JP4205730B2 - Copper smelting method to prevent metal elution in slag - Google Patents

Copper smelting method to prevent metal elution in slag Download PDF

Info

Publication number
JP4205730B2
JP4205730B2 JP2006098106A JP2006098106A JP4205730B2 JP 4205730 B2 JP4205730 B2 JP 4205730B2 JP 2006098106 A JP2006098106 A JP 2006098106A JP 2006098106 A JP2006098106 A JP 2006098106A JP 4205730 B2 JP4205730 B2 JP 4205730B2
Authority
JP
Japan
Prior art keywords
slag
flash
copper
smelting
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006098106A
Other languages
Japanese (ja)
Other versions
JP2007270288A (en
Inventor
勝弥 戸田
吉輝 永冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006098106A priority Critical patent/JP4205730B2/en
Publication of JP2007270288A publication Critical patent/JP2007270288A/en
Application granted granted Critical
Publication of JP4205730B2 publication Critical patent/JP4205730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅製錬法に関するものであり、特に、銅精鉱、カラミ選鉱された転炉カラミ、転炉ダストなどを装入して溶錬を行う自溶炉の製錬において、金属溶出性が少ない製錬方法に関する。より詳しく述べるならば、自溶炉において副産物として生成するスラグを、セメント、骨材などとしてリサイクルし、あるいは貯蔵する際にスラグから溶出するCdの量を抑制する製錬法に関するものである。   TECHNICAL FIELD The present invention relates to a copper smelting method, and in particular, in the smelting of a flash smelting furnace charged with copper concentrate, calami-concentrated converter calami, converter dust, and the like, in metal leaching. There are few smelting methods. More specifically, the present invention relates to a smelting method in which slag produced as a by-product in a flash smelting furnace is recycled as cement, aggregate, etc., or the amount of Cd eluted from the slag when stored.

まず、自溶炉の操業を説明し、次に自溶炉スラグからの重金属溶出抑制技術を説明する。
特許文献1:特許第3307444号(硫化精鉱の製錬方法:出願人−住友金属鉱山株式会社)は、カワ又は白カワを酸化吹錬する工程で産出するマグネタイト含有カラミを乾式粉砕方法により粉砕し、粉砕したカラミを硫化精鉱および造滓剤と混合して溶錬炉に装入する方法を提案している。この方法では、カラミ中のマグネタイトを硫化精鉱及び造滓剤と共存させて分解させて、吸熱反応を起こさせ、自溶炉で硫化鉱処理量を増大した場合の余剰熱の発生を抑制することを特長とする。
First, the operation of the flash smelting furnace will be described, and then the heavy metal elution suppression technology from the flash slag slag will be described.
Patent Document 1: Japanese Patent No. 3307444 (Sulfurizing concentrate refining method: Applicant-Sumitomo Metal Mining Co., Ltd.) pulverizes magnetite-containing calami produced in a process of oxidizing or blowing river or white river by dry pulverization method In addition, a method has been proposed in which crushed calami is mixed with sulfide concentrate and a slagging agent and charged into a smelting furnace. In this method, magnetite in calami is decomposed in the presence of sulfide concentrate and coagulant to cause endothermic reaction and suppress the generation of excess heat when increasing the amount of sulfide ore processing in flash furnace. It is characterized by that.

特許文献1の方法において、転炉カラミを乾式粉砕して自溶炉に装入する実施例に係る操業条件としては次のものが示されている。
精鉱量(t/時間):95.8
転炉カラミ量(t/時間):2.3〜3.0
珪酸鉱量(t/時間):15.3〜15.5
精鉱銅品位(wt%):30.4
混合鉱銅品位(wt%):25.8〜25.9
反応空気量(Nm3/時間):32300
反応用空気酸素濃度(vol.%):53.1〜53.6
反応用空気温度(℃):436
カワ中銅濃度(wt%):62.0
カワ温度(実績)(℃):1225
産出カワ量(t/時間):48.1
転炉カワ処理量(t/時間):48.1
余剰カワ量(t/時間):0
カラミ量(t/時間):51.5〜52.3
カラミFe/SiO2:1.15
カラミ温度(℃):1235
必要酸素量(100%)(Nm3/時間):13026〜13213
補助燃料(L/時間):0〜89
入熱合計量(Mcal/時間):56370〜56689
出熱合計量(Mcal/時間):56370〜56689
煙圧発生率(wt%):4.5〜5.5
In the method of Patent Document 1, the following are shown as operating conditions according to an example in which converter calami is dry-ground and charged into a flash furnace.
Concentrate (t / hour): 95.8
Converter calami amount (t / hour): 2.3-3.0
Silicate ore (t / hr): 15.3-15.5
Copper concentrate grade (wt%): 30.4
Mixed ore grade (wt%): 25.8 to 25.9
Reaction air volume (Nm 3 / hour): 32300
Air oxygen concentration for reaction (vol.%): 53.1-53.6
Reaction air temperature (° C): 436
Copper concentration in river (wt%): 62.0
Kawa temperature (result) (℃): 1225
Output amount (t / hour): 48.1
Converter river throughput (t / hour): 48.1
Surplus river volume (t / hour): 0
Karami amount (t / hour): 51.5-52.3
Karami Fe / SiO 2 : 1.15
Karami temperature (℃): 1235
Necessary oxygen amount (100%) (Nm 3 / hour): 13026-13213
Auxiliary fuel (L / hour): 0-89
Total heat input (Mcal / hour): 56370-56689
Total heat output (Mcal / hour): 56370-56689
Smoke pressure generation rate (wt%): 4.5-5.5

