JPH11157839A - Strongly agglomerative titanium oxide and its production - Google Patents

Strongly agglomerative titanium oxide and its production

Info

Publication number
JPH11157839A
JPH11157839A JP9347188A JP34718897A JPH11157839A JP H11157839 A JPH11157839 A JP H11157839A JP 9347188 A JP9347188 A JP 9347188A JP 34718897 A JP34718897 A JP 34718897A JP H11157839 A JPH11157839 A JP H11157839A
Authority
JP
Japan
Prior art keywords
titanium oxide
particle diameter
primary particle
particle size
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9347188A
Other languages
Japanese (ja)
Other versions
JP4153066B2 (en
Inventor
Hitoshi Ando
均 安藤
Akito Sakai
章人 坂井
Masakazu Hattori
雅一 服部
Takayuki Kadowaki
孝幸 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP34718897A priority Critical patent/JP4153066B2/en
Publication of JPH11157839A publication Critical patent/JPH11157839A/en
Application granted granted Critical
Publication of JP4153066B2 publication Critical patent/JP4153066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a titanium oxide excellent in ultraviolet shielding ability and giving a natural and proper whiteness without damaging the color tone of a substrate by heating and hydrolyzing a titanyl sulfate aq. solution in the presence of a nucleus and firing. SOLUTION: The titanium oxide is obtained by heating and hydrolyzing the titanyl sulfate aq. solution obtained by the reaction of an ilmenite ore with sulfuric acid in the presence of the nucleus of a titanium oxide fine crystal, filtering the resultant hydrolyzed product, washing if necessary and firing at 600-900 deg.C, preferably 600-800 deg.C. The anatase type strong agglomerative titanium oxide having 0.001-0.1.5 μm primary particle diameter, 0.6-2.0 μm secondary particle diameter and value L of 35-50 and value (b) of (-10) to 0 at the time of being used as a coating material is obtained by coating the titanium oxide with at least one kind of an organic material selected from a hydrated oxide and/or a fatty acid of Al, Si, Zr, Sn, Ti, Zn or the like at need, a silicon compound and a polyol compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塗料、インキ、化
粧料などに配合したとき、特殊な色調を与える酸化チタ
ンおよびその製造方法に関する。
[0001] The present invention relates to a titanium oxide which gives a special color tone when formulated in paints, inks, cosmetics and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化チタンは、白色度、高屈折率によ
り、塗料、インキ、プラスチックスなどの白色顔料とし
て広く用いられている。この顔料用酸化チタンは、隠蔽
力(基材を隠蔽する能力)が最大となるよう、通常、一
次粒子径が0.15〜0.3μmに設計されている。
2. Description of the Related Art Titanium oxide is widely used as a white pigment for paints, inks, plastics, etc. due to its whiteness and high refractive index. The titanium oxide for a pigment is usually designed to have a primary particle diameter of 0.15 to 0.3 μm so that the hiding power (the ability to hide the substrate) is maximized.

【0003】一般に微粒子粉体の粒子径を表す場合、一
次粒子径と二次粒子径とがある。一次粒子とは、相当な
機械的応力によっても解砕されることのない、単一粒子
のことであり、二次粒子とは、一次粒子が集合した凝集
物のことを指す。
In general, when expressing the particle size of fine particle powder, there are a primary particle size and a secondary particle size. Primary particles are single particles that are not crushed by substantial mechanical stress, and secondary particles refer to aggregates of primary particles.

【0004】この様な微粒子粉体を樹脂、油、水などの
媒体に分散させ、塗料、インキ、化粧料などに応用する
場合、通常は一次粒子に近い状態になるよう分散を施し
て用いられており、材料設計においても、通常一次粒子
径が用途、目的に応じて最適となるよう設定されてい
る。
[0004] When such fine particle powder is dispersed in a medium such as resin, oil or water and applied to paints, inks, cosmetics, etc., it is usually used after dispersing so as to be close to primary particles. In the material design, the primary particle diameter is usually set to be optimal according to the application and purpose.

【0005】微粒子粉体の光散乱能はその粒子径と光の
波長の関数であるが、酸化チタンの場合、前記したよう
に、可視光に対する散乱能は粒子径が0.15〜0.3 μmで
最大となる。即ち顔料酸化チタンは基体を隠蔽して高い
白色度を与えることを目的としているため、一次粒子径
がこの範囲に設定されているわけである。
[0005] The light scattering ability of the fine particle powder is a function of the particle diameter and the wavelength of light. In the case of titanium oxide, as described above, the scattering ability with respect to visible light is the maximum at a particle diameter of 0.15 to 0.3 µm. Become. That is, since the pigment titanium oxide is intended to conceal the substrate and give high whiteness, the primary particle diameter is set in this range.

