉛酸化物を還元させるとともに亜鉛を蒸発させて回収する亜鉛回収工程と、を備えることを特徴とする亜鉛酸化物含有廃棄物の処理方法が提案されている(特開2002−206123号公報)。
さらに、固体廃棄物から効率的に難分離性重金属を分離回収する方法として、ハロゲン化剤の存在下において固体廃棄物を250℃以下の温度場にてハロゲン化反応させ、生成したハロゲン化重金属を250〜900℃の温度場にて揮発分離させることを特徴とする難分離性重金属の分離回収方法が提案されている(特開2002−275550号公報)。
For the above problem, for example, as a method for recovering metal from fly ash containing chlorine generated by combustion of waste as CaCl 2 , fly ash is heated in an oxidizing atmosphere while applying shearing force, There has been proposed a method for recovering heavy metals by reacting chlorine and hydrogen chloride generated by the decomposition of CaCl 2 with metal components contained in fly ash (Japanese Patent Laid-Open No. 8-35018).
Also, a mixing step of mixing a waste containing at least zinc in an oxide state and a reducing agent having a particle size of 200 μm or less, and a granulated product so that the shortest distance from the center to the surface of the mixture is 25 mm or less A zinc oxide-containing waste comprising: a granulating step for producing a product; and a zinc recovery step for heating the granulated product under vacuum to reduce zinc oxide and to collect zinc by evaporation A processing method for an object has been proposed (Japanese Patent Laid-Open No. 2002-206123).
Furthermore, as a method for efficiently separating and recovering difficult-to-separate heavy metals from solid waste, the solid waste is halogenated in a temperature field of 250 ° C. or lower in the presence of a halogenating agent, and the generated heavy metal halide is recovered. A method for separating and recovering difficult-to-separate heavy metals, characterized by carrying out volatile separation in a temperature field of 250 to 900 ° C., has been proposed (Japanese Patent Laid-Open No. 2002-275550).

特開平08−35018号公報Japanese Patent Laid-Open No. 08-35018 特開2002−206123号公報JP 2002-206123 A 特開2002−275550号公報JP 2002-275550 A

しかし、特開平08−35018号公報に記載されている飛灰からの金属の回収方法はCaClを単独で利用して金属と塩化反応をさせるものであるが、溶融飛灰が含有する塩素源としてはCaClの他にもNaCl、KClといった金属と塩化反応をする成分が含まれている。従って、これらNaCl、KClを活用しない特開平08−35018号公報に記載された方法では重金属分の回収効率が悪い。 However, the method for recovering metal from fly ash described in Japanese Patent Application Laid-Open No. 08-35018 uses a chloride reaction with metal using CaCl 2 alone, but the chlorine source contained in molten fly ash In addition to CaCl 2 , it contains a component that undergoes a chlorination reaction with metals such as NaCl and KCl. Therefore, in the method described in Japanese Patent Application Laid-Open No. 08-35018 that does not utilize these NaCl and KCl, the recovery efficiency of heavy metals is poor.

また、特開2002−206123号公報に記載されている有機廃棄物の処理方法を溶融飛灰に適用する場合、加熱と共に減圧も行っているため含有する低融点の無機塩素化合物(融点:NaCl(801℃)、KCl(770℃))も亜鉛と共に揮発し、不純物が混入した回収物となるため亜鉛の品位が低下してしまうという問題がある。   In addition, when the organic waste treatment method described in JP-A-2002-206123 is applied to molten fly ash, the low melting point inorganic chlorine compound (melting point: NaCl ( 801 ° C.) and KCl (770 ° C.) are also volatilized together with zinc, resulting in a recovered product in which impurities are mixed.

さらに、特開2002−275550号公報に記載された難分離性重金属の分離回収方法においては、別途ハロゲン化剤が必要であり、また、固体廃棄物にハロゲン化剤を添加することは、装置の腐食対策、酸性ガス処理設備を設置する必要があるため、なるべくハロゲン化剤添加量を抑えた形で運転することが必要となり、結果として難分離性金属の回収効率が悪いという問題がある。   Furthermore, in the method for separating and recovering difficult-to-separate heavy metals described in JP-A No. 2002-275550, a separate halogenating agent is required, and adding a halogenating agent to a solid waste Since it is necessary to install an anti-corrosion and acid gas treatment facility, it is necessary to operate in a form in which the addition amount of the halogenating agent is suppressed as much as possible. As a result, there is a problem that the recovery efficiency of the hardly separable metal is poor.

