JP3304734B2 - How to treat shredder dust - Google Patents
How to treat shredder dustInfo
- Publication number
- JP3304734B2 JP3304734B2 JP35226495A JP35226495A JP3304734B2 JP 3304734 B2 JP3304734 B2 JP 3304734B2 JP 35226495 A JP35226495 A JP 35226495A JP 35226495 A JP35226495 A JP 35226495A JP 3304734 B2 JP3304734 B2 JP 3304734B2
- Authority
- JP
- Japan
- Prior art keywords
- residue
- smelting
- gas
- carbonized
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000428 dust Substances 0.000 title claims description 43
- 238000003723 Smelting Methods 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 45
- 238000000197 pyrolysis Methods 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 30
- 238000003763 carbonization Methods 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 28
- 238000005406 washing Methods 0.000 claims description 28
- 239000000460 chlorine Substances 0.000 claims description 27
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 26
- 229910052801 chlorine Inorganic materials 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 26
- 239000010949 copper Substances 0.000 claims description 26
- 239000002893 slag Substances 0.000 claims description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 239000000446 fuel Substances 0.000 claims description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 13
- 239000011575 calcium Substances 0.000 claims description 13
- 229910052791 calcium Inorganic materials 0.000 claims description 13
- 235000001465 calcium Nutrition 0.000 claims description 13
- 229910001510 metal chloride Inorganic materials 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000002351 wastewater Substances 0.000 claims description 9
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 8
- 238000003672 processing method Methods 0.000 claims description 8
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- 150000002484 inorganic compounds Chemical class 0.000 claims description 6
- 229910010272 inorganic material Inorganic materials 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 239000004568 cement Substances 0.000 claims description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 3
- 239000000920 calcium hydroxide Substances 0.000 claims description 3
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 3
- 239000000292 calcium oxide Substances 0.000 claims description 3
- 235000012255 calcium oxide Nutrition 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 235000010216 calcium carbonate Nutrition 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000010000 carbonizing Methods 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 35
- 239000003921 oil Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 8
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 8
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 238000006298 dechlorination reaction Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 3
- 235000011941 Tilia x europaea Nutrition 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000004571 lime Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229940043430 calcium compound Drugs 0.000 description 2
- 150000001674 calcium compounds Chemical class 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000013502 plastic waste Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical class [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/82—Recycling of waste of electrical or electronic equipment [WEEE]
Landscapes
- Liquid Carbonaceous Fuels (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、廃棄された自動車
や家電製品などの破砕処理によって生じるシュレッダー
ダストを無害化し、減容化および再資源化する処理方法
に関する。より詳しくは、シュレッダーダストを燃料化
する際に脱塩素化処理し、既存の製錬炉を利用してその
金属分を回収できるようにし、かつ燃料化により回収し
た炭化物、油分およびガス分を製錬炉などのエネルギー
源に再利用してその全面的な活用を図る再資源化方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detoxifying shredder dust generated by crushing discarded automobiles and home electric appliances, reducing the volume and recycling the shredder dust. More specifically, when shredder dust is converted to fuel, it is dechlorinated, its metal can be recovered using an existing smelting furnace, and the carbide, oil, and gas recovered by the conversion to fuel are manufactured. The present invention relates to a recycling method for reusing an energy source such as a smelting furnace for full utilization.
【0002】[0002]
【従来技術とその課題】現在、シュレッダーダストの大
部分は埋立処分されているが、ダストの発生量が急増
し、年間100万t以上のダストが発生しており、処分
場が逼迫していることから埋立に頼らない有効な処理方
法が求められている。また従来の埋立処理では重金属類
および油類の溶出による環境汚染が深刻な社会問題を引
き起こしている。この対策として、シュレッダーダスト
を焼却して減容化し、同時に熱回収を図る方法が有望視
されている。2. Description of the Related Art At present, most of shredder dust is landfilled, but the amount of generated dust is rapidly increasing, and more than 1 million tons of dust is generated annually, and the disposal site is tight. Therefore, an effective treatment method that does not rely on landfill is required. Further, in conventional landfill treatment, environmental pollution due to elution of heavy metals and oils causes serious social problems. As a countermeasure, a method of incinerating shredder dust to reduce the volume and at the same time, recovering heat is considered promising.
【0003】ところが、シュレッダーダストは、主に配
線の被覆材であるポリ塩化ビニルなどの塩素含有プラス
チックをはじめとするプラスチック廃棄物と金属屑が混
在したものであり、従って、これを直接に燃焼炉に投入
して燃焼させると、多量の焼却灰が残り、しかも重金属
類が焼却灰中に残存するためそのまま埋立処分すること
ができず、溶融固化するなどの後処理が必要になる。し
かも、塩素を含むため通常の加熱処理ではダイオキシン
発生の虞があり、また塩化水素による装置類の腐食が問
題になる。このようにシュレッダーダストの単純な焼却
処理ではこれらの問題を解決できない。However, shredder dust is mainly a mixture of plastic waste including chlorine-containing plastics such as polyvinyl chloride, which is a coating material for wiring, and metal scraps. When the waste is put into a furnace and burned, a large amount of incineration ash remains, and heavy metals remain in the incineration ash, so that it cannot be landfilled as it is, and post-treatment such as melting and solidification is required. Moreover, since it contains chlorine, there is a risk that dioxin will be generated during normal heat treatment, and corrosion of equipment due to hydrogen chloride will be a problem. Thus, these problems cannot be solved by simple incineration of shredder dust.
【0004】[0004]
【発明の解決課題】本発明は、シュレッダーダストの廃
棄処理における従来の上記課題を解決した無害化・再資
源化方法を提供するものであり、シュレッダーダストを
熱分解する際に脱塩素化処理して既存の製錬炉を利用で
きるようにしたものであり、さらに熱分解処理において
回収した炭化物、油分およびガス分を製錬炉などのエネ
ルギー源として再利用すると共にダスト中の金属分を製
錬炉を用いて回収することにより無害化して再資源化を
図る処理方法を提供するものである。SUMMARY OF THE INVENTION The present invention provides a detoxification / recycling method which solves the above-mentioned conventional problems in the disposal of shredder dust, and performs a dechlorination treatment when the shredder dust is thermally decomposed. The existing smelting furnace can be used to recycle the carbide, oil, and gas recovered in the pyrolysis process as an energy source for the smelting furnace, and smelt the metal in dust. An object of the present invention is to provide a processing method for detoxifying and recycling resources by collecting them in a furnace.
