JP4243661B2 - Dust disposal method - Google Patents

Dust disposal method Download PDF

Info

Publication number
JP4243661B2
JP4243661B2 JP2003341902A JP2003341902A JP4243661B2 JP 4243661 B2 JP4243661 B2 JP 4243661B2 JP 2003341902 A JP2003341902 A JP 2003341902A JP 2003341902 A JP2003341902 A JP 2003341902A JP 4243661 B2 JP4243661 B2 JP 4243661B2
Authority
JP
Japan
Prior art keywords
dust
furnace
metal
fly ash
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003341902A
Other languages
Japanese (ja)
Other versions
JP2004141867A (en
Inventor
洋 井上
政義 松本
孝之 佐藤
貴弘 渥美
哲朗 徳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2003341902A priority Critical patent/JP4243661B2/en
Publication of JP2004141867A publication Critical patent/JP2004141867A/en
Application granted granted Critical
Publication of JP4243661B2 publication Critical patent/JP4243661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、有価金属の金属屑や酸化物、プラスチック等の高分子化合物などが混在して含有されるシュレッダーダスト等のダストから有価金属、特に非鉄金属を回収する方法に関するものである。   The present invention relates to a method for recovering valuable metals, in particular non-ferrous metals, from dust such as shredder dust containing a mixture of valuable metal scraps and oxides, polymer compounds such as plastics, and the like.

自動車、家電製品、OA機器等の固形廃棄物は、鉄、非鉄金属等の有価金属、プラスチック、セラミック等によるいろいろな部材から成っている。これらの部材はまたいろいろな形で相互に接合され、複合化されている。このような固形廃棄物は、まず解体して主要部品、また大形金属材等を取り外した後、プレスされ、シュレッダー処理されて破砕、裁断される。さらに、破砕処理などを繰り返し、その都度、磁気選別、比重選別、サイクロン等の分別処理を行うことにより金属材とプラスチック類その他に分離回収される。このように各段階を経て得られるダストは100mm〜数mmの大きさのものとなるが、このダストはプラスチック等が多量に、有価金属が少量含有されたものになっている。   Solid waste such as automobiles, home appliances, and office automation equipment is made up of various materials such as valuable metals such as iron and non-ferrous metals, plastics, and ceramics. These members are also joined and compounded in various ways. Such solid waste is first disassembled and main parts, large metal materials, etc. are removed, then pressed, shredded, crushed and cut. Furthermore, by repeating the crushing process and the like, and separating each time by magnetic sorting, specific gravity sorting, cyclone, etc., it is separated and recovered into metal materials and plastics. As described above, the dust obtained through each stage has a size of 100 mm to several mm, and this dust contains a large amount of plastic or the like and a small amount of valuable metals.

ダストには、金属屑、酸化物、プラスチック等の高分子化合物などが多種雑多に混在して含有されているため、その有価金属の回収にあっては、生成物の無害化を図りながら金属の回収を進める必要がある。
このようなダストを処理するための方法としては、ダストを焼却炉で直接完全燃焼によって焼却する直接焼却法と、ダストから含有金属を鉱酸等により浸出して液中に移行させる湿式法とがある。
Dust contains various kinds of polymer compounds such as metal scraps, oxides, and plastics. Therefore, when recovering valuable metals, the metal is made harmless while the product is made harmless. It is necessary to proceed with the collection.
As a method for treating such dust, there are a direct incineration method in which dust is incinerated directly in an incinerator by a complete combustion, and a wet method in which a contained metal is leached with mineral acid or the like and transferred into liquid. is there.

ダストを焼却処理する方法では、最終的にダストをスラグと呼ばれる完全酸化物の形態にして無害化する。このスラグとなったものからの金属の回収にあたっては、スラグが固く粉砕機等の幾多の工程が必要であり、また様々なものが酸化物、複合物として混在しているため物理的、化学的に分離する上でも多くの工程が必要になるが、従来はダストの処理方法としてはスラグ化する以外には無害化する手段が知られていなかった。   In the method of incinerating dust, the dust is finally made harmless in the form of a complete oxide called slag. The recovery of metal from this slag requires a number of processes such as a pulverizer because the slag is hard, and various things are mixed in the form of oxides and composites. Although many steps are required for separation, it has hitherto been known that no detoxifying means other than slag has been known as a dust treatment method.

しかしながら、前記のように、ダスト中にはプラスチック等の高分子化合物が多量に含有され、直接焼却法によれば排ガス量が多く、ガスの無害化を含めて排ガス処理にコストがかかる上、高温で焼却するため非鉄金属等が昇華し、またその酸化物等の飛散が多く、不燃物中に殆ど有価金属が含まれないなど金属の回収率は低い。また、湿式法においては、ダストにはプラスチック等の高分子化合物が多量に含有され金属含有量が少ない上に各成分が雑多に多種含有されるため、有価金属回収のための処理の工程が増え、周辺環境への安全を確保するためのコストを要した。   However, as described above, the dust contains a large amount of polymer compounds such as plastics, and the amount of exhaust gas is large according to the direct incineration method. Since the incinerator is incinerated, non-ferrous metals and the like are sublimated, the oxides are scattered a lot, and the non-combustible material contains almost no valuable metals. In addition, in the wet method, dust contains a large amount of polymer compounds such as plastic, the metal content is low, and various components are contained in various amounts, increasing the number of processing steps for recovering valuable metals. Costs to ensure safety to the surrounding environment.

以上の状況に鑑み、本発明の目的は、簡便で、有価金属を効率的に回収でき、排ガス、排水等の排出物による周辺環境への影響が少ない、ダストからの有価金属の回収方法を提供することにある。   In view of the above situation, the object of the present invention is to provide a method for recovering valuable metals from dust that is simple, can efficiently recover valuable metals, and has little impact on the surrounding environment due to emissions such as exhaust gas and wastewater. There is to do.