【0006】一方、一次粒子径がこの範囲より小さくな
ると、隠蔽力が最大となる粒子径範囲からはずれるため
可視光に対する散乱能が小さくなるので透明になり、そ
れと同時に紫外線遮蔽能が増大する。一次粒子径が0.1
μm以下のものは超微粒子酸化チタンと呼ばれ、この特
性を利用して日焼け止め化粧料や紫外線遮蔽塗料などに
利用されている。さらに、超微粒子酸化チタンは可視光
のなかで、青色光を優先的に散乱するためこれを含有し
た塗膜は青味の外観となるが、この現象を利用してフリ
ップフロップ効果と言われる特殊な色調を有するメタリ
ック塗料にも利用されている。
On the other hand, when the primary particle diameter is smaller than this range, the opaque power deviates from the maximum particle diameter range, so that the scattering ability with respect to visible light is reduced, and thus the transparency is increased. At the same time, the ultraviolet shielding ability is increased. Primary particle size is 0.1
Those having a particle size of μm or less are called ultrafine titanium oxide, and are used for sunscreen cosmetics, ultraviolet shielding paints and the like by utilizing this property. In addition, ultrafine titanium oxide preferentially scatters blue light in visible light, so the coating film containing it has a bluish appearance. It is also used for metallic paints with various colors.

【0007】通常、これら顔料酸化チタンや超微粒子酸
化チタンを、塗料、化粧料などに応用する場合、前述の
ように機械的分散により一次粒子の状態に近づけて使用
する。これにより、設計された一次粒子径に応じて所望
の特性を得ることができる。
In general, when these pigment titanium oxides or ultrafine titanium oxides are applied to paints, cosmetics, etc., they are used in a state close to primary particles by mechanical dispersion as described above. Thereby, desired characteristics can be obtained according to the designed primary particle diameter.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、超微粒
子酸化チタンの持つ青味感は、一般にはあまり好まれな
いことが多く、化粧料や紫外線遮蔽塗料として利用する
場合、基体と異なる色調を呈し不自然な外観を与えるこ
とが問題となる場合も少なくない。
However, the blue tint of the ultrafine titanium oxide is often not so preferred in general, and when used as a cosmetic or an ultraviolet shielding paint, it exhibits a different color tone from that of the base material. In many cases, giving a natural appearance is a problem.

【0009】また顔料用酸化チタンは、基体を完全に隠
蔽し高い白色度を得るのには最適な材料であるが、逆に
基体の色調や質感を生かしたい場合には適していない。
また紫外線遮蔽能はあまり高いとは言えない。
[0009] Titanium oxide for pigments is the most suitable material for completely concealing the substrate and obtaining a high whiteness, but is not suitable for utilizing the color tone and texture of the substrate.
Also, the ultraviolet shielding ability is not so high.

【0010】[0010]

【課題を解決するための手段】本発明者らは、これらの
問題を解決すべく鋭意検討した結果、一次粒子径を0.00
1 〜0.15μm、かつ二次粒子径を0.6 〜2.0 μm とした
アナタース型酸化チタンは、基体の色調や質感を損なわ
ず自然で適度な白色を与え、かつ紫外線遮蔽能を有する
ことを見出し本発明を完成した。
The present inventors have conducted intensive studies to solve these problems and found that the primary particle diameter was 0.00
The anatase-type titanium oxide having a particle size of 1 to 0.15 μm and a secondary particle diameter of 0.6 to 2.0 μm gives a natural and appropriate white color without impairing the color tone and texture of the substrate, and has an ultraviolet shielding ability. Was completed.

【0011】[0011]

【発明の実施の形態】本発明は、一次粒子径が0.001 〜
0.15μm、かつ二次粒子径が0.6〜2.0 μmであり、結晶
形がアナタースである強凝集性酸化チタンである。本発
明の強凝集性酸化チタンは、通常工業的に用いる条件で
機械的分散を行っても容易に一次粒子まで解砕されず、
ほとんどが二次粒子として残るものを言う。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has a primary particle size of 0.001 to 0.001.
It is a highly cohesive titanium oxide having an anatase crystal form having a diameter of 0.15 μm and a secondary particle diameter of 0.6 to 2.0 μm. The strongly cohesive titanium oxide of the present invention is not easily disintegrated into primary particles even when mechanically dispersed under conditions usually used industrially,
Most of those that remain as secondary particles.