特許文献1の方法において、カラミ選鉱を自溶炉に装入する比較例に係る操業条件としては次のものが示されている。
精鉱量(t/時間):93.4
カラミ精鉱量(t/時間):2.4
珪酸鉱量(t/時間):11.3〜14.5
精鉱銅品位(wt%):30.4
混合鉱銅品位(wt%):25.7〜26.5
反応空気量(Nm3/時間):32300
反応用空気酸素濃度(vol.%):49.3〜51.0
反応用空気温度(℃):436
カワ銅品位(wt%):57.3〜62.0
カワ温度(実績)(℃):1225〜1250
産出カワ量(t/時間):48.0〜52.0
転炉カワ処理量(t/時間):46.2〜48.0
余剰カワ量(t/時間):0〜5,8
カラミ量(t/時間):42.5〜49.1
カラミFe/SiO2:1.15
カラミ温度(℃):1235〜1280
必要酸素量(100%)(Nm3/時間):11481〜12170
補助燃料(L/時間):0〜260
入熱合計量(Mcal/時間):55007〜55477
出熱合計量(Mcal/時間):55007〜55477
煙圧発生率(wt%):4.8〜5.7
さらに、自溶炉への装入原料の品位としては次のもの(wt%)が示されている。
In the method of Patent Document 1, the following are shown as the operation conditions according to the comparative example in which the calami beneficiation is charged into the flash smelting furnace.
Concentrate (t / hour): 93.4
Karami concentrate (t / hour): 2.4
Silicate ore amount (t / hour): 11.3 to 14.5
Copper concentrate grade (wt%): 30.4
Mixed ore copper grade (wt%): 25.7-26.5
Reaction air volume (Nm 3 / hour): 32300
Air oxygen concentration for reaction (vol.%): 49.3-51.0
Reaction air temperature (° C): 436
River copper grade (wt%): 57.3-62.0
Kawa temperature (result) (℃): 1225 ~ 1250
Output amount (t / hour): 48.0-52.0
Converter river throughput (t / hour): 46.2-48.0
Surplus river volume (t / hour): 0 to 5,8
Karami amount (t / hour): 42.5-49.1
Karami Fe / SiO 2 : 1.15
Karami temperature (℃): 1235 ~ 1280
Necessary oxygen amount (100%) (Nm 3 / hour): 11481-12170
Auxiliary fuel (L / hour): 0 ~ 260
Total heat input (Mcal / hour): 55007-55477
Total heat output (Mcal / hour): 55007-55477
Smoke pressure generation rate (wt%): 4.8 to 5.7
Furthermore, the following (wt%) is shown as the quality of the raw material charged into the flash furnace.