【0005】[0005]
【課題解決の手段】 本発明によれば、(1)カルシウ
ム含有塩基性無機化合物を添加したシュレッダーダスト
を非酸化性雰囲気下で、300〜600℃の温度で乾留
し、該ダストに含まれる塩素をダスト中の金属屑および
カルシウム成分と反応させて該乾留温度では揮発しない
塩化物を生成させることにより含有塩素を残渣中に固定
して乾留ガスから分離し、乾留ガスを回収する一方、乾
留残渣を洗浄し水溶性金属塩化物を溶解除去して脱塩素
化し、その後、この洗浄残渣を製錬炉に導入して残渣に
含まれる鉄およびカルシウムを酸化させてスラグの形成
を促す一方、残渣中の金属成分を溶融させて回収し、さ
らに上記乾留ガスないしその凝縮により得た乾留油を燃
料として再利用することを特徴とするシュレッダーダス
トの処理方法が提供される。According to the present invention, (1) shredder dust to which a calcium-containing basic inorganic compound is added is carbonized in a non-oxidizing atmosphere at a temperature of 300 to 600 ° C. to remove chlorine contained in the dust. Is reacted with metal dust and calcium components in dust to generate chlorides that do not volatilize at the carbonization temperature, thereby fixing the chlorine contained in the residue and separating it from the carbonization gas. Is washed to dissolve and remove water-soluble metal chlorides and dechlorinated, and then the washing residue is introduced into a smelting furnace to oxidize iron and calcium contained in the residue to form slag.
A method for treating shredder dust, characterized by melting and recovering the metal component in the residue while reusing the dry distillation gas or the dry distillation oil obtained by condensation thereof as fuel.
【0006】さらに本発明によれば、上記シュレッダー
ダストの処理方法について、より具体的な以下の方法が
提供される。 (2)上記洗浄残渣を非鉄製錬炉に導入する上記(1)に
記載の処理方法。 (3)非鉄製錬炉として、銅製錬または鉛製錬の製錬炉
を用いる上記(2)に記載の処理方法。 (4)乾留後、その洗浄残渣および乾留ガスから炭化物
を回収して燃料に利用すると共に乾留ガスを凝縮して得
た乾留液を油水分離して乾留油を回収し、該乾留油およ
び未凝縮の乾留ガスを燃料として再利用する上記(1)〜
(3)のいずれかに記載の処理方法。 (5)上記洗浄残渣を非鉄製錬炉において製錬原料と共
に溶融し、残渣中の金属分を製錬マット中に回収すると
共に製錬スラグをセメント資源として再利用する上記
(1)〜(4)のいずれかに記載の処理方法。 (6)カルシウム含有塩基性無機化合物として消石灰、
生石灰および炭酸カルシウムを用いる上記(1)に記載の
処理方法。 (7) 乾留残渣をアルカリ液で洗浄し、残渣から溶脱
した金属分を水酸化物として回収する上記(1)〜(6)のい
ずれかに記載の処理方法。 (8)アルカリ洗浄後、洗浄排水のpHを排水規制値の
範囲に調整する上記(7)に記載の処理方法。Further, according to the present invention, the following specific method is provided for the above-mentioned method for treating shredder dust. (2) The treatment method according to (1), wherein the cleaning residue is introduced into a non-ferrous smelting furnace. (3) The processing method according to the above (2), wherein a smelting furnace of copper smelting or lead smelting is used as the non-ferrous smelting furnace. (4) After the carbonization, carbonized carbon is recovered from the washed residue and the carbonized gas and used as fuel, and the carbonized gas obtained by condensing the carbonized gas is separated into oil and water to recover the carbonized oil, and the carbonized oil and the non-condensed oil (1) to reuse the carbonized gas from the above as fuel
The processing method according to any one of (3). (5) The above washing residue is melted together with a smelting raw material in a non-ferrous smelting furnace, the metal content in the residue is collected in a smelting mat, and the smelting slag is reused as a cement resource.
The processing method according to any one of (1) to (4). (6) slaked lime as a calcium-containing basic inorganic compound;
The treatment method according to the above (1), using quick lime and calcium carbonate. (7) The treatment method according to any one of (1) to (6) above, wherein the dry distillation residue is washed with an alkaline solution, and a metal component leached from the residue is recovered as a hydroxide. (8) The treatment method according to the above (7), wherein after the alkali washing, the pH of the washing wastewater is adjusted to a range of a wastewater regulation value.
【0007】[0007]
【発明の実施形態】本発明の処理方法は、シュレッダー
ダストを乾留して脱塩素化と燃料化を行う脱塩素化乾留
工程と、乾留残渣を製錬炉に投入して金属分を回収する
製錬工程とからなる。本発明に係る処理工程の一例を図
1に示す。BEST MODE FOR CARRYING OUT THE INVENTION The treatment method of the present invention comprises a dechlorination carbonization step of carbonizing shredder dust to perform dechlorination and fuel conversion, and a method of charging a carbonization residue into a smelting furnace to recover metal components. Refining process. FIG. 1 shows an example of a processing step according to the present invention.
【0008】(I)脱塩素化乾留工程 シュレッダーダストに含まれる塩化ビニルは電線の被覆
材などとして多量に用いられている。塩化ビニルそのも
のは理論的には56重量%(以下%と略記)程度の塩素
を含有し、他のポリオレフィン系樹脂およびポリスチレ
ン樹脂等とは、その燃焼、熱分解の挙動が大きく異な
り、比較的低温(約200 ℃以上)で、塩化水素を発生し
つつ熱分解する。 (I) Dechlorination Drying Step Vinyl chloride contained in shredder dust is used in large quantities as a covering material for electric wires. Vinyl chloride itself contains theoretically about 56% by weight (hereinafter abbreviated as%) of chlorine, and its combustion and thermal decomposition behavior is significantly different from that of other polyolefin resins and polystyrene resins. (Above about 200 ° C), decomposes while generating hydrogen chloride.