【0012】光の散乱能は酸化チタン粒子が媒体に分散
された状態で、即ち二次粒子径によって決まるため、二
次粒子径が前記範囲よりかなり大きくなると、可視光に
対する散乱能が小さくなるので透明感が生じ、かつ超微
粒子酸化チタンのように青色光を優先的に散乱すること
がないため、青味感のない自然な色調を与える。さら
に、強凝集性と雖も比表面積は一次粒子径に応じて大き
いため、二次粒子径が同程度でかつ一次粒子径が大きい
場合と比べ、紫外線の吸収能はかなり高くなる。
Since the light scattering ability is determined in a state where the titanium oxide particles are dispersed in the medium, that is, by the secondary particle diameter, if the secondary particle diameter is considerably larger than the above range, the scattering ability for visible light becomes small. Transparency is produced, and blue light is not preferentially scattered unlike ultrafine titanium oxide, so that a natural color tone without bluish feeling is provided. Further, the specific surface area is large in accordance with the primary particle diameter even in spite of the strong cohesiveness, so that the ultraviolet absorbing ability is considerably higher than when the secondary particle diameter is almost the same and the primary particle diameter is large.

【0013】本発明において一次粒子径は、以下の方法
で求めたものとする。まず、粉体0.5gを石川式攪拌らい
潰機(株式会社石川工場製)にて10分間粉砕した後、透
過型電子顕微鏡写真を撮影する。その写真から、一次粒
子径をパーティクルアナライザー(Particle Analyzer
、カールツアイス株式会社製)にて測定し、算出され
た重量平均径をもって一次粒子径とする。
In the present invention, the primary particle diameter is determined by the following method. First, 0.5 g of the powder is pulverized for 10 minutes with an Ishikawa-type stirring stirrer (manufactured by Ishikawa Factory), and a transmission electron micrograph is taken. From the photograph, the primary particle size was measured using a particle analyzer.
, Manufactured by Carl Zeiss Co., Ltd.), and the calculated weight average diameter is defined as the primary particle diameter.

【0014】次に二次粒子径についてであるが、これは
粉体を水中に分散させ、(株)堀場製作所製レーザ回折
/散乱式粒度分布測定装置LA-910にて計測した場合のメ
ジアン径で表すものとする。ここで粉体を水中に分散さ
せるには、イオン交換水にヘキサメタリン酸ナトリウム
を溶解して1.0%の水溶液とし、この水溶液17.0g と粉体
17.0g を直径0.5mm のジルコンビーズ40g とともに容量
140cc のガラス製マヨネーズ瓶に加え、ペイントシェー
カーで5分間分散させた後に計測することとする。
Next, regarding the secondary particle size, this is the median size when the powder is dispersed in water and measured with a laser diffraction / scattering type particle size distribution analyzer LA-910 manufactured by HORIBA, Ltd. It shall be represented by Here, in order to disperse the powder in water, sodium hexametaphosphate is dissolved in ion-exchanged water to form a 1.0% aqueous solution.
17.0g with 40g of 0.5mm diameter zircon beads
Add to a 140cc glass mayonnaise bottle and disperse for 5 minutes on a paint shaker before measuring.

【0015】以上の方法で粒子径が規定されるが、本発
明の強凝集性酸化チタンは一次粒子径が0.001 〜0.15μ
m好ましくは0.01〜0.1 μm、かつ二次粒子径が0.6 〜
2.0μmであることを特徴とする。一次粒子径が前記範
囲よりも大きいと、強凝集性酸化チタンが得られ難く、
また紫外線吸収能が低下する点からも好ましくない。一
次粒子径が0.001 μmよりも小さいと、酸化チタンの結
晶性が悪くなり、酸化チタン本来の物性が損なわれる。
また、二次粒子径が上記範囲より小さいと顔料酸化チタ
ンと同等の隠蔽性を有するようになり、本発明の強凝集
性酸化チタンの有する適度な透明性と自然な風合いが得
られない。さらに上記範囲よりも大きいものは壊れやす
くなり、強凝集性とはなり難い。
The particle size is determined by the above method. The strongly cohesive titanium oxide of the present invention has a primary particle size of 0.001 to 0.15 μm.
m is preferably 0.01 to 0.1 μm, and the secondary particle diameter is 0.6 to
It is characterized by being 2.0 μm. If the primary particle size is larger than the above range, it is difficult to obtain a strongly cohesive titanium oxide,
It is also not preferable from the viewpoint that the ultraviolet absorbing ability is reduced. If the primary particle size is smaller than 0.001 μm, the crystallinity of the titanium oxide is deteriorated, and the intrinsic physical properties of the titanium oxide are impaired.
On the other hand, if the secondary particle diameter is smaller than the above range, the opaque property becomes equivalent to that of the pigment titanium oxide, and the appropriate transparency and natural feeling of the strongly cohesive titanium oxide of the present invention cannot be obtained. Further, those larger than the above range are easily broken and hardly have strong cohesiveness.