前記の目的を達成するため、本発明は、第1に、金属と高分子化合物とを含有するダストを還元性雰囲気中で加熱し気化ガスと不燃物とを得る第一工程、該不燃物を回収し製錬原料とする第二工程、該気化ガスに酸素または酸素を含有する気体を供給して燃焼させる第三工程、及び該燃焼後の排ガスから飛灰を捕集する第四工程を有することを特徴とするダスト処理方法を、第2に、前記の捕集された飛灰を洗浄し得られた残渣を製錬原料とする第五工程を有する、第1記載のダスト処理方法を、第3に、前記第一工程が450〜700℃で行われ、前記第三工程が800〜900℃で行われる、第1または2記載のダスト処理方法を、第4に、前記ダストがシュレッダーダストである、第1〜3のいずれかに記載のダスト処理方法を、第5に、前記第一工程が、予め流動砂を装入した流動床焼却炉内で行われる、第1〜4のいずれかに記載のダスト処理方法を、第6に、前記第一工程で発生する熱を廃熱ボイラーにおいて回収する、第1〜5のいずれかに記載のダスト処理方法を提供するものである。   In order to achieve the above object, the present invention firstly, a first step of heating a dust containing a metal and a polymer compound in a reducing atmosphere to obtain a vaporized gas and an incombustible material, A second step of recovering and smelting raw material, a third step of supplying oxygen or a gas containing oxygen to the vaporized gas and burning, and a fourth step of collecting fly ash from the exhaust gas after combustion. The dust treatment method according to claim 1, further comprising a fifth step of using the residue obtained by washing the collected fly ash as a smelting raw material, Third, the dust treatment method according to the first or second aspect, wherein the first step is performed at 450 to 700 ° C. and the third step is performed at 800 to 900 ° C., and fourth, the dust is shredder dust. The dust treatment method according to any one of the first to third, The dust treatment method according to any one of the first to fourth, wherein the first step is performed in a fluidized bed incinerator preliminarily charged with fluidized sand, sixthly, heat generated in the first step. The dust processing method in any one of 1st-5 which collect | recovers in a waste-heat boiler is provided.

本発明によれば、有価金属の金属屑、酸化物、プラスチック等の高分子化合物等が混在して含有されるダスト、特にシュレッダーダストから有価金属が製錬原料として簡便かつ効率的に回収され、また処理物の無害化が可能となり、さらに効率的な蒸気回収が可能となった。   According to the present invention, valuable metals are easily and efficiently recovered as a smelting raw material from dust containing a mixture of valuable metal scraps, oxides, polymer compounds such as plastics, particularly shredder dust, In addition, it became possible to render the treated product harmless, and more efficient steam recovery.

シュレッダーにより自動車、家電製品、OA機器などの廃棄物が裁断され発生したシュレッダーダストには、ウレタン、硬質プラスチック、軟質プラスチック、ゴム、紙、繊維、金属、ガラス等の酸化物などが混在しており、組成は一定していないが、概ねウレタン1〜10重量%(単に、%で表す。)、硬質プラスチック1〜20%、軟質プラスチック1〜10%、ゴム1〜10%、紙1〜30%、繊維1〜30%、金属1〜20%、ガラス等の酸化物20〜60%の範囲内の組成になっている。また、金属としては、鉄、アルミニウム、銅、鉛、亜鉛等の有価金属が含有されている。   Shredder dust generated by shredding waste from automobiles, home appliances, office automation equipment, etc. contains oxides such as urethane, hard plastic, soft plastic, rubber, paper, fiber, metal, and glass. The composition is not constant, but generally 1-10% by weight of urethane (simply expressed simply as%), 1-20% of hard plastic, 1-10% of soft plastic, 1-10% of rubber, 1-30% of paper The composition is in the range of 1 to 30% fiber, 1 to 20% metal, and 20 to 60% oxide such as glass. Moreover, valuable metals, such as iron, aluminum, copper, lead, zinc, are contained as a metal.

本発明のフローチャートを図1に示す。
また、第一工程(加熱工程)、第三工程(燃焼工程)等を行う炉として、図2にその概略縦断面図を示す流動床焼却炉を用いた場合について本発明を説明する。
この流動床焼却炉1はその炉底部において、不燃物排出口2、一次空気aを炉内に供給する一次給気口3、砂などの流動層bを備える。また、その上方には、原料装入口4、二次給気口5を備え、さらにその上方に廃熱ボイラーの水管等の吸熱部、ガス排出口6を備える。
A flowchart of the present invention is shown in FIG.
Moreover, this invention is demonstrated about the case where the fluidized-bed incinerator which shows the schematic longitudinal cross-sectional view in FIG. 2 is used as a furnace which performs a 1st process (heating process), a 3rd process (combustion process), etc. FIG.
The fluidized bed incinerator 1 includes, at the bottom of the furnace, an incombustible discharge port 2, a primary air supply port 3 that supplies primary air a into the furnace, and a fluidized bed b such as sand. In addition, a raw material charging port 4 and a secondary air supply port 5 are provided above, and further, a heat absorption part such as a water pipe of a waste heat boiler and a gas discharge port 6 are provided thereabove.

一次給気口3は炉内底部において中央近傍部と周辺部とで一次空気aの供給速度に差を設けるようにしてあり、この調節により装入された珪砂等の流動媒体による流動層bが形成されるようにすると共に、原料装入口4から流動層bに供給された被処理物であるシュレッダーダストは空気比を1未満に小さくした一次空気aの供給により炉内底部周辺部においてシュレッダーダスト中のプラスチック等の一部が燃焼され、低酸素状態の中央部において加熱された流動層bによる還元性雰囲気を維持できるようにしてある。被処理物中の金属を含有する不燃物cは未酸化状態で流動砂の一部と共に不燃物排出口2から炉外に排出されるようにしてある。
さらに、被処理物の加熱分解による気化ガスは原料装入口4上方のフリーボード域dにおいて二次給気口5からの二次空気eにより燃焼されて燃焼後の排ガスfとなり、飛灰と共に炉頂部のガス排出口6から炉外に排出される。
The primary air inlet 3 has a difference in the supply speed of the primary air a between the vicinity of the center and the peripheral part at the bottom of the furnace, and the fluidized bed b of the fluid medium such as silica sand introduced by this adjustment is provided. The shredder dust, which is the material to be processed supplied from the raw material inlet 4 to the fluidized bed b, is formed at the periphery of the furnace bottom by supplying the primary air a with an air ratio reduced to less than 1. A reducing atmosphere is maintained by the fluidized bed b in which a part of the plastic or the like is burned and heated in the central portion of the low oxygen state. The incombustible material c containing the metal in the object to be treated is discharged from the incombustible material outlet 2 to the outside of the furnace together with a part of the fluidized sand in an unoxidized state.
Further, the vaporized gas resulting from the thermal decomposition of the object to be treated is combusted by the secondary air e from the secondary air inlet 5 in the free board area d above the raw material inlet 4 to become the exhaust gas f after combustion, and the furnace together with fly ash The gas is discharged from the top gas discharge port 6 to the outside of the furnace.