本発明は、上記の問題に鑑みてなされたもので、塩素剤を新たに加えることなく、かつ、腐食対策の必要もない加熱するだけで溶融飛灰中の重金属を揮発分離、又は水洗分離して回収することが可能な溶融飛灰からの重金属の回収方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and does not add a new chlorine agent and does not require countermeasures against corrosion. It is an object of the present invention to provide a method for recovering heavy metals from molten fly ash that can be recovered in this manner.

上記の目的を達成するため、本発明における溶融飛灰に含まれる重金属の分離回収方法は、前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、前記造粒物を800〜1100℃で加熱することによって該造粒物中に含まれるCaCl、NaCl及びKClのいずれか2つ以上を成分とする共融混合物を生成させると共に、該共融混合物と前記造粒物中に含まれる酸化鉛とを塩化反応させて塩化鉛として揮発分離する工程と、を具備することを特徴とする。
これにより、添加剤等を加えることなく溶融飛灰中の鉛成分を高効率で分離回収することが可能となる。
In order to achieve the above object, the method for separating and recovering heavy metals contained in molten fly ash in the present invention comprises the steps of granulating the molten fly ash to produce a granulated product of the molten fly ash, and the granulation By heating the product at 800 to 1100 ° C., a eutectic mixture containing any two or more of CaCl 2 , NaCl and KCl contained in the granulated product is formed, and the eutectic mixture and the aforesaid granulated product are produced. And a step of subjecting lead oxide contained in the granules to a chlorination reaction to volatilize and separate as lead chloride.
As a result, the lead component in the molten fly ash can be separated and recovered with high efficiency without adding an additive or the like.

また、本発明における溶融飛灰に含まれる重金属の分離回収方法は、前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、前記造粒物を800〜1100℃に加熱して該造粒物中に含まれる未燃炭素及び酸化鉄と酸化亜鉛とを還元反応させ、単体亜鉛として揮発分離する工程と、を具備することを特徴とする。
これにより、溶融飛灰中の亜鉛分を高収率で分離回収することができる。
Further, the method for separating and recovering heavy metals contained in the molten fly ash in the present invention comprises a step of granulating the molten fly ash to produce a granulated product of the molten fly ash, and the granulated product at 800 to 1100 ° C. And a step of subjecting unburned carbon and iron oxide contained in the granulated product to a reduction reaction of zinc oxide and volatile separation as simple zinc.
Thereby, the zinc content in the molten fly ash can be separated and recovered with high yield.

さらに、本発明における溶融飛灰に含まれる重金属の分離回収方法は、前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、前記造粒物を800〜1100℃で加熱して該造粒物中に含まれる未燃炭素と酸化銅とを還元反応させて単体銅を生成する工程と、加熱後の前記造粒物を水洗して当該造粒物中の可溶成分を除去し、単体銅を含む造粒物の残渣を回収する工程と、を具備することを特徴とする。
これにより造粒物の残渣を銅含有物として回収することで有効活用ができる。
Furthermore, the method for separating and recovering heavy metals contained in the molten fly ash in the present invention comprises a step of granulating the molten fly ash to produce a granulated product of the molten fly ash, and the granulated product at 800 to 1100 ° C. A step of reducing the unburned carbon and copper oxide contained in the granulated product by a reduction reaction to produce simple copper, and washing the granulated product after heating with water. And a step of removing a dissolved component and recovering a residue of a granulated product containing simple copper.
Thereby, it can be effectively utilized by collecting the residue of the granulated material as a copper-containing material.

また、本発明における溶融飛灰に含まれる重金属の分離回収方法は、前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、前記造粒物を500〜750℃で加熱して該造粒物中に含まれるCaCl、NaCl及びKClのいずれか2つ以上を成分とする共融混合物を生成させる工程と、加熱された前記造粒物を850〜1100℃で加熱して前記共融混合物と該造粒物中に含まれる酸化鉛とを塩化反応させて塩化鉛として揮発分離する工程と、を具備することを特徴とする。 Further, the method for separating and recovering heavy metals contained in the molten fly ash in the present invention comprises a step of granulating the molten fly ash to produce a granulated product of the molten fly ash, and the granulated product at 500 to 750 ° C. And a step of generating a eutectic mixture containing any two or more of CaCl 2 , NaCl and KCl contained in the granulated product, and the heated granulated product at 850 to 1100 ° C. And a step of subjecting the eutectic mixture and lead oxide contained in the granulated product to a chlorination reaction to volatilize and separate as lead chloride.