【0009】本発明の処理方法は、この塩化水素の発生
を避けるために、シュレッダーダストを非酸化性雰囲気
下において、300〜600℃の比較的低温で乾留し、
被覆材などに含有されている塩素とダストに混在する金
属屑とを反応させて非昇華性の金属塩化物を形成させる
ことにより塩素分を残渣中に固定し、乾留ガスから分離
する。According to the treatment method of the present invention, shredder dust is carbonized at a relatively low temperature of 300 to 600 ° C. in a non-oxidizing atmosphere in order to avoid the generation of hydrogen chloride.
The chlorine contained in the coating material and the like and the metal dust mixed in the dust react with each other to form a non-sublimable metal chloride, whereby the chlorine content is fixed in the residue and separated from the carbonization gas.
【0010】金属屑を混在せずに電線被覆材用塩化ビニ
ルを300℃前後で乾留すると、含有塩素の80%強は
塩化水素として気化する。一方、シュレッダーダストに
は概ね10〜30%の金属屑が混在しており、金属屑が
混在する状態でシュレッダーダストを乾留すると、塩化
ビニルの分解によって生じる塩素ないし塩化水素はダス
ト中に含まれる鉄、銅、アルミニウム、亜鉛、マグネシ
ウム、カルシウム、ナトリウムあるいは鉛などの金属と
反応し、該乾留温度では気化しない金属塩化物が形成さ
れ、これが乾留残渣中に固形分として残るために塩素ガ
スや塩化水素ガス等が殆ど発生しない。When vinyl chloride for an electric wire covering material is dry-distilled at about 300 ° C. without metal scrap, more than 80% of the contained chlorine is vaporized as hydrogen chloride. On the other hand, shredder dust generally contains 10 to 30% of metal dust. When shredder dust is carbonized in a state in which metal dust is mixed, chlorine or hydrogen chloride generated by decomposition of vinyl chloride is reduced to iron contained in the dust. Reacts with metals such as copper, aluminum, zinc, magnesium, calcium, sodium, and lead to form metal chlorides that do not evaporate at the carbonization temperature, and remain as solids in the carbonization residue, so chlorine gas and hydrogen chloride Almost no gas is generated.
【0011】なお、金属屑に代え、または金属屑と共に
カルシウム含有塩基性無機化合物を加えても良い。カル
シウム含有塩基性無機化合物としては消石灰、生石灰ま
たは炭酸カルシウムなどが用いられる。この場合も同様
にプラスチックの分解によって生じた塩素はこれらカル
シウム化合物と反応して塩化カルシウムとなり、残渣に
固定される。従って、廃材中の金属量が少ない場合には
これらのカルシウム化合物を加えることにより、容易に
しかも安価に塩素を残渣中に固定することができる。Incidentally, a calcium-containing basic inorganic compound may be added instead of or together with the metal scrap. Slaked lime, quicklime or calcium carbonate is used as the calcium-containing basic inorganic compound. In this case, similarly, chlorine generated by decomposition of the plastic reacts with these calcium compounds to form calcium chloride, which is fixed to the residue. Therefore, when the amount of metal in the waste material is small, chlorine can be easily and inexpensively fixed in the residue by adding these calcium compounds.
【0012】乾留温度の範囲は、樹脂中の塩素が分解す
る300℃以上から廃材中の樹脂成分の大部分が分解す
る600℃以下が適当である。300℃より低いと脱塩
化水素が進まず、また、600℃を越えると金属塩化物
の一部が揮発してガス中に移行するので好ましくない。The range of the carbonization temperature is suitably from 300 ° C. or higher at which chlorine in the resin is decomposed to 600 ° C. or lower at which most of the resin components in the waste material are decomposed. If the temperature is lower than 300 ° C., dehydrochlorination does not proceed, and if it is higher than 600 ° C., a part of the metal chloride is volatilized and moves into the gas, which is not preferable.
【0013】乾留時間は樹脂が熱分解して反応が十分に
進行し、金属塩化物の生成が終了するために十分な時間
行う。廃材の処理量や温度等にもよるが、約200gの
プラスチック廃材を分解するのに必要な時間は概ね30
〜60分程度である。[0013] The dry distillation time is sufficient for the resin to be thermally decomposed and the reaction to proceed sufficiently to complete the formation of the metal chloride. The time required to decompose about 200 g of plastic waste material is generally 30 minutes, depending on the amount and temperature of the waste material.
It is about 60 minutes.
【0014】さらに乾留は窒素などの不活性ガスを導入
して空気を排出した非酸化性雰囲気下で行う。この場
合、非酸化性雰囲気とは酸素濃度16 vol%以下である
ことを云う。好ましくは酸素濃度4 vol%以下の不活性
ガス雰囲気が適当である。空気中(酸化性雰囲気)で乾
留すると混在する鉄などが乾留時に酸化し、酸化数の高
い揮発性の塩化物を形成するので好ましくない。例え
ば、鉄は空気中で乾留すると有機物廃材中の含有塩素と
反応して塩化鉄(III)FeCl 3 を生じる。この塩化鉄(II
I) は沸点が約317℃であり、塩化鉄(II)FeCl2 の沸
点(約1023℃)よりも格段に低い温度で揮発するので、
乾留時に気化し、塩素を残渣中に固定する作用を果さな
い。Further, dry distillation is performed in a non-oxidizing atmosphere in which an inert gas such as nitrogen is introduced and air is discharged. In this case, the non-oxidizing atmosphere means that the oxygen concentration is 16 vol% or less. Preferably, an inert gas atmosphere having an oxygen concentration of 4 vol% or less is suitable. Dry distillation in air (oxidizing atmosphere) is not preferable because iron and the like mixed therein are oxidized during dry distillation to form volatile chloride having a high oxidation number. For example, when iron is carbonized in the air, it reacts with chlorine contained in organic waste materials to produce iron (III) chloride FeCl 3 . This iron chloride (II
I) has a boiling point of about 317 ° C. and volatilizes at a temperature significantly lower than the boiling point of iron (II) chloride, FeCl 2 (about 1023 ° C.).