本発明の第一工程では、まず、原料としてシュレッダーダストを原料装入口4より珪砂を流動媒体とする流動床に装入する。装入する際には、一次空気aによって流動するように、また装入装置に引っ掛からないように、予め大きさを統一しておくのが望ましい。また、シュレッダーダストにはポリ塩化ビニール等の塩素を含有するプラスチックが多量に含まれることが多く、通常塩素を0.1〜5%含有することが多い。この場合、焼却に伴って発生する塩素ないし塩化水素を固定するため、カルシウム化合物を同時に装入するのが望ましい。   In the first step of the present invention, first, shredder dust as a raw material is charged from a raw material inlet 4 into a fluidized bed using silica sand as a fluid medium. When charging, it is desirable to unify the size in advance so that it flows by the primary air a and does not get caught by the charging device. The shredder dust often contains a large amount of plastic containing chlorine such as polyvinyl chloride, and usually contains 0.1 to 5% of chlorine. In this case, in order to fix chlorine or hydrogen chloride generated by incineration, it is desirable to charge a calcium compound at the same time.

次いで、シュレッダーダスト中の高分子化合物等の可燃物の一部の燃焼による加熱を行う。炉底部の一次給気口3より熱した一次空気aを炉内のシュレッダーダストを混入する流動床に送風する。流動床内の温度は空気比を1未満の所定範囲に制御した加熱一次空気aを用いた燃焼により450〜700℃、好ましくは550〜650℃に維持するようにする。450℃未満の温度では気化ガスと不燃物を得るための加熱によるシュレッダーダストの熱分解反応が不充分であり、一方、700℃を超える温度では金属類の昇華が急増し、炉壁に付着し、または後段階で酸化され回収効率を落としてしまう。一次空気aとしては大気を用いるが、空気に限らず酸素富化空気のような酸素を含有する気体であればよく、純酸素を用いることもできる。   Next, heating is performed by burning a part of combustible material such as a polymer compound in the shredder dust. The primary air a heated from the primary air inlet 3 at the bottom of the furnace is blown to the fluidized bed in which the shredder dust in the furnace is mixed. The temperature in the fluidized bed is maintained at 450 to 700 ° C., preferably 550 to 650 ° C. by combustion using the heated primary air a in which the air ratio is controlled to a predetermined range of less than 1. At temperatures below 450 ° C, the thermal decomposition reaction of shredder dust by heating to obtain vaporized gas and incombustibles is insufficient, while at temperatures above 700 ° C, the sublimation of metals rapidly increases and adheres to the furnace wall. Or it is oxidized at a later stage and the recovery efficiency is lowered. Although air is used as the primary air a, it is not limited to air and any gas containing oxygen such as oxygen-enriched air may be used, and pure oxygen can also be used.

前記したように、シュレッダーダストの燃焼に必要な空気(中の酸素)量に対して実際に送付する空気(中の酸素)量の比である空気比を1未満とする。空気比を1未満とするのは、流動砂中のシュレッダーダストの加熱を還元性雰囲気中で行えるようにし、高分子化合物類を分解、気化させると共に、金属類の酸化を防ぎ回収し易い形態にするためであり、空気比0.4〜0.6が好ましい。
次いで、第二工程として、気化されずに残物となった不燃物cを分離、回収する。すなわち、金属分を含む不燃物cは未酸化状態で一部流動砂と共に炉底部の不燃物排出口2から炉外へ排出され、製錬原料とする。
As described above, the air ratio, which is the ratio of the amount of air (inside oxygen) actually sent to the amount of air (inside oxygen) necessary for the combustion of the shredder dust, is set to less than 1. When the air ratio is less than 1, the shredder dust in the fluidized sand can be heated in a reducing atmosphere, the polymer compounds are decomposed and vaporized, and the metal is prevented from being oxidized and easily recovered. Therefore, an air ratio of 0.4 to 0.6 is preferable.
Next, as a second step, the incombustible material c that is not evaporated but remains is separated and recovered. That is, the incombustible material c containing a metal component is discharged from the incombustible material outlet 2 at the bottom of the furnace together with the fluidized sand in an unoxidized state to the smelting raw material.

さらに、第三工程は気化ガスの燃焼工程であり、第一工程の流動床でのシュレッダーダストの加熱によって気化されたガスは、フリーボード域dで二次給気口5からの旋回二次空気流eにより燃焼する。この場合、燃焼温度すなわちフリーボード域dの温度は、800〜900℃が好ましい。800℃未満の温度ではダイオキシン発生の懸念があり、900℃を超える温度では、金属の昇華を助長し、金属類が炉壁に付着するほか、酸化物となって飛灰に含まれるため不燃物c中への金属回収が困難になる。   Further, the third step is a combustion step of vaporized gas, and the gas vaporized by heating the shredder dust in the fluidized bed of the first step is swirling secondary air from the secondary air inlet 5 in the free board area d. Combusted by stream e. In this case, the combustion temperature, that is, the temperature of the free board region d is preferably 800 to 900 ° C. At temperatures below 800 ° C, dioxins may be generated. At temperatures above 900 ° C, metal sublimation is promoted, and metals adhere to the furnace wall and become oxides and are contained in fly ash. It becomes difficult to recover the metal into c.

さらに第一工程において、炉床近傍と、炉床近傍からやや上方で第三工程の燃焼部より下方の範囲と、第三工程の燃焼部とに分けて温度分布を制御すれば、より金属回収、処理生産性が向上する。具体的には、炉床近傍すなわち流動層の上層近傍では700℃以下とし、その上層近傍より上方では900℃以下とし、その上方の燃焼部では950℃以下とする。このように温度を段階的に上昇させることにより、燃焼がより効率的になるほか、流動層上方で第三工程下方において流動層で生じた分解ガス等が第三工程より下方で渦流となるため金属の揮発を上方のみの移動とならず砂にも被着される量が増える。
このように第一工程において600〜700〜900℃として、第三工程で950℃以下として実施することも可能であり、温度分布をさらに複数の領域に区切って制御すればなお良い。
Furthermore, in the first process, if the temperature distribution is controlled separately in the vicinity of the hearth, the range slightly above the vicinity of the hearth and below the combustion part of the third process, and the combustion part of the third process, more metal recovery , Processing productivity is improved. Specifically, it is 700 ° C. or lower near the hearth, that is, near the upper layer of the fluidized bed, 900 ° C. or lower above the vicinity of the upper layer, and 950 ° C. or lower in the combustion section above it. By raising the temperature stepwise in this way, combustion becomes more efficient, and cracked gas generated in the fluidized bed above the fluidized bed and below the third process becomes a vortex below the third process. The amount of metal volatilization is not only moved upward but is also deposited on sand.
As described above, the temperature can be set to 600 to 700 to 900 ° C. in the first step and 950 ° C. or less in the third step, and the temperature distribution may be further divided into a plurality of regions and controlled.