上記の説明から明らかなように本発明は、新たな塩素剤を使用しなくとも、加熱するだけで溶融飛灰中の酸化鉛、酸化亜鉛分を揮発分離することが可能となる。
また、加熱・水洗後の造粒物の残渣は、単体銅含有物としてリサイクルすることが可能となるため、埋立て処分量の削減にも貢献できる。更に、塩素剤添加に対する装置腐食対策や、未反応塩化剤の揮発に対する酸性ガス処理対策を行う必要がなくなり、処理プロセスの簡素化が可能となる。
As is clear from the above description, the present invention can volatilize and separate lead oxide and zinc oxide in molten fly ash only by heating without using a new chlorine agent.
Further, the residue of the granulated product after heating and washing with water can be recycled as a single copper-containing material, which can contribute to a reduction in the amount of landfill disposal. Furthermore, it is not necessary to take measures against the corrosion of the apparatus with respect to the addition of the chlorine agent and the acid gas treatment against the volatilization of the unreacted chlorinating agent, and the treatment process can be simplified.

本発明者が鋭意研究した結果、溶融飛灰中に存在する酸化鉛は、該溶融飛灰が含有するCaCl、NaCl及びKClのいずれか2つ以上を成分とする共融混合物と反応して塩化鉛(PbCl2 融点:501℃, 沸点:950℃)となることにより揮発分離できることを見出した。即ち、本発明者は図1に示すようにPbO試薬に対して、NaCl、KCl試薬を個別に1.0当量ずつ添加した模擬飛灰の結果の平均値(Average(1))、1/2当量ずつのNaCl、KCl試薬を混合して添加した模擬飛灰(Sample(2))、CaCl、NaCl及びKCl試薬を個別に1.0当量ずつ添加した模擬飛灰の結果の平均値(Average (3))、1/3当量ずつのCaCl、NaCl及びKCl試薬を混合して添加した模擬飛灰(Sample(4))を調べ比較した。その結果、鉛の揮発率は、CaCl、NaCl及びKCl試薬を個別に添加したときの平均値(Average(1)、(3))よりも、CaCl、NaCl及びKCl試薬を混合したときの方(Sample(2)、(4))が高い揮発率を得られることが分かったのである。 As a result of intensive studies by the present inventors, lead oxide present in the molten fly ash reacts with a eutectic mixture containing any two or more of CaCl 2 , NaCl and KCl contained in the molten fly ash. It was found that volatile separation can be achieved by becoming lead chloride (PbCl 2 melting point: 501 ° C., boiling point: 950 ° C.). That is, as shown in FIG. 1, the present inventor calculated the average value (Average (1)), 1/2 of the result of simulated fly ash in which 1.0 equivalent each of NaCl and KCl reagents was added to the PbO reagent. Average value of simulated fly ash (Sample (2)) added by mixing each equivalent amount of NaCl and KCl reagents, and the result of simulated fly ash added by 1.0 equivalent each of CaCl 2 , NaCl and KCl reagents (Average) (3)) Simulated fly ash (Sample (4)) to which 1/3 equivalent of CaCl 2 , NaCl, and KCl reagent were mixed and added was examined and compared. As a result, the volatilization rate of lead was higher when the CaCl 2 , NaCl, and KCl reagents were mixed than the average value when the CaCl 2 , NaCl, and KCl reagents were added individually (Average (1), (3)). (Sample (2), (4)) was found to obtain a high volatility.

また、溶融飛灰からの酸化亜鉛、酸化銅の揮発分離については、含有するCaCl、NaCl及びKClの共融混合物によっては金属塩化物となりにくかったが、その代わり亜鉛は溶融飛灰が含有する未燃炭素(C)および酸化鉄(Fe)によって、酸化亜鉛が単体亜鉛(Zn
融点:419.6℃, 沸点:907℃)となることにより揮発分離し、また、酸化銅は未燃炭素との還元反応によって単体銅(Cu 融点:1083.4℃,
沸点:2570℃)となることにより溶融飛灰中に残留することを見出した。
In addition, regarding volatile separation of zinc oxide and copper oxide from molten fly ash, it was difficult to become a metal chloride depending on the eutectic mixture of CaCl 2 , NaCl and KCl contained, but instead zinc contained in molten fly ash. Zinc oxide is converted into simple zinc (Zn) by unburned carbon (C) and iron oxide (Fe 2 O 3 ).
When the melting point is 419.6 ° C., the boiling point is 907 ° C., the volatile separation is achieved. The copper oxide is converted into a single copper (Cu melting point: 1083.4 ° C. by reduction with unburned carbon).
(Boiling point: 2570 ° C.), and found to remain in the molten fly ash.