Vaporizes during carbonization and does not act to fix chlorine in the residue.
【0015】乾留は多段に分けて行っても良い。例え
ば、含有塩素の大部分が離脱する300〜450℃程
度、好ましくは300〜350℃の温度で1次乾留を行
い、引き続き、その残渣を被覆材を含む樹脂類の大半が
分解する450〜600℃の温度で2次乾留を行う。The dry distillation may be performed in multiple stages. For example, primary carbonization is performed at a temperature of about 300 to 450 ° C., preferably 300 to 350 ° C., at which most of the chlorine contained is released, and then the residue is removed at a temperature of 450 to 600 at which most of the resin including the coating material is decomposed. A second carbonization is performed at a temperature of ° C.
【0016】乾留処理により、樹脂に含まれる塩素分は
その殆ど全量が分解して金属屑と反応し、金属塩化物と
して乾留残渣に残るので乾留ガス中に揮発する塩素ガス
あるいは塩化水素ガスの量はごく僅かである。樹脂の大
部分は含有塩素の離脱と共に熱分解し、乾留ガスとして
揮発する。By the carbonization treatment, almost all of the chlorine contained in the resin is decomposed and reacts with metal scraps, and remains in the carbonization residue as metal chloride. Therefore, the amount of chlorine gas or hydrogen chloride gas volatilized in the carbonization gas is reduced. Is negligible. Most of the resin is thermally decomposed with the elimination of the contained chlorine and volatilized as a dry distillation gas.
【0017】乾留ガスはコンデンサーに導き、冷却凝縮
して乾留液を回収し、さらに未凝縮のガス分をアルカリ
液に導き、アルカリ洗浄によってガス中にごく僅か残留
する塩素分を捕集分離した後に回収する。この乾留ガス
は主に炭化水素ガスであり燃料ガスとして再利用するこ
とができる。さらに、乾留液は遠心分離などにより水分
と油分に分離し、油分を燃料として回収する。これらの
乾留油および乾留ガスは製錬工程等の燃料の一部として
利用することができる。The dry distillation gas is led to a condenser, cooled and condensed to recover the dry distillation liquid, and further the uncondensed gas is led to an alkali liquid, and a very small amount of chlorine remaining in the gas is collected and separated by alkali washing. to recover. The carbonization gas is mainly a hydrocarbon gas and can be reused as a fuel gas. Further, the dry distillate is separated into water and oil by centrifugation or the like, and the oil is recovered as fuel. These carbonized oil and carbonized gas can be used as a part of the fuel in the smelting process and the like.
【0018】一方、乾留ガスをコンデンサーに導入する
前にダストトラップに導いてガス中に混在する炭化物を
捕集回収し、また乾留残渣に含まれる炭化物を回収して
燃料として再利用することができる。乾留残渣に含まれ
る炭化物は、洗浄後、残渣を粉砕し、その比重差を利用
して分離回収することができる。なお、形状や粒度の差
を利用して分離回収してもよい。On the other hand, before introducing the carbonized gas into the condenser, it is guided to a dust trap to collect and recover carbides mixed in the gas, and the carbonized materials contained in the carbonized residue can be recovered and reused as fuel. . After the carbonization contained in the carbonization residue, the residue can be pulverized after washing, and separated and recovered by utilizing the difference in specific gravity. In addition, you may separate and collect | recover using the difference of a shape and a particle size.
【0019】乾留残渣中の金属塩化物は大部分が水溶性
であり、この残渣を洗浄して金属塩化物を溶解する。洗
浄は水洗でもよく、また苛性ソーダや石灰等を加えたア
ルカリ洗浄でもよい。苛性ソーダや石灰等を加えて洗浄
することにより、洗浄液が中和され、残渣から溶脱した
金属イオンは水酸化物として沈殿するので、これを分離
回収することができる。この場合、洗浄液のアルカリ量
は、溶脱した金属分が水酸化物沈殿を生じるpH域にな
る量を用いる。最適pH域は金属の種類等によって異な
り、各々の金属種等に応じてアルカリ量を定めれば良
い。Most of the metal chlorides in the dry distillation residue are water-soluble, and the residue is washed to dissolve the metal chloride. The washing may be washing with water or alkali washing with caustic soda or lime. By washing with caustic soda, lime, or the like, the washing solution is neutralized, and metal ions leached from the residue precipitate as hydroxides, which can be separated and collected. In this case, the amount of alkali in the cleaning solution is such that the leached metal content falls within a pH range where hydroxide precipitation occurs. The optimum pH range varies depending on the type of metal and the like, and the amount of alkali may be determined according to each metal type and the like.
【0020】なお、洗浄排液のpH値が排水の規制値を
外れる場合には上記金属水酸化物を回収した後に排水の
pHを再度調整して排水規制値の範囲内におさめる。具
体的には、現在の排出基準では排水のpHが5.8〜
8.6の範囲に規制されているので、この規制値を外れ
るときには金属水酸化物を回収した後に再度pHを調整
して上記範囲内に整える。If the pH value of the washing wastewater is out of the regulation value of the wastewater, the pH of the wastewater is adjusted again after collecting the metal hydroxide to fall within the regulation value of the wastewater. Specifically, according to the current emission standards, the pH of wastewater is 5.8 to
Since the value is regulated to the range of 8.6, when the value deviates from the regulated value, the pH is adjusted again after recovering the metal hydroxide and adjusted to the above range.