第一工程の還元性雰囲気中で金属とカルシウム等とが結合して生成した化合物は第三工程において、900℃を超える温度では分解してそれぞれの酸化物分子となるが、900℃以下の温度では前記化合物がそのまま酸化物となるので後工程での回収に寄与し有利と考えられる。燃焼後は、飛灰を同伴した燃焼後の排ガスfが炉頂部のガス排出口6から炉外に排出される。
すなわち、燃焼を第一工程と第三工程の2段で行うことにより、シュレッダーダスト中の金属を未酸化状態で回収できると共にダストの減容化を促進できる。
In the third step, the compound formed by combining metal and calcium in the reducing atmosphere in the first step decomposes at temperatures exceeding 900 ° C. to form respective oxide molecules, but the temperature is 900 ° C. or lower. In this case, the compound becomes an oxide as it is, which contributes to recovery in a subsequent process and is considered advantageous. After combustion, the exhaust gas f after combustion accompanied with fly ash is discharged out of the furnace through the gas outlet 6 at the top of the furnace.
That is, by performing combustion in two stages of the first step and the third step, the metal in the shredder dust can be recovered in an unoxidized state and the reduction of the dust volume can be promoted.

また、ガス排出口6より炉外に排出された飛灰を同伴した燃焼後の排ガスfに、さらに中和処理剤を添加し、燃焼後の排ガスfに含まれる塩素、塩化水素等の酸性ガス成分を中和する。この中和処理剤としては、消石灰、重曹、苛性ソーダ等の粉末状、水溶液状のものが使用できるが、後段でバグフィルター(BFと表すことがある。)を使用する場合は粉末状のものが好ましい。中和処理剤の添加は、前記ガス排出口6に連接された排気管に、中和処理剤として上記のアルカリ性の薬剤を散布する中和装置を配置することにより行うことができる。   Further, a neutralizing agent is further added to the exhaust gas f after combustion accompanied by fly ash discharged from the gas outlet 6 to the outside of the furnace, and an acidic gas such as chlorine and hydrogen chloride contained in the exhaust gas f after combustion. Neutralizes ingredients. As this neutralizing agent, powdered and aqueous solutions such as slaked lime, baking soda and caustic soda can be used, but when using a bag filter (sometimes referred to as BF) in the latter stage, a powdered one is used. preferable. The neutralizing agent can be added by disposing a neutralizing device for spraying the alkaline chemical agent as a neutralizing agent in the exhaust pipe connected to the gas discharge port 6.

次いで、前記ガス排出口6から、前記排気管を経由した燃焼後の排ガスfを、好ましくは冷却水と直接に気液接触しないジャケットクーラー等の、急冷減温塔に導入し、200℃以下、好ましくは180℃以下にまで冷却する。すなわち、後段のバグフィルターによる飛灰の捕集を容易ならしめるようにする。   Next, the exhaust gas f after combustion via the exhaust pipe is introduced from the gas discharge port 6 into a quenching and cooling tower, such as a jacket cooler that preferably does not directly contact the cooling water with gas and liquid. Preferably it cools to 180 degrees C or less. That is, the fly ash is easily collected by the bag filter at the latter stage.

第四工程は、飛灰の捕集分離工程であり、中和されかつ減温された、飛灰、中和物等を含む排ガスを、バグフィルターを通過させることにより、飛灰と中和物を捕集することができる。バグフィルターで捕集された飛灰と中和物は、鉄、アルミニウム、銅、鉛、亜鉛等の金属を含み、また、塩素、フッ素、臭素などのハロゲン元素も含まれている。それぞれの成分は元のシュレッダーダストの成分組成により異なるが、鉄1〜10%、アルミニウム1〜5%、銅5〜15%、鉛1〜5%、亜鉛1〜5%、塩素1〜15%、フッ素+臭素 0.1%以下である。   The fourth step is a fly ash collection and separation step. By passing the neutralized and reduced temperature exhaust gas containing fly ash, neutralized product, etc. through the bag filter, fly ash and neutralized product Can be collected. Fly ash and neutralized products collected by the bag filter contain metals such as iron, aluminum, copper, lead, and zinc, and also contain halogen elements such as chlorine, fluorine, and bromine. Each component varies depending on the composition of the original shredder dust, but iron 1-10%, aluminum 1-5%, copper 5-15%, lead 1-5%, zinc 1-5%, chlorine 1-15% , Fluorine + bromine is 0.1% or less.

なお、第四工程の飛灰の捕集、分離に供する装置は分離効率が安定している上記のバグフィルターが好適であるがこれに限定されるものではなく、気体中に同伴する固体微粉末を除去する装置であればよく、例えば、コットレル、スクラバー等を採用することもできる。コットレルを採用すれば前記の急冷減温を省略できる場合があり、スクラバーを採用すれば気液接触方式のため急冷減温を兼用できる場合がある。   In addition, the above-mentioned bag filter having a stable separation efficiency is suitable for the apparatus for collecting and separating fly ash in the fourth step, but is not limited to this, and the solid fine powder entrained in the gas For example, a cotrel, a scrubber, or the like may be employed. If a cot rel is adopted, the rapid cooling and temperature reduction may be omitted, and if a scrubber is adopted, the rapid cooling and temperature reduction may be combined because of a gas-liquid contact method.

次いで第五工程では、第四工程で捕集された飛灰と中和物を水に添加して水洗処理を行う。この捕集された飛灰と中和物は有価金属が濃縮されており、そのまま製錬原料とすることも可能ではあるが、捕集されたままの飛灰と中和物には塩素等のハロゲン元素も上記のように比較的多量に含有されるため、製錬工程で使用する自溶炉等の処理炉に供給する場合にこの処理炉の内面煉瓦の消耗を速める可能性がある。このため飛灰と中和物に水を添加し、撹拌または混合後に固液分離して水洗残渣の回収を行う。この水洗による残渣の分離により液側に塩素等のハロゲン元素を移行させることができ、残渣として塩素等のハロゲン元素が少なく金属が濃縮した製錬原料を得ることができる。また、前記第三工程(燃焼工程)で焼却温度を900℃以下としたことにより、重金属は化学的に安定な形態となり、液側への溶出が抑制されているものとみられる。   Next, in the fifth step, the fly ash and neutralized material collected in the fourth step are added to water to perform a water washing treatment. The collected fly ash and neutralized products are concentrated in valuable metals and can be used as smelting raw materials as they are. Since the halogen element is also contained in a relatively large amount as described above, there is a possibility that the consumption of the inner bricks of the processing furnace may be accelerated when supplied to a processing furnace such as a flash smelting furnace used in the smelting process. For this reason, water is added to the fly ash and the neutralized product, followed by solid-liquid separation after stirring or mixing to recover the water washing residue. By separating the residue by this water washing, halogen elements such as chlorine can be transferred to the liquid side, and as a residue, a smelting raw material with a small amount of halogen elements such as chlorine and concentrated metal can be obtained. In addition, by setting the incineration temperature to 900 ° C. or less in the third step (combustion step), it is considered that the heavy metal is in a chemically stable form and the elution to the liquid side is suppressed.