本出願人は、非特許文献1:「資源と素材」2004年,4,5月号、第292から295頁、「佐賀関製錬所の最近の銅製錬操業について」との表題で自溶炉の操業条件を発表した。これを次に引用する。
装入量上限(t/h) :160〜171
平均装入量(t/h):158〜167
カワ品位(%):65〜67
銅精鉱(S/Cu):0.856〜0.928
総送風量(Nm3/min):503〜585
送風酸素量(90%-O2, Nm3/min):372〜403
送風空気量(Nm3/min):131〜182
酸素量(Nm3/min):362〜401
酸素量(Nm3/t):137〜144
送風酸素濃度(%):72〜69
排ガス量(Nm3/min):534〜599
蒸気発生量(t/h):40.0〜42.3
炭材原単位(kg/t-TC)13.0〜4.6
ここで、装入量とは銅精鉱、カラミ精鉱、造滓剤などすべての装入原料の量である。
This applicant is self-dissolving under the title of Non-Patent Document 1: “Resources and Materials” 2004, April and May, pp. 292 to 295, “Recent copper smelting operations at Sagaseki Smelter” The operating conditions of the furnace were announced. I will quote this next.
Charge upper limit (t / h): 160-171
Average charge (t / h): 158 ~ 167
Kawa grade (%): 65-67
Copper concentrate (S / Cu): 0.856-0.928
The total amount of blown air (Nm 3 / min): 503~585
Air flow rate (90% -O 2 , Nm 3 / min): 372 ~ 403
Air flow rate (Nm 3 / min): 131 ~ 182
Oxygen content (Nm 3 / min): 362-401
Oxygen content (Nm 3 / t): 137-144
Blowing oxygen concentration (%): 72-69
Exhaust gas volume (Nm 3 / min): 534 to 599
Steam generation (t / h): 40.0 to 42.3
Carbon dioxide basic unit (kg / t-TC) 13.0-4.6
Here, the charged amount is the amount of all charged raw materials such as copper concentrate, calami concentrate, and slagging agent.

特許文献2:特開平8−218128号公報(銅製錬方法、出願人−日鉱金属株式会社)は、自溶炉に銅硫化鉱の酸化焙焼鉱を追加的に吹込む方法、及び銅硫化鉱の酸化焙焼鉱を硫酸浸出した浸出液の残渣を自溶炉に追加的に吹込む方法を提案している。     Patent Document 2: JP-A-8-218128 (Copper Smelting Method, Applicant-Nikko Metal Co., Ltd.) discloses a method of additionally injecting oxidized roasted ore of copper sulfide ore into a flash smelting furnace, and copper sulfide ore A method has been proposed in which the leachate obtained by leaching sulfuric acid from an oxidized roasted ore is additionally blown into the flash furnace.

次に、銅製錬スラグ及び重金属溶出抑制技術を説明する。
銅製錬スラグは2000年の統計では、230万トン発生しており、高圧の海水や工業用水に水粉砕され、水砕後の水砕水は、ほとんどの場合、水砕水に含まれる固形成分を取り除いた後、排水として排出するか、あるいは繰り返し使用している。銅製錬スラグは他のリサイクル製品との競合でリサイクル率が低下しており、用途開発の努力は続けられているものの、保管場所の確保が次第に難しくなっている。
Next, copper smelting slag and heavy metal elution suppression technology will be described.
Copper smelting slag is generated in 2.3 million tons according to statistics in 2000, and is pulverized into high-pressure seawater or industrial water. The crushed water after granulation is almost always a solid component contained in the crushed water. After being removed, it is discharged as wastewater or used repeatedly. Copper smelting slag has a low recycling rate due to competition with other recycled products, and efforts to develop applications continue, but it is becoming increasingly difficult to secure storage space.

非特許文献2:「資源と素材」1997年、12月号「リサイクリング大特集号」第996頁には自溶炉スラグ組成(質量%)として次のものが示されている。スラグCのPb,Zn,As,Sb含有量が高いのは鉱石組成によると説明されている。   Non-Patent Document 2: “Resources and Materials” December, 1997, “Special issue on recycling”, page 996, the following is shown as the composition (mass%) of the flash slag slag. The high Pb, Zn, As, and Sb content of slag C is explained by the ore composition.

特許文献3:特開平8−301636号公報(溶融スラグの水処理方法:出願人−大同特殊鋼株式会社)は、溶融炉から排出されるスラグを対象にし、水砕水のpHを11以下のアルカリ性に維持し、水砕水の一部をろ過後、再利用し、Pb,Cu,Zn等の重金属類がスラグから溶出する溶出性を低減している。但し、都市ごみを溶融処理して生成するスラグから不純物として溶出する溶出性が念頭に置かれており、As,Cdを含む銅製錬スラグに関しては全く触れていない。   Patent Document 3: JP-A-8-301636 (Method for water treatment of molten slag: Applicant-Daido Special Steel Co., Ltd.) targets slag discharged from a melting furnace, and the pH of granulated water is 11 or less. Maintaining alkalinity, it is reused after filtration of some of the granulated water, reducing the elution of heavy metals such as Pb, Cu and Zn from the slag. However, the elution property which elutes as an impurity from the slag produced by melting municipal waste is kept in mind, and the copper smelting slag containing As and Cd is not mentioned at all.