【0021】この他に、水洗により溶脱された金属塩化
物は、例えば、電気透析やイオン交換樹脂による方法、
洗浄液を煮沸して結晶化させる方法など常用の方法によ
り分離回収しても良い。In addition, the metal chloride leached by washing with water can be used, for example, by electrodialysis or ion exchange resin,
The washing liquid may be separated and collected by a conventional method such as a method of boiling to crystallize.
【0022】(II)製錬工程 乾留残渣を洗浄後、洗浄残渣を銅製錬あるいは鉛製錬な
どの非鉄金属製錬の製錬炉に投入し、製錬原料と共に溶
融して残渣中の金属成分を製錬マット中に回収すると共
に鉄およびカルシウム等を製錬スラグとして回収する。
シュレッダーダストを上記乾留工程を経ずに直接、製錬
炉に投入すると、既に述べたようにプラスチックの分解
によって生じる塩素ガスや塩化水素ガスのために製錬炉
や煙道などの設備が腐食され、また作業環境を損なう問
題がある。本処理方法は予め前述の乾留工程を経た乾留
残渣を製錬工程に導入するのでこのような問題を生じな
い。 (II) Smelting Step After washing the dry distillation residue, the washed residue is put into a smelting furnace for non-ferrous metal smelting such as copper smelting or lead smelting, and is melted together with the smelting raw material to form a metal component in the residue. Is recovered in a smelting mat and iron and calcium are recovered as smelting slag.
If the shredder dust is directly injected into the smelting furnace without going through the above-mentioned carbonization process, the smelting furnace and flue gas and other equipment will be corroded due to the chlorine gas and hydrogen chloride gas generated by the decomposition of plastics as described above. In addition, there is a problem that the working environment is impaired. According to the present treatment method, such a problem does not occur because the carbonized residue after the carbonization step is introduced into the smelting step in advance.
【0023】乾留残渣を投入する製錬炉の種類は制限さ
れず、粗鉱ないし精鉱などを溶解する溶錬工程あるいは
精製工程などにおいて使用される各種の製錬炉、例え
ば、溶鉱炉、自溶炉、還元炉、反射炉、転炉、精製炉あ
るいは連続銅製錬における溶解炉、分離炉、製銅炉など
を利用することができ、これらは乾留残渣の性状などに
応じて選択される。The type of the smelting furnace into which the carbonization residue is charged is not limited, and various smelting furnaces used in a smelting process or a refining process for melting coarse ore or the like, for example, a smelting furnace, a self- A furnace, a reduction furnace, a reverberatory furnace, a converter, a refining furnace, or a melting furnace, a separation furnace, or a copper making furnace in continuous copper smelting can be used, and these are selected according to the properties of the dry distillation residue.
【0024】製錬工程の一例として、銅製錬工程を利用
した処理方法を図2に示した。図示する製銅工程におい
て、銅精鉱は反射炉21で溶融され、 FeO-CaO-SiO2系
のスラグと硫化鉄を含む硫化銅のマットに分離され、マ
ットは転炉22に導かれ、ここで溶融マットに空気を吹
込み、鉄分を酸化してスラグに追い出し、硫化銅を粗銅
に変える。スラグは反射炉21に戻され、再度、銅分が
回収され、また転炉22で得た粗銅は精製炉23に送ら
れ、粗銅中の不純物を酸化揮発させるかスラグとして除
去した後に還元して精製銅を得る。この精製銅は電解製
錬のアノードとなる。反射炉21および転炉22で生じ
る亜硫酸ガスなどの排ガスはボイラー24およびコット
レル25に導き煙灰を除去する。FIG. 2 shows a processing method using a copper smelting process as an example of the smelting process. In the illustrated copper making process, the copper concentrate is melted in a reverberatory furnace 21 and separated into a FeO-CaO-SiO 2 slag and a copper sulfide mat containing iron sulfide. Blows air into the molten mat to oxidize iron and expel it to slag, turning copper sulfide into blister copper. The slag is returned to the reverberatory furnace 21, and the copper content is recovered again. The blister copper obtained in the converter 22 is sent to the refining furnace 23, where the impurities in the blister copper are oxidized and volatilized or removed as slag and then reduced. Obtain purified copper. This purified copper becomes an anode for electrolytic smelting. Exhaust gas such as sulfurous acid gas generated in the reverberatory furnace 21 and the converter 22 is guided to a boiler 24 and a cotrel 25 to remove smoke ash.
【0025】シュレッダーダストの乾留残渣は、その性
状に応じて主に反射炉21ないし転炉22に投入され、
銅精鉱ないしマットと共に溶融され、その際、残渣中に
含まれる鉄およびカルシウムは酸化されてスラグ化し、
マットから分離される。貴金属は銅と共にマット中に溶
融し、粗銅に含有されて精製炉に送られ、最終的には電
解工程を経て回収される。また、反射炉21および転炉
22で煙灰として発生する酸化鉛および酸化亜鉛はボイ
ラー24およびコットレル25で排ガスから回収され、
さらに乾留洗浄残渣および排ガスから回収された炭化物
は、乾留ガスおよび乾留油と共に製錬炉の燃料として利
用される。また転炉で生じるスラグは反射炉21に戻し
て再利用するほかにセメント原料および骨材として利用
される。The residue of the dry distillation of the shredder dust is mainly charged into the reverberatory furnace 21 or the converter 22 depending on its properties.
Melted with copper concentrate or mat, iron and calcium contained in the residue are oxidized to slag,
Separated from the mat. The noble metal is melted in the mat together with the copper, contained in the blister copper, sent to the refining furnace, and finally recovered through the electrolytic process. Further, lead oxide and zinc oxide generated as smoke in the reverberatory furnace 21 and the converter 22 are recovered from the exhaust gas by the boiler 24 and the cotrel 25,
Further, the carbonized matter recovered from the carbonization washing residue and the exhaust gas is used as fuel for the smelting furnace together with the carbonization gas and the carbonization oil. Slag generated in the converter is returned to the reverberatory furnace 21 and reused, and also used as a raw material for cement and an aggregate.