ZnO +C →Zn +CO (1)
Fe+3C →2Fe+3CO (2)
ZnO+Fe→ Zn+FeO (3)
CuO+C →Cu+CO
(4)
ZnO + C → Zn + CO (1)
Fe 2 O 3 + 3C → 2Fe + 3CO (2)
ZnO + Fe → Zn + FeO (3)
CuO + C → Cu + CO
(4)

本発明において、「溶融飛灰」とは、都市ごみ、自動車シュレッダーダスト(ASR)、医療廃棄物、下水汚泥、建設廃材、廃タイヤ、廃プラスチック、ゴミ固形燃料(RDF)及びこれらの焼却灰を溶融固化処理したものも含まれる。溶融飛灰中の重金属含有量は、単体換算で10,000mg/kg以上が好ましく、それ以下の重金属含有量では加熱を行ったとしても十分な品位の回収物が得られない。
溶融飛灰中の無機塩素化合物(NaCl、KCl、CaCl2)は、酸化鉛を塩化反応させるのに必要なCl量で1.0当量以上含まれていることが望ましい。それ以下の含有量の場合には、外部からの塩素源の投入が必要となる。
In the present invention, “molten fly ash” refers to municipal waste, automobile shredder dust (ASR), medical waste, sewage sludge, construction waste, waste tires, waste plastic, waste solid fuel (RDF), and incineration ash thereof. Those that have been melted and solidified are also included. The heavy metal content in the molten fly ash is preferably 10,000 mg / kg or more in terms of a simple substance, and if the content is less than that, a recovered material with sufficient quality cannot be obtained even if heating is performed.
It is desirable that the inorganic chlorine compound (NaCl, KCl, CaCl 2 ) in the molten fly ash is contained in an amount of 1.0 equivalent or more in terms of the amount of Cl necessary for the chlorination reaction of lead oxide. When the content is less than that, it is necessary to input a chlorine source from the outside.

また、溶融飛灰中の未燃炭素含有率は5.0wt%以上であることが望ましく、それ以下の含有量の場合には、溶融飛灰中の未燃炭素含有率が5.0wt%以上となるように炭素原料を添加することが望ましい。ここで、「炭素原料」としては微粉炭、粉コークス、活性炭、木炭、竹炭等が挙げられるが、炭素を含むものであれば固体廃棄物でも良く、例えば未燃炭素分が多い溶融飛灰と混合することも可能である。 Moreover, it is desirable that the unburned carbon content in the molten fly ash is 5.0 wt% or more. In the case of a lower content, the unburned carbon content in the molten fly ash is 5.0 wt% or more. It is desirable to add a carbon raw material so that Here, examples of the “carbon raw material” include pulverized coal, powdered coke, activated carbon, charcoal, bamboo charcoal and the like, but solid waste may be used as long as it contains carbon, for example, molten fly ash with a large amount of unburned carbon. It is also possible to mix.

溶融飛灰を加熱するにあたり、溶融飛灰は粒径1〜100μm程度の微粒子であることからこのままでは粉塵を発生させ易く、また、効率的な加熱が行ない難いという問題がある。そこで、微粒子状態の溶融飛灰を加湿混練機に投入して水分を添加し、加湿された溶融飛灰を造粒機によって10〜50mmの粒径の造粒物とすることが必要とされる。この造粒物を加熱処理装置にて加熱するための時間は、含有する無機塩素化合物、未燃炭素および酸化鉄と、重金属との反応に要する時間を考慮すると、60〜180分間加熱することが好ましい。 When heating the molten fly ash, the molten fly ash is a fine particle having a particle diameter of about 1 to 100 μm, so that there is a problem that it is easy to generate dust and it is difficult to perform efficient heating. Therefore, it is necessary to add molten fly ash in the form of fine particles to a humidifying kneader, add water, and make the humidified molten fly ash into a granulated product having a particle size of 10 to 50 mm using a granulator. . In consideration of the time required for the reaction between the inorganic chlorine compound, unburned carbon and iron oxide, and the heavy metal, the time for heating this granulated product with a heat treatment apparatus may be 60 to 180 minutes. preferable.

