JP2006131683A - Rubber composition and pneumatic tire - Google Patents
Rubber composition and pneumatic tire Download PDFInfo
- Publication number
- JP2006131683A JP2006131683A JP2004319810A JP2004319810A JP2006131683A JP 2006131683 A JP2006131683 A JP 2006131683A JP 2004319810 A JP2004319810 A JP 2004319810A JP 2004319810 A JP2004319810 A JP 2004319810A JP 2006131683 A JP2006131683 A JP 2006131683A
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- rubber composition
- mass
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ゴム組成物および空気入りタイヤに関し、詳しくは未加硫ゴムの粘度が低いために加工性が良好であり、特にタイヤトレッドに使用した場合に、耐摩耗性が高く、転がり抵抗が低く、さらに湿潤路面での制動性・操縦安定性に優れるゴム組成物及び該ゴム組成物を使用したタイヤに関する。 The present invention relates to a rubber composition and a pneumatic tire, and in particular, the processability is good because the viscosity of unvulcanized rubber is low, and particularly when used in a tire tread, the wear resistance is high and the rolling resistance is high. The present invention relates to a rubber composition that is low and excellent in braking performance and handling stability on wet road surfaces, and a tire using the rubber composition.
ゴム組成物に使用される多数の充填剤のうち、シリカはカーボンブラックに比較して、低転がり抵抗を有しかつ湿潤路面で高制動性・操縦安定性を発揮するが、未加硫状態での粘度が高いために多段練り等の作業が必要であるなど作業性に難点があった。また、充填材の分散性が低く加硫が遅延し、さらには破断強力、耐摩耗性を大幅に低下させるという問題点があった。 Of the many fillers used in rubber compositions, silica has lower rolling resistance and higher braking and handling stability on wet road surfaces than carbon black, but in an unvulcanized state. Due to its high viscosity, workability such as multi-stage kneading is necessary. In addition, the dispersibility of the filler is low, vulcanization is delayed, and further, the breaking strength and wear resistance are greatly reduced.
そこで、通常はゴムにシリカを配合する場合にはカップリング剤を添加し、未加硫粘度を低下させ、モジュラス、耐摩耗性の向上を図ることが行われる。しかしながら、これらのカップリング剤は高価であることから、配合によって製造コストが増大するという問題点があった。また、シリカの分散性を向上させ、未加硫粘度を低下させることによって、作業性を改良するために分散改良添加剤が用いられるが、耐摩耗性が低下するという問題点があった。更に、分散剤として強イオン性化合物を用いた場合には、ロール密着等の加工性の低下がみられる場合があった。 Therefore, usually, when silica is blended with rubber, a coupling agent is added to lower the unvulcanized viscosity and improve the modulus and wear resistance. However, since these coupling agents are expensive, there is a problem in that the production cost is increased by blending. Further, a dispersion improving additive is used to improve workability by improving the dispersibility of silica and lowering the unvulcanized viscosity, but there is a problem that the wear resistance is lowered. Furthermore, when a strong ionic compound is used as the dispersant, there are cases where deterioration of workability such as roll adhesion is observed.
これら問題点を解消するために、特許文献1には特定の構造を有する硫黄含有シラン化合物を配合したゴム組成物が提案され、また、特許文献2には特定の構造を有するアミン付加塩を配合したゴム組成物が提案されている。
上記特許文献1および2により、それ以前に比べ、未加硫ゴムの粘度が低く、加工性が良好であり、タイヤトレッドに使用した場合には、耐摩耗性が高く、転がり抵抗が低く、さらに湿潤路面での制動性・操縦安定性を向上し得るゴム組成物が実現可能となったが、今日の技術の進歩に伴い、これら性能の更なる向上が望まれている。 According to Patent Documents 1 and 2, the viscosity of unvulcanized rubber is lower than before, the workability is good, and when used in a tire tread, the wear resistance is high, the rolling resistance is low, Although it has become possible to realize a rubber composition that can improve braking performance and handling stability on a wet road surface, with the advancement of today's technology, further improvements in these performances are desired.
そこで本発明の目的は、これまで以上に、未加硫粘度が低く、シリカの分散性の高いゴム組成物であって、タイヤのトレッド部材として使用した場合に、耐摩耗性が高く、転がり抵抗が低く、かつ湿潤路面の制動性および操縦安定性の向上を図ることができるゴム組成物および該ゴム組成物を用いたタイヤを提供することにある。 Accordingly, an object of the present invention is to provide a rubber composition having a low unvulcanized viscosity and a high dispersibility of silica that is higher in wear resistance and rolling resistance when used as a tread member of a tire. It is an object of the present invention to provide a rubber composition that can reduce the braking performance and handling stability of a wet road surface, and a tire using the rubber composition.
本発明者は、上記課題を解決するために鋭意検討した結果、ゴム組成物に特定の構造を有する硫黄含有シラン化合物とアミン塩化合物を配合することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by blending a rubber composition with a sulfur-containing silane compound having a specific structure and an amine salt compound, The present invention has been completed.
即ち、本発明のゴム組成物は、ポリマー100質量部に対して、シリカ10〜200質量部と、下記一般式(I)、
(R1O)3-p(R2)pSi−R3−Sk−R4−Sm−R3−Si(R2)p(OR1)3-p・・・(I)、
(式(I)中、R1およびR2はそれぞれ炭素数1〜4の炭化水素基、R3は炭素数1〜15の2価の炭化水素基、pは0〜2の整数、kおよびmはそれぞれ平均値として1以上4未満、R4は下記一般式(II)または(III)、
−S−R5−S−・・・(II)
−R6−Sx−R7−(III)
で表される2価の官能基であって、式中、R5、R6およびR7は夫々同一でも異なっていてもよく、直鎖状または分枝を有する炭素数1〜20の2価の炭化水素基、2価の芳香族基、または硫黄原子および酸素原子以外のヘテロ原子を含む2価の有機基、xは平均値として1以上4未満である。)で表される1種または2種以上の硫黄含有シラン化合物1〜30質量部と、下記一般式(IV)、
(式(IV)中、R8は炭素数8〜24の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜24のアリール基、または炭素数7〜24のアラルキル基、R9およびR10はそれぞれ水素原子、炭素数1〜12の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜12のアリール基、炭素数7〜12のアラルキル基、または
−(CH2O)nH、−(CH2CH2O)nH、−(CH(CH3)CH2O)nHまたは−(CH2CH2CH2O)nHであって、式中、nの合計は1〜4、R11は炭素数6〜24の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜24のアリール基、または炭素数7〜24のアラルキル基である。)で表されるアミン塩化合物0.1〜20質量部とを含有することを特徴とするものである。
That is, the rubber composition of the present invention comprises 10 to 200 parts by mass of silica, 100 parts by mass of the polymer, the following general formula (I),
(R 1 O) 3-p (R 2) p Si-R 3 -S k -R 4 -S m -R 3 -Si (R 2) p (OR 1) 3-p ··· (I),
(In the formula (I), R 1 and R 2 are each a hydrocarbon group having 1 to 4 carbon atoms, R 3 is a divalent hydrocarbon group having 1 to 15 carbon atoms, p is an integer of 0 to 2, k and m is an average value of 1 or more and less than 4, R 4 is the following general formula (II) or (III),
—S—R 5 —S— (II)
—R 6 —S x —R 7 — (III)
In which R 5 , R 6, and R 7 may be the same or different, and are linear or branched divalent having 1 to 20 carbon atoms A divalent organic group containing a hetero atom other than a sulfur atom and an oxygen atom, and x is an average value of 1 or more and less than 4. 1 to 2 parts by mass of one or more sulfur-containing silane compounds represented by the following general formula (IV),
(In formula (IV), R 8 is a linear or branched alkyl group, alkenyl group or alkynyl group having 8 to 24 carbon atoms, aryl group having 6 to 24 carbon atoms, or aralkyl having 7 to 24 carbon atoms. Groups R 9 and R 10 are each a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, an alkenyl group or an alkynyl group, an aryl group having 6 to 12 carbon atoms, or a 7 to 12 carbon atom. Aralkyl group, or — (CH 2 O) n H, — (CH 2 CH 2 O) n H, — (CH (CH 3 ) CH 2 O) n H or — (CH 2 CH 2 CH 2 O) n H Wherein n is 1 to 4 in total, R 11 is a linear or branched alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, aryl group having 6 to 24 carbon atoms, Or an aralkyl group having 7 to 24 carbon atoms. It contains 0.1 to 20 parts by mass of the amine salt compound.
また、本発明のタイヤは、上記ゴム組成物を含有する部材を用いたことを特徴とするものである。 The tire of the present invention is characterized by using a member containing the rubber composition.
本発明のゴム組成物は、特定構造を有する硫黄含有シラン化合物とアミン塩化合物の併用の結果、未加硫粘度が低く、シリカの分散性が高く、加工性に優れ、その結果、ゴム性製品の生産性の大幅な向上を図ることができる。よって、このゴム組成物を、特に、タイヤトレッド部材として使用した場合には、耐摩耗性が高く、転がり抵抗が低く、さらに湿潤路面の制動性および操縦安定性に優れたタイヤが得られる。 As a result of the combined use of a sulfur-containing silane compound having a specific structure and an amine salt compound, the rubber composition of the present invention has low unvulcanized viscosity, high dispersibility of silica, and excellent workability. The productivity can be greatly improved. Therefore, particularly when this rubber composition is used as a tire tread member, a tire having high wear resistance, low rolling resistance, and excellent wet road surface braking performance and steering stability can be obtained.
以下、本発明の好適実施形態について詳述する。
本発明のゴム組成物は、ポリマー100質量部に対して、シリカ10〜200質量部と、上記一般式(I)で表される1種または2種以上の硫黄含有シラン化合物1〜30質量部と、上記一般式(IV)で表されるアミン塩化合物0.1〜20質量部とを含有することを特徴とするものである。かかる硫黄含有シラン化合物とアミン塩化合物とを併用することで、該シラン化合物中のアルコキシ基とシリカ上のシラノール基との反応が促進され、それぞれを単独で用いた際の効果から予想させる併用効果よりも、はるかに優位な性能が得られることが分かった。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The rubber composition of the present invention is 10 to 200 parts by mass of silica and 1 to 30 parts by mass of one or more sulfur-containing silane compounds represented by the above general formula (I) with respect to 100 parts by mass of the polymer. And 0.1 to 20 parts by mass of an amine salt compound represented by the above general formula (IV). By using such a sulfur-containing silane compound and an amine salt compound in combination, the reaction between the alkoxy group in the silane compound and the silanol group on silica is promoted, and the combined effect expected from the effect when each is used alone It was found that a far superior performance was obtained.
本発明に用いる硫黄含有シラン化合物は、分子の両末端にオルガノオキシシリル基を有し、分子中央部にスルフィドまたはポリスルフィドを有する上記一般式(I)で表される化合物である。式(I)中、R1およびR2はそれぞれ炭素数1〜4の炭化水素基であり、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、ビニル基、アリル基、イソプロペニル基等が挙げられる。なお、R1とR2は同一でも異なっていてもよい。また、R3は炭素数1〜15の2価の炭化水素基であって、例えば、メチレン基、エチレン基、プロピレン基、n−ブチレン基、i−ブチレン基、ヘキシレン基、デシレン基、フェニレン基、メチルフェニルエチレン基等が挙げられる。なお、pは0〜2の整数である。 The sulfur-containing silane compound used in the present invention is a compound represented by the above general formula (I) having an organooxysilyl group at both ends of the molecule and a sulfide or polysulfide at the center of the molecule. In formula (I), R 1 and R 2 are each a hydrocarbon group having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i- Examples thereof include a butyl group, a t-butyl group, a vinyl group, an allyl group, and an isopropenyl group. R 1 and R 2 may be the same or different. R 3 is a divalent hydrocarbon group having 1 to 15 carbon atoms, and includes, for example, a methylene group, an ethylene group, a propylene group, an n-butylene group, an i-butylene group, a hexylene group, a decylene group, and a phenylene group. And methylphenylethylene group. In addition, p is an integer of 0-2.
上記一般式(I)のR4は上記一般式(II)または(III)で表される2価の官能基であり、式(II)または(III)中、R5、R6およびR7は直鎖状または分枝を有する炭素数1〜20の2価の炭化水素基、2価の芳香族基、または硫黄原子および酸素原子以外のヘテロ原子を含む2価の有機基であり、例えば、メチレン基、エチレン基、プロピレン基、n−ブチレン基、i−ブチレン基、ヘキシレン基、デシレン基、フェニレン基、メチルフェニルエチレン基等、およびこれらに硫黄原子および酸素原子以外のヘテロ原子である窒素原子、リン原子等が導入された基などが挙げられる。本発明の所期の効果および製造コストの観点から、好ましくは前記式(II)中のR5、または前記式(III)中のR6およびR7がヘキシレン基である。また、xが平均値として1以上4未満であり、本発明の所期の効果を得る上で、xが平均値として2以上4未満であることが好ましく、さらには2以上3以下であることが最も好ましい。 R 4 in the general formula (I) is a divalent functional group represented by the general formula (II) or (III). In the formula (II) or (III), R 5 , R 6 and R 7 Is a linear or branched divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent aromatic group, or a divalent organic group containing a hetero atom other than a sulfur atom and an oxygen atom. , Methylene group, ethylene group, propylene group, n-butylene group, i-butylene group, hexylene group, decylene group, phenylene group, methylphenylethylene group, etc., and nitrogen which is a hetero atom other than sulfur atom and oxygen atom Examples thereof include a group having an atom, a phosphorus atom or the like introduced therein. From the viewpoint of the intended effect and production cost of the present invention, R 5 in the formula (II) or R 6 and R 7 in the formula (III) is preferably a hexylene group. Moreover, x is 1 or more and less than 4 as an average value, and in order to obtain the desired effect of the present invention, x is preferably 2 or more and less than 4 as an average value, and more preferably 2 or more and 3 or less. Is most preferred.
上記一般式(I)で表される化合物の合成方法は特に制限されるものではなく、既知の反応を組み合わせることにより合成することが可能であり、国際公開第2004/000930号パンフレット記載の方法を好適に用いることができる。 The method for synthesizing the compound represented by the general formula (I) is not particularly limited, and can be synthesized by combining known reactions. The method described in International Publication No. 2004/000930 pamphlet can be used. It can be used suitably.
また、本発明に係る硫黄含有シラン化合物は、製造時に前記一般式(I)の2量体、3量体等の多量体が製造される場合があり、これら1分子中に3個以上のケイ素原子を含む硫黄含有シラン化合物は、本発明の効果に悪影響を及ぼす場合がある。よって、本発明においては、本発明に係る硫黄含有シラン化合物の配合時に、1分子に3個以上のケイ素原子を有する硫黄含有シラン化合物の含有量を、前記ゴム組成物に対して30質量%以下とすることが好ましく、さらには10質量%以下、特には実質的に含まれないようにすることが最も好ましい。 Further, the sulfur-containing silane compound according to the present invention may produce a multimer such as a dimer or a trimer of the general formula (I) at the time of production, and 3 or more silicon atoms in one molecule. The sulfur-containing silane compound containing an atom may adversely affect the effect of the present invention. Therefore, in the present invention, when the sulfur-containing silane compound according to the present invention is blended, the content of the sulfur-containing silane compound having 3 or more silicon atoms per molecule is 30% by mass or less based on the rubber composition. It is preferable that the amount is 10% by mass or less, and most preferably not substantially contained.
本発明においては、本発明の所期の効果を得る上で、ポリマー100質量部に対して前記硫黄含有シラン化合物を1〜30質量部配合するが、より所望の効果を得るには2〜20質量部の範囲内とすることが好ましい。 In the present invention, in order to obtain the desired effect of the present invention, 1 to 30 parts by mass of the sulfur-containing silane compound is blended with respect to 100 parts by mass of the polymer. It is preferable to be within the range of parts by mass.
次に、本発明で使用する前記式(IV)で表されるアミン塩化合物のアミン類は、式(IV)中、R8は炭素数8〜24の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜24のアリール基、または炭素数7〜24のアラルキル基、R9およびR10はそれぞれ水素原子、炭素数1〜12の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜12のアリール基、炭素数7〜12のアラルキル基、または
−(CH2O)nH、−(CH2CH2O)nH、−(CH(CH3)CH2O)nHまたは−(CH2CH2CH2O)nHであって、nの合計が1〜4のものである。
Next, the amines of the amine salt compound represented by the formula (IV) used in the present invention are as follows: R 8 is a linear or branched alkyl group having 8 to 24 carbon atoms in the formula (IV). , An alkenyl group or an alkynyl group, an aryl group having 6 to 24 carbon atoms, or an aralkyl group having 7 to 24 carbon atoms, R 9 and R 10 each have a hydrogen atom, a linear or branched chain having 1 to 12 carbon atoms An alkyl group, an alkenyl group or an alkynyl group, an aryl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 12 carbon atoms, or — (CH 2 O) n H, — (CH 2 CH 2 O) n H, — ( CH (CH 3 ) CH 2 O) n H or — (CH 2 CH 2 CH 2 O) n H, where n is 1 to 4 in total.
好適例としては、デシルアミン、ラウリルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミン、ベヘニルアミン、オレイルアミン、モノメチルデシルアミン、モノメチルラウリルアミン、モノメチルミリスチルアミン、モノメチルパルミチルアミン、モノメチルステアリルアミン、モノメチルオレイルアミン、モノエチルデシルアミン、モノエチルラウリルアミン、モノエチルミリスチルアミン、モノエチルパルミチルアミン、モノエチルステアリルアミン、モノエチルオレイルアミン、モノプロピルデシルアミン、モノプロピルラウリルアミン、モノプロピルミリスチルアミン、モノプロピルパルミチルアミン、モノプロピルステアリルアミン、モノプロピルオレイルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルオレイルアミン、ジエチルデシルアミン、ジエチルラウリルアミン、ジエチルミリスチルアミン、ジエチルパルミチルアミン、ジエチルステアリルアミン、ジエチルオレイルアミン、メチルエチルデシルアミン、メチルエテルラウリルアミン、メチルエチルミリスチルアミン、メチルエチルパルミチルアミン、メチルエチルステアリルアミン、メチルエチルオレイルアミン、ジ(ヒドロキシエチル)デシルアミン、ジ(ヒドロキシエチル)ラウリルアミン、ジ(ヒドロキシエチル)ミリスチルアミン、ジ(ヒドロキシエチル)パルミチルアミン、ジ(ヒドロキシエチル)ステアリルアミン、ジ(ヒドロキシエチル)オレイルアミンなどが挙げられる。 Preferred examples include decylamine, laurylamine, myristylamine, palmitylamine, stearylamine, behenylamine, oleylamine, monomethyldecylamine, monomethyllaurylamine, monomethylmyristylamine, monomethylpalmitylamine, monomethylstearylamine, monomethyloleylamine, mono Ethyldecylamine, monoethyllaurylamine, monoethylmyristylamine, monoethylpalmitylamine, monoethylstearylamine, monoethyloleylamine, monopropyldecylamine, monopropyllaurylamine, monopropylmyristylamine, monopropylpalmitylamine, Monopropylstearylamine, monopropyloleylamine, dimethyldecylamine, dimethyllaurylamine , Dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dimethyloleylamine, diethyldecylamine, diethyllaurylamine, diethylmyristylamine, diethylpalmitylamine, diethylstearylamine, diethyloleylamine, methylethyldecylamine, methyletherlaurylamine , Methylethyl myristylamine, methylethyl palmitylamine, methylethyl stearylamine, methylethyl oleylamine, di (hydroxyethyl) decylamine, di (hydroxyethyl) laurylamine, di (hydroxyethyl) myristylamine, di (hydroxyethyl) pal Methyl amine, di (hydroxyethyl) stearylamine, di (hydroxyethyl) oleylamine, etc. It is.
本発明のより所望の効果を得る上で、本発明に係るアミン塩化合物の式(IV)中で、特にR9およびR10がそれぞれ炭素数1〜8の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基であり、R8、R9およびR10の炭素数の合計が10〜24の三級アミンが好ましい。 In order to obtain a more desirable effect of the present invention, in the formula (IV) of the amine salt compound according to the present invention, in particular, R 9 and R 10 are each a linear or branched alkyl having 1 to 8 carbon atoms. A tertiary amine which is a group, an alkenyl group or an alkynyl group and has a total carbon number of R 8 , R 9 and R 10 of 10 to 24.
また、前記式(IV)中のカルボン酸としては、R11は炭素数6〜24の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜24のアリール基、または炭素数7〜24のアラルキル基であり、好ましくは炭素数が10〜20の飽和または不飽和の直鎖脂肪酸である。かかるカルボン酸の好適例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、オレイン酸などが挙げられる。前記一般式(IV)で表わされるアミン塩化合物の分子量は、所期の効果の観点から、好ましくは400〜800の範囲内である。本発明においては、かかるアミン塩化合物を一種用いてもよく、また、二種以上を組み合わせて用いてもよい。 In addition, as the carboxylic acid in the above formula (IV), R 11 is a linear or branched alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, an aryl group having 6 to 24 carbon atoms, or An aralkyl group having 7 to 24 carbon atoms, preferably a saturated or unsaturated linear fatty acid having 10 to 20 carbon atoms. Preferable examples of such carboxylic acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, oleic acid and the like. The molecular weight of the amine salt compound represented by the general formula (IV) is preferably in the range of 400 to 800 from the viewpoint of the desired effect. In the present invention, one such amine salt compound may be used, or two or more may be used in combination.
本発明で使用するポリマーは、ゴム組成物を形成し得るものであれば特に限定されないが、ジエン系ゴムであることが好ましい。具体的には、天然ゴムまたは各種ジエン系合成ゴムを用いることができるが、特にジエン系合成ゴムが好ましい。ジエン系合成ゴムとしては、ポリブタジエン(BR)、ブタジエンと芳香族ビニル化合物との共重合体、ブタジエンと他のジエン系モノマーとの共重合体などのブタジエン系重合体、ポリイソプレン(IR)、イソプレンと芳香族ビニル化合物との共重合体、イソプレンと他のジエン系モノマーとの共重合体などのイソプレン系重合体、ブチルゴム(IIR)、エチレン−プロピレン共重合体及びこれらの混合物等が挙げられるが、中でもブタジエン系重合体、イソプレン系重合体が好ましく、より好ましいのはスチレン−ブタジエン共重合体(SBR)である。なお、SBRのミクロ構造は特に限定されないが、中でも、結合スチレン量が5質量%から60質量%であることが好ましく、特に15質量%から45質量%であることが更に好ましい。更に、本発明においては、スチレン−ブタジエン共重合体がゴム成分中50質量%以上含有していることが好ましいが、特に全ゴム成分がスチレン−ブタジエン共重合体(SBR)単独であることが好ましい。 The polymer used in the present invention is not particularly limited as long as it can form a rubber composition, but is preferably a diene rubber. Specifically, natural rubber or various diene synthetic rubbers can be used, and diene synthetic rubber is particularly preferable. Diene synthetic rubbers include polybutadiene (BR), copolymers of butadiene and aromatic vinyl compounds, butadiene polymers such as copolymers of butadiene and other diene monomers, polyisoprene (IR), isoprene. And copolymers of aromatic vinyl compounds, isoprene polymers such as copolymers of isoprene and other diene monomers, butyl rubber (IIR), ethylene-propylene copolymers, and mixtures thereof. Of these, a butadiene polymer and an isoprene polymer are preferable, and a styrene-butadiene copolymer (SBR) is more preferable. The microstructure of SBR is not particularly limited, but among them, the amount of bound styrene is preferably 5% by mass to 60% by mass, and more preferably 15% by mass to 45% by mass. Furthermore, in the present invention, the styrene-butadiene copolymer is preferably contained in an amount of 50% by mass or more in the rubber component, and it is particularly preferable that the entire rubber component is a styrene-butadiene copolymer (SBR) alone. .
前記ジエン系モノマーとしては、例えば、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン、2−フェニル−1,3−ブタジエン等が挙げられる。これらは、一種単独で用いても、二種以上を混合してもよく、さらに1,3−ヘキサジエンなど他のジエンと共重合して用いてもよい。中でも好ましいのは、1,3−ブタジエンである。 Examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and the like. These may be used individually by 1 type, may mix 2 or more types, and also may be used by copolymerizing with other dienes, such as 1, 3- hexadiene. Of these, 1,3-butadiene is preferred.
本発明のゴム組成物は、ポリマー100質量部に対して、シリカ10〜200質量部を配合する。シリカとしては、特に制限はなく、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも耐破壊特性の改良効果、ウェットグリップ性および低転がり抵抗性の両立効果が最も顕著である湿式シリカが好ましい。また、BET表面積が40〜350m2/gの範囲であることが好ましい。BET表面積がこの範囲内であるとゴム補強性とゴム中の分散性を両立できるという利点がある。この観点からBET表面積は80〜300m2/gの範囲内であることがさらに好ましい。 The rubber composition of this invention mix | blends 10-200 mass parts of silica with respect to 100 mass parts of polymers. Silica is not particularly limited and includes, for example, wet silica (hydrous silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc. Among them, the effect of improving the fracture resistance, wet Wet silica is most preferred because it has the most remarkable effect of achieving both grip properties and low rolling resistance. Moreover, it is preferable that a BET surface area is the range of 40-350 m < 2 > / g. When the BET surface area is within this range, there is an advantage that both rubber reinforcement and dispersibility in rubber can be achieved. From this viewpoint, the BET surface area is more preferably in the range of 80 to 300 m 2 / g.
尚、本発明のゴム組成物においては、通常のゴム組成物に配合する添加剤を本発明の効果を損なわない程度に添加することができ、ゴム工業で通常使用されているカーボンブラック、老化防止剤、酸化亜鉛、ステアリン酸、酸化防止剤、オゾン劣化防止剤等の添加剤を適宜配合することができる。 In addition, in the rubber composition of the present invention, additives added to a normal rubber composition can be added to such an extent that the effects of the present invention are not impaired, and carbon black commonly used in the rubber industry, anti-aging Additives such as an agent, zinc oxide, stearic acid, antioxidant, ozone deterioration inhibitor, etc. can be appropriately blended.
本発明のゴム組成物は、ロールなどの開放式混練機、バンバリーミキサーなどの密閉式混練機等の混練機を用いて混練することによって得られ、成形加工後に加硫を行い、各種ゴム製品に適用可能である。例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途を始め、防振ゴム、防舷材、ベルト、ホース、その他の工業品等の用途に用いることができるが、特にタイヤトレッド用ゴムとして好適に使用される。 The rubber composition of the present invention is obtained by kneading using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer, and vulcanized after molding to produce various rubber products. Applicable. For example, it can be used for tire applications such as tire treads, under treads, carcass, sidewalls, bead parts, vibration proof rubber, fenders, belts, hoses, and other industrial products. It is suitably used as a tread rubber.
また、上記ゴム組成物を用いた本発明のタイヤにおいては、耐摩耗性が高く、転がり抵抗が低く、更に湿潤路面での制動性・操縦安定性に優れた性能を得ることができる。このタイヤに充填する気体としては、空気、又は窒素などの不活性なガスが挙げられる。 Moreover, in the tire of the present invention using the rubber composition, it is possible to obtain high wear resistance, low rolling resistance, and excellent performance in braking performance and steering stability on wet road surfaces. Examples of the gas filled in the tire include air or an inert gas such as nitrogen.
次に、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。なお、各実施例および比較例で得られたゴム組成物の物性は以下の方法により測定した。
(1)ムーニー粘度(ML1+4)
JIS K6300−1994に準拠し、130℃にてムーニー粘度(ML1+4/130℃)を測定し、比較例2の値を100として指数化した。ムーニー粘度は値が小さい程、加工性が高いことを示す。
(2)硬さ
JIS K6253−1997に準拠して測定し、比較例2の値を100として指数化した。
(3)反発弾性
JIS K6255−1996に準じて、ダンロップトリプソメーターを用いて測定した。測定値は比較例2の値を100として指数化した。
(4)耐摩耗性(ゴム組成物)
ランボーン型摩耗試験機を用い、室温におけるスリップ率60%の摩耗量を測定した。結果は、各例の摩耗量の逆数を、比較例2において得られた摩耗量の逆数の値を100として指数化した。
Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto. In addition, the physical property of the rubber composition obtained by each Example and the comparative example was measured with the following method.
(1) Mooney viscosity (ML 1 + 4 )
Based on JIS K6300-1994, the Mooney viscosity (ML 1 + 4/130 ° C.) was measured at 130 ° C., and the value of Comparative Example 2 was indexed to 100. The smaller the Mooney viscosity, the higher the workability.
(2) Hardness Measured according to JIS K6253-1997, and the value of Comparative Example 2 was indexed as 100.
(3) Rebound resilience It was measured using a Dunlop trypometer in accordance with JIS K6255-1996. The measured values were indexed with the value of Comparative Example 2 as 100.
(4) Abrasion resistance (rubber composition)
Using a Lambourn type wear tester, the amount of wear at a slip rate of 60% at room temperature was measured. The results were indexed with the reciprocal of the amount of wear in each example as 100, with the value of the reciprocal of the amount of wear obtained in Comparative Example 2 being 100.
また、タイヤに関する物性は以下の方法により測定した。
(5)転がり抵抗性試験
転がり抵抗は、スチール平滑面を有する外径が1707.6mm、幅が350mmの回転ドラムを用い、4500N(460kg)の荷重の作用下で、80km/hの速度で回転させたときの惰行法を持って測定し、評価した。測定値は比較例2の値を100として指数化した。この数値が大きい程、転がり抵抗は良好(小さい)であることを示す。
(6)耐摩耗性(タイヤ)
実車にて舗装路面を2万キロ走行後、残溝を測定し、トレッドが1mm摩耗するのに要した走行距離を相対比較し、比較例2を100として指数表示した。指数が大きい程、耐摩耗性が良好であることを示す。
Moreover, the physical properties relating to the tire were measured by the following methods.
(5) Rolling resistance test The rolling resistance was rotated at a speed of 80 km / h using a rotating drum having a steel smooth surface with an outer diameter of 1707.6 mm and a width of 350 mm under a load of 4500 N (460 kg). It was measured and evaluated using the lameness method. The measured values were indexed with the value of Comparative Example 2 as 100. The larger this value, the better (smaller) the rolling resistance.
(6) Abrasion resistance (tire)
After traveling 20,000 km on a paved road surface with an actual vehicle, the remaining groove was measured, and the travel distance required for the tread to wear by 1 mm was relatively compared. It shows that abrasion resistance is so favorable that an index | exponent is large.
(硫黄含有シラン化合物の合成)
合成例1
まず、硫黄含有シラン化合物の合成を行った。窒素ガス導入管、温度計、ジムロート型コンデンサー及び滴下漏斗を備えた0.5リットルのセパラブルフラスコに、エタノール80g、無水硫化ソーダ10.93g(0.14mol)、硫黄6.73g(0.21mol)を仕込み、80℃に昇温した。この溶液を攪拌しながら、塩化プロピルトリエトキシシラン((CH3CH2O)3Si−(CH2)3−Cl)33.7g(0.14mol)および1,6−ジクロロヘキサン(ClCH2−(CH2)4−CH2Cl)10.8g(0.07mol)をゆっくり滴下した。滴下終了後、80℃にて10時間攪拌を続けた。攪拌終了後、冷却し、生成した塩を濾別した後、溶媒のエタノールを減圧蒸留した。
(Synthesis of sulfur-containing silane compounds)
Synthesis example 1
First, a sulfur-containing silane compound was synthesized. In a 0.5 liter separable flask equipped with a nitrogen gas inlet tube, thermometer, Dimroth condenser and dropping funnel, ethanol 80 g, anhydrous sodium sulfide 10.93 g (0.14 mol), sulfur 6.73 g (0.21 mol) ) And heated to 80 ° C. While this solution was stirred, 33.7 g (0.14 mol) of propyltriethoxysilane chloride ((CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —Cl) and 1,6-dichlorohexane (ClCH 2 — 10.8 g (0.07 mol) of (CH 2 ) 4 —CH 2 Cl) was slowly added dropwise. After completion of dropping, stirring was continued at 80 ° C. for 10 hours. After completion of the stirring, the mixture was cooled and the produced salt was filtered off.
得られた溶液を赤外線吸収スペクトル分析(IR分析)、1H核磁気共鳴スペクトル分析(1H−NMR分析)および超臨界クロマトグラフィー分析を行った結果、一般式(CH3CH2O)3Si−(CH2)3−Sk−S−(CH2)6−S−Sm−(CH2)3−Si(OCH2CH3)3で表される化合物、即ち、化学式(I)および(II)においてR1がエチル基、R3がプロピレン基、R5がヘキシレン基、p=0、kおよびmの平均値が1.5であることを確認した。このもののゲルパーミエーションクロマトグラフ分析(GPC分析)における純度が82.5%であった。 The obtained solution was subjected to infrared absorption spectrum analysis (IR analysis), 1 H nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis), and supercritical chromatography analysis. As a result, the general formula (CH 3 CH 2 O) 3 Si — (CH 2 ) 3 —S k —S— (CH 2 ) 6 —S—S m — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , ie, chemical formula (I) and In (II), it was confirmed that R 1 was an ethyl group, R 3 was a propylene group, R 5 was a hexylene group, and the average value of p = 0, k and m was 1.5. The purity of this product in gel permeation chromatographic analysis (GPC analysis) was 82.5%.
合成例2
窒素ガス導入管、温度計、ジムロート型コンデンサー及び滴下漏斗を備えた0.5リットルのセパラブルフラスコに、エタノール80g、無水硫化ソーダ16.38g(0.21mol)、硫黄10.10g(0.315mol)を仕込み、80℃に昇温した。この溶液を攪拌しながら、塩化プロピルトリエトキシシラン((CH3CH2O)3Si−(CH2)3−Cl)33.7g(0.14mol)および1,6−ジクロロヘキサン(ClCH2−(CH2)4−CH2Cl)21.70g(0.14mol)をゆっくり滴下した。滴下終了後、80℃にて10時間攪拌を続けた。攪拌終了後、冷却し、生成した塩を濾別した後、溶媒のエタノールを減圧蒸留した。
Synthesis example 2
In a 0.5 liter separable flask equipped with a nitrogen gas inlet tube, thermometer, Dimroth condenser and dropping funnel, ethanol 80 g, anhydrous sodium sulfide 16.38 g (0.21 mol), sulfur 10.10 g (0.315 mol) ) And heated to 80 ° C. While the solution was stirred, 33.7 g (0.14 mol) of propyltriethoxysilane chloride ((CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —Cl) and 1,6-dichlorohexane (ClCH 2 — 21.70 g (0.14 mol) of (CH 2 ) 4 —CH 2 Cl) was slowly added dropwise. After completion of dropping, stirring was continued at 80 ° C. for 10 hours. After completion of the stirring, the mixture was cooled and the formed salt was filtered off, and then ethanol as a solvent was distilled under reduced pressure.
得られた溶液を赤外線吸収スペクトル分析(IR分析)、1H核磁気共鳴スペクトル分析(1H−NMR分析)および超臨界クロマトグラフィー分析を行った結果、一般式(CH3CH2O)3Si−(CH2)3−Sk−(CH2)6−Sx−(CH2)6−Sm−(CH2)3−Si(OCH3CH2)3、即ち、化学式(I)および(III)においてR1がエチル基、R3がプロピレン基、R6およびR7がヘキシレン基、p=0、k、mおよびxの平均値が2.5であることを確認した。 The obtained solution was subjected to infrared absorption spectrum analysis (IR analysis), 1 H nuclear magnetic resonance spectrum analysis ( 1 H-NMR analysis), and supercritical chromatography analysis. As a result, the general formula (CH 3 CH 2 O) 3 Si - (CH 2) 3 -S k - (CH 2) 6 -S x - (CH 2) 6 -S m - (CH 2) 3 -Si (OCH 3 CH 2) 3, i.e., formula (I) and In (III), it was confirmed that R 1 was an ethyl group, R 3 was a propylene group, R 6 and R 7 were hexylene groups, and the average value of p = 0, k, m and x was 2.5.
実施例1〜4
ジエン系ゴム(日本合成ゴム(株)製、商品名「#1712」)110質量部、天然ゴム20質量部を1.8Lバンバリーミキサーにて、70rpm、開始温度80℃で30秒間素練りし、これにISAF級カーボンブラック(東海カーボン(株)製、商品名「シースト7HM」)20質量部と、シリカ(日本シリカ工業(株)製、商品名「ニプシルAQ」)50質量部と、ステアリン酸1質量部と、老化防止剤6PPD(N−フェニル−N’−(1,3−ジメチルブチル)−p−フェニレンジアミン)1.0質量部と、更に下記の表1に示す配合内容に従い、上記合成例1にて合成した硫黄含有シラン化合物(「化合物A」とする)または上記合成例2にて合成した硫黄含有シラン化合物(「化合物A’」とする)と、ジメチルステアリルアミンのステアリン酸塩(「アミン塩化合物B」とする)またはジメチルステアリルアミンのオレイン酸塩(「アミン塩化合物C」とする)とを配合し、160℃になるまで混練した後、放出し、ロールにてシート状にした。次いで1.8Lバンバリーミキサーにて、70rpm、開始温度80℃で1分30秒間リミル操作を行った後、放出し、ロールにてシート状にした。室温まで十分冷却した後、活性亜鉛3質量部、加硫促進剤DM(ジベンゾチアジルジスルフィド)0.5質量部、加硫促進剤NS(N−t−ブチル−2−ベンゾチアジルスルフェンアミド)1.0質量部および硫黄1.5質量部を混合し、60rpm、開始温度80℃で1分間混練してゴム組成物を得た。得られたゴム組成物の物性を測定した。なお、表1中、添加量はゴム成分100質量部に対する質量部である。
Examples 1-4
110 parts by weight of diene rubber (manufactured by Nippon Synthetic Rubber Co., Ltd., trade name “# 1712”) and 20 parts by weight of natural rubber were kneaded with a 1.8 L Banbury mixer at 70 rpm and a starting temperature of 80 ° C. for 30 seconds. To this, 20 parts by mass of ISAF grade carbon black (trade name “SEAST 7HM” manufactured by Tokai Carbon Co., Ltd.), 50 parts by mass of silica (trade name “Nipsil AQ” manufactured by Nippon Silica Industry Co., Ltd.), and stearic acid 1 part by mass, anti-aging agent 6PPD (N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine) 1.0 part by mass, and further according to the formulation shown in Table 1 below, The sulfur-containing silane compound synthesized in Synthesis Example 1 (referred to as “Compound A”) or the sulfur-containing silane compound synthesized in Synthesis Example 2 (referred to as “Compound A ′”) and dimethylstearyl alcohol And stearic acid salt (referred to as “amine salt compound B”) or oleate salt of dimethyl stearylamine (referred to as “amine salt compound C”), kneaded to 160 ° C., and then released. It was made into a sheet by a roll. Subsequently, after a remill operation was performed for 1 minute and 30 seconds at 70 rpm and a starting temperature of 80 ° C. with a 1.8 L Banbury mixer, it was discharged and formed into a sheet by a roll. After sufficiently cooling to room temperature, 3 parts by mass of active zinc, 0.5 parts by mass of vulcanization accelerator DM (dibenzothiazyl disulfide), vulcanization accelerator NS (Nt-butyl-2-benzothiazylsulfenamide) ) 1.0 part by mass and 1.5 parts by mass of sulfur were mixed and kneaded for 1 minute at 60 rpm and a starting temperature of 80 ° C. to obtain a rubber composition. The physical properties of the obtained rubber composition were measured. In Table 1, the addition amount is parts by mass with respect to 100 parts by mass of the rubber component.
また、各ゴム組成物を用い、通常の方法でタイヤを製造した。タイヤサイズは205/65R15、リム15×6JJ、内圧を220kPaとした。このタイヤを用いて、転がり抵抗性試験および耐摩耗性試験(タイヤ)を実施した。夫々の評価結果を表1に示す。 In addition, tires were produced by ordinary methods using each rubber composition. The tire size was 205 / 65R15, the rim 15 × 6JJ, and the internal pressure was 220 kPa. Using this tire, a rolling resistance test and an abrasion resistance test (tire) were carried out. The respective evaluation results are shown in Table 1.
比較例1
実施例1において、合成例1で合成した化合物に代えて、市販のシランカップリング剤(デグッサ社製「Si69」)(構造式:(CH3CH2O)3−Si−(CH2)3−S4−(CH2)3−Si(OCH2CH3)3)をゴム成分100質量部に対し、5.5質量部添加し、アミン塩化合物を添加しないことを除き、実施例1と同様にしてゴム組成物を得た。評価結果を表1に示す(タイヤに関する試験は未実施である)。
Comparative Example 1
In Example 1, instead of the compound synthesized in Synthesis Example 1, a commercially available silane coupling agent (“Si69” manufactured by Degussa) (structure: (CH 3 CH 2 O) 3 —Si— (CH 2 ) 3 -S 4 - to (CH 2) 3 -Si (OCH 2 CH 3) 3) 100 parts by mass of the rubber component, was added 5.5 parts by weight, except that no addition of amine salt compound, as in example 1 A rubber composition was obtained in the same manner. An evaluation result is shown in Table 1 (the test regarding a tire has not been implemented).
比較例2
実施例1において、合成例1で合成した化合物に代えて、市販のシランカップリング剤(デグッサ社製「Si75」)(構造式:(CH3CH2O)3−Si−(CH2)3−S2−(CH2)3−Si(OCH2CH3)3)をゴム成分100質量部に対し、5.0質量部添加し、アミン塩化合物を添加しないことを除き、実施例1と同様にしてゴム組成物およびタイヤを得た。評価結果を表1に示す。
Comparative Example 2
In Example 1, in place of the compound synthesized in Synthesis Example 1, a commercially available silane coupling agent (“Si75” manufactured by Degussa) (structure: (CH 3 CH 2 O) 3 —Si— (CH 2 ) 3 -S 2- (CH 2 ) 3 -Si (OCH 2 CH 3 ) 3 ) is added to 5.0 parts by weight with respect to 100 parts by weight of the rubber component, except that no amine salt compound is added. Similarly, a rubber composition and a tire were obtained. The evaluation results are shown in Table 1.
比較例3
実施例1において、アミン塩化合物を添加しないことを除き、実施例1と同様にしてゴム組成物およびタイヤを得た。評価結果を表1に示す。
Comparative Example 3
In Example 1, a rubber composition and a tire were obtained in the same manner as in Example 1 except that no amine salt compound was added. The evaluation results are shown in Table 1.
比較例4
実施例1において、合成例1で合成した化合物に代えて、市販のシランカップリング剤(デグッサ社製「Si75」)(構造式:(CH3CH2O)3−Si−(CH2)3−S2−(CH2)3−Si(OCH2CH3)3)をゴム成分100質量部に対し、5.0質量部添加したことを除き、実施例1と同様にしてゴム組成物およびタイヤを得た。評価結果を表1に示す。
Comparative Example 4
In Example 1, in place of the compound synthesized in Synthesis Example 1, a commercially available silane coupling agent (“Si75” manufactured by Degussa) (structure: (CH 3 CH 2 O) 3 —Si— (CH 2 ) 3 -S 2 - (CH 2) 3 to -Si (OCH 2 CH 3) 3 ) 100 parts by mass of the rubber component, except for the addition of 5.0 parts by mass, the rubber composition in the same manner as in example 1 and I got a tire. The evaluation results are shown in Table 1.
表1から明らかなように、実施例1〜4はいずれも比較例1〜4に比べ、ゴム組成物のムーニー粘度、硬さおよび耐摩耗性において優れた物性を有し、また、ゴム組成物から作製されたタイヤにおいても転がり抵抗および耐摩耗性のいずれも良好である。 As is apparent from Table 1, Examples 1 to 4 have excellent properties in terms of Mooney viscosity, hardness and abrasion resistance of the rubber composition as compared with Comparative Examples 1 to 4, and the rubber composition Both the rolling resistance and the wear resistance are good in the tire produced from the above.
Claims (8)
(R1O)3-p(R2)pSi−R3−Sk−R4−Sm−R3−Si(R2)p(OR1)3-p・・・(I)、
(式(I)中、R1およびR2はそれぞれ炭素数1〜4の炭化水素基、R3は炭素数1〜15の2価の炭化水素基、pは0〜2の整数、kおよびmはそれぞれ平均値として1以上4未満、R4は下記一般式(II)または(III)、
−S−R5−S−・・・(II)
−R6−Sx−R7−(III)
で表される2価の官能基であって、式中、R5、R6およびR7は夫々同一でも異なっていてもよく、直鎖状または分枝を有する炭素数1〜20の2価の炭化水素基、2価の芳香族基、または硫黄原子および酸素原子以外のヘテロ原子を含む2価の有機基、xは平均値として1以上4未満である。)で表される1種または2種以上の硫黄含有シラン化合物1〜30質量部と、下記一般式(IV)、
(式(IV)中、R8は炭素数8〜24の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜24のアリール基、または炭素数7〜24のアラルキル基、R9およびR10はそれぞれ水素原子、炭素数1〜12の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜12のアリール基、炭素数7〜12のアラルキル基、または
−(CH2O)nH、−(CH2CH2O)nH、−(CH(CH3)CH2O)nHまたは−(CH2CH2CH2O)nHであって、式中、nの合計は1〜4、R11は炭素数6〜24の直鎖状または分枝を有するアルキル基、アルケニル基またはアルキニル基、炭素数6〜24のアリール基、または炭素数7〜24のアラルキル基である。)で表されるアミン塩化合物0.1〜20質量部とを含有することを特徴とするゴム組成物。 10 to 200 parts by mass of silica with respect to 100 parts by mass of the polymer, the following general formula (I),
(R 1 O) 3-p (R 2) p Si-R 3 -S k -R 4 -S m -R 3 -Si (R 2) p (OR 1) 3-p ··· (I),
(In the formula (I), R 1 and R 2 are each a hydrocarbon group having 1 to 4 carbon atoms, R 3 is a divalent hydrocarbon group having 1 to 15 carbon atoms, p is an integer of 0 to 2, k and m is an average value of 1 or more and less than 4, R 4 is the following general formula (II) or (III),
—S—R 5 —S— (II)
—R 6 —S x —R 7 — (III)
In which R 5 , R 6, and R 7 may be the same or different, and are linear or branched divalent having 1 to 20 carbon atoms A divalent organic group containing a hetero atom other than a sulfur atom and an oxygen atom, and x is an average value of 1 or more and less than 4. 1 to 2 parts by mass of one or more sulfur-containing silane compounds represented by the following general formula (IV),
(In formula (IV), R 8 is a linear or branched alkyl group, alkenyl group or alkynyl group having 8 to 24 carbon atoms, aryl group having 6 to 24 carbon atoms, or aralkyl having 7 to 24 carbon atoms. Groups R 9 and R 10 are each a hydrogen atom, a linear or branched alkyl group having 1 to 12 carbon atoms, an alkenyl group or an alkynyl group, an aryl group having 6 to 12 carbon atoms, or a 7 to 12 carbon atom. Aralkyl group, or — (CH 2 O) n H, — (CH 2 CH 2 O) n H, — (CH (CH 3 ) CH 2 O) n H or — (CH 2 CH 2 CH 2 O) n H Wherein n is 1 to 4 in total, R 11 is a linear or branched alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, aryl group having 6 to 24 carbon atoms, Or an aralkyl group having 7 to 24 carbon atoms. A rubber composition comprising 0.1 to 20 parts by mass of an amine salt compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319810A JP2006131683A (en) | 2004-11-02 | 2004-11-02 | Rubber composition and pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319810A JP2006131683A (en) | 2004-11-02 | 2004-11-02 | Rubber composition and pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006131683A true JP2006131683A (en) | 2006-05-25 |
Family
ID=36725519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004319810A Pending JP2006131683A (en) | 2004-11-02 | 2004-11-02 | Rubber composition and pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006131683A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009014234A1 (en) * | 2007-07-20 | 2009-01-29 | The Yokohama Rubber Co., Ltd. | Rubber composition |
JP2009114357A (en) * | 2007-11-07 | 2009-05-28 | Bridgestone Corp | Rubber composition |
JP2011052090A (en) * | 2009-09-01 | 2011-03-17 | Yokohama Rubber Co Ltd:The | Rubber composition for tire and pneumatic tire using the same |
JP2018145270A (en) * | 2017-03-03 | 2018-09-20 | 住友ゴム工業株式会社 | Method of producing rubber composition for tire and method of manufacturing pneumatic tire |
-
2004
- 2004-11-02 JP JP2004319810A patent/JP2006131683A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009014234A1 (en) * | 2007-07-20 | 2009-01-29 | The Yokohama Rubber Co., Ltd. | Rubber composition |
US8445572B2 (en) * | 2007-07-20 | 2013-05-21 | The Yokohama Rubber Co., Ltd. | Rubber composition |
JP2009114357A (en) * | 2007-11-07 | 2009-05-28 | Bridgestone Corp | Rubber composition |
JP2011052090A (en) * | 2009-09-01 | 2011-03-17 | Yokohama Rubber Co Ltd:The | Rubber composition for tire and pneumatic tire using the same |
JP2018145270A (en) * | 2017-03-03 | 2018-09-20 | 住友ゴム工業株式会社 | Method of producing rubber composition for tire and method of manufacturing pneumatic tire |
JP7031127B2 (en) | 2017-03-03 | 2022-03-08 | 住友ゴム工業株式会社 | Manufacturing method of rubber composition for tires and manufacturing method of pneumatic tires |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4473726B2 (en) | Rubber composition and tire using the same | |
JP3895446B2 (en) | Method for producing polymer, obtained polymer, and rubber composition using the same | |
JP5520829B2 (en) | Modified conjugated diene polymer, production method thereof, modified conjugated diene polymer composition, and tire | |
US6433065B1 (en) | Silica-reinforced rubber compounded with mercaptosilanes and alkyl alkoxysilanes | |
EP0992537B1 (en) | Oil extended rubber and rubber composition | |
JP4111590B2 (en) | Method for producing polymer, obtained polymer, and rubber composition using the same | |
JPH0987426A (en) | Production of rubber composition | |
JP4092557B2 (en) | Conjugated diolefin copolymer rubber, process for producing the copolymer rubber, rubber composition and tire | |
EP1640183A1 (en) | Tire with low rate volatile alcohol emission rubber tread | |
JP2007217562A (en) | Rubber composition and tire using the same | |
JP2001131230A (en) | Polymer, method for production thereof, and rubber composition prepared by using same | |
JP2008163125A (en) | Rubber composition and pneumatic tire using the same | |
JP2007277411A (en) | Rubber composition and pneumatic tire | |
JP3949437B2 (en) | Modified diene polymer, rubber composition and pneumatic tire | |
JP3546586B2 (en) | Rubber composition, method for producing rubber composition, and tire tread | |
JP3369883B2 (en) | Rubber composition and pneumatic tire | |
JP4801827B2 (en) | Polymer, process for producing the same, and rubber composition using the same | |
JP4330734B2 (en) | Rubber composition and pneumatic tire using the same | |
JP4323228B2 (en) | Sulfur-containing silane compound, rubber composition and tire | |
JP4307633B2 (en) | Modified diene rubber composition | |
JP4316074B2 (en) | Modified conjugated diene polymer, rubber composition using the same, and pneumatic tire | |
JP2006131683A (en) | Rubber composition and pneumatic tire | |
JP2001114936A (en) | Diolefin based polymer composition, its production method, and vulcanization rubber composition | |
JP2006131682A (en) | Rubber composition and pneumatic tire | |
JP2006131681A (en) | Rubber composition and pneumatic tire |