【0016】以上は本発明の強凝集性酸化チタンの特徴
を一般的に説明したものだが、この特徴をより具体的に
かつ簡便に表す指標を述べる。即ち、本発明の強凝集性
酸化チタンは、以下の方法で酸化チタン含有塗膜を作製
し、色差計で測定したとき、L値が35〜50、b値が-10
〜0 であることを特徴とする。
The above is a general description of the characteristics of the strongly cohesive titanium oxide of the present invention. An index that expresses this characteristic more specifically and simply will be described. That is, the strongly cohesive titanium oxide of the present invention has a L value of 35 to 50 and a b value of -10 when a titanium oxide-containing coating film is prepared by the following method and measured with a color difference meter.
00.

【0017】(酸化チタン含有塗膜作成および塗色測定
方法) 1.塗料調整方法 下記の成分を140 ccのガラス製マヨネーズ瓶に投入し、
ペイントシェーカーを用いて10分間震盪し、分散し
た。 酸化チタンサンプル 10.0g ベッコゾール J-524-IM-60 (*) 12.0g 溶剤(4/1=キシロール/n-ブタノール) 12.0g 0.5mm Φ ジルコンビーズ 60.0g (*) 大日本インキ化学工業(株)製アルキドワニス
(Method of preparing titanium oxide-containing coating film and measuring coating color) Paint preparation method Put the following ingredients into a 140 cc glass mayonnaise bottle,
Shake for 10 minutes using a paint shaker and disperse. Titanium oxide sample 10.0 g Veccosol J-524-IM-60 (*) 12.0 g Solvent (4/1 = xylol / n-butanol) 12.0 g 0.5 mm Φ Zircon beads 60.0 g (*) Dainippon Ink and Chemicals, Inc. Alkyd varnish

【0018】分散したミルベース34.0g にベッコゾール
J-524-IM-60 12.0gを加え、ペイントシェーカーを用い
て5分間震盪し、安定化した。
Beccosol is added to 34.0 g of the mill base dispersed.
12.0 g of J-524-IM-60 was added and shaken for 5 minutes using a paint shaker to stabilize.

【0019】安定化品2.3gにベッコゾール J-524-IM-6
0、20% ニトロセルロース クリアラッカー、DBP (フ
タル酸ジ-n- ブチル)、及び酢酸セロソルブを下記配合
で加え、ペイントシェーカーを用いて5分間震盪し、塗
料を調製した。 安定化品 2.3g ベッコゾール J-524-IM-60 16.9g 20% ニトロセルロース クリアラッカー(**) 23.2g DBP (フタル酸ジ-n- ブチル) 1.1g 酢酸セロソルブ 0.8g (**) 20%ニトロセルロース クリアラッカーは、下記の成分を混合し調製した。 1/2RS ニトロセルロース(***) 26.7重量% キシロール 12.2 n-ブタノール 9.8 酢酸エチル 25.6 酢酸ブチル 6.5 MIBK(メチルイソブチルケトン) 19.2 (***) ニトロセルロース/イソプロピルアルコール=3/1、重量比
Becozole J-524-IM-6 in 2.3 g of stabilized product
0, 20% nitrocellulose clear lacquer, DBP (di-n-butyl phthalate) and cellosolve acetate were added in the following composition, and the mixture was shaken for 5 minutes using a paint shaker to prepare a paint. Stabilized product 2.3 g Veccosol J-524-IM-60 16.9 g 20% nitrocellulose clear lacquer (**) 23.2 g DBP (di-n-butyl phthalate) 1.1 g cellosolve acetate 0.8 g (**) 20% nitro Cellulose clear lacquer was prepared by mixing the following components. 1 / 2RS nitrocellulose (***) 26.7% by weight xylol 12.2 n-butanol 9.8 ethyl acetate 25.6 butyl acetate 6.5 MIBK (methyl isobutyl ketone) 19.2 (***) nitrocellulose / isopropyl alcohol = 3/1, weight ratio

【0020】2.塗膜作成および塗色測定方法 以上の方法で調製した塗料を、モレストチャート紙にア
プリケーターにて塗布(乾燥後膜厚8μm)した後、自
然乾燥して得られた塗膜について、黒地上のカラーを色
差計(スガ試験機(株)SMカラーコンピューター SM-5
型)にて測色する。
2. Coating film preparation and coating color measurement method The coating material prepared by the above method is applied to a morest chart paper with an applicator (film thickness after drying is 8 μm), and the coating film obtained by natural drying is coated on a black ground. Color is measured with a color difference meter (Suga Test Machine Co., Ltd. SM Color Computer SM-5
Color).