また、前記のように、第一工程において加熱処理され不燃物となって炉底部の不燃物排出口2から炉外へ分離排出された流動砂と不燃物との混合物を、さらに分別して製錬原料とする。珪砂を流動砂として用いた場合はこの混合物をそのまま製錬原料とすることもできる。また、不燃物を同伴する流動砂にはダストからの鉄、アルミニウム、銅等の金属が付着しているので、この流動砂と不燃物の混合物は、粒度差を利用して分別しそれぞれに異なる製錬原材料とすることもできる。好ましくは2mm目の篩を用いることにより篩目オーバーの不燃物と篩目アンダーの流動砂とに篩分けすることができる。流動砂には微細金属が付着しているが、流動砂として珪砂を用いた場合には造スラグ剤として銅製錬の自溶炉等溶錬工程の原材料として使用でき、珪砂付着の有価金属の回収も併せて可能となる。なお、不燃物と流動砂との比重差が大きい場合には、篩分けに代えてまたは篩分けと併用して比重分離方式を採用することもできる。   In addition, as described above, the mixture of fluidized sand and incombustible material that has been heat-treated in the first step to become incombustible material and discharged separately from the incombustible material discharge port 2 at the bottom of the furnace is further separated and smelted. Use as raw material. When quartz sand is used as fluidized sand, this mixture can be used as a raw material for smelting as it is. In addition, the fluid sand that accompanies incombustibles has metals such as iron, aluminum, and copper adhering to the dust, so this mixture of fluid sand and incombustible material is separated using the particle size difference and is different for each. It can also be used as a smelting raw material. Preferably, by using a 2 mm sieve, it can be sieved into non-combustible material over sieve and fluidized sand under sieve. Although fine metal adheres to the fluidized sand, when silica sand is used as the fluidized sand, it can be used as a raw material for the smelting process such as a copper smelting furnace as a slag-forming agent, and recovery of valuable metals adhering to the silica sand. Is also possible. In addition, when the specific gravity difference of an incombustible material and fluidized sand is large, it can replace with sieving or can also use together with a sieving, and can also employ | adopt a specific gravity separation system.

以上のダスト処理方法によって、シュレッダーダスト中の金属を、まず加熱処理により不燃物中において未酸化状態で回収でき、また燃焼工程からの排ガス中の飛灰からハロゲン元素を除去した水洗残渣を回収し、それぞれ製錬原料とすることができ、さらには、水洗液の中和処理等により回収した金属、あるいはまた、炉底部の不燃物排出口2から炉外へ分離排出された流動砂と不燃物との混合物からさらに分別された微細金属を付着した回収流動砂をも製錬原材料として利用できる。
回収された製錬原料はさらに金属別に分別処理することなく、実際の製錬工程に装入することで、通常の鉱石原料からの金属に合流する形で個々の金属が製錬工程において分別され回収されることになる。
By the above dust treatment method, the metal in the shredder dust can be recovered in an uncombusted state in the incombustible material first by heat treatment, and the washing residue obtained by removing the halogen element from the fly ash in the exhaust gas from the combustion process is recovered. These can be used as smelting raw materials, respectively. Furthermore, the metal recovered by the neutralization treatment of the washing water, or the fluidized sand and incombustible material separated and discharged from the incombustible discharge port 2 at the bottom of the furnace. The recovered fluidized sand, to which fine metals further separated from the mixture, are attached as smelting raw materials.
The recovered smelting raw materials are separated into individual metals in the form of merging with metals from ordinary ore raw materials by charging them into the actual smelting process without further separation by metal. It will be collected.

上記の各工程を経て排出される排ガス等は、さらに除害設備等を通し、大気中に放出されるが、本処理方法によって金属、塩素等のハロゲン元素が除去された排ガスは無害化しており、安全性が確認されている。
以上、流動床焼却炉によって加熱、燃焼等の各工程を行った形態を示したが、本発明のダスト処理方法としては、それに限ることなく、加熱と燃焼をそれぞれ、一次燃焼炉と二次燃焼炉によって実施することもできる。
Exhaust gas etc. discharged through each of the above steps is further released to the atmosphere through abatement equipment etc., but the exhaust gas from which halogen elements such as metals and chlorine have been removed by this treatment method has become harmless. Safety has been confirmed.
As mentioned above, although the form which performed each process, such as heating and combustion by a fluidized-bed incinerator, was shown as a dust treatment method of the present invention, it does not restrict to it, but a primary combustion furnace and a secondary combustion, respectively It can also be carried out in a furnace.

次に、本発明の別のフローチャートを図3に示す。これは、基本的には図1に示すフローチャートの場合と同様であるが、第一工程後に得られた不燃物と流動砂(珪砂)との混合物の篩い分けに当たって2mmふるいを用いることによってオーバーとして銅などの金属含有量の大きい不燃物を、アンダーとしてダストからの銅などの金属が多少付着した砂(珪砂)を分別して回収することができるので、それぞれ銅製錬の転炉、自溶炉に装入することによってより効率的な銅製錬を行うことができる。   Next, another flowchart of the present invention is shown in FIG. This is basically the same as in the case of the flowchart shown in FIG. 1, except that a 2 mm sieve is used for sieving the mixture of incombustible material obtained after the first step and fluid sand (silica sand). Incombustibles with high metal content such as copper can be recovered by separating sand (silica sand) with some metal such as copper from the dust as an underlayer. More efficient copper smelting can be performed by charging.

さらに、流動床焼却炉自体にボイラー水管を設けずに、流動床焼却炉の第三工程で生じた燃焼後の排ガスをボイラーに導き蒸気を発生させ熱回収を行う。ボイラーで熱回収されてガス温度が低下した排ガスを更に急冷しNo.1BFを通過させて飛灰を回収する。この場合は排ガス中和前であるため、得られる飛灰は塩素等のハロゲン含有量が比較的低くそのまま銅原料として自溶炉などの製錬工程へ供給することができる。次に、No.1BFを通過した排ガスを中和し、No.2BFを通過させて中和灰を回収する。この中和灰は塩素等のハロゲン含有量が濃縮されるものであるが、水洗等の湿式処理を行って得た塩素等のハロゲン含有量が低減された残渣を銅原料として自溶炉などの製錬工程へ供給することができる。   Further, without providing a boiler water pipe in the fluidized bed incinerator itself, the exhaust gas after combustion generated in the third step of the fluidized bed incinerator is guided to the boiler to generate steam to perform heat recovery. The exhaust gas whose gas temperature has been reduced by heat recovery in the boiler is further rapidly cooled to Pass 1BF and collect fly ash. In this case, since the exhaust ash is before neutralization of exhaust gas, the obtained fly ash has a relatively low halogen content such as chlorine and can be supplied as it is to a smelting process such as a flash smelting furnace as a copper raw material. Next, no. The exhaust gas that passed through 1BF was neutralized. The neutralized ash is recovered by passing 2BF. This neutralized ash is concentrated in halogen content such as chlorine, but the residue with reduced halogen content such as chlorine obtained by wet processing such as water washing is used as a copper raw material for flash furnaces and the like. Can be supplied to the smelting process.