【0026】[0026]
【実施例】本発明を実施例によって以下に具体的に説明
する。なお本実施例は例示であり本発明の範囲を限定す
るものではない。The present invention will be specifically described below by way of examples. This embodiment is an exemplification and does not limit the scope of the present invention.
【0027】実施例1 (1) 乾留工程 内熱式連続乾留炉を用い、表1に示す組成のシュレッダ
ーダストを毎時2tonの処理量で温度550℃に加熱し
て連続的に乾留を行い、生じた乾留残渣を毎時5m3 の
水で洗浄した後に脱水し天日にて乾燥した。また乾留ガ
スをコンデンサーに導き、冷却凝縮して乾留液を回収し
た。さらに未凝縮のガス分をアルカリ液に導き、アルカ
リ洗浄によりガス中にごく僅か残留する塩素分を捕集分
離した後に回収した。一方、乾留液は遠心分離により油
水分離し、乾留油を回収した。洗浄残渣、アルカリ洗浄
後の乾留ガス、乾留油の回収量、含有塩素量およびこれ
らの発熱量を表2に示した。なお、乾留残渣を水洗する
際、部分的に石灰を加えて中和し、溶解した金属イオン
を再度沈殿させた。 Example 1 (1) Dry distillation process Shredder dust having the composition shown in Table 1 was heated to a temperature of 550 ° C. at a processing rate of 2 tons per hour and continuously carbonized by using an internal heating type continuous carbonization furnace. The residue was washed with 5 m 3 of water per hour, dehydrated and dried on the sun. The carbonized gas was led to a condenser, cooled and condensed to collect the carbonized liquid. Further, the uncondensed gas was led to an alkali solution, and a very small amount of chlorine remaining in the gas was collected and separated by alkali washing, followed by recovery. On the other hand, the carbonized liquid was separated into oil and water by centrifugation, and the carbonized oil was recovered. Table 2 shows the washing residue, the amount of the carbonized gas and the recovered carbonized oil after the alkaline cleaning, the chlorine content, and the calorific value thereof. When the residue was washed with water, lime was partially added to neutralize the residue, and the dissolved metal ions were precipitated again.
【0028】シュレッダーダストの乾留生成物の合計熱
量を石炭に換算すると約1060kg/hであり、残渣に含
まれる金属等の不燃物(490 kg/h)の溶解に要する熱量
(石炭換算量140 kg/h)を差し引き、石炭換算量で約9
00kg/hの熱量を回収することができた。また、乾留分
および洗浄残渣の塩素含有量は次表のとおりであり、洗
浄残渣を製錬炉に投入しても塩素障害を生じる虞のない
ことが確認された。The total calorie of the dry distillation product of shredder dust is about 1060 kg / h in terms of coal, and the calorie (140 kg in terms of coal) required for dissolving incombustibles (490 kg / h) such as metals contained in the residue. / h) minus about 9 in terms of coal
A heat of 00 kg / h could be recovered. Further, the chlorine content of the dry fraction and the washing residue is as shown in the following table, and it was confirmed that even if the washing residue was put into a smelting furnace, there was no danger of causing chlorine damage.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【表2】 [Table 2]
【0031】(2) 製錬工程 上記乾留工程で得た表3に示す組成の乾留洗浄残渣0.
5kgを銅製錬工程に送り、フラックス(0.04kg)と共
に、表3の組成の銅マット(2.0 kg)およびスラグ(1.
7 kg)に加えて溶解炉に入れ、1350℃で1時間加熱
し、生じた銅マットとスラグの成分を分析し、これを表
4に示した。また炉から発生した煙灰の成分を表4に併
せて示した。(2) Smelting process The dry distillation washing residue having the composition shown in Table 3 obtained in the above dry distillation process was used.
5 kg is sent to the copper smelting process, and together with flux (0.04 kg), copper mat (2.0 kg) and slag (1.
7 kg) and placed in a melting furnace and heated at 1350 ° C. for 1 hour. The components of the resulting copper mat and slag were analyzed, and the results are shown in Table 4. Table 4 also shows the components of smoke ash generated from the furnace.
【0032】この結果に示されるように、銅マットに対
して1/4の量の乾留洗浄残渣を加えると,銅マットお
よびスラグの量は残渣の添加量に対応して増加し、従っ
て残渣中の金属成分および非金属成分は各々銅マットお
よびスラグに吸収されて回収されるが、銅マットおよび
スラグの成分比は該残渣を加える前と大差なく、従って
乾留残渣の添加によって影響されず、引き続き通常の工
程に従って銅製錬を続行できることが確認された。As shown in the results, when a 1/4 amount of the dry distillation residue was added to the copper mat, the amounts of the copper mat and the slag increased correspondingly to the added amount of the residue, and therefore, the amount of the residue in the residue was increased. The metal component and the non-metal component are absorbed and recovered by the copper mat and the slag, respectively, but the component ratio of the copper mat and the slag is not much different from that before adding the residue, and thus is not affected by the addition of the carbonization residue, and It was confirmed that copper smelting could be continued according to the usual process.
【0033】[0033]
【表3】 [Table 3]
【0034】[0034]
【表4】 [Table 4]
【0035】実施例2 毎時70ton の銅精鉱を処理する連続製銅工程に、フラ
ックス(14ton/h) と共に実施例1の乾留処理によって生
じた洗浄残渣を毎時0.86ton の割合で投入し、その
産出マットと産出スラグの成分を、洗浄残渣を投入しな
いものと比較した。この結果を表5に示した。洗浄残渣
を投入したものの成分はこれを加えないものと変わら
ず、連続した製銅工程を安定に実施できた。 Example 2 Into a continuous copper making process for treating 70 tons / hour of copper concentrate, washing residues produced by the dry distillation treatment of Example 1 were fed together with a flux (14 tons / h) at a rate of 0.86 ton / hour. The components of the output mat and output slag were compared with those without the cleaning residue. The results are shown in Table 5. Even though the washing residue was added, the components remained the same as those without the addition, and the continuous copper making process could be stably performed.