特許文献4:特開2005−289697号公報(銅スラグの製造方法:出願人−日鉱金属株式会社)によると、溶融スラグ中に溶融している硫黄酸化物の作用により水砕水のpHが低下し、あるいは銅スラグの組成によっては水砕水のpHは上昇する。この水砕水が酸性側もしくはアルカリ性側に大きく変動すると、水砕水中への重金属溶出量が多くなると述べている。特許文献4は水砕水のpHを5.3〜7.4に制御することによりスラグからの重金属溶出量を少なくしている。銅製錬炉の錬カラミ炉(溶錬炉より排出された溶融スラグを保持する炉)より排出された溶融スラグを水砕した水砕水のAs及びCdを分析した結果、それぞれ0.005 〜0.010mg/L及び0.01mg/L以下の濃度が得られている。   According to Patent Document 4: Japanese Patent Application Laid-Open No. 2005-289697 (Copper Slag Manufacturing Method: Applicant-Nikko Metal Co., Ltd.) The pH of granulated water is lowered by the action of sulfur oxides melted in the molten slag. However, the pH of the granulated water increases depending on the composition of the copper slag. It is stated that the amount of heavy metal elution into the granulated water increases when the granulated water fluctuates greatly on the acidic or alkaline side. Patent Document 4 reduces the elution amount of heavy metals from slag by controlling the pH of granulated water to 5.3 to 7.4. As a result of analyzing As and Cd of granulated water obtained by granulating the molten slag discharged from the smelting calami furnace of the copper smelting furnace (the furnace holding the molten slag discharged from the smelting furnace), 0.005 to 0.010 mg / L and concentrations below 0.01 mg / L are obtained.

特許文献5:特願2005−156983号(銅製錬カラミの処理方法:出願人−日鉱金属株式会社;平成17年5月30日出願)は、銅製錬カラミ水砕工程において循環する水砕水に無機凝集剤及び有機凝集剤を添加し、pHを5 〜10に調整後、沈降槽において浮遊物を除去、水砕水として再利用する方法を提供している。また、銅製錬カラミの組成例としては、SiO2 25.0〜35.0 mass%, Fe 35.0〜45.0 mass%, Ca 1.00〜1.50 mass%, Zn 0.06〜1.00 mass%, As 0.10〜0.20 mass%, Cd 0.001 〜0.01 mass%, Pb 0.05 〜0.15 mass%, Cu 0.5〜 1.0 mass%が挙げられている。この組成は表1のA,Bのスラグ組成にほぼ該当している。水砕の成績は、環境庁告示46号溶出試験で評価されており、いずれも基準を満たす濃度となっている。
特許第3307444号 特開平8−218128号公報 特開平8−218128号公報 特開2005−289697号公報 特願2005−156938号 「資源と素材」2004年,4,5月号、第292〜295頁「佐賀関製錬所の最近の銅製錬操業について」 「資源と素材」1997年、12月号「リサイクリング大特集号」第996頁
Patent Document 5: Japanese Patent Application No. 2005-156983 (Method for treating copper smelting calami: Applicant-Nikko Metal Co., Ltd .; filed on May 30, 2005) An inorganic flocculant and an organic flocculant are added, and after adjusting the pH to 5 to 10, a suspended matter is removed in a sedimentation tank, and a method of reusing it as granulated water is provided. Examples of the composition of copper smelting calami include SiO 2 25.0 to 35.0 mass%, Fe 35.0 to 45.0 mass%, Ca 1.00 to 1.50 mass%, Zn 0.06 to 1.00 mass%, As 0.10 to 0.20 mass%, Cd 0.001 to 0.01 mass%, Pb 0.05 to 0.15 mass%, Cu 0.5 to 1.0 mass% are mentioned. This composition almost corresponds to the slag compositions A and B in Table 1. The results of water granulation have been evaluated by the Environment Agency Notification No. 46 dissolution test, and all have concentrations that meet the standards.
Patent No. 3307444 JP-A-8-218128 JP-A-8-218128 JP 2005-289697 A Japanese Patent Application No. 2005-156938 “Resources and Materials”, April, May, 2004, pp. 292-295 “Recent Copper Smelting Operations at Sagaseki Smelter” “Resources and Materials”, December 1997, “Recycling Feature”, page 996