【0021】この方法で他の材料と比較すると、顔料酸
化チタンの場合は隠蔽力が大きく高い白色度を有するた
めL値が50以上となり、超微粒子酸化チタンの場合は青
色光の散乱によりb値が-10 以下となる。
Compared with other materials by this method, the pigment titanium oxide has a large hiding power and a high whiteness, and thus has an L value of 50 or more, and the ultrafine titanium oxide has a b value due to the scattering of blue light. Becomes -10 or less.

【0022】また、顔料酸化チタンや超微粒子酸化チタ
ンで通常行われているのと同様、公知の方法により、粒
子表面に、Al、Si、Zr、Sn、Ti、Znから成る群より選ば
れた少なくとも1種の含水酸化物および/または酸化物
が被覆されていても良く、さらには脂肪酸、シリコーン
化合物、ポリオール化合物から成る群より選ばれた少な
くとも1種の有機物が被覆されていても良い。これらの
表面処理により、耐候性の付与、分散性の改良を適宜行
うことができる。
In the same manner as usually used for pigmented titanium oxide or ultrafine titanium oxide, the surface of the particles is selected from the group consisting of Al, Si, Zr, Sn, Ti, and Zn by a known method. At least one hydrated oxide and / or oxide may be coated, and further, at least one organic substance selected from the group consisting of fatty acids, silicone compounds, and polyol compounds may be coated. By these surface treatments, it is possible to appropriately impart weather resistance and improve dispersibility.

【0023】次に本発明は、強凝集性酸化チタンの製造
方法であって、(1) 硫酸チタニル水溶液を、核の存在
下、加熱加水分解する工程と、(2) 加水分解生成物を60
0 〜900 ℃の温度で焼成する工程からなることを特徴と
する。
Next, the present invention relates to a method for producing strongly cohesive titanium oxide, which comprises the steps of (1) heating and hydrolyzing an aqueous solution of titanyl sulfate in the presence of a nucleus;
It is characterized by comprising a step of firing at a temperature of 0 to 900 ° C.

【0024】出発原料となる硫酸チタニルは、通常、イ
ルメナイト鉱石を硫酸と反応させて製造することができ
る。これは酸化チタン工業において蒸解と呼ばれるが、
イルメナイト鉱石に限らず、例えば含水酸化チタンを蒸
解しても良い。この生成物を水で希釈し、必要に応じて
不純物を除去した後、加熱により加水分解を行う。この
際、加水分解反応を促進させ、かつ粒度や結晶性を調整
する目的で、酸化チタンの微結晶である核を添加する。
こうして得た加水分解生成物を濾過し、必要に応じて洗
浄した後、600 〜900 ℃で、望ましくは600 〜800 ℃未
満で焼成を行う。焼成温度がこの範囲よりも低いと一次
粒子径は小さくなるが強凝集とはならず、逆に高いと一
次粒子径が大きくなり過ぎ、本発明の酸化チタンが得ら
れない。
Titanyl sulfate as a starting material can be usually produced by reacting ilmenite ore with sulfuric acid. This is called digestion in the titanium oxide industry,
Not limited to ilmenite ore, for example, hydrous titanium oxide may be digested. After diluting this product with water and removing impurities as necessary, hydrolysis is performed by heating. At this time, nuclei, which are microcrystals of titanium oxide, are added for the purpose of accelerating the hydrolysis reaction and adjusting the particle size and crystallinity.
The hydrolysis product thus obtained is filtered, optionally washed, and then calcined at 600 to 900 ° C, preferably at 600 to 800 ° C. If the sintering temperature is lower than this range, the primary particle diameter becomes small but does not cause strong aggregation. Conversely, if the sintering temperature is high, the primary particle diameter becomes too large and the titanium oxide of the present invention cannot be obtained.

【0025】この後、必要に応じ粉砕、整粒を行った
後、常法によりAl、Si、Zr、Sn、Ti、Znなどの含水酸化
物および/または酸化物を被覆しても良く、さらには脂
肪酸、シリコーン化合物、ポリオール化合物などの有機
物を被覆しても良い。これらの表面処理により、耐候性
の付与、分散性の改良を適宜行うことができる。
Then, after crushing and sizing as required, a hydrated oxide and / or oxide such as Al, Si, Zr, Sn, Ti, Zn, etc. may be coated by a conventional method. May be coated with an organic substance such as a fatty acid, a silicone compound or a polyol compound. By these surface treatments, it is possible to appropriately impart weather resistance and improve dispersibility.

【0026】本発明の酸化チタンが強凝集性であること
は、主として上述の製造方法に由来すると考えられる。
強凝集性となるメカニズムの詳細は必ずしも明らかでは
ないが、加水分解あるいは焼成工程における結晶成長の
段階で表面エネルギーが非常に大きくなる状態があり、
その際に粒子同士が強く凝集するものと思われる。
It is considered that the strong cohesiveness of the titanium oxide of the present invention is mainly derived from the above-mentioned production method.
Although the details of the mechanism of strong cohesion are not always clear, there is a state where the surface energy becomes very large at the stage of crystal growth in the hydrolysis or firing step,
At that time, it is considered that the particles are strongly aggregated.

【0027】本発明の強凝集性酸化チタンを塗料や化粧
料などに応用する場合、過度の分散処理を施すと凝集が
壊れ本来の特徴が失われるが、通常工業的に適用されて
いる範囲で分散させる限りは二次粒子が保たれ、これま
で述べたような自然な風合いを与えることができる。
When the highly cohesive titanium oxide of the present invention is applied to paints, cosmetics, and the like, excessive dispersion treatment breaks the cohesion and loses its original characteristics. As long as the particles are dispersed, the secondary particles are maintained, and the natural texture as described above can be given.

【0028】[0028]

【実施例】以下に実施例を示す。Examples are shown below.

【0029】実施例1 (酸化チタンの作製)イルメナイト鉱石の蒸解によって
得られた硫酸チタニル水溶液(TiO2 として200g/リット
ル)に、四塩化チタンを苛性ソーダで中和することによ
って得られる核を添加した後、110 ℃で3 時間加熱加水
分解し、含水酸化チタンを含む水性懸濁液を得た。この
水性懸濁液を濾過し、十分に洗浄を行った。得られた洗
浄ケーキを700 ℃で3 時間焼成する事により、酸化チタ
ンを得た。
Example 1 (Preparation of Titanium Oxide) A nucleus obtained by neutralizing titanium tetrachloride with caustic soda was added to an aqueous solution of titanyl sulfate (200 g / liter as TiO 2 ) obtained by cooking ilmenite ore. Thereafter, the resultant was hydrolyzed by heating at 110 ° C. for 3 hours to obtain an aqueous suspension containing hydrous titanium oxide. This aqueous suspension was filtered and sufficiently washed. The obtained washed cake was baked at 700 ° C. for 3 hours to obtain titanium oxide.

【0030】(表面処理)上記の酸化チタンを200g/リ
ットルの水性スラリーとし、硫酸アルミニウムと水酸化
ナトリウムを添加することにより、酸化チタン表面に含
水酸化アルミニウムを被覆した。なお表面処理量は、Al
2 O3換算でTiO2に対し5.0%とした。この後スラリーを濾
過、洗浄して、得られた洗浄ケーキを120 ℃で一昼夜乾
燥し、粉砕して本発明のアナタース形の強凝集性酸化チ
タンを得た(試料A)。
(Surface Treatment) The titanium oxide was made into an aqueous slurry of 200 g / liter, and aluminum sulfate and sodium hydroxide were added to coat the surface of the titanium oxide with hydrous aluminum oxide. The surface treatment amount is Al
It was set to 5.0% based on TiO 2 in terms of 2 O 3 . Thereafter, the slurry was filtered and washed, and the obtained washed cake was dried at 120 ° C. for 24 hours, and pulverized to obtain an anatase-type strongly cohesive titanium oxide of the present invention (sample A).

【0031】比較例1 四塩化チタンと苛性ソーダ水溶液(NaOH/TiO2の重量比2.
0)を十分混合した後、60℃で30分加熱加水分解し含水酸
化チタンを含む水性懸濁液を得た。この水性懸濁液を濾
過し、十分に洗浄を行った。得られた洗浄ケーキを600
℃で3時間焼成し、酸化チタンを得た。以下実施例1と
同様に表面処理を行い、比較試料の酸化チタン(試料
B)を得た。
Comparative Example 1 Titanium tetrachloride and aqueous sodium hydroxide solution (NaOH / TiO 2 weight ratio 2.
After sufficient mixing of 0), the mixture was hydrolyzed by heating at 60 ° C. for 30 minutes to obtain an aqueous suspension containing hydrous titanium oxide. This aqueous suspension was filtered and sufficiently washed. 600 obtained washing cake
Calcination was performed at ℃ for 3 hours to obtain titanium oxide. Thereafter, surface treatment was performed in the same manner as in Example 1 to obtain a titanium oxide (sample B) as a comparative sample.

【0032】比較例2 実施例1において焼成温度を950 ℃にしたこと以外は実
施例1と同様の方法で比較試料の酸化チタン粉末(試料
C)を得た。
Comparative Example 2 A comparative titanium oxide powder (sample C) was obtained in the same manner as in Example 1 except that the firing temperature was changed to 950 ° C.

【0033】比較例3 四塩化チタンの蒸気と酸素とを気相にて1100℃で反応さ
せ、酸化チタンを得た。以下実施例1と同様にして表面
処理を行い比較試料の酸化チタン(試料D)を得た。
Comparative Example 3 Titanium oxide was obtained by reacting titanium tetrachloride vapor with oxygen in the gas phase at 1100 ° C. Thereafter, surface treatment was performed in the same manner as in Example 1 to obtain a titanium oxide (sample D) as a comparative sample.

【0034】比較例4 イルメナイト鉱石の蒸解によって得られた硫酸チタニル
水溶液(TiO2 として200g/リットル)に、四塩化チタン
を苛性ソーダで中和することによって得られる核を添加
した後、110 ℃で3 時間加熱加水分解し、含水酸化チタ
ンを含む水性懸濁液を得た。この水性懸濁液を濾過し、
十分に洗浄を行った後、リパルプしたスラリーに苛性ソ
ーダ水溶液(NaOH/TiO2の重量比3.3)を攪拌しながら投入
し、95℃で2時間加熱した。次いでこの処理物の水性懸
濁液を濾過し、十分に洗浄を行った後、リパルプしたス
ラリーに塩酸(HCl/TiO2 の重量比1.3)を攪拌しながら投
入し、95℃で2時間加熱してチタニアゾルを作製した。
これを電気炉にて800 ℃で2時間焼成した後、実施例1
と同様にして表面処理を行い比較試料の酸化チタン(試
料E)を得た。
Comparative Example 4 A nucleus obtained by neutralizing titanium tetrachloride with caustic soda was added to an aqueous solution of titanyl sulfate (200 g / liter as TiO 2 ) obtained by digestion of ilmenite ore. The mixture was hydrolyzed by heating for an hour to obtain an aqueous suspension containing hydrous titanium oxide. This aqueous suspension is filtered,
After washing sufficiently, an aqueous caustic soda solution (NaOH / TiO 2 weight ratio 3.3) was added to the repulp slurry while stirring, and heated at 95 ° C. for 2 hours. Next, the aqueous suspension of the treated product was filtered and sufficiently washed, and then, hydrochloric acid (HCl / TiO 2 weight ratio: 1.3) was added to the repulp slurry while stirring, and heated at 95 ° C. for 2 hours. To prepare a titania sol.
This was fired in an electric furnace at 800 ° C. for 2 hours.
Surface treatment was carried out in the same manner as in Example 1 to obtain a comparative sample titanium oxide (sample E).

【0035】試料A〜Eについて、前記の方法で一次粒
子径、二次粒子径および塗色(塗膜の色)を調べた。こ
の結果を表1に示す。尚、結晶形は粉末X線回析により
調べた。
With respect to the samples A to E, the primary particle diameter, the secondary particle diameter, and the coating color (color of the coating film) were examined by the above-described methods. Table 1 shows the results. The crystal form was examined by powder X-ray diffraction.

【0036】[0036]

【表1】 [Table 1]

【0037】さらに、前述の塗料を三酢酸セルロースフ
ィルムに塗布し、分光光度計(島津製作所製UV-2200
A、積分球付き)にて300nm の透過率を測定した。結果
を表2に示す。
Further, the above-mentioned paint was applied to a cellulose triacetate film, and a spectrophotometer (UV-2200 manufactured by Shimadzu Corporation) was used.
A, with an integrating sphere) at 300 nm. Table 2 shows the results.

【0038】[0038]

【表2】 [Table 2]

【0039】表1、2より、本発明の一次粒子径が0.1
μm以下で二次粒子径が0.6 μm以上の強凝集性酸化チ
タン(試料A)は比較試料の顔料酸化チタン(試料Cお
よびD)と比較して塗膜のL値が低い、即ち隠蔽力が低
く、また紫外線遮蔽能が高い。また、比較試料の超微粒
子酸化チタン(試料B)と比較して塗膜のb値が高い、
即ち青味が少ない。さらに、試料Eと比較しても、隠蔽
力が低く青味が少ないことが判る。
According to Tables 1 and 2, the primary particle diameter of the present invention was 0.1%.
The highly cohesive titanium oxide having a secondary particle diameter of 0.6 μm or less (sample A) having a particle size of 0.6 μm or less has a lower L value of the coating film as compared with the pigment titanium oxide of the comparative sample (samples C and D). Low and high UV shielding ability. In addition, the b value of the coating film is higher than that of the comparative sample ultrafine titanium oxide (sample B).
That is, there is little blueness. Furthermore, even when compared with Sample E, it is found that the hiding power is low and the bluish color is small.