また、加熱温度については、CaCl2、KCl及びNaClのいずれか2つ以上を成分とする共融混合物の生成は550℃付近から開始され850℃程度まで行なわれるが、750℃近辺からは生成した共融混合物と重金属との塩化反応も生じ始める。従って、共融混合物の生成と当該共融混合物と重金属との塩化反応とを同時進行的に行なうためには800〜1100℃の範囲で加熱することが好ましい。加熱処理装置へ投入された溶融飛灰の造粒物は、熱風ガスによって加熱され、該造粒物中の酸化鉛及び酸化亜鉛が揮発分離される。加熱処理装置にて使用される熱風ガスは、空気、窒素ガス及び燃焼排ガス等を用いることが可能だが、ダイオキシンの再合成が生じる虞があることから窒素ガスを使用することがより好ましい。 As for the heating temperature, generation of the eutectic mixture containing any two or more of CaCl 2 , KCl and NaCl is started from around 550 ° C. to about 850 ° C., but was generated from around 750 ° C. Chlorination reaction between the eutectic mixture and heavy metals also begins to occur. Therefore, in order to simultaneously perform the formation of the eutectic mixture and the chlorination reaction between the eutectic mixture and the heavy metal, it is preferable to heat in the range of 800 to 1100 ° C. The molten fly ash granulated product charged into the heat treatment apparatus is heated by hot air gas, and lead oxide and zinc oxide in the granulated product are volatilized and separated. As the hot air gas used in the heat treatment apparatus, air, nitrogen gas, combustion exhaust gas, or the like can be used, but it is more preferable to use nitrogen gas because dioxin may be re-synthesized.

揮発した酸化鉛、酸化亜鉛はバグフィルターなどの捕集装置にて捕集する。捕集温度は、酸化鉛、酸化亜鉛が完全に凝縮していることが望ましいため200℃以下であることが望ましい。一方、酸化鉛、酸化亜鉛を分離した溶融飛灰の造粒物の残渣は、ダイオキシンの再合成を防止するため前記加熱処理装置から排出した後、水洗処理設備へ投入して急冷する。そしてこの残渣が、水洗処理されることによって残渣中の可溶成分(無機塩素化合物)と不溶成分(単体銅)との分離を行って銅分を含んだ残渣を回収する。なお、本発明における「可溶成分」とは、無機塩素化合物であるNaCl、KCl、CaCl2を意味し、「不溶成分」とは単体銅を意味する。 Volatilized lead oxide and zinc oxide are collected by a collecting device such as a bag filter. The collection temperature is desirably 200 ° C. or lower because it is desirable that lead oxide and zinc oxide are completely condensed. On the other hand, the residue of the molten fly ash granulated material from which lead oxide and zinc oxide have been separated is discharged from the heat treatment apparatus in order to prevent re-synthesis of dioxins, and then is put into a water washing treatment facility and rapidly cooled. Then, the residue is washed with water to separate a soluble component (inorganic chlorine compound) and an insoluble component (single copper) in the residue to recover a residue containing copper. In the present invention, “soluble component” means NaCl, KCl, CaCl 2 which are inorganic chlorine compounds, and “insoluble component” means single copper.

以下に示す実施形態により本発明をさらに詳細に説明する。図2は、本発明に係る方法を実施するための装置概要図である。この装置は、加湿した溶融飛灰を造粒する造粒機1と、造粒物中に含まれる酸化鉛、酸化亜鉛を加熱して揮発分離するための加熱炉2と、揮発分離した酸化鉛、酸化亜鉛を捕集する捕集装置3と、酸化鉛、酸化亜鉛が揮発分離した後の造粒物の残渣を水洗するための水洗装置4とから構成されている。 The present invention will be described in more detail by the following embodiments. FIG. 2 is a schematic diagram of an apparatus for carrying out the method according to the present invention. This apparatus includes a granulator 1 for granulating humidified molten fly ash, a heating furnace 2 for heating and separating lead oxide and zinc oxide contained in the granulated product, and lead oxide separated by volatilization. , A collecting device 3 for collecting zinc oxide, and a washing device 4 for washing the residue of the granulated product after the lead oxide and zinc oxide are volatilized and separated.

本発明に係る方法は、例えば以下のようにして実施される。溶融飛灰を、予め水で加湿して図示されない混練機によって混練しておき、これを造粒機1に投入して加湿混練された溶融飛灰を所定の粒径(10〜50mm)の造粒物に造粒する。
これは加熱炉における熱風ガスの風通しを良くするためと二次飛灰(粉塵)の発生を防ぐためである。その後、前記造粒物は加熱炉2に投入され、加熱炉下部から吹き込まれる熱風により所定の温度(例えば900℃)で所定時間(例えば120分)加熱される。この加熱によって造粒物に含まれる酸化鉛は塩化鉛(PbCl2)として、酸化亜鉛は単体亜鉛(Zn)として各々揮発分離される。これらの揮発物は、後段に設置した捕集装置3にて捕集される。
一方、加熱して酸化鉛、酸化亜鉛を分離した後の造粒物の残渣は、水洗装置4に投入されて急冷される。水洗装置4では、残渣中の可溶成分(NaCl、KCl、CaCl2)が除去され、濃縮された単体銅を含有する残渣を回収する。
The method according to the present invention is performed, for example, as follows. The molten fly ash is pre-humidified with water and kneaded by a kneader (not shown), and the molten fly ash is put into the granulator 1 and the humidified and kneaded molten fly ash has a predetermined particle size (10 to 50 mm). Granulate into granules.
This is to improve the ventilation of the hot air gas in the heating furnace and to prevent the generation of secondary fly ash (dust). Thereafter, the granulated material is put into the heating furnace 2 and heated at a predetermined temperature (for example, 900 ° C.) for a predetermined time (for example, 120 minutes) by hot air blown from the lower part of the heating furnace. By this heating, lead oxide contained in the granulated material is volatilely separated as lead chloride (PbCl 2 ) and zinc oxide as simple zinc (Zn). These volatiles are collected by the collection device 3 installed in the subsequent stage.
On the other hand, the residue of the granulated product after heating to separate lead oxide and zinc oxide is put into the water washing device 4 and rapidly cooled. In the water washing apparatus 4, soluble components (NaCl, KCl, CaCl 2 ) in the residue are removed, and the residue containing concentrated single copper is recovered.