【0036】[0036]
【表5】 [Table 5]
【0037】実施例3および比較例 実施例1の乾留工程で得たシュレッダーダストの乾留洗
浄残渣(試料A)0.5kgと、乾留を行わない未処理
のシュレッダーダスト(試料B)0.5kgを用い、こ
れらに実施例1と同様にフラックス(0.04kg)、銅マッ
ト(2.0 kg)およびスラグ(1.7 kg)を加えて1350
℃で1時間加熱した。その際、発生したガスをスクラバ
ーに導き、洗浄水を噴射して冷却した。これを試料A,
Bについて各々15回繰返し配管部分(SUS316製)およ
び洗浄水噴射ノズル部分(SUS316製)の腐食を調べた。 Example 3 and Comparative Example 0.5 kg of the dry distillation washing residue (sample A) of the shredder dust obtained in the carbonization step of Example 1 and 0.5 kg of untreated shredder dust (sample B) not subjected to carbonization. 1350, to which flux (0.04 kg), copper mat (2.0 kg) and slag (1.7 kg) were added in the same manner as in Example 1.
Heated at 0 ° C. for 1 hour. At this time, the generated gas was guided to a scrubber, and cooled by spraying cleaning water. This is sample A,
For B, corrosion of the piping portion (made of SUS316) and the washing water injection nozzle portion (made of SUS316) was repeated 15 times.
【0038】この結果、乾留処理した試料Aの場合、配
管およびノズル部分の目視で判別できる腐食は認められ
ず、ノズル部分について未使用の新品と試験後のものの
重量減少量も零であった。一方、比較試料Bの場合に
は、配管およびノズル部分が若干変色しているのが観察
された。またノズル部分は未使用の新品に比べて0.0
7%の重量減少が認められた。As a result, in the case of the sample A which had been subjected to the dry distillation treatment, no visible corrosion of the pipe and the nozzle portion was recognized, and the weight loss of the unused nozzle and the nozzle after the test was zero in the nozzle portion. On the other hand, in the case of Comparative Sample B, it was observed that the pipe and the nozzle portion were slightly discolored. The nozzle part is 0.0
A 7% weight loss was observed.
【0039】[0039]
【発明の効果】本発明の処理方法は以上のように乾留工
程と製錬工程からなるものであり、塩化ビニル樹脂など
の塩素含有プラスチックを多量に含むシュレッダーダス
トを処理する場合に、乾留処理を行うことにより該プラ
スチックの熱分解に起因する塩素障害の問題を解消で
き、また製錬工程において低コストで金属を回収するこ
とができる。さらにプラスチックの熱分解によって生じ
る炭化物や乾留ガスおよび乾留油を燃料として利用する
ことにより熱回収を図ることができる。また製錬工程で
生じるスラグもセメント原料等として用いることができ
るので、従来のような埋め立て処理しなければならない
最終廃棄物が発生せず、シュレッダーダストの処分問題
を完全に解決することができる。As described above, the treatment method of the present invention comprises a dry distillation step and a smelting step. When processing shredder dust containing a large amount of chlorine-containing plastics such as a vinyl chloride resin, the dry distillation treatment is carried out. By doing so, the problem of chlorine damage caused by the thermal decomposition of the plastic can be solved, and the metal can be recovered at low cost in the smelting process. Further, heat recovery can be achieved by utilizing a carbonized gas, a carbonized gas and a carbonized oil generated by the thermal decomposition of plastic as a fuel. In addition, since slag generated in the smelting process can be used as a raw material for cement or the like, the final waste that must be landfilled as in the related art does not occur, and the problem of shredder dust disposal can be completely solved.
【図1】 本発明の処理方法の一例を示す工程図FIG. 1 is a process chart showing an example of a processing method of the present invention.
【図2】 製錬工程の一例を示す工程図FIG. 2 is a process diagram showing an example of a smelting process.
21−反射炉、22−転炉、23−精製炉 21-reflection furnace, 22-converter, 23-refining furnace
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡部 進 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社総合研究所内 (72)発明者 竹内 均 東京都文京区小石川1丁目3番25地 三 菱マテリアル株式会社地球事業センター (56)参考文献 特開 平4−150150(JP,A) 特開 平4−80433(JP,A) (58)調査した分野(Int.Cl.7,DB名) B09B 3/00 302 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Susumu Okabe 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Within the Mitsubishi Materials Research Institute (72) Inventor Hitoshi Takeuchi 1-325 Koishikawa 1-chome, Bunkyo-ku, Tokyo Earth Business Center, Mitsubishi Materials Corporation (56) References JP-A-4-150150 (JP, A) JP-A-4-80433 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) ) B09B 3/00 302
Claims (8)
たシュレッダーダストを非酸化性雰囲気下で、300〜
600℃の温度で乾留し、該ダストに含まれる塩素をダ
スト中の金属屑およびカルシウム成分と反応させて該乾
留温度では揮発しない塩化物を生成させることにより含
有塩素を残渣中に固定して乾留ガスから分離し、乾留ガ
スを回収する一方、乾留残渣を洗浄し水溶性金属塩化物
を溶解除去して脱塩素化し、その後、この洗浄残渣を製
錬炉に導入して残渣に含まれる鉄およびカルシウムを酸
化させてスラグの形成を促す一方、残渣中の金属成分を
溶融させて回収し、さらに上記乾留ガスないしその凝縮
により得た乾留油を燃料として再利用することを特徴と
するシュレッダーダストの処理方法。A shredder dust to which a calcium-containing basic inorganic compound has been added under a non-oxidizing atmosphere at 300 to
Dry distillation at a temperature of 600 ° C., and reacting chlorine contained in the dust with metal dust and calcium components in the dust to generate chloride which does not volatilize at the carbonization temperature, thereby fixing the chlorine contained in the residue and carbonizing the residue. While separating from the gas and recovering the carbonized gas, the carbonized residue is washed, and the water-soluble metal chloride is dissolved and removed to dechlorinate.Then, the washed residue is introduced into a smelting furnace to remove iron and iron contained in the residue. Acid calcium
Shrinking dust to promote the formation of slag while melting and recovering the metal component in the residue, and further reusing the dry distillation gas or the dry distillation oil obtained by condensing the same as fuel. .