特許文献1、2及び非特許文献1においては、転炉ダストを自溶炉に操業することや、自溶炉装入原料及び自溶炉で発生するスラグのCd濃度についての説明はなく、銅製錬で発生するスラグそのもののCd溶出量を少なくする技術開発は行われていなかった。
銅製錬工程において、自溶炉への装入原料は、銅精鉱、カラミ精鉱、転炉ダスト、銅屑等のリサイクル原料、造さい剤(珪石など)、炭材などである。転炉にはカワ、錬かん炉からのカワなどが装入される。転炉で生成するカラミは選鉱により処理され、カラミ精鉱として自溶炉へ繰り返され、残部は、酸化鉄とシリカを主成分とする鉄精鉱として系外にカットされる。このような一連の系統におけるCdの挙動は検討されていず、カラミそのもののCd溶出性を少なくする技術開発は従来行われていなかった。
In Patent Documents 1 and 2 and Non-Patent Document 1, there is no explanation about operating the converter dust in the flash smelting furnace, the Cd concentration of the slag generated in the flash smelting furnace charging material and the flash smelting furnace, There has been no technology development to reduce the amount of Cd elution from the slag generated by smelting.
In the copper smelting process, the raw materials charged into the flash smelting furnace are recycled concentrates such as copper concentrate, calami concentrate, converter dust, copper scrap, siliceous agents (such as silica), and carbonaceous materials. The converter is charged with the river, the river from the smelting furnace. Calamis produced in the converter are processed by beneficiation and repeated as calami concentrate to the flash smelting furnace, and the remainder is cut out of the system as iron concentrates mainly composed of iron oxide and silica. The behavior of Cd in such a series of lines has not been studied, and no technical development has been made so far to reduce the Cd elution of calami itself.

特許文献4〜5の方法は、銅製錬カラミを銅製錬後の後処理工程である水砕処理により重金属溶出量を少なくする技術である。これらのうち特許文献4の方法は、水砕水のpHを精度よく制御しても、スラグの溶出性はその他の影響を受け易く溶出試験結果にはバラツキがあり、また、特許文献5の方法は、特にスラグ中のCd含有量が高い場合には溶出性の再現性が低いうらみがある。これらいずれの方法も水砕水は、リサイクルするにせよ、最終的には中和する必要がある点でコスト高になっている。なお、CdはAsなどに比べて溶出し易いために、溶出を抑えることが重要である。   The methods of Patent Documents 4 to 5 are techniques for reducing the amount of elution of heavy metals by a water granulation process that is a post-treatment step after copper smelting of copper smelting calami. Among these methods, even if the method of Patent Document 4 controls the pH of granulated water with high accuracy, the dissolution property of slag is easily affected by other effects, and the dissolution test results vary. In particular, when the Cd content in the slag is high, the reproducibility of the dissolution property is low. In any of these methods, the granulated water is costly in that it needs to be finally neutralized even if it is recycled. In addition, since Cd is more easily eluted than As, etc., it is important to suppress the elution.

したがって、本発明は、上述のような特殊な水粉水を使用しなくとも良好なCd溶出性をもつ銅製錬スラグを再現性よく産出できる製錬方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a smelting method capable of producing a copper smelting slag having good Cd elution with good reproducibility without using the above-mentioned special water powder water.

本発明に係る第1の方法は、自溶炉及び転炉を用いる銅製錬法において、自溶炉への装入鉱中のCd濃度を0.015%以下に抑制することにより、自溶炉スラグのCd溶出量を環境庁告示基準の0.01mg/L以下とすることを特徴とする。
Cdを多く含む原料には転炉ダストがある。 銅転炉ダスト中の有価金属濃度(質量%)は、一般に、Cu-5〜10%、As-6〜10%、Cd-2〜5%,Zn−5〜20%である。段落番号0013で述べた一連の系統において、Cdは元々硫化精鉱中にあるが、銅転炉ダスト中に金属Cdとして濃縮されており、銅転炉ダストからCuを自溶炉で回収する際にから酸化され、自溶炉スラグ中に移行する。かかるCdを系外に除去する方法としては、転炉ダストを硫酸浸出し、浸出溶液を硫化処理する方法が好ましく、浸出残渣を自溶炉に繰り返す。
According to the first method of the present invention, in the copper smelting method using a flash smelting furnace and a converter, the Cd concentration in the ore charging into the flash smelting furnace is suppressed to 0.015% or less, thereby The amount of Cd elution is set to 0.01 mg / L or less of the Environmental Agency notification standard.
The raw material that contains a lot of Cd is converter dust. The valuable metal concentration (mass%) in the copper converter dust is generally Cu-5 to 10%, As-6 to 10%, Cd-2 to 5%, and Zn-5 to 20%. In the series of systems described in paragraph 0013, Cd is originally in the sulfide concentrate, but is concentrated as metal Cd in the copper converter dust, and when recovering Cu from the copper converter dust in the flash furnace After being oxidized, it is transferred to flash furnace slag. As a method for removing such Cd from the system, a method of leaching converter dust with sulfuric acid and sulfiding the leaching solution is preferable, and the leaching residue is repeated in the flash furnace.

銅転炉ダストの発生量は出願人の製錬所では約200t/月であり、自溶炉への全装入原料の量に比べて極めて少ないために全量を自溶炉に装入することができ、かつ高品位の銅を含有しているからすべての転炉ダストから銅を回収する必要がある。銅転炉ダストの発生量は製錬所により違いはあるが、自溶炉への装入原料に比べると極めてすくない事情には変わりはない。   The amount of copper converter dust generated is approximately 200 t / month at the applicant's smelter, and it is extremely small compared to the total amount of raw material charged to the flash smelting furnace. Therefore, it is necessary to recover copper from all converter dust because it contains high-grade copper. Although the amount of copper converter dust generated varies from smelter to smelter, there is no change in the situation where it is extremely low compared to the raw material charged into the flash furnace.

銅転炉ダストからCdを除去する方法に加えて、あるいはこの方法の代えて原料の管理をすることが必要となる。例えば、前掲表1に示すスラグCを副産物として産出する硫化精鉱は、Zn,Pb,As,SbのみならずCd含有量も多いために、かかる硫化精鉱を一時的に使用しないか、あるいは使用量を少なくすることも必要となる。   In addition to or instead of the method of removing Cd from copper converter dust, it is necessary to manage raw materials. For example, the sulfide concentrates that produce slag C shown in Table 1 as a by-product have a high Cd content as well as Zn, Pb, As, Sb. It is also necessary to reduce the amount used.

銅製錬条件によっては、Cdの自溶炉スラグへの移行率はほとんど影響されないので、本発明法における自溶炉操業条件は特許文献1,2及び非特許文献1にて公知のものであってよく、特に制約はない。
同様に、同様に、Cdの自溶炉スラグへの移行率は原料組成によってはほとんど影響されないから、転炉ダスト以外の自溶炉への装入原料は、通常のものや、特許文献1で提案された乾式粉砕カラミや特許文献2で提案された酸化焙焼鉱などを添加したものであってもよい。
Depending on the copper smelting conditions, the rate of transition of Cd to flash slag is almost unaffected, so the flash furnace operating conditions in the method of the present invention are known in Patent Documents 1 and 2 and Non-Patent Document 1. Well, there are no particular restrictions.
Similarly, since the transfer rate of Cd to the flash slag is hardly affected by the raw material composition, the raw materials charged into the flash smelting furnace other than the converter dust are ordinary ones and Patent Document 1 What added the dry-type grinding | pulverization calami proposed, the oxidation roasting ore proposed by patent document 2, etc. may be used.

続いて、約4か月に亘る本出願人の製錬所における装入鉱中のCd濃度のスラグからのCd溶出性の試験結果を、図1及び2を参照して説明する。
図1は、自溶炉操業における装入鉱中Cd濃度(白丸)を示しており、図中Aの符号で記した時期で転炉ダストからCd除去を行った。 図1のデータを装入鉱中のCd濃度と環境告示45号によるCd溶出量の関係に整理して図2に示す。この関係より装入鉱中のCd濃度が0.015%以下であると、自溶炉スラグからのCd溶出量が環境庁告示基準である0.01g/L以下になることが分かる。
Then, the test result of Cd elution from the slag of Cd density | concentration in the charging mine in the applicant's smelter over about 4 months is demonstrated with reference to FIG.
FIG. 1 shows the Cd concentration in the charging mine in the flash smelting furnace operation (white circles), and Cd was removed from the converter dust at the time indicated by the symbol A in the figure. The data in Fig. 1 is organized into the relationship between the Cd concentration in the charging mine and the Cd elution amount according to Environmental Notification No. 45 and is shown in Fig. 2. From this relationship, it can be seen that when the Cd concentration in the charging mine is 0.015% or less, the Cd elution amount from the flash slag becomes 0.01 g / L or less, which is the notification standard of the Environment Agency.

本発明に係る第2の方法は、自溶炉及び転炉を用いる銅製錬法において、自溶炉スラグのCd濃度を0.001%以下に抑制することにより、自溶炉スラグからのCd溶出量を環境庁告示基準に定められる0.01mg/L以下とすることを特徴とする。
本発明の第2の方法は、自溶炉スラグ中のCd濃度を制御するものであり、これに対して本出願人が出願した特許文献5の方法では、自溶炉スラグ中のCd濃度を特に制御していないので、本願発明より高いCd濃度となっている。スラグ中のCd濃度抑制法は、原料の状況に応じて決定され、例えば、転炉ダストから自溶炉でCuを回収する場合は、その使用量を少なくする、一時的に使用しない、脱Cd転炉ダストを使用するなどの方法が可能である。また、前掲表1に示すスラグCを副産物として産出する硫化精鉱は、Zn,Pb,As,SbのみならずCd含有量が多いために、かかる硫化精鉱を一時的に使用しないか、あるいは使用量を少なくすることも必要となる。自溶炉の操業条件及び、Cd含有原料以外の装入原料などについては第1方法に関して述べたとおりである。
In the second method according to the present invention, in a copper smelting method using a flash smelting furnace and a converter, the Cd elution amount from the flash slag is reduced by suppressing the Cd concentration of the flash slag to 0.001% or less. It is characterized by being 0.01 mg / L or less as stipulated in the Environmental Agency Notification Standard.
In the second method of the present invention, the Cd concentration in the flash slag is controlled. On the other hand, in the method of Patent Document 5 filed by the present applicant, the Cd concentration in the flash slag is set. Since it is not particularly controlled, the Cd concentration is higher than that of the present invention. The method for suppressing the Cd concentration in the slag is determined according to the status of the raw material. For example, when recovering Cu from converter dust in a flash smelting furnace, reduce the amount used, do not use temporarily, de-Cd A method such as using converter dust is possible. In addition, the sulfide concentrates that produce slag C shown in Table 1 as a by-product have a high Cd content as well as Zn, Pb, As, and Sb. It is also necessary to reduce the amount used. The operating conditions of the flash smelting furnace and the charged raw materials other than the Cd-containing raw material are as described for the first method.

本出願人の製錬所における約6か月の操業データを図3に示す。図3において、白抜き四角のプロットはスラグからのCd溶出値、丸印はスラグ中Cd濃度を示し、C及びDの符号で示した期間においてCdの除去を行った。図3に示すデータを、スラグ中Cd濃度とCd溶出量の関係に整理して図4に示す。このグラフよりスラグ中のCd濃度が0.001%以下であると、自溶炉スラグからのCd溶出量が環境庁告示基準である0.01mg/L以下になることが分かる。   The operation data for about 6 months in the applicant's smelter is shown in FIG. In FIG. 3, the white square plot represents the Cd elution value from the slag, the circle represents the Cd concentration in the slag, and Cd was removed during the period indicated by the symbols C and D. The data shown in FIG. 3 is arranged in the relationship between the Cd concentration in the slag and the Cd elution amount and shown in FIG. From this graph, it can be seen that when the Cd concentration in the slag is 0.001% or less, the Cd elution amount from the flash slag becomes 0.01 mg / L or less, which is the notification standard of the Environment Agency.

以上説明したように、本発明によると、pH調整をした水砕水などを使用しなくとも銅製錬スラグのCd溶出量を環境庁告示基準以下にすることができる。また、多くの操業試験結果から分かるとおり、本発明によるとCd溶出量の再現性は高いために、スラグをリサイクルするにせよ、貯蔵するにせよ、環境汚染は起こらない。   As described above, according to the present invention, the Cd elution amount of the copper smelting slag can be made to be equal to or less than the notification standard of the Environment Agency without using the crushed water adjusted for pH. In addition, as can be seen from the results of many operational tests, according to the present invention, the reproducibility of the Cd elution amount is high, so that environmental pollution does not occur regardless of whether the slag is recycled or stored.

装入鉱石中のCd含有量(濃度)が4ヶ月の自溶炉操業中にどのように変動するかを示すグラフである。It is a graph which shows how Cd content (concentration) in a charging ore fluctuates during a 4-month flash furnace operation. 装入鉱中のCd含有量(濃度)(質量%)とCd溶出量(mg/L)の関係を示すグラフである。It is a graph which shows the relationship between Cd content (concentration) (mass%) in a charging mine, and Cd elution amount (mg / L). スラグ中のCd含有量(濃度)濃度が及びCd溶出量が6ヶ月の自溶炉操業中にどのように変動するかを示すグラフである。It is a graph which shows how the Cd content (concentration) density | concentration in slag and Cd elution amount fluctuate | variate during a 6-month flash furnace operation. 自溶炉スラグ中のCd濃度(質量%)とCd溶出量(mg/L)の関係を示すグラフである。It is a graph which shows the relationship between Cd density | concentration (mass%) in a flash slag, and Cd elution amount (mg / L).