以下に、実施例を示す。図3〜図5に3種類の異なる溶融原料から発生した溶融飛灰(A:都市ごみ焼却灰、B:ASR、C:都市ごみ)を、600〜900℃で120分間、加熱した時の鉛、亜鉛、銅の揮発率と加熱温度との関係を示す。本結果より、鉛では、溶融飛灰A、B、Cのいずれについても温度850℃以上で、ほぼ100%揮発分離できることがわかる(図3)。亜鉛については、溶融飛灰A、B、Cの各々について加熱温度の上昇と共に揮発率が向上することが分かり、未燃炭素の含有量が多いものほど、揮発率の増加傾向が大きいことが分かった(図4)。 Examples are shown below. 3 to 5 show lead when molten fly ash (A: municipal waste incineration ash, B: ASR, C: municipal waste) generated from three different molten raw materials is heated at 600 to 900 ° C for 120 minutes. The relationship between the volatility of zinc, copper and the heating temperature is shown. From this result, it can be seen that lead can be almost volatilized and separated at a temperature of 850 ° C. or higher for any of the molten fly ash A, B, and C (FIG. 3). As for zinc, it can be seen that the volatilization rate improves with increasing heating temperature for each of the molten fly ash A, B, and C. (FIG. 4).

ここで、未燃炭素含有率が9.56%である溶融飛灰Bについては、加熱温度800℃以上で100%揮発分離することができたが、溶融飛灰A(未燃炭素含有率3.66%)及び溶融飛灰C(未燃炭素含有率2.31%)については十分に亜鉛を揮発分離することができなかった。そこで未燃炭素分が少ない溶融飛灰Cに対して、炭素分含有率が9.56%となるようにカーボン試薬を添加した溶融飛灰C”を用いて加熱を行った。その結果、溶融飛灰Bと同程度の揮発率を得ることが確認できた。また、銅については、溶融飛灰A、B、Cの全てについて揮発率の向上はほとんど見られず、残渣側へ残留することが確認された(図5)。 Here, with regard to the molten fly ash B having an unburned carbon content of 9.56%, 100% volatile separation was possible at a heating temperature of 800 ° C. or higher, but the molten fly ash A (unburned carbon content 3 .66%) and molten fly ash C (unburned carbon content: 2.31%) could not sufficiently evaporate zinc. Therefore, the molten fly ash C with a small amount of unburned carbon was heated using the molten fly ash C ″ added with a carbon reagent so that the carbon content was 9.56%. It was confirmed that the volatilization rate was the same as that of the fly ash B. In addition, with regard to copper, almost no improvement in volatilization rate was observed for all of the molten fly ash A, B, and C, and it remained on the residue side. Was confirmed (FIG. 5).

本発明は、溶融飛灰中に含まれる酸化鉛、酸化亜鉛及び酸化銅を化合物又は単体として回収することができる方法に関するものであるため産業上の利用可能性は大きい。   Since the present invention relates to a method capable of recovering lead oxide, zinc oxide and copper oxide contained in molten fly ash as a compound or a simple substance, the industrial applicability is great.

模擬飛灰中の無機塩素化合物の含有形態と鉛揮発率との関係を示した図である。It is the figure which showed the relationship between the containing form of the inorganic chlorine compound in simulated fly ash, and lead volatilization rate. 本発明の方法を実施するための装置概要図である。It is an apparatus schematic diagram for implementing the method of this invention. 鉛揮発率と加熱処理温度との関係を示した図である。It is the figure which showed the relationship between lead volatilization rate and heat processing temperature. 亜鉛揮発率と加熱処理温度との関係を示した図である。It is the figure which showed the relationship between zinc volatilization rate and heat processing temperature. 銅揮発率と加熱処理温度との関係を示した図である。It is the figure which showed the relationship between copper volatilization rate and heat processing temperature.

符号の説明Explanation of symbols

1 造粒機
2 加熱炉
3 捕集装置
4 水洗装置
1 Granulator 2 Heating furnace 3 Collection device 4 Flushing device

Claims (5)

溶融飛灰に含まれる重金属の分離回収方法であって、
前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、
前記造粒物を800〜1100℃で加熱することによって該造粒物中に含まれるCaCl、NaCl及びKClのいずれか2つ以上を成分とする共融混合物を生成させると共に、該共融混合物と前記造粒物中に含まれる酸化鉛とを塩化反応させて塩化鉛として揮発分離する工程と、を具備することを特徴とする溶融飛灰に含まれる重金属の分離回収方法。
A method for separating and recovering heavy metals contained in molten fly ash,
A step of granulating the molten fly ash to produce a granulated product of the molten fly ash;
By heating the granulated product at 800 to 1100 ° C., a eutectic mixture containing any two or more of CaCl 2 , NaCl and KCl contained in the granulated product is formed, and the eutectic mixture And a step of subjecting lead oxide contained in the granulated product to a chlorination reaction to volatilize and separate as lead chloride. A method for separating and recovering heavy metals contained in molten fly ash, comprising:
溶融飛灰に含まれる重金属の分離回収方法であって、
前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、
前記造粒物を800〜1100℃に加熱して該造粒物中に含まれる未燃炭素及び酸化鉄と酸化亜鉛とを還元反応させ、単体亜鉛として揮発分離する工程と、を具備することを特徴とする溶融飛灰に含まれる重金属の分離回収方法。
A method for separating and recovering heavy metals contained in molten fly ash,
A step of granulating the molten fly ash to produce a granulated product of the molten fly ash;
Heating the granulated product to 800-1100 ° C. to cause a reduction reaction between unburned carbon and iron oxide and zinc oxide contained in the granulated product, and volatilizing and separating as single zinc. A method for separating and recovering heavy metals contained in molten fly ash.
請求項2に記載の溶融飛灰に含まれる重金属の分離回収方法であって、
前記造粒物中に含まれる未燃炭素の含有量が5.0wt%以上であることを特徴とする溶融飛灰に含まれる重金属の分離回収方法。
A method for separating and recovering heavy metals contained in molten fly ash according to claim 2,
A method for separating and recovering heavy metals contained in molten fly ash, wherein the content of unburned carbon contained in the granulated product is 5.0 wt% or more.
溶融飛灰に含まれる重金属の分離回収方法であって、
前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、
前記造粒物を800〜1100℃で加熱して該造粒物中に含まれる未燃炭素と酸化銅とを還元反応させて単体銅を生成する工程と、
加熱後の前記造粒物を水洗して当該造粒物中の可溶成分を除去し、単体銅を含む造粒物の残渣を回収する工程と、を具備することを特徴とする溶融飛灰に含まれる重金属の分離回収方法。
A method for separating and recovering heavy metals contained in molten fly ash,
Granulating the molten fly ash to create a granulated product of the molten fly ash;
Heating the granulated product at 800 to 1100 ° C. to reduce the unburned carbon and copper oxide contained in the granulated product to produce simple copper,
Washing the granulated product after heating to remove soluble components in the granulated product, and recovering the residue of the granulated product containing simple copper, For separating and recovering heavy metals contained in
溶融飛灰に含まれる重金属の分離回収方法であって、
前記溶融飛灰を造粒して該溶融飛灰の造粒物を作成する工程と、
前記造粒物を500〜750℃で加熱して該造粒物中に含まれるCaCl、NaCl及びKClのいずれか2つ以上を成分とする共融混合物を生成させる工程と、
加熱された前記造粒物を850〜1100℃で加熱して前記共融混合物と該造粒物中に含まれる酸化鉛とを塩化反応させて塩化鉛として揮発分離する工程と、を具備することを特徴とする溶融飛灰に含まれる重金属の分離回収方法。

A method for separating and recovering heavy metals contained in molten fly ash,
A step of granulating the molten fly ash to produce a granulated product of the molten fly ash;
Heating the granulated product at 500 to 750 ° C. to produce a eutectic mixture containing two or more of CaCl 2 , NaCl and KCl contained in the granulated product;
Heating the granulated product heated at 850 to 1100 ° C. to cause the eutectic mixture and lead oxide contained in the granulated product to undergo chlorination reaction to volatilize and separate as lead chloride. A method for separating and recovering heavy metals contained in molten fly ash.