また、図1のフローチャートの場合と同様に、図3のフローチャートの場合にあっても、各工程を経て排出される排ガス等はさらに除害設備等を通して大気中に放出されるが、本処理方法によって金属、塩素等のハロゲン元素が除去された排ガスは無害化しており安全性が確認されている。また、水洗等の湿式処理を行って塩素等のハロゲンが移行した排水について排水処理を行うことにより安全性が確保される。   As in the case of the flowchart of FIG. 1, even in the case of the flowchart of FIG. 3, the exhaust gas discharged through each step is further released into the atmosphere through a detoxification facility. Exhaust gas from which halogen elements such as metal and chlorine have been removed is rendered harmless and has been confirmed to be safe. In addition, safety is ensured by performing wastewater treatment on wastewater from which halogen such as chlorine has been transferred by performing wet treatment such as washing with water.

次に実施例によって本発明をさらに詳細に説明するが、本発明の技術的範囲はこれら実施例の記載によって限定されるものではないことはいうまでもない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, it cannot be overemphasized that the technical scope of this invention is not limited by description of these Examples.

〔実施例1〕 次の表1に示した材料組成、表2に示した金属組成のシュレッダーダストを被処理物として製錬原料の回収処理を行った。なお、このシュレッダーダスト中の塩素、フッ素、臭素等のハロゲン元素は、主として、ウレタン、プラスチックに含有されている。   [Example 1] A smelting raw material was recovered using the shredder dust having the material composition shown in Table 1 and the metal composition shown in Table 2 as treatment objects. Note that halogen elements such as chlorine, fluorine and bromine in the shredder dust are mainly contained in urethane and plastic.

Figure 0004243661
Figure 0004243661

Figure 0004243661
Figure 0004243661

図2に示した流動床焼却炉1において、一次給気口3から空気比が0.4となるように調節した一次空気aを流動層bの下部から上向きに吹き込むと共に、原料装入口4より流動床上に100mm以下のサイズの前記シュレッダーダストを平均120kg/hの量で装入し、流動層温度を650℃に管理しながら、還元性雰囲気中でガス化させた。
また、炉底部の不燃物排出口2から流動砂と共に第一工程(加熱工程)を経た不燃物cを抜き出した。抜き出された流動砂と不燃物の混合物の金属含有量は次の表3のとおりであった。
In the fluidized bed incinerator 1 shown in FIG. 2, primary air a adjusted to have an air ratio of 0.4 from the primary air inlet 3 is blown upward from the lower part of the fluidized bed b and from the raw material inlet 4. The shredder dust having a size of 100 mm or less was charged on the fluidized bed at an average amount of 120 kg / h, and gasified in a reducing atmosphere while controlling the fluidized bed temperature at 650 ° C.
Moreover, the incombustible substance c which passed through the 1st process (heating process) with the fluid sand was extracted from the incombustible discharge port 2 of the furnace bottom. The metal content of the extracted mixture of fluid sand and incombustible material was as shown in Table 3 below.

Figure 0004243661
Figure 0004243661

二次給気口5から二次空気eを吹き込み、二次燃焼室に相当するフリーボード域dでガス化した上向流の還元性の気化ガスを800〜900℃で完全燃焼させ、この燃焼後の排ガスfをガス排出口6から炉外に排出させた。
飛灰を同伴する燃焼後の排ガスfに排気管部において粉状消石灰を添加した後、急冷減温塔に導入し、170〜180℃まで冷却し、次いでバグフィルタにより排ガス中から中和物を含む飛灰(平均16kg/h発生)を集塵した。
バグフィルタにより集塵された飛灰の金属成分は表4に示すとおりであり、製錬工程で熔錬処理可能なものが得られた。なお、この飛灰中の塩素含有量、フッ素+臭素含有量はいずれも1%以下であった。
The secondary air e is blown from the secondary air supply port 5 and the upflowing reducing vaporized gas which is gasified in the freeboard region d corresponding to the secondary combustion chamber is completely burned at 800 to 900 ° C. The later exhaust gas f was discharged out of the furnace through the gas discharge port 6.
After adding powdered slaked lime in the exhaust pipe part to the exhaust gas f after combustion accompanied with fly ash, it is introduced into a quenching and cooling tower, cooled to 170 to 180 ° C., and then neutralized from the exhaust gas by a bag filter. Dust containing fly ash (average generation of 16 kg / h) was collected.
The metal components of fly ash collected by the bag filter are as shown in Table 4, and those that can be smelted in the smelting process were obtained. The chlorine content and fluorine + bromine content in the fly ash were both 1% or less.

Figure 0004243661
Figure 0004243661

上記飛灰中に含有される塩素等のハロゲン元素をさらに除去すべく上記飛灰に水を、50、100、200g/リットル(Lで表す。)のパルプ濃度(PDという。)となるよう添加し撹拌して水洗処理を行った後、フィルタープレスにより固液分離した。固液分離によって得られた固形分(すなわち、水洗処理された残渣であり、水洗残渣という。)および得られた液分(すなわち、水洗後の液であり、水洗液という。)については、所定時間間隔で各6個試料を採取した。
得られた水洗残渣の組成は表5に示したとおりであり、また、水洗液の含有成分は表6および表7に示したとおりであった。
In order to further remove halogen elements such as chlorine contained in the fly ash, water is added to the fly ash so as to have a pulp concentration (referred to as PD) of 50, 100, 200 g / liter (represented by L). The mixture was stirred and washed with water, followed by solid-liquid separation with a filter press. The solid content obtained by solid-liquid separation (that is, a residue washed with water and referred to as a water washing residue) and the obtained liquid (that is, the liquid after washing and referred to as a water washing solution) are predetermined. Six samples were collected at time intervals.
The composition of the obtained water washing residue was as shown in Table 5, and the components contained in the water washing liquid were as shown in Table 6 and Table 7.