項1に記載の処理方法。2. The processing method according to claim 1, wherein the cleaning residue is introduced into a non-ferrous smelting furnace.
製錬炉を用いる請求項2に記載の処理方法。3. The method according to claim 2, wherein a smelting furnace for copper smelting or lead smelting is used as the non-ferrous smelting furnace.
炭化物を回収して燃料に利用すると共に乾留ガスを凝縮
して得た乾留液を油水分離して乾留油を回収し、該乾留
油および未凝縮の乾留ガスを燃料として再利用する請求
項1〜3のいずれかに記載の処理方法。4. After the carbonization, carbonized carbon is recovered from the washing residue and the carbonized gas and used as fuel, and the carbonized gas obtained by condensing the carbonized gas is separated into oil and water to recover the carbonized oil. The processing method according to any one of claims 1 to 3, wherein uncondensed dry distillation gas is reused as fuel.
料と共に溶融し、残渣中の金属分を製錬マット中に回収
すると共に製錬スラグをセメント資源として再利用する
請求項1〜4のいずれかに記載の処理方法。5. The cleaning residue is melted together with a smelting raw material in a non-ferrous smelting furnace, metal in the residue is collected in a smelting mat, and the smelting slag is reused as a cement resource. The method according to any one of the above.
石灰、生石灰および炭酸カルシウムを用いる請求項1に
記載の処理方法。6. The method according to claim 1, wherein slaked lime, quicklime and calcium carbonate are used as the calcium-containing basic inorganic compound.
溶脱した金属分を水酸化物として回収する請求項1〜6
のいずれかに記載の処理方法。7. The dry distillation residue is washed with an alkaline solution, and the metal leached from the residue is recovered as a hydroxide.
The method according to any one of the above.
制値の範囲に調整する請求項7に記載の処理方法。8. The treatment method according to claim 7, wherein after the alkali washing, the pH of the washing wastewater is adjusted to a range of a wastewater regulation value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35226495A JP3304734B2 (en) | 1995-02-22 | 1995-12-28 | How to treat shredder dust |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5677895 | 1995-02-22 | ||
JP7-56778 | 1995-02-22 | ||
JP35226495A JP3304734B2 (en) | 1995-02-22 | 1995-12-28 | How to treat shredder dust |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08290148A JPH08290148A (en) | 1996-11-05 |
JP3304734B2 true JP3304734B2 (en) | 2002-07-22 |
Family
ID=26397776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35226495A Expired - Lifetime JP3304734B2 (en) | 1995-02-22 | 1995-12-28 | How to treat shredder dust |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3304734B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998005439A1 (en) * | 1996-08-01 | 1998-02-12 | Itochu Shoji Kabushikikaisha | Method of thermal decomposition of scrap motor vehicle and apparatus therefor |
JP4549500B2 (en) * | 2000-08-16 | 2010-09-22 | 小名浜製錬株式会社 | Equipment for supplying shredder dust to a reverberatory furnace |
JP4596691B2 (en) * | 2001-06-26 | 2010-12-08 | 小名浜製錬株式会社 | Shredder dust combustion furnace |
RU2011110385A (en) | 2008-08-20 | 2012-09-27 | Пи-ФЬЮЭЛ ЛТД (AU) | METHOD FOR DISPOSAL OF ELECTRICAL AND ELECTRONIC EQUIPMENT |
JP7146176B2 (en) * | 2019-02-28 | 2022-10-04 | 三菱マテリアル株式会社 | Disposal method for waste electronic substrates |
-
1995
- 1995-12-28 JP JP35226495A patent/JP3304734B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08290148A (en) | 1996-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4317800A (en) | Process for simultaneously processing of used metal and/or metal _scrap and scrap containing halogenated hydrocarbons | |
CN1233478C (en) | Method of treating waste matter using plasma electric arc technology and its device | |
CN110983057B (en) | Soot treatment method capable of realizing UPOPs synthesis retardation and low-temperature decomposition | |
JPS63310691A (en) | Method of treating contaminated mineral substance | |
CN111637464A (en) | Organic hazardous waste and inorganic hazardous waste cooperative comprehensive utilization power generation system and process | |
JP3304734B2 (en) | How to treat shredder dust | |
JP3218961B2 (en) | Treatment of chlorine-containing plastic waste | |
KR100315906B1 (en) | Method of treating chlorine-containing plastic wastes | |
US20040261577A1 (en) | Mechanical separation of volatile metals at high temperatures | |
JP4118240B2 (en) | How to recover lead from waste | |
JP2004141867A (en) | Dust treatment method | |
JP3230440B2 (en) | Treatment of chlorine-containing plastic waste | |
CN212339256U (en) | Organic hazardous waste and inorganic hazardous waste cooperative comprehensive utilization power generation system | |
JP2005068535A (en) | Method of treating gas or flying ash containing lead and zinc | |
RU2200601C2 (en) | Method of reusing halogenated and non-halogenated wastes | |
JP6256947B2 (en) | Method and apparatus for recovering valuable materials from waste electronic equipment by steam gasification | |
CN113245354A (en) | Waste incineration fly ash treatment system and method | |
JP3391263B2 (en) | Method for recovering phosphorus from incinerated ash containing phosphorus | |
Boulos et al. | Plasma In The Waste Treatment Industry | |
JP2000282154A (en) | Method for recovering metal from fused slag of waste material | |
JP2001121103A (en) | Detoxicating method of incineration fly ash | |
CN217875853U (en) | Resource disposal device for hazardous waste | |
JP2005213527A (en) | Method for dechlorinating zinc hydroxide | |
Herlitz | Plasma technology. Use of high-temperature plasma shows promise for metal recovery and hazardous destruction | |
JP3696992B2 (en) | Heat treatment method for waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020409 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080510 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090510 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100510 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110510 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120510 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130510 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |