JP2006126468A - Near-infrared ray shielding agent and resin composition containing the same - Google Patents

Near-infrared ray shielding agent and resin composition containing the same Download PDF

Info

Publication number
JP2006126468A
JP2006126468A JP2004314133A JP2004314133A JP2006126468A JP 2006126468 A JP2006126468 A JP 2006126468A JP 2004314133 A JP2004314133 A JP 2004314133A JP 2004314133 A JP2004314133 A JP 2004314133A JP 2006126468 A JP2006126468 A JP 2006126468A
Authority
JP
Japan
Prior art keywords
titanium dioxide
rod
compound
shielding agent
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004314133A
Other languages
Japanese (ja)
Other versions
JP4562492B2 (en
Inventor
Masaki Shimojo
正樹 下條
Kazuyuki Ito
和志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2004314133A priority Critical patent/JP4562492B2/en
Publication of JP2006126468A publication Critical patent/JP2006126468A/en
Application granted granted Critical
Publication of JP4562492B2 publication Critical patent/JP4562492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a white near infrared ray shielding agent which has superior to shielding performance of near-infrared rays and also superior concealing properties and which can be used as a pigment. <P>SOLUTION: This near-infrared ray shielding agent contains as an effective component acicular titanium dioxide the single particle of which has 1.5-6 μm average major axis and 0.2-0.8 μm average minor axis. The acicular titanium dioxide can be obtained, by hydrolyzing a hydrolyzable titanium compound in a liquid phase in the presence of a seed crystal of acicular titanium dioxide, to obtain a hydrolysis product and heating/firing the hydrolysis product at 900-1,200°C, in the presence of a firing agent containing an alkali metal compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、棒状二酸化チタンを有効成分として含有する近赤外線遮蔽剤に関する。   The present invention relates to a near-infrared shielding agent containing rod-shaped titanium dioxide as an active ingredient.

近年、大気汚染や地球温暖化等の環境面から、また資源の有効利用の面からも、省エネルギー、特に消費電力の削減が強く求められている。日本では、夏季の冷房機、冷却機、冷凍機等の使用が、消費電力を増大させる要因となっている。このため、建造物の外壁を近赤外線遮蔽剤を含む塗料で塗装することで太陽光に含まれる近赤外線(熱線)の吸収を抑え、建造物内の温度上昇を抑制する技術が提案されている。このような近赤外線遮蔽剤として、近赤外線反射性及び/又は透過性色素で白色顔料を被覆・着色した近赤外線反射性複合顔料(特許文献1参照)が知られている。また、近赤外線遮蔽能に優れた白色顔料としては、平均粒子径が0.4〜1.5μmの大粒子径二酸化チタン(非特許文献1参照)が知られている。   In recent years, there has been a strong demand for energy saving, in particular, reduction of power consumption, from the viewpoints of the environment such as air pollution and global warming and from the viewpoint of effective use of resources. In Japan, the use of air conditioners, coolers, refrigerators, etc. in summer is a factor that increases power consumption. For this reason, the technique which suppresses the absorption of the near infrared rays (heat ray) contained in sunlight by coating the outer wall of a building with the paint containing a near-infrared shielding agent, and suppresses the temperature rise in a building is proposed. . As such a near-infrared shielding agent, a near-infrared reflective composite pigment in which a white pigment is coated and colored with a near-infrared reflective and / or transparent dye (see Patent Document 1) is known. Moreover, as a white pigment excellent in near-infrared shielding ability, a large particle diameter titanium dioxide (refer nonpatent literature 1) with an average particle diameter of 0.4-1.5 micrometers is known.

特開2002−249676号公報(第2頁)JP 2002-249676 A (page 2) 山本健司、“近赤外線遮蔽用酸化チタンの開発”、コンバーテック、加工技術研究協会、2004年7月、No.376 P95−97Kenji Yamamoto, “Development of Titanium Oxide for Near-Infrared Shielding”, Convertech, Processing Technology Research Association, July 2004, No. 376 P95-97

非特許文献1記載の二酸化チタンは、近赤外線を反射するのに適した上記範囲の平均粒子径に設定されているため、近赤外線遮蔽能に優れたものである。しかしながら、可視光域の反射率は通常の顔料級酸化チタン(平均粒子径が0.2〜0.4μm)と較べると低く、そのため高い隠ペイ性を要求される用途に用いるには困難である。本発明は、近赤外線遮蔽能に優れ、しかも隠ペイ性にも優れ、顔料としても用いることができる白色系の近赤外線遮蔽剤を提供するものである。   Titanium dioxide described in Non-Patent Document 1 has an excellent near-infrared shielding ability because it is set to an average particle diameter in the above range suitable for reflecting near-infrared rays. However, the reflectance in the visible light region is lower than that of ordinary pigment-grade titanium oxide (average particle size is 0.2 to 0.4 μm), and thus it is difficult to use in applications that require high concealment properties. . The present invention provides a white near-infrared shielding agent that is excellent in near-infrared shielding ability, has excellent concealment properties, and can be used as a pigment.

本発明者らは、これらの問題を解決すべく鋭意研究を重ねた結果、酸化チタン粒子の形状を特定の範囲の平均長軸径と平均短軸径とを有する棒状とすることで、近赤外線遮蔽能と隠ペイ性とを両立できることを見出し、本発明を完成した。   As a result of intensive studies to solve these problems, the present inventors have made the shape of the titanium oxide particles into a rod shape having an average major axis diameter and an average minor axis diameter in a specific range, and thereby the near infrared ray. The present invention has been completed by finding that the shielding ability and the hidden payability can be compatible.

すなわち、本発明は、単一粒子の平均長軸径が1.5〜6μmの範囲にあり、平均短軸径が0.2〜0.8μmの範囲にある棒状二酸化チタンを有効成分として含有する近赤外線遮蔽剤である。   That is, the present invention contains rod-shaped titanium dioxide having an average major axis diameter of a single particle in a range of 1.5 to 6 μm and an average minor axis diameter in a range of 0.2 to 0.8 μm as an active ingredient. It is a near infrared shielding agent.

本発明の近赤外線遮蔽剤は、優れた近赤外線遮蔽能と隠ペイ性とを有しており、これを配合した樹脂組成物は、近赤外線遮蔽材料として、近赤外線からの基材の保護、あるいは構造物内の温度上昇の抑制等の用途に用いることができる。   The near-infrared shielding agent of the present invention has an excellent near-infrared shielding ability and a concealing property, and a resin composition blended therewith, as a near-infrared shielding material, protects a substrate from near-infrared rays, Or it can use for uses, such as suppression of the temperature rise in a structure.

本発明は、近赤外線遮蔽剤であって、単一粒子の平均長軸径が1.5〜6μmの範囲にあり、平均短軸径が0.2〜0.8μmの範囲にある棒状二酸化チタンを有効成分として含有することを特徴とする。棒状二酸化チタンにおいて、近赤外線遮蔽能は長軸径の、可視光の散乱は短軸径の影響を強く受けていると推測される。このため、本発明では、棒状二酸化チタンの長軸径を近赤外線遮蔽能に最適の前記範囲に、短軸径を可視光の散乱にとって最適の前記範囲とすることで、近赤外線遮蔽能と隠ペイ性とを高いレベルで両立させている。より好ましい平均長軸径の範囲は、1.5〜4μmであり、平均短軸径の範囲は0.2〜0.5である。特に、軸比が3〜15の範囲にあるものが、近赤外線遮蔽能と隠ペイ性とのバランスが優れているので好ましく、5〜10の範囲がより好ましい。   The present invention is a near-infrared shielding agent, in which the average long axis diameter of a single particle is in the range of 1.5 to 6 μm and the average short axis diameter is in the range of 0.2 to 0.8 μm. Is contained as an active ingredient. In rod-like titanium dioxide, it is presumed that the near-infrared shielding ability is strongly influenced by the long axis diameter, and the visible light scattering is strongly influenced by the short axis diameter. For this reason, in the present invention, the long axis diameter of the rod-like titanium dioxide is set to the above-described range optimal for near-infrared shielding ability, and the short-axis diameter is set to the above-mentioned range optimal for scattering of visible light. The balance of payability is at a high level. A more preferable range of the average major axis diameter is 1.5 to 4 μm, and a range of the average minor axis diameter is 0.2 to 0.5. Particularly, those having an axial ratio in the range of 3 to 15 are preferable because the balance between the near-infrared shielding ability and the hidden payability is excellent, and the range of 5 to 10 is more preferable.

本発明で用いる棒状二酸化チタンの結晶形には特に制限はなく、ルチル型、アナターゼ型のいずれを用いることもできる。しかし、ルチル型は長波長の光の反射率が高く、また、樹脂組成物用として耐候性、耐光性に優れているので好ましい。   There is no restriction | limiting in particular in the crystal form of the rod-shaped titanium dioxide used by this invention, Either a rutile type or an anatase type can be used. However, the rutile type is preferable because it has a high reflectance of light having a long wavelength and is excellent in weather resistance and light resistance for a resin composition.

棒状二酸化チタンの表面には、公知の無機化合物または有機化合物の被覆層を有していてもよく、あるいはそれらを組合せて被覆してもよい。一般的に、無機化合物の被覆には生産性や耐候性を向上させる効果が、有機化合物の被覆には樹脂成分との親和性を向上させる効果が知られている。無機化合物の被覆量は、用途によって異なるが、塗料組成物に用いる場合は0.1〜10重量%、プラスチックス組成物の場合は0.05〜5重量%の範囲が好ましい。有機化合物の好ましい被覆量は、通常、0.01〜5重量%の範囲であり、更に好ましい範囲は0.05〜2重量%である。   The surface of the rod-shaped titanium dioxide may have a coating layer of a known inorganic compound or organic compound, or a combination thereof may be coated. In general, an inorganic compound coating is known to improve productivity and weather resistance, and an organic compound coating is known to improve affinity with a resin component. The coating amount of the inorganic compound varies depending on the use, but is preferably in the range of 0.1 to 10% by weight when used in a coating composition and 0.05 to 5% by weight in the case of a plastic composition. A preferable coating amount of the organic compound is usually in the range of 0.01 to 5% by weight, and a more preferable range is 0.05 to 2% by weight.

表面被覆に用いることのできる無機化合物としては、アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン等の酸化物、水酸化物、水和酸化物、リン酸塩が挙げられ、これらを1種被覆することも、2種以上の被覆を積層したり、2種以上の無機化合物を混合して被覆する等して、組み合せて用いることもできる。無機化合物の被覆層は、多孔層であっても、緻密層であってもよく、特に制限されない。   Examples of inorganic compounds that can be used for surface coating include oxides such as aluminum, silicon, zirconium, tin, titanium, and antimony, hydroxides, hydrated oxides, and phosphates. One of these is coated. In addition, two or more kinds of coatings may be laminated, or two or more kinds of inorganic compounds may be mixed and coated to be used in combination. The inorganic compound coating layer may be a porous layer or a dense layer, and is not particularly limited.

表面被覆に用いることのできる有機化合物としては、多価アルコール、アルカノールアミンまたはその誘導体、有機ケイ素化合物、高級脂肪酸またはその金属塩、有機金属化合物等が挙げられる。具体的には、例えば、(1)多価アルコールとしては、トリメチロールエタン、トリプロパノールエタン、ペンタエリスリトール等が、(2)アルカノールアミンとしては、トリエチルアミン、トリプロピルアミン等が、誘導体としてはそれらの有機酸塩等が、(3)有機ケイ素化合物としては、(a)ポリシロキサン類(ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン等)、(b)オルガノシラン類(アルキルシラン、フェニルシラン等の非反応性シラン類、及び、アミノシラン、ビニルシラン、メタクリルシラン等のシランカップリング剤等)等が、(4)高級脂肪酸としては、ステアリン酸、ラウリン酸等が、それらの金属塩としてはマグネシウム塩、亜鉛塩等が、(5)有機金属化合物としては、チタニウム系カップリング剤、アルミニウム系カップリング剤、ジルコニウム系カップリング剤等が挙げられる。これらは1種被覆することも、2種以上を組合せて被覆することもできる。   Examples of organic compounds that can be used for surface coating include polyhydric alcohols, alkanolamines or derivatives thereof, organosilicon compounds, higher fatty acids or metal salts thereof, and organometallic compounds. Specifically, for example, (1) as polyhydric alcohol, trimethylolethane, tripropanolethane, pentaerythritol, etc., (2) as alkanolamine, triethylamine, tripropylamine, etc., as derivatives thereof Organic acid salts, etc. (3) As organosilicon compounds, (a) polysiloxanes (dimethylpolysiloxane, methylhydrogenpolysiloxane, etc.), (b) organosilanes (alkylsilane, phenylsilane, etc.) (4) Higher fatty acids include stearic acid and lauric acid, and metal salts thereof include magnesium salts and zinc salts. (5) Examples of organometallic compounds include titanium Coupling agents, aluminum coupling agents, zirconium coupling agents. These can be coated alone or in combination of two or more.

次に、本発明は、棒状二酸化チタンの製造方法であって、棒状二酸化チタン核晶の存在下で液相中で加水分解性チタン化合物を加水分解し加水分解生成物を得た後、アルカリ金属化合物を含む焼成処理剤の存在下で加水分解生成物を900〜1200℃の範囲の温度で加熱焼成することを特徴とする。本発明の棒状二酸化チタンは、公知の方法、例えば、特公平6−24977号公報に開示される棒状二酸化チタン核晶の存在下、チタン源、アルカリ金属塩、オキシリン化合物の混合物を加熱焼成する方法によっても得ることができる。しかし、特公平6−24977号公報に記載の方法では長軸が短軸に比べて成長し易く、短軸を大きくすると、長軸が更に大きくなるので、近赤外線遮蔽用に求められる棒状粒子が得られ難い。一方、本発明の方法では、長軸が短軸に比べて成長し難く、このため、単一粒子の平均長軸径が1.5〜6μmの範囲にあり、平均短軸径が0.2〜0.8μmの範囲にある所望の棒状粒子が、特に、軸比が3〜15の範囲に、好ましくは5〜10の範囲にあるものが得られ易いので好ましい。前記加水分解生成物は、加水分解性チタン化合物の加水分解により生成した含水酸化チタン(または水酸化チタン)が、該核晶の表面に沈着したものと考えられる。   Next, the present invention is a method for producing rod-like titanium dioxide, comprising hydrolyzing a hydrolyzable titanium compound in the liquid phase in the presence of rod-like titanium dioxide nucleus crystals to obtain a hydrolysis product, The hydrolysis product is heated and fired at a temperature in the range of 900 to 1200 ° C. in the presence of a baking treatment agent containing a compound. The rod-like titanium dioxide of the present invention is a known method, for example, a method of heating and firing a mixture of a titanium source, an alkali metal salt, and an oxylin compound in the presence of rod-like titanium dioxide nucleus crystals disclosed in Japanese Patent Publication No. 6-24977. Can also be obtained. However, in the method described in Japanese Patent Publication No. 6-24977, the long axis is easy to grow as compared to the short axis. When the short axis is increased, the long axis is further increased. It is difficult to obtain. On the other hand, in the method of the present invention, the long axis is less likely to grow than the short axis. Therefore, the average long axis diameter of single particles is in the range of 1.5 to 6 μm, and the average short axis diameter is 0.2. Desirable rod-shaped particles in the range of ˜0.8 μm are particularly preferable because those having an axial ratio in the range of 3 to 15 and preferably in the range of 5 to 10 are easily obtained. The hydrolyzed product is considered to be the hydrous titanium oxide (or titanium hydroxide) produced by hydrolysis of the hydrolyzable titanium compound deposited on the surface of the nucleus crystal.

先ず、加水分解性チタン化合物の溶液に棒状二酸化チタン核晶を添加するか、棒状二酸化チタン核晶のスラリー中に加水分解性チタン化合物の溶液を添加する等した後、液相中で加水分解性チタン化合物を加水分解し、加水分解生成物を生成させる。加水分解には、加熱加水分解、中和加水分解等を用いることができるが、中和剤を要さないので、工業的には加熱加水分解が好ましい。加熱加水分解は、50℃以上の温度で行うと加水分解が進み易いので好ましく、80℃以上であれば更に好ましい。加熱加水分解の温度には特に上限は無いが、100℃未満の温度であれば、常圧下で加水分解を行うことができるので好ましい。中和加水分解は、pHを5.5〜9の範囲とすると加水分解が進み易いので好ましく、6〜8の範囲とするのがより好ましい。中和剤には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属またはアルカリ土類金属の炭酸塩、アンモニア、炭酸アンモニウム、硝酸アンモニウム等のアンモニウム化合物等を用いることができる。   First, a rod-like titanium dioxide nucleus crystal is added to the hydrolyzable titanium compound solution, or a hydrolyzable titanium compound solution is added to the rod-like titanium dioxide nucleus crystal slurry, and then hydrolyzable in the liquid phase. The titanium compound is hydrolyzed to produce a hydrolysis product. For hydrolysis, heat hydrolysis, neutralization hydrolysis, or the like can be used, but since a neutralizing agent is not required, industrially heat hydrolysis is preferable. Heat hydrolysis is preferably performed at a temperature of 50 ° C. or higher because hydrolysis is likely to proceed, and more preferably 80 ° C. or higher. There is no particular upper limit to the temperature of the heat hydrolysis, but a temperature lower than 100 ° C. is preferable because the hydrolysis can be performed under normal pressure. The neutralization hydrolysis is preferably carried out when the pH is in the range of 5.5 to 9, since the hydrolysis easily proceeds, and more preferably in the range of 6 to 8. Neutralizing agents include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide, alkali metal or alkaline earth metal carbonates such as sodium carbonate and potassium carbonate, ammonia Ammonium compounds such as ammonium carbonate and ammonium nitrate can be used.

用いる棒状二酸化チタン核晶は、目的とする近赤外線遮蔽剤に用いる棒状二酸化チタンの長軸径、短軸径に応じてそれぞれの大きさを選択する。棒状二酸化チタン核晶の短軸径は目標より小さいものを選択するが、本発明の製造方法では、加熱焼成後に長軸に収縮が認められるので、該核晶の長軸径は目標より若干大きくてもよい。例えば、核晶として単一粒子の平均長軸径が1〜10μmの範囲にあり、平均短軸径が0.05〜0.6μmの範囲にあり、好ましくは軸比が8〜25の範囲にあるものの中から適宜選択することができる。棒状二酸化チタン核晶を得るには、公知の方法、例えば、チタン源、アルカリ金属塩、オキシリン化合物の混合物を加熱焼成する方法を用いることができる。あるいは、市販の棒状二酸化チタン、例えば、FTL−100、FTL−200、FTL−300(何れも石原産業(株)製)等を用いることもできる。棒状二酸化チタン核晶は、加水分解性チタン化合物に対し0.5〜30重量%の範囲で用いると、所望の棒状粒子が得られ易いので好ましく、1〜15重量%の範囲がより好ましい。   The rod-shaped titanium dioxide nucleus crystals to be used are selected in accordance with the major axis diameter and minor axis diameter of the rod-shaped titanium dioxide used for the intended near-infrared shielding agent. The short axis diameter of the rod-shaped titanium dioxide nucleus crystal is selected to be smaller than the target. However, in the production method of the present invention, the major axis diameter is slightly larger than the target because the major axis shrinks after heating and firing. May be. For example, the average major axis diameter of single particles as nuclei is in the range of 1 to 10 μm, the average minor axis diameter is in the range of 0.05 to 0.6 μm, and preferably the axial ratio is in the range of 8 to 25. It can be appropriately selected from a certain one. In order to obtain rod-like titanium dioxide nucleus crystals, a known method, for example, a method of heating and firing a mixture of a titanium source, an alkali metal salt, and an oxylin compound can be used. Alternatively, commercially available rod-like titanium dioxide, for example, FTL-100, FTL-200, FTL-300 (all manufactured by Ishihara Sangyo Co., Ltd.) and the like can also be used. When the rod-like titanium dioxide nucleus crystal is used in the range of 0.5 to 30% by weight with respect to the hydrolyzable titanium compound, the desired rod-like particles are easily obtained, and the range of 1 to 15% by weight is more preferred.

加水分解性チタン化合物としては、例えば、硫酸チタニル(TiOSO)、四塩化チタン、チタンアルコキシド等を用いることができ、コストの点で硫酸チタニル、四塩化チタンを用いるのが好ましい。硫酸チタニルは、例えば、所謂硫酸法と呼ばれる二酸化チタン顔料の製造工程において、イルミナイト鉱、チタンスラグ等のチタン含有鉱石を、硫酸で溶解させながらチタン成分と硫酸とを反応させることで得られる。また、四塩化チタンは、所謂塩素法の工程において、コークス等の還元剤の存在下、チタン含有鉱石と塩素ガスとを1000℃程度の温度下で反応させることで得られる。 As the hydrolyzable titanium compound, for example, titanyl sulfate (TiOSO 4 ), titanium tetrachloride, titanium alkoxide or the like can be used, and it is preferable to use titanyl sulfate or titanium tetrachloride in terms of cost. Titanyl sulfate can be obtained, for example, by reacting a titanium component and sulfuric acid while dissolving a titanium-containing ore such as illuminite ore and titanium slag with sulfuric acid in a so-called sulfuric acid method manufacturing process. Titanium tetrachloride is obtained by reacting titanium-containing ore and chlorine gas at a temperature of about 1000 ° C. in the presence of a reducing agent such as coke in a so-called chlorine process.

アルカリ金属化合物を含む焼成処理剤は、加熱焼成時に二酸化チタンの棒状化を促進する作用を有する。アルカリ金属化合物としてはナトリウム化合物、カリウム化合物、リチウム化合物等が挙げられ、これらから選ばれる1種以上を用いることができ、中でもナトリウム化合物とカリウム化合物を併用すると、棒状化促進の効果が高く好ましい。ナトリウム化合物としては水酸化ナトリウム、塩化ナトリウム、炭酸ナトリウム等を、カリウム化合物としては水酸化カリウム、塩化カリウム等を、リチウム化合物としては水酸化リチウム、塩化リチウム等を用いることができる。その使用量は、加水分解生成物に含まれるTiOに換算した総チタン量に対し、それぞれ、NaO換算で0.1〜1.5重量%の範囲、KO換算で0.1〜1.5重量%の範囲、LiO換算で0.1〜1.5重量%の範囲が好ましい。より好ましい範囲は、NaO換算で0.1〜1重量%、KO換算で0.2〜1.2重量%、LiO換算で0.2〜1.2重量%の範囲である。 The baking treatment agent containing an alkali metal compound has an effect of promoting rod-like formation of titanium dioxide at the time of heating and baking. Examples of the alkali metal compound include a sodium compound, a potassium compound, a lithium compound, and the like. One or more selected from these can be used. Among them, the combined use of a sodium compound and a potassium compound is preferable because the effect of promoting rod formation is high. Sodium hydroxide, sodium chloride, sodium carbonate, etc. can be used as the sodium compound, potassium hydroxide, potassium chloride, etc. can be used as the potassium compound, and lithium hydroxide, lithium chloride, etc. can be used as the lithium compound. The amount used is 0.1 to 1.5% by weight in terms of Na 2 O and 0.1 in terms of K 2 O with respect to the total amount of titanium converted to TiO 2 contained in the hydrolysis product. The range of ˜1.5% by weight and the range of 0.1 to 1.5% by weight in terms of Li 2 O are preferable. More preferable ranges are 0.1 to 1% by weight in terms of Na 2 O, 0.2 to 1.2% by weight in terms of K 2 O, and 0.2 to 1.2% by weight in terms of Li 2 O. is there.

ルチル型の棒状二酸化チタンを製造するには、好ましくは棒状二酸化チタン核晶としてルチル型の結晶構造を有するものを用い、更に、アルミニウム化合物及び/またはリン化合物が前記焼成処理剤に含まれていると、安定してルチル型結晶を生成させることができるので好ましい。アルミニウム化合物としては酸化アルミニウム、塩化アルミニウム、硫酸アルミニウム等が、リン化合物としてはオルトリン酸、メタリン酸、ピロリン酸及びそれらの塩等が挙げられる。アルミニウム化合物、リン化合物の使用量は、加水分解生成物に含まれるTiOに換算した総チタン量に対し、Al換算で0.1〜1.5重量%の範囲が、P換算で0.1〜1.5重量%の範囲が好ましく、Al換算で0.2〜1.2重量%の範囲が、P換算で0.2〜1.2重量%の範囲がより好ましい。また、ルチル型結晶を安定化させる化合物としては、アルミニウム化合物、リン化合物以外にも、例えば、マグネシウム化合物、亜鉛化合物等を用いることもできる。好ましい使用量は化合物によって異なるが、マグネシウム化合物であれば、前記のTiO換算値に対し、MgOとして0.005〜0.1重量%の範囲であり、より好ましい範囲は0.01〜0.05重量%である。マグネシウム化合物としては塩化マグネシウム、炭酸マグネシウム、硫酸マグネシウム等を用いることができる。 In order to produce rutile rod-like titanium dioxide, preferably, rod-like titanium dioxide nuclei having a rutile crystal structure are used, and an aluminum compound and / or a phosphorus compound is contained in the baking treatment agent. It is preferable because a rutile crystal can be stably generated. Examples of the aluminum compound include aluminum oxide, aluminum chloride, and aluminum sulfate, and examples of the phosphorus compound include orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, and salts thereof. Aluminum compounds, the amount of phosphorus compound with respect to the total amount of titanium in terms of TiO 2 contained in the hydrolysis product, in the range of 0.1 to 1.5 wt% in terms of Al 2 O 3, P 2 O The range of 0.1 to 1.5% by weight in terms of 5 is preferable, and the range of 0.2 to 1.2% by weight in terms of Al 2 O 3 is 0.2 to 1.2% in terms of P 2 O 5. % Range is more preferred. Moreover, as a compound which stabilizes a rutile type crystal, a magnesium compound, a zinc compound, etc. can also be used other than an aluminum compound and a phosphorus compound, for example. The preferred amount varies depending on the compound, but if it is a magnesium compound, it is in the range of 0.005 to 0.1% by weight as MgO with respect to the TiO 2 converted value, and the more preferred range is 0.01 to 0.00. 05% by weight. As the magnesium compound, magnesium chloride, magnesium carbonate, magnesium sulfate or the like can be used.

加水分解生成物を、前記焼成処理剤の存在下で加熱焼成する方法には特に制限は無いが、加水分解生成物のスラリーに前記焼成処理剤を添加、混合すると、均一に混合できるので好ましい。スラリーにこれらの化合物を混合した後、必要に応じて脱水し、次の加熱焼成工程に供する。   There is no particular limitation on the method for heating and baking the hydrolysis product in the presence of the baking treatment agent, but it is preferable to add and mix the baking treatment agent to the slurry of the hydrolysis product because it can be uniformly mixed. After mixing these compounds with the slurry, the slurry is dehydrated as necessary and subjected to the next heating and firing step.

ルチル型の棒状二酸化チタンを得る場合には、より一層ルチル型結晶が安定化するので、加水分解生成物の加熱焼成を、更にルチル型微粒状核晶の存在下で行ってもよい。その方法としては、加水分解性チタン化合物の溶液に棒状二酸化チタン核晶に加えて、さらにルチル型微粒状核晶を添加して加水分解を行うか、または、加水分解生成物のスラリー中にルチル型微粒状核晶を添加、混合することで、加水分解生成物にルチル型微粒状核晶を含ませるのが好ましい。ルチル型微粒状核晶は、公知の方法、例えば、硫酸チタニルを炭酸ナトリウムで中和する方法、含水酸化チタンを水酸化ナトリウムと反応させた後、塩酸で処理する方法等で調製することができる。   In the case of obtaining rutile rod-like titanium dioxide, the rutile crystal is further stabilized, so that the hydrolyzed product may be heated and fired in the presence of further rutile microparticle nuclei. As the method, in addition to the rod-shaped titanium dioxide nuclei crystal in the hydrolyzable titanium compound solution, further the rutile type fine particle nuclei are added for hydrolysis, or rutile is added to the slurry of the hydrolysis product. It is preferable that the hydrolyzed product contains rutile type fine nuclei by adding and mixing type fine nuclei. Rutile type fine nuclei can be prepared by a known method, for example, a method of neutralizing titanyl sulfate with sodium carbonate, a method of reacting hydrous titanium oxide with sodium hydroxide, and then treating with hydrochloric acid. .

アルカリ金属化合物を含む焼成処理剤の存在下で加水分解生成物を900〜1200℃の範囲の温度で加熱焼成して本発明の棒状二酸化チタンを得る。加熱焼成温度は前記範囲より低いと、粒子が所望の形状に棒状化せず、前記範囲より高くしても更なる効果は得られず、長期的には加熱焼成炉の耐久性を低下させることにもなるので、950〜1150℃で焼成するのが経済的でより好ましい。加熱焼成炉にはロータリーキルン、トンネルキルン等公知の機器を用いることができる。   The hydrolysis product is heated and fired at a temperature in the range of 900 to 1200 ° C. in the presence of a baking treatment agent containing an alkali metal compound to obtain the rod-like titanium dioxide of the present invention. If the heating and firing temperature is lower than the above range, the particles do not become rods in a desired shape, and even if the temperature is higher than the above range, no further effect can be obtained, and the durability of the heating and firing furnace is lowered in the long term. Therefore, firing at 950 to 1150 ° C. is more economical and more preferable. Known devices such as a rotary kiln and a tunnel kiln can be used for the heating and firing furnace.

棒状二酸化チタンに無機化合物の被覆を行う場合は、得られた棒状粒子を水等の媒液に分散させスラリーにした後、好ましくは更に湿式粉砕した後、目的とする無機化合物の塩の溶液を添加し、酸性化合物または塩基性化合物を添加したり、無機化合物の塩と酸性化合物または塩基性化合物とを同時に添加する等して中和反応させて無機化合物を粒子表面に沈着させることにより行える。有機化合物の被覆は、通常、得られた棒状二酸化チタンを乾式粉砕後にヘンシェルミキサー、スーパーミキサー等の高速攪拌機を用いて有機化合物と混合して被覆したり、あるいは、乾式粉砕機中に棒状二酸化チタンと有機化合物を添加して、粉砕と混合・被覆処理を同時に行う、所謂乾式処理を適用する。オルガノシラン類のように、二酸化チタンの表面と反応し強く結合する有機化合物を被覆する場合は、湿式粉砕後あるいは無機化合物の被覆処理後のスラリーに、有機化合物を添加し被覆する、所謂湿式処理を適用することもできる。   When the rod-like titanium dioxide is coated with an inorganic compound, the obtained rod-like particles are dispersed in a liquid medium such as water to form a slurry, and preferably after further wet pulverization, a solution of the target inorganic compound salt is prepared. In addition, an acidic compound or a basic compound may be added, or a salt of an inorganic compound and an acidic compound or a basic compound may be added simultaneously to cause a neutralization reaction, thereby depositing the inorganic compound on the particle surface. The coating of the organic compound is usually performed by dry pulverizing the obtained rod-shaped titanium dioxide and then mixing it with an organic compound using a high-speed stirrer such as a Henschel mixer or a super mixer, or the rod-shaped titanium dioxide in a dry pulverizer And so-called dry treatment, in which pulverization and mixing / coating treatment are performed simultaneously, are applied. When coating an organic compound that reacts with and strongly binds to the surface of titanium dioxide, such as organosilanes, so-called wet processing is performed by adding an organic compound to the slurry after wet grinding or after coating with an inorganic compound. Can also be applied.

所定の棒状二酸化チタンが得られた後は、公知の方法により、湿式粉砕、脱水・洗浄、乾燥、乾式粉砕してもよい。湿式粉砕には縦型サンドミル、横型サンドミル等が、乾燥にはバンド式ヒーター、バッチ式ヒーター等が、乾式粉砕にはハンマーミル、ピンミル等の衝撃粉砕機、解砕機等の摩砕粉砕機、ジェットミル、スネイルミル等の気流粉砕機、噴霧乾燥機等の機器を用いることができる。   After the predetermined rod-like titanium dioxide is obtained, wet grinding, dehydration / washing, drying, and dry grinding may be performed by a known method. For wet grinding, vertical sand mill, horizontal sand mill, etc., for drying, band type heater, batch type heater, etc., for dry grinding, hammer mill, pin mill etc. impact crusher, crusher etc. grinding crusher, jet Equipment such as an airflow crusher such as a mill or a snail mill, or a spray dryer can be used.

更に、本発明は、前記近赤外線遮蔽剤と樹脂成分とを含むことを特徴とする樹脂組成物である。樹脂成分には、特に制限はなく、塗料、インキ、プラスチックス、紙等の公知の樹脂成分を適宜選択できる。本発明の樹脂組成物は、優れた隠ペイ性を有しているので、通常の塗料、インキ、プラスチックス、紙等の樹脂組成物と同様に適用することができる。同時に、優れた近赤外線遮蔽能を有しているので、例えば、本発明の塗料組成物、インキ組成物を塗布、または、本発明のプラスチックス組成物、紙組成物を貼付することで、基材の表面に保護膜を形成し、基材を近赤外線から保護することができる。あるいは、構造物の表面にこのような保護膜を形成したり、本発明のプラスチックス組成物を構造物の基材に用いる等して、構造物の内部温度の上昇を低減させることができる。樹脂組成物中の近赤外線遮蔽剤の配合量は、用途によって異なるが、例えば、塗料用樹脂組成物やインキ用樹脂組成物であれば、樹脂成分1重量部に対し近赤外線遮蔽剤0.5〜10重量部が、プラスチックス用樹脂組成物であれば、樹脂成分1重量部に対し近赤外線遮蔽剤0.05〜2重量部が好ましい。   Furthermore, this invention is a resin composition characterized by including the said near-infrared shielding agent and a resin component. There is no restriction | limiting in particular in a resin component, Well-known resin components, such as a coating material, ink, plastics, paper, can be selected suitably. Since the resin composition of the present invention has an excellent concealing property, it can be applied in the same manner as a resin composition such as ordinary paints, inks, plastics and paper. At the same time, since it has an excellent near-infrared shielding ability, for example, by applying the coating composition or ink composition of the present invention, or by applying the plastic composition or paper composition of the present invention, A protective film can be formed on the surface of the material to protect the substrate from near infrared rays. Alternatively, an increase in the internal temperature of the structure can be reduced by forming such a protective film on the surface of the structure or using the plastic composition of the present invention as a base material of the structure. Although the compounding quantity of the near-infrared shielding agent in a resin composition changes with uses, if it is a resin composition for coatings or a resin composition for ink, for example, the near-infrared shielding agent 0.5 with respect to 1 weight part of resin components. If 10 parts by weight is a resin composition for plastics, 0.05 to 2 parts by weight of a near-infrared shielding agent is preferable with respect to 1 part by weight of the resin component.

塗料用樹脂組成物であれば、用いる樹脂成分としては、例えば、アルキド系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、アミノ系樹脂、フッ素系樹脂、変成シリコーン系樹脂、ウレタン系樹脂、ビニル系樹脂等が挙げられ、適宜選択できる。これらの塗料用樹脂成分は、有機溶剤溶解型、水溶型、エマルジョン型等特に制限は無く、硬化方式も加熱硬化型、常温硬化型、紫外線硬化型、電子線硬化型等制限は受けない。本発明の塗料用脂組成物には、アルコール類、エステル類、エーテル類、ケトン類、芳香族炭化水素類、脂肪族炭化水素類等の有機溶剤、水またはそれらの混合溶剤が、溶媒として含まれていてもよく、溶媒は樹脂成分との適性に応じて選択する。その他にも、目的に応じて有機顔料、無機顔料、染料等の着色剤、増量剤、界面活性剤、可塑剤、硬化助剤、ドライヤー、消泡剤、増粘剤、乳化剤、フロー調整剤、皮張り防止剤、色分れ防止剤、紫外線吸収剤、防カビ剤等の各種添加剤、充填剤等が含まれていてもよい。あるいは、硬化剤、硬化助剤、硬化性樹脂成分を別に硬化液とし、塗装時に塗料に混合して用いる二液性塗料とすることもできる。   If it is a resin composition for paint, examples of the resin component to be used include alkyd resins, acrylic resins, polyester resins, epoxy resins, amino resins, fluorine resins, modified silicone resins, urethane resins, Vinyl resin etc. are mentioned and can be selected suitably. These resin components for paint are not particularly limited, such as an organic solvent-soluble type, a water-soluble type, and an emulsion type, and the curing method is not limited such as a heat curing type, a room temperature curing type, an ultraviolet curing type, and an electron beam curing type. The paint fat composition of the present invention contains an organic solvent such as alcohols, esters, ethers, ketones, aromatic hydrocarbons, aliphatic hydrocarbons, water or a mixed solvent thereof as a solvent. The solvent may be selected according to suitability with the resin component. In addition, colorants such as organic pigments, inorganic pigments, dyes, extenders, surfactants, plasticizers, curing aids, dryers, antifoaming agents, thickeners, emulsifiers, flow regulators, depending on the purpose Various additives such as anti-skinning agents, anti-color separation agents, ultraviolet absorbers and anti-mold agents, fillers and the like may be contained. Or it can also be set as the two-component coating material which uses a hardening | curing agent, a hardening adjuvant, and a curable resin component separately as a hardening liquid, and mixes with a coating material at the time of coating.

プラスチックス樹脂組成物に用いる樹脂成分としては、例えば、汎用プラスチックス、エンジニアリングプラスチックス等の熱可塑性樹脂や、熱硬化性樹脂等を用いることができ、これらの1種を用いることも、2種以上をアーロイ化して用いることもできる。具体的には、汎用プラスチックスとしては、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル樹脂、ABS樹脂、ポリスチレン樹脂、メタクリル樹脂、ポリ塩化ビニリデン樹脂等が、エンジニアリングプラスチックスとしては、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル、フッ素樹脂等が、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、メラミン樹脂、シリコーン樹脂等が挙げられる。用途に応じて当業者に公知のガラス繊維等の補強材や、安定剤、分散剤、滑剤、酸化防止剤、紫外線吸収剤、充填剤等の種々の添加剤を加えてもよい。   As the resin component used in the plastics resin composition, for example, thermoplastic resins such as general-purpose plastics and engineering plastics, thermosetting resins, and the like can be used. The above can be used as an alloy. Specifically, as general-purpose plastics, polyolefin resin (polyethylene, polypropylene, etc.), polyvinyl chloride resin, ABS resin, polystyrene resin, methacrylic resin, polyvinylidene chloride resin, etc., as engineering plastics, polycarbonate resin, Thermoplastic polyester resins, polyamide resins, polyacetal resins, modified polyphenylene ethers, fluororesins, etc., and thermosetting resins include epoxy resins, phenol resins, unsaturated polyester resins, polyurethane resins, melamine resins, silicone resins, etc. . Depending on the application, reinforcing materials such as glass fibers known to those skilled in the art, and various additives such as stabilizers, dispersants, lubricants, antioxidants, ultraviolet absorbers and fillers may be added.

以下に本発明の実施例を示すが、本発明はこれらに制限されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

実施例1
(1)棒状二酸化チタン粒子の調製
硫酸チタニル溶液に、市販のルチル型棒状二酸化チタン(FTL−100:石原産業(株)製、平均長軸径1.68μm、平均短軸径0.13μm)を核晶として硫酸チタニルに対し5重量%添加、混合し、99℃の温度で4時間加熱して、硫酸チタニルを加水分解し加水分解生成物を生成させた。加水分解生成物に含まれるTiOに換算した総チタン量は、1000gであった。加水分解生成物のスラリーに前記の総チタン量に対し、Al換算で0.2重量%に相当する硫酸アルミニウム、NaO換算で0.5重量%に相当する炭酸ナトリウム、KO換算で0.5重量%に相当する水酸化カリウム、P換算で0.2重量%に相当するオルトリン酸を添加、混合し、脱水した。得られた脱水ケーキを、電気炉を用いて1050℃で加熱焼成して、ルチル型の棒状二酸化チタン粒子を得た。得られた棒状二酸化チタン粒子をTiO濃度が300g/リットルの水性スラリーとし、水酸化ナトリウム水溶液を添加してpHを11.0として分散させた後、サンドミルで粉砕し、篩(目開き45μm)で分級を行った。
Example 1
(1) Preparation of rod-like titanium dioxide particles To a titanyl sulfate solution, a commercially available rutile rod-like titanium dioxide (FTL-100: manufactured by Ishihara Sangyo Co., Ltd., average major axis diameter 1.68 μm, average minor axis diameter 0.13 μm). As nuclei crystals, 5 wt% was added to and mixed with titanyl sulfate, and heated at a temperature of 99 ° C. for 4 hours to hydrolyze titanyl sulfate to produce a hydrolysis product. The total amount of titanium converted to TiO 2 contained in the hydrolysis product was 1000 g. Aluminum sulfate corresponding to 0.2 wt% in terms of Al 2 O 3 , sodium carbonate corresponding to 0.5 wt% in terms of Na 2 O, K 2 , based on the total titanium content in the hydrolysis product slurry Potassium hydroxide corresponding to 0.5% by weight in terms of O and orthophosphoric acid corresponding to 0.2% by weight in terms of P 2 O 5 were added, mixed, and dehydrated. The obtained dehydrated cake was heated and fired at 1050 ° C. using an electric furnace to obtain rutile rod-like titanium dioxide particles. The obtained rod-like titanium dioxide particles were made into an aqueous slurry having a TiO 2 concentration of 300 g / liter, and an aqueous sodium hydroxide solution was added to disperse the pH to 11.0. Classification was performed at.

(2)表面被覆
分級後のスラリー1000ミリリットルの温度を60℃に保持し、攪拌下で、硫酸を添加してpHを9に調整した後、アルミン酸ナトリウム水溶液(Alとして300g/リットル)20ミリリットルを硫酸でpHを8〜9に調整しながら20分間かけて添加した。次いで、pHを7に調整してから30分間熟成し、Alとして2重量%の酸化アルミニウム水和物を被覆した。その後、吸引濾過器で濾過、水洗し、120℃で20時間乾燥してから、ジェットミルで粉砕して本発明の近赤外線遮蔽剤を得た。(試料A)
(2) Surface coating After maintaining the temperature of 1000 ml of the classified slurry at 60 ° C. and adding sulfuric acid to adjust the pH to 9 with stirring, an aqueous sodium aluminate solution (300 g / liter as Al 2 O 3) ) 20 ml was added over 20 minutes while adjusting the pH to 8-9 with sulfuric acid. Next, the pH was adjusted to 7, and then aging was performed for 30 minutes to coat 2% by weight of aluminum oxide hydrate as Al 2 O 3 . Then, it filtered with the suction filter, washed with water, and dried at 120 degreeC for 20 hours, Then, it grind | pulverized with the jet mill and obtained the near-infrared shielding agent of this invention. (Sample A)

比較例1
TiOとして1000gに相当する含水酸化チタンに、含水酸化チタン中のTiOに対し、Al換算で0.05重量%に相当する硫酸アルミニウム、NaO換算で0.2重量%に相当する炭酸ナトリウム、KO換算で0.15重量%に相当する水酸化カリウム、P換算で0.2重量%に相当するオルトリン酸を添加し、電気炉を用いて1100℃で加熱焼成し、ルチル型二酸化チタンの球状粒子を得た。湿式粉砕、表面被覆、分級、固液分離、洗浄、乾燥、乾式粉砕は実施例1と同様に行って比較試料を得た。(試料B)
Comparative Example 1
To the hydrous titanium oxide equivalent to 1000 g as TiO 2 , the aluminum sulfate equivalent to 0.05% by weight in terms of Al 2 O 3 and 0.2% by weight in terms of Na 2 O to TiO 2 in the hydrous titanium oxide. Corresponding sodium carbonate, potassium hydroxide equivalent to 0.15% by weight in terms of K 2 O, and orthophosphoric acid equivalent to 0.2% by weight in terms of P 2 O 5 are added, and the electric furnace is used at 1100 ° C. By heating and baking, spherical particles of rutile titanium dioxide were obtained. Wet pulverization, surface coating, classification, solid-liquid separation, washing, drying, and dry pulverization were performed in the same manner as in Example 1 to obtain a comparative sample. (Sample B)

比較例2
市販の顔料級ルチル型二酸化チタン(CR−50:石原産業(株)製)を、比較例2とする。(試料C)
Comparative Example 2
A commercially available pigment grade rutile type titanium dioxide (CR-50: manufactured by Ishihara Sangyo Co., Ltd.) is used as Comparative Example 2. (Sample C)

評価1:平均粒子径の評価
実施例1及び比較例1、2で得られた試料(A〜C)について、パーティクルアナライザー(カール・ツァイス社製)を用いて、平均長軸径、平均短軸径、軸比及び平均粒子径を電子顕微鏡法により測定した。尚、平均長軸径、平均短軸径は、酸化チタンの一次粒子1個について長軸径、短軸径から円柱相当体積を算出し、それら約1000個分の50%累積値から算出したものである。また、軸比とは、平均長軸径/平均短軸径を意味する。結果を表1に示す。
Evaluation 1: Evaluation of average particle diameter For the samples (A to C) obtained in Example 1 and Comparative Examples 1 and 2, using a particle analyzer (manufactured by Carl Zeiss), the average major axis diameter and the average minor axis Diameter, axial ratio and average particle size were measured by electron microscopy. The average major axis diameter and the average minor axis diameter are calculated from the 50% cumulative value of about 1000 particles by calculating the cylinder equivalent volume from the major axis diameter and minor axis diameter for one primary particle of titanium oxide. It is. The axial ratio means average major axis diameter / average minor axis diameter. The results are shown in Table 1.

Figure 2006126468
Figure 2006126468

評価2:隠ペイ性の評価
実施例1及び比較例1、2で得られた試料(A〜C)を用い、表2に示す処方1の各成分とガラスビーズ80gとを容量225ccのガラス製容器に仕込み、ペイントコンディショナー(レッドデビル社製)を用いて20分間分散して分散液を調整した後、表3に示す処方2にて、樹脂成分1重量部に対し二酸化チタン顔料1重量部、固形分体積濃度46%の塗料とした。次いで、#30バーコーターを用いて白黒チャート紙上に塗布し、110℃で40分間焼きつけ、塗膜化した。白黒チャート紙上に塗布した塗膜の黒地上の反射率(Y値)、白地上の反射率(Y値)を、カラーコンピューター(SM−7型:スガ試験機製)を用いて計測した。隠蔽率(C値)は、下式1に従って算出した。結果を表4に示す。C値の高いものが隠ペイ性に優れている。本発明の近赤外線遮蔽剤は、従来の顔料級二酸化チタンとほぼ同等の隠ペイ性を有している。
式1:隠蔽率(C)=(Y/Y)×100(%)
Evaluation 2: Evaluation of hidden payability Using the samples (A to C) obtained in Example 1 and Comparative Examples 1 and 2, each component of the formulation 1 shown in Table 2 and 80 g of glass beads were made of glass having a capacity of 225 cc. After preparing into a container and dispersing for 20 minutes using a paint conditioner (manufactured by Red Devil) to prepare a dispersion, in Formulation 2 shown in Table 3, 1 part by weight of a titanium dioxide pigment with respect to 1 part by weight of a resin component, The coating material had a solid content volume concentration of 46%. Next, it was coated on black and white chart paper using a # 30 bar coater and baked at 110 ° C. for 40 minutes to form a coating film. The reflectance on the black ground (Y B value) and the reflectance on the white ground (Y W value) of the coating applied on the black and white chart paper were measured using a color computer (SM-7 type: manufactured by Suga Test Instruments). The concealment rate ( CR value) was calculated according to the following formula 1. The results are shown in Table 4. Having a high C R value is excellent in hiding property. The near-infrared shielding agent of the present invention has a concealing property substantially equal to that of conventional pigment grade titanium dioxide.
Formula 1: Concealment rate (C R ) = (Y B / Y W ) × 100 (%)

Figure 2006126468
Figure 2006126468

Figure 2006126468
Figure 2006126468

Figure 2006126468
Figure 2006126468

評価3:近赤外線遮蔽能の評価
評価2で用いた実施例1、比較例1、2の塗料を、#60バーコーターを用いてPETフィルム上に塗布し、110℃で40分間焼きつけ、塗膜化した。塗膜の反射率を、分光光度計(V−570型:日本分光(株)製)を用いて波長が500〜2000nmの範囲で測定した。結果を表5に示す。本発明の近赤外線遮蔽剤は、近赤外域(波長が800〜3000nmの範囲)での反射率が高く、優れた近赤外線遮蔽能を有していることが判る。また、参考までに、前記の塗料をキシレンとn−ブタノールの混合溶剤(重量比4:1)で希釈して、固形分体積濃度を21.2%とし、#30バーコーターで塗布し、同様に塗膜化した後、この塗膜の反射率を、分光光度計で波長が500〜2500nmの範囲で測定した。結果を表6に示す。本発明の近赤外線遮蔽剤は、近赤外域での透過率が低いことからも、優れた近赤外線遮蔽能を有していることが判る。
Evaluation 3: Evaluation of near-infrared shielding ability The coating materials of Example 1 and Comparative Examples 1 and 2 used in Evaluation 2 were applied onto a PET film using a # 60 bar coater, and baked at 110 ° C. for 40 minutes. Turned into. The reflectance of the coating film was measured using a spectrophotometer (V-570 type: manufactured by JASCO Corporation) in the wavelength range of 500 to 2000 nm. The results are shown in Table 5. It can be seen that the near-infrared shielding agent of the present invention has a high reflectance in the near-infrared region (wavelength range of 800 to 3000 nm) and has an excellent near-infrared shielding ability. For reference, the paint is diluted with a mixed solvent of xylene and n-butanol (weight ratio 4: 1) to give a solid content volume concentration of 21.2%, and applied with a # 30 bar coater. Then, the reflectance of this coating film was measured with a spectrophotometer in the wavelength range of 500 to 2500 nm. The results are shown in Table 6. It can be seen that the near-infrared shielding agent of the present invention has an excellent near-infrared shielding ability because of its low transmittance in the near-infrared region.

Figure 2006126468
Figure 2006126468

Figure 2006126468
Figure 2006126468

本発明は、近赤外線遮蔽剤として有用である。また、本発明の製造方法で得られる棒状二酸化チタンは、触媒、補強材、導電材の基体等としても有用である。   The present invention is useful as a near-infrared shielding agent. The rod-like titanium dioxide obtained by the production method of the present invention is also useful as a catalyst, a reinforcing material, a conductive material base, and the like.

試料Aの粒子形状を示す電子顕微鏡写真である。2 is an electron micrograph showing the particle shape of sample A. FIG. 試料Bの粒子形状を示す電子顕微鏡写真である。3 is an electron micrograph showing the particle shape of Sample B. FIG.

Claims (10)

単一粒子の平均長軸径が1.5〜6μmの範囲に、平均短軸径が0.2〜0.8μmの範囲にある棒状二酸化チタンを有効成分として含有する近赤外線遮蔽剤。 A near-infrared shielding agent containing rod-like titanium dioxide having an average major axis diameter of 1.5 to 6 μm and an average minor axis diameter of 0.2 to 0.8 μm as an active ingredient. 棒状二酸化チタンの平均軸比が3〜15の範囲にあることを特徴とする請求項1記載の近赤外線遮蔽剤。 The near-infrared shielding agent according to claim 1, wherein the average axial ratio of the rod-shaped titanium dioxide is in the range of 3 to 15. 棒状二酸化チタンの結晶形がルチル型であることを特徴とする請求項1記載の近赤外線遮蔽剤。 The near-infrared shielding agent according to claim 1, wherein the crystal form of the rod-like titanium dioxide is a rutile type. 棒状二酸化チタン核晶の存在下で、液相中で加水分解性チタン化合物を加水分解し加水分解生成物を得た後、アルカリ金属化合物を含む焼成処理剤の存在下で加水分解生成物を900〜1200℃の範囲の温度で加熱焼成することを特徴とする棒状二酸化チタンの製造方法。 A hydrolyzable titanium compound is hydrolyzed in the liquid phase in the presence of rod-shaped titanium dioxide nuclei to obtain a hydrolysis product, and then the hydrolysis product is 900 in the presence of a baking treatment agent containing an alkali metal compound. A method for producing rod-like titanium dioxide, characterized by heating and firing at a temperature in the range of ˜1200 ° C. 加水分解性チタン化合物が硫酸チタニル、四塩化チタンから選ばれる少なくとも1種であることを特徴とする請求項4記載の棒状二酸化チタンの製造方法。 The method for producing rod-shaped titanium dioxide according to claim 4, wherein the hydrolyzable titanium compound is at least one selected from titanyl sulfate and titanium tetrachloride. アルカリ金属化合物がナトリウム化合物及びカリウム化合物であることを特徴とする請求項4記載の棒状二酸化チタンの製造方法。 The method for producing rod-shaped titanium dioxide according to claim 4, wherein the alkali metal compound is a sodium compound and a potassium compound. 焼成処理剤として、さらにアルミニウム化合物及び/またはリン化合物を含むことを特徴とする請求項4記載の棒状二酸化チタンの製造方法。 The method for producing a rod-like titanium dioxide according to claim 4, further comprising an aluminum compound and / or a phosphorus compound as the baking treatment agent. 棒状二酸化チタン核晶の結晶形がルチル型であることを特徴とする請求項4記載の棒状二酸化チタンの製造方法。 The method for producing a rod-like titanium dioxide according to claim 4, wherein the crystal form of the rod-like titanium dioxide nucleus crystal is a rutile type. 請求項1記載の近紫外線遮蔽剤と樹脂成分とを含むことを特徴とする樹脂組成物。 A resin composition comprising the near-ultraviolet shielding agent according to claim 1 and a resin component. 樹脂成分が塗料用樹脂またはプラスチックス樹脂であることを特徴とする請求項9記載の樹脂組成物。

The resin composition according to claim 9, wherein the resin component is a coating resin or a plastics resin.

JP2004314133A 2004-10-28 2004-10-28 Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent Expired - Lifetime JP4562492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314133A JP4562492B2 (en) 2004-10-28 2004-10-28 Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314133A JP4562492B2 (en) 2004-10-28 2004-10-28 Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent

Publications (2)

Publication Number Publication Date
JP2006126468A true JP2006126468A (en) 2006-05-18
JP4562492B2 JP4562492B2 (en) 2010-10-13

Family

ID=36721293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314133A Expired - Lifetime JP4562492B2 (en) 2004-10-28 2004-10-28 Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent

Country Status (1)

Country Link
JP (1) JP4562492B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228416A (en) * 2008-02-25 2009-10-08 Achilles Corp Heat-ray shielding sheet having visible-ray transmission
WO2009142254A1 (en) 2008-05-23 2009-11-26 石原産業株式会社 Infra-red reflective material and production method thereof, and paint and resin composition containing the same
EP2192092A1 (en) * 2007-09-12 2010-06-02 Sekisui Chemical Co., Ltd. Interliner for laminated glass
JP2010195846A (en) * 2009-02-23 2010-09-09 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition for use in dielectric material, and molded article
JP2014198043A (en) * 2013-03-14 2014-10-23 積水フィルム株式会社 Agricultural mulch film
JP6826742B1 (en) * 2020-06-08 2021-02-10 株式会社 小林工業所 Interior plaster wall material
CN113264553A (en) * 2021-05-25 2021-08-17 昆明理工大学 Method for recycling titanium oxide by adding seed crystal to titanium tetrachloride dust-collecting slag for recrystallization
WO2022249940A1 (en) * 2021-05-24 2022-12-01 デンカ株式会社 Inorganic oxide powder, method for producing same, and resin composition
WO2022249941A1 (en) * 2021-05-24 2022-12-01 デンカ株式会社 Inorganic oxide powder, method for producing same, and resin composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165423A (en) * 1993-10-22 1995-06-27 Ishihara Sangyo Kaisha Ltd Dendritic or asteroid titanium dioxide fine particle and production thereof
JP2000129172A (en) * 1998-10-27 2000-05-09 Nagashima Tokushu Toryo Kk Heat-shielding coating and its coating method
JP2001176398A (en) * 1999-12-16 2001-06-29 Toray Ind Inc Plasma display and its member
JP2001266752A (en) * 2000-03-24 2001-09-28 Dainippon Printing Co Ltd Back plate for plasma display panel and plasma display panel using the same
JP2002249676A (en) * 2000-12-21 2002-09-06 Dainichiseika Color & Chem Mfg Co Ltd Near infrared ray reflective composite pigment
JP2004002563A (en) * 2002-05-31 2004-01-08 Ishihara Sangyo Kaisha Ltd Transparent ultraviolet barrier coating film
JP2004117844A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Optical filter and image display device
JP2004123406A (en) * 2002-09-30 2004-04-22 Ishihara Sangyo Kaisha Ltd Iron-containing fine acicular titanium dioxide particle and method for manufacturing the same
JPWO2004052786A1 (en) * 2002-12-09 2006-04-13 テイカ株式会社 Titanium oxide particles having beneficial properties and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165423A (en) * 1993-10-22 1995-06-27 Ishihara Sangyo Kaisha Ltd Dendritic or asteroid titanium dioxide fine particle and production thereof
JP2000129172A (en) * 1998-10-27 2000-05-09 Nagashima Tokushu Toryo Kk Heat-shielding coating and its coating method
JP2001176398A (en) * 1999-12-16 2001-06-29 Toray Ind Inc Plasma display and its member
JP2001266752A (en) * 2000-03-24 2001-09-28 Dainippon Printing Co Ltd Back plate for plasma display panel and plasma display panel using the same
JP2002249676A (en) * 2000-12-21 2002-09-06 Dainichiseika Color & Chem Mfg Co Ltd Near infrared ray reflective composite pigment
JP2004002563A (en) * 2002-05-31 2004-01-08 Ishihara Sangyo Kaisha Ltd Transparent ultraviolet barrier coating film
JP2004117844A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Optical filter and image display device
JP2004123406A (en) * 2002-09-30 2004-04-22 Ishihara Sangyo Kaisha Ltd Iron-containing fine acicular titanium dioxide particle and method for manufacturing the same
JPWO2004052786A1 (en) * 2002-12-09 2006-04-13 テイカ株式会社 Titanium oxide particles having beneficial properties and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2192092A4 (en) * 2007-09-12 2010-09-01 Sekisui Chemical Co Ltd Interliner for laminated glass
EP2192092A1 (en) * 2007-09-12 2010-06-02 Sekisui Chemical Co., Ltd. Interliner for laminated glass
JP2009228416A (en) * 2008-02-25 2009-10-08 Achilles Corp Heat-ray shielding sheet having visible-ray transmission
US8906272B2 (en) 2008-05-23 2014-12-09 Ishihara Sangyo Kaisha, Ltd. Infra-red reflective material and production method thereof, and paint and resin composition containing the same
WO2009142254A1 (en) 2008-05-23 2009-11-26 石原産業株式会社 Infra-red reflective material and production method thereof, and paint and resin composition containing the same
JP2010195846A (en) * 2009-02-23 2010-09-09 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition for use in dielectric material, and molded article
JP2014198043A (en) * 2013-03-14 2014-10-23 積水フィルム株式会社 Agricultural mulch film
JP6826742B1 (en) * 2020-06-08 2021-02-10 株式会社 小林工業所 Interior plaster wall material
JP2021193237A (en) * 2020-06-08 2021-12-23 株式会社 小林工業所 Wall plaster material for interior decoration
WO2022249940A1 (en) * 2021-05-24 2022-12-01 デンカ株式会社 Inorganic oxide powder, method for producing same, and resin composition
WO2022249941A1 (en) * 2021-05-24 2022-12-01 デンカ株式会社 Inorganic oxide powder, method for producing same, and resin composition
CN113264553A (en) * 2021-05-25 2021-08-17 昆明理工大学 Method for recycling titanium oxide by adding seed crystal to titanium tetrachloride dust-collecting slag for recrystallization
CN113264553B (en) * 2021-05-25 2023-03-31 昆明理工大学 Method for recycling titanium oxide by adding seed crystal to titanium tetrachloride dust-collecting slag for recrystallization

Also Published As

Publication number Publication date
JP4562492B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5209861B2 (en) Titanium dioxide white pigment and method for producing the same
CN101815675B (en) Metal oxide composite sol, coating composition, and optical member
JP4090405B2 (en) Method for producing titanium dioxide pigment
CN101815676B (en) Modified metal-oxide composite sol, coating composition, and optical member
JP2010006629A (en) Titanium dioxide fine particle and method for producing the same
CN104640813A (en) Infrared-reflecting pigment based on titanium dioxide, and method for producing it
JP6418159B2 (en) Infrared reflective black pigment, paint and resin composition using the infrared reflective black pigment
JPH032914B2 (en)
CN104024343A (en) Infrared-reflective clusters
US4405376A (en) Titanium dioxide pigment and process for producing same
AU7365598A (en) A method for making a photodurable aqueous titanium dioxide pigment slurry
JP4668705B2 (en) Method for producing titanium dioxide pigment
JP6031175B2 (en) Titanium dioxide pigment, method for producing the same, and printing ink composition
JP4562492B2 (en) Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent
CN105860593A (en) Composition capable of enhancing pearlescent effect of pearlescent pigment, and preparation method and application thereof
CA2849773C (en) Treated inorganic core particles having improved dispersability
JP2008069193A (en) Particulate titanium dioxide composition and method for producing the same
US5338354A (en) Composite pigmentary material
JPH11157839A (en) Strongly agglomerative titanium oxide and its production
JP2010042947A (en) Dispersion of titanium oxide complex particle and method of manufacturing the dispersion
JPH02194063A (en) Minute titanium dioxide powder
JP4195254B2 (en) Rutile type titanium dioxide fine particles and method for producing the same
JP6721867B2 (en) Infrared reflective black pigment, coating material and resin composition using the infrared reflective black pigment
JP2004115342A (en) Acicular titanium dioxide fine particle and method of manufacturing the same
WO2010073633A1 (en) Infrared ray-reflecting black pigment, method for producing the same, and paint and resin composition using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4562492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250