Figure 0004243661
Figure 0004243661

Figure 0004243661
Figure 0004243661

Figure 0004243661
Figure 0004243661

すなわち、回収、捕集された飛灰は水洗することによって塩素等のハロゲン元素を除去でき、塩素等のハロゲン負荷を低減させることができ製錬工程での安定処理が可能となった。また、水洗によっても残渣中の有価金属の含有量は変わらなかった。
水洗液については、CuおよびZnがそれぞれ排水規制値の0.5mg/Lおよび4.0mg/Lを越えていたが、水洗液を酸性化してZnとの置換処理を行うことによりCu濃度を低減し、さらに置換後の液について中和処理を行うことにより、Znを除去し排水規制値をクリアすることができた。
That is, the collected and collected fly ash can be washed with water to remove halogen elements such as chlorine, and the halogen load such as chlorine can be reduced, so that stable treatment in the smelting process is possible. Moreover, the content of valuable metals in the residue was not changed by washing with water.
Regarding the washing solution, Cu and Zn exceeded the regulation values of 0.5 mg / L and 4.0 mg / L, respectively, but the concentration of Cu was reduced by acidifying the washing solution and replacing it with Zn. Furthermore, by performing the neutralization process for the liquid after replacement, it was possible to remove Zn and clear the drainage regulation value.

第一工程でのシュレッダーダストの加熱による熱分解(すなわち、一次燃焼、部分燃焼でもある。)後に流動床焼却炉1の不燃物排出口2から抜き出された流動砂を含む不燃物cについては、5mm目の篩を用いて篩分処理を行い、5mm目オーバー(篩上)の不燃物cと5mm目アンダー(篩下)の流動砂とに分離した。
不燃物の組成は表8のとおりであり、流動砂は表9のように微細金属分を付着していた。
About the incombustible material c including the fluidized sand extracted from the incombustible material outlet 2 of the fluidized bed incinerator 1 after the thermal decomposition by heating the shredder dust in the first step (that is, primary combustion and partial combustion). A sieving treatment was performed using a 5 mm sieve, and the product was separated into non-combustible material c over 5 mm (on the sieve) and fluid sand under 5 mm (under the sieve).
The composition of the incombustible material is as shown in Table 8, and the fluid sand had fine metal components attached as shown in Table 9.

Figure 0004243661
Figure 0004243661

Figure 0004243661
Figure 0004243661

すなわち、製錬で処理可能な不燃物を得ることができた。流動砂は珪砂を用いたことによって、微細有価金属を付着した流動砂を造スラグ剤としてそのまま製錬工程の溶錬炉に装入して有価金属を回収し、その他の成分はスラグ成分として利用することができる。   That is, an incombustible material that can be treated by smelting was obtained. By using silica sand as the fluidized sand, fluidized sand with fine valuable metals attached is used as a slag-forming agent in the smelting furnace of the smelting process to recover valuable metals, and other components are used as slag components. can do.

参考例2〕 実施例1で用いた組成のシュレッダーダストを原料とし、珪砂を流動媒体として、図3に示すフローチャートに従って操業規模で本発明のダスト処理方法を実施した。上記原料をチェーンフィーダーで3.2トン/hの量で切り出し、流動床焼却炉に装入した。一次空気量を空気比0.51、二次空気量を空気比0.89で吹き込み、層内温度、1次燃焼室(1)、1次燃焼室(2)、2次燃焼室の各温度を表10記載の各温度で行った。 [ Reference Example 2] Using the shredder dust having the composition used in Example 1 as a raw material and silica sand as a fluid medium, the dust treatment method of the present invention was carried out on an operation scale according to the flowchart shown in FIG. The raw material was cut out at a rate of 3.2 ton / h with a chain feeder and charged into a fluidized bed incinerator. The primary air volume is blown at an air ratio of 0.51 and the secondary air volume is blown at an air ratio of 0.89. The temperature in the bed, the primary combustion chamber (1), the primary combustion chamber (2), and the temperatures of the secondary combustion chamber Was performed at each temperature described in Table 10.

Figure 0004243661
Figure 0004243661

参考例3〕 参考例2と同様に、実施例1で用いた組成のシュレッダーダストを原料とし、珪砂を流動媒体として、図3に示すフローチャートに従って操業規模で本発明のダスト処理方法を実施した。上記原料をチェーンフィーダーで3.2トン/hの量で切り出し、流動床焼却炉に装入した。一次空気量を空気比0.54、二次空気量を空気比0.86で吹き込み、層内温度、1次燃焼室(1)、1次燃焼室(2)、2次燃焼室の各温度を表10記載の各温度で行った。 [ Reference Example 3] As in Reference Example 2, the dust treatment method of the present invention was carried out on the operation scale according to the flowchart shown in FIG. 3 using the shredder dust having the composition used in Example 1 as a raw material and silica sand as a fluid medium. . The raw material was cut out at a rate of 3.2 ton / h with a chain feeder and charged into a fluidized bed incinerator. The primary air volume is blown at an air ratio of 0.54 and the secondary air volume is blown at an air ratio of 0.86, and the temperature in the bed, the primary combustion chamber (1), the primary combustion chamber (2), and the secondary combustion chamber temperatures. Was performed at each temperature described in Table 10.

第一工程で得られた不燃物は2mmふるいで分級し、オーバーとして銅品位の高い不燃物を回収し銅原料として銅製錬工程の転炉へ装入し、アンダーとして銅などの金属が多少付着した砂(珪砂)を回収し造スラグ剤として銅製錬工程の自溶炉へ装入した。さらに、排ガス流量は約35000Nm/hであり、COピーク発生回数は0回であった。
このように1次燃焼室温度を800℃以下に、2次燃焼室温度を950℃以下に保つことで、炉内におけるクリンカの生成を抑えて操業トラブルを防止しながら、熱回収を行い、実施例1、実施例2と同様に、製錬で処理可能な不燃物を得ることができ、微細有価金属を付着した流動砂は造スラグ剤としてそのまま製錬工程の溶錬炉に装入して有価金属を回収することができた。
The incombustible material obtained in the first step is classified with a 2 mm sieve, and the high-grade incombustible material is recovered as an overload, which is then loaded into the copper smelting process converter as a copper raw material. The collected sand (silica sand) was recovered and charged into a flash smelting furnace of a copper smelting process as a slagging agent. Further, the exhaust gas flow rate was about 35000 Nm 3 / h, and the number of CO peak occurrences was 0.
By maintaining the primary combustion chamber temperature at 800 ° C or lower and the secondary combustion chamber temperature at 950 ° C or lower in this way, heat recovery is performed while suppressing the generation of clinker in the furnace and preventing operational troubles. As in Example 1 and Example 2, incombustible material that can be processed by smelting can be obtained, and the fluidized sand with fine valuable metals attached is directly charged into the smelting furnace of the smelting process as a slagging agent. Valuable metals could be recovered.

有価金属の金属屑や酸化物、プラスチック等の高分子化合物などが混在して含有されるシュレッダーダスト等のダストから有価金属、特に非鉄金属を回収する用途に適用することができる。   The present invention can be applied to recovering valuable metals, particularly non-ferrous metals, from dust such as shredder dust containing a mixture of valuable metal scraps, oxides, polymer compounds such as plastics, and the like.

本発明に係るダスト処理方法のフローチャート図である。It is a flowchart figure of the dust processing method which concerns on this invention. 本発明に係るダスト処理方法の実施例において用いた流動床焼却炉の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the fluidized-bed incinerator used in the Example of the dust processing method which concerns on this invention. 本発明に係るダスト処理方法の別のフローチャート図である。It is another flowchart figure of the dust processing method which concerns on this invention.

符号の説明Explanation of symbols

1 流動床焼却炉
2 不燃物排出口
3 一次給気口
4 原料装入口
5 二次給気口
6 ガス排出口
a 一次空気
b 流動層
c 不燃物
d フリーボード域
e 二次空気
f 燃焼後の排ガス
DESCRIPTION OF SYMBOLS 1 Fluidized bed incinerator 2 Incombustible discharge port 3 Primary supply port 4 Raw material inlet 5 Secondary supply port 6 Gas discharge port a Primary air b Fluidized bed c Incombustible material d Free board area e Secondary air f After combustion Exhaust gas

Claims (4)

予め流動媒体を装入した流動床炉内の流動層において金属と高分子化合物とを含有するシュレッダーダスト空気比1未満の一次空気の供給により該シュレッダーダストの一部を燃焼させ気化ガスと不燃物とを得る第一工程、該不燃物を該炉外に排出して回収し製錬原料とする第二工程、該炉内のフリーボード域において該気化ガスに二次空気を供給して完全燃焼させる第三工程、該完全燃焼後の排ガスを該炉外に排出して飛灰を捕集する第四工程、及び前記の捕集された飛灰を洗浄し得られた残渣を製錬原料とする第五工程を有することを特徴とするダスト処理方法。 In a fluidized bed in a fluidized bed furnace previously charged with a fluidized medium, shredder dust containing a metal and a polymer compound is combusted partially by supplying primary air with an air ratio of less than 1, and vaporized gas and non-combustible. the first step of obtaining and objects, the incombustible the second step of the smelting raw material was recovered by discharged outside the furnace, fully to supply secondary air to the vaporized gas in the freeboard zone of the furnace A third step for burning , a fourth step for discharging the exhaust gas after complete combustion to the outside of the furnace and collecting fly ash, and a residue obtained by washing the collected fly ash A dust treatment method comprising the fifth step . 前記第一工程が450〜700℃で行われ、前記第三工程が800〜900℃で行われる、請求項1記載のダスト処理方法。 The dust treatment method according to claim 1 , wherein the first step is performed at 450 to 700 ° C., and the third step is performed at 800 to 900 ° C. 前記第一工程及び第三工程で発生する熱を廃熱ボイラーにおいて回収する、請求項1または2に記載のダスト処理方法。 The dust processing method according to claim 1 or 2 , wherein heat generated in the first step and the third step is recovered in a waste heat boiler. 前記流動媒体が珪砂である、請求項1〜3のいずれかに記載のダスト処理方法 The dust processing method according to claim 1, wherein the fluid medium is silica sand .
JP2003341902A 2002-09-30 2003-09-30 Dust disposal method Expired - Lifetime JP4243661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341902A JP4243661B2 (en) 2002-09-30 2003-09-30 Dust disposal method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002285663 2002-09-30
JP2003341902A JP4243661B2 (en) 2002-09-30 2003-09-30 Dust disposal method

Publications (2)

Publication Number Publication Date
JP2004141867A JP2004141867A (en) 2004-05-20
JP4243661B2 true JP4243661B2 (en) 2009-03-25

Family

ID=32473254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341902A Expired - Lifetime JP4243661B2 (en) 2002-09-30 2003-09-30 Dust disposal method

Country Status (1)

Country Link
JP (1) JP4243661B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082155B2 (en) * 2005-03-18 2012-11-28 Dowaエコシステム株式会社 Waste treatment system
JP2008039331A (en) * 2006-08-09 2008-02-21 Mitsubishi Materials Techno Corp Processing system and method for discarded automobile
JP5409269B2 (en) * 2009-10-30 2014-02-05 Jfeスチール株式会社 Dust recovery method in scrap shredder equipment
JP6261706B1 (en) * 2016-11-18 2018-01-17 株式会社神鋼環境ソリューション How to clean fly ash
JP7020883B2 (en) * 2017-11-27 2022-02-16 太平洋セメント株式会社 Metal-containing waste treatment equipment and treatment method
CN110616323A (en) * 2019-07-31 2019-12-27 华北理工大学 Method for producing alloy blocks and mineral wool from blast furnace cloth bag dust removal ash and fly ash
JP7111123B2 (en) * 2020-03-23 2022-08-02 Jfeスチール株式会社 Waste recycling method and device
CN115138665A (en) * 2022-08-08 2022-10-04 四川实美科技有限公司 Waste residue recycling method for non-ferrous metal smelting

Also Published As

Publication number Publication date
JP2004141867A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US5364441A (en) Cotreatment of sewage and steelworks wastes
CN111020212B (en) Recovery process of copper from copper-containing waste metal
CN110923455B (en) Crude copper converting process
JP4243661B2 (en) Dust disposal method
JPS63310691A (en) Method of treating contaminated mineral substance
JP2003039056A (en) Waste treatment method and apparatus utilizing metal refining process
JP3856711B2 (en) Method and apparatus for recycling inorganic waste containing inorganic chemical components that can be reused as ceramic raw materials
CZ9903703A3 (en) Recovery process of starting materials from waste and residual matters and apparatus for making the same
JP3535381B2 (en) Collection of valuable metals
JP2007225122A (en) Flying ash detoxifying method and its device
JPH0674888B2 (en) Treatment of process gas containing halogen compounds
JP3774994B2 (en) Resource separation method and equipment
JPH03502128A (en) Waste treatment method using oxy-combustion
JP2000247616A (en) Facilities and method for recovering phosphorus from waste
JP2005195228A (en) Waste material melting treatment system
JPH09122617A (en) Treatment method for shredder dust of large-sized industrial waste
CN217875853U (en) Resource disposal device for hazardous waste
JP2003117520A (en) Method for treating incineration ash
JP2004188414A (en) Heavy metal recovering apparatus, heavy metal recovering method and waste treating apparatus
JP3917775B2 (en) Recycling method of incineration ash
JP3834440B2 (en) Wet detoxification treatment method for dioxins
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP3759200B2 (en) Thermal decomposition / melting method and apparatus for waste
JP2000026924A (en) Method for separating and removing non-ferrous metals in waste
JP2003269710A (en) Waste treatment device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4243661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term