Claims (2)

自溶炉及び転炉を用いる銅製錬法において、自溶炉への装入原料のCd濃度を0.015質量%以下に抑制することにより、自溶炉スラグのCd溶出量を環境庁告示基準の0.01mg/L以下とすることを特徴とする銅製錬方法。 In the copper smelting method using a flash smelting furnace and converter, by suppressing the Cd concentration of the raw material charged to the flash smelting furnace to 0.015% by mass or less, the Cd elution amount of the slag in the flash slag is 0.01% of the notification standard of the Environment Agency. The copper smelting method characterized by setting it as mg / L or less. 自溶炉及び転炉を用いる銅製錬法において、自溶炉で発生するスラグのCd濃度を0.001質量%以下に抑制することにより、自溶炉スラグのCd溶出量を環境庁告示基準の0.01mg/L以下とすることを特徴とする銅製錬方法。 In the copper smelting method using a flash smelting furnace and converter, by suppressing the Cd concentration of the slag generated in the flash smelting furnace to 0.001% by mass or less, the Cd elution amount of the flash slag slag is 0.01 mg of the Environmental Agency notification standard. / L or less copper smelting method characterized by being below.
JP2006098106A 2006-03-31 2006-03-31 Copper smelting method to prevent metal elution in slag Active JP4205730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098106A JP4205730B2 (en) 2006-03-31 2006-03-31 Copper smelting method to prevent metal elution in slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006098106A JP4205730B2 (en) 2006-03-31 2006-03-31 Copper smelting method to prevent metal elution in slag

Publications (2)

Publication Number Publication Date
JP2007270288A JP2007270288A (en) 2007-10-18
JP4205730B2 true JP4205730B2 (en) 2009-01-07

Family

ID=38673385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098106A Active JP4205730B2 (en) 2006-03-31 2006-03-31 Copper smelting method to prevent metal elution in slag

Country Status (1)

Country Link
JP (1) JP4205730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908456B2 (en) 2008-06-02 2012-04-04 パンパシフィック・カッパー株式会社 Copper smelting method
RU2719977C2 (en) * 2015-04-03 2020-04-23 Металло Белджиум Improved slag from non-ferrous metals production

Also Published As

Publication number Publication date
JP2007270288A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4350711B2 (en) Industrial waste melting process
JP5297077B2 (en) Method for producing ferromolybdenum
US5405429A (en) Method for treatment and conversion of refuse incineration residues into environmentally acceptable and reusable material, especially for construction purposes
JP6219325B2 (en) Method for producing metal manganese
CN106011489A (en) Iron vitriol slag treatment method
CN111893310A (en) Harmless recycling treatment method for solid hazardous waste
JP4280292B2 (en) Method for producing ferromolybdenum
TW200948980A (en) Producing method of reduced iron
JP4486047B2 (en) Industrial waste melting process
EA025530B1 (en) Process for producing hardened granules from iron-containing particles
CN108441636A (en) A kind of method of two sections of vacuum reductions processing red mud
JP4205730B2 (en) Copper smelting method to prevent metal elution in slag
Zheng et al. Solid waste remediation in the metallurgical industry: Application and environmental impact
JP5139961B2 (en) Method for producing ferromolybdenum
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
CN111979423B (en) Method for reinforced recovery of valuable metals in copper smelting slag by using gypsum slag
JP2009209405A (en) Method for smelting copper-containing dross
JP4271196B2 (en) Method for recovering slag of quality suitable for valuable metals and cement raw materials
JP3636693B2 (en) Electric furnace steelmaking
KR100902401B1 (en) Powder making for zinc refining containing dust of steel and manufacturing method thereof
Yadav et al. Solid Wastes Recyling through Sinter-Status at Tata Steel
JP3845355B2 (en) Recycling method for using firewood as a raw material for steelmaking
Gan et al. Dangerous emissions in blast furnace operations
CN114438331B (en) Co-treatment method for metal-containing hazardous waste and cyanide tailings
JP5337956B2 (en) Method for treating chromium oxide-containing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4205730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250