JP2004323049A 2004-11-08 2004-11-08 Method for separating and recovering heavy metal contained in molten flying ash Pending JP2006131962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004323049A JP2006131962A (en) 2004-11-08 2004-11-08 Method for separating and recovering heavy metal contained in molten flying ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004323049A JP2006131962A (en) 2004-11-08 2004-11-08 Method for separating and recovering heavy metal contained in molten flying ash

Publications (1)

Publication Number Publication Date
JP2006131962A true JP2006131962A (en) 2006-05-25

Family

ID=36725772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004323049A Pending JP2006131962A (en) 2004-11-08 2004-11-08 Method for separating and recovering heavy metal contained in molten flying ash

Country Status (1)

Country Link
JP (1) JP2006131962A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124527A1 (en) 2006-05-03 2007-11-08 Ash Dec Umwelt Ag Thermal process for separating off heavy metals from ash in agglomerated form
JP2012052216A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Treatment method for copper smelting dust
CN106378352A (en) * 2016-11-18 2017-02-08 华中科技大学 Fused salt heat treatment method for rubbish incineration fly ash
CN107641711A (en) * 2017-11-20 2018-01-30 宝钢集团新疆八钢铁有限公司 Utilize steel rolling oily sludge and the method for blast furnace dust production revolving furnace slag pressing agent
CN110538637A (en) * 2019-09-25 2019-12-06 东北大学 Method for converting plastic into carbon nano-structure material
WO2022224986A1 (en) * 2021-04-21 2022-10-27 株式会社トクヤマ Unburnt carbon reduction method and heating method using ferric oxide
CN115739904A (en) * 2022-11-02 2023-03-07 西湖大学 Harmless recycling treatment process for heavy metal-enriched plants

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007124527A1 (en) 2006-05-03 2007-11-08 Ash Dec Umwelt Ag Thermal process for separating off heavy metals from ash in agglomerated form
JP2012052216A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Treatment method for copper smelting dust
CN106378352A (en) * 2016-11-18 2017-02-08 华中科技大学 Fused salt heat treatment method for rubbish incineration fly ash
CN107641711A (en) * 2017-11-20 2018-01-30 宝钢集团新疆八钢铁有限公司 Utilize steel rolling oily sludge and the method for blast furnace dust production revolving furnace slag pressing agent
CN110538637A (en) * 2019-09-25 2019-12-06 东北大学 Method for converting plastic into carbon nano-structure material
WO2022224986A1 (en) * 2021-04-21 2022-10-27 株式会社トクヤマ Unburnt carbon reduction method and heating method using ferric oxide
CN115739904A (en) * 2022-11-02 2023-03-07 西湖大学 Harmless recycling treatment process for heavy metal-enriched plants
CN115739904B (en) * 2022-11-02 2024-03-01 西湖大学 Harmless resource treatment process for heavy metal enriched plants

Similar Documents

Publication Publication Date Title
Yu et al. One-step extraction of high-purity CuCl2· 2H2O from copper-containing electroplating sludge based on the directional phase conversion
JP2006131962A (en) Method for separating and recovering heavy metal contained in molten flying ash
JP2000301103A (en) Detoxification treatment of incineration ash or fly ash
JP2005246226A (en) Treating method for fly ash
JP4022025B2 (en) Recycling method and equipment for incineration ash
JP4243661B2 (en) Dust disposal method
JP3535381B2 (en) Collection of valuable metals
JP2010236842A (en) Melting processing method of incineration ash, and melting processing equipment
JP4118240B2 (en) How to recover lead from waste
JP3304734B2 (en) How to treat shredder dust
JP4393915B2 (en) Method for treating substances containing zinc, lead and chlorine
JP3218961B2 (en) Treatment of chlorine-containing plastic waste
JP2005068535A (en) Method of treating gas or flying ash containing lead and zinc
JP2000051819A (en) Method for detoxifying fly ash
JP3374728B2 (en) How to treat incinerated dust
US6136063A (en) Process for separating hazardous metals from waste materials during vitrification
JP3564625B2 (en) Method for treating dust in exhaust gas
JP4205730B2 (en) Copper smelting method to prevent metal elution in slag
JP2000109938A (en) Method for recovering valuable metal from fly ash
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP2000282154A (en) Method for recovering metal from fused slag of waste material
JP2001121103A (en) Detoxicating method of incineration fly ash
JP2007154236A (en) Method for separating lead from combustion ash
JP2011062644A (en) Method for recovering valuable resource from disposed matter
JP3513796B2 (en) Method for decomposing dioxins in fly ash