【0040】[0040]

【発明の効果】以上説明したように、本発明の強凝集性
酸化チタンは、基体の色調を損なわず自然で適度な白色
を与え、かつ紫外線遮蔽能を有するものであり、塗料、
インキ、化粧品などの用途に対し甚だ有用な材料であ
る。
As described above, the strongly cohesive titanium oxide of the present invention gives a natural and appropriate white color without impairing the color tone of the substrate, and has an ultraviolet shielding ability.
It is a very useful material for applications such as ink and cosmetics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI A61K 7/02 A61K 7/02 N (72)発明者 門脇 孝幸 三重県四日市市石原町1番地 石原産業株 式会社四日市事業所内──────────────────────────────────────────────────続 き Continued on front page (51) Int.Cl. 6 Identification code FI A61K 7/02 A61K 7/02 N (72) Inventor Takayuki Kadowaki 1 Ishiharacho, Yokkaichi-shi, Mie Pref.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子径が0.001 〜0.15μm、かつ二
次粒子径が0.6 〜2.0μm であり、結晶形がアナタース
である強凝集性酸化チタン。
A strongly cohesive titanium oxide having a primary particle size of 0.001 to 0.15 μm, a secondary particle size of 0.6 to 2.0 μm, and an anatase crystal form.
【請求項2】 塗膜にした時のL値が35〜50、b値が-1
0 〜0 であることを特徴とする請求項1記載の強凝集性
酸化チタン。
2. The L value of the coating film is 35-50, and the b value is -1.
The strongly cohesive titanium oxide according to claim 1, wherein the number is from 0 to 0.
【請求項3】 粒子表面に、Al、Si、Zr、Sn、Ti、Znか
ら成る群より選ばれた少なくとも1種の元素の含水酸化
物および/または酸化物が被覆されていることを特徴と
する、請求項1または2記載の強凝集性酸化チタン。
3. The particle surface is coated with a hydrated oxide and / or an oxide of at least one element selected from the group consisting of Al, Si, Zr, Sn, Ti, and Zn. The strongly cohesive titanium oxide according to claim 1 or 2, wherein
【請求項4】 表面に、脂肪酸、シリコーン化合物、ポ
リオール化合物から成る群より選ばれる少なくとも1種
の有機物が被覆されていることを特徴とする、請求項
1、2または3記載の強凝集性酸化チタン。
4. The strongly cohesive oxidation according to claim 1, wherein the surface is coated with at least one organic substance selected from the group consisting of a fatty acid, a silicone compound, and a polyol compound. Titanium.
【請求項5】 (1) 硫酸チタニル水溶液を、核の存在
下、加熱加水分解する工程と、(2) 加水分解生成物を60
0 〜900 ℃の温度で焼成する工程からなる、請求項1記
載の強凝集性酸化チタンの製造方法。
5. A step of (1) heating and hydrolyzing an aqueous solution of titanyl sulfate in the presence of a nucleus;
The method for producing strongly cohesive titanium oxide according to claim 1, comprising a step of firing at a temperature of 0 to 900 ° C.
JP34718897A 1997-12-01 1997-12-01 Method for producing strongly cohesive titanium oxide Expired - Fee Related JP4153066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34718897A JP4153066B2 (en) 1997-12-01 1997-12-01 Method for producing strongly cohesive titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34718897A JP4153066B2 (en) 1997-12-01 1997-12-01 Method for producing strongly cohesive titanium oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008097136A Division JP2008230964A (en) 2008-04-03 2008-04-03 Strong cohesive titanium oxide

Publications (2)

Publication Number Publication Date
JPH11157839A true JPH11157839A (en) 1999-06-15
JP4153066B2 JP4153066B2 (en) 2008-09-17

Family

ID=18388526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34718897A Expired - Fee Related JP4153066B2 (en) 1997-12-01 1997-12-01 Method for producing strongly cohesive titanium oxide

Country Status (1)

Country Link
JP (1) JP4153066B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material
JP2006299096A (en) * 2005-04-20 2006-11-02 Soken Chem & Eng Co Ltd Emulsion type organic resin composition of high refraction index imparting material and its application
JP2007320892A (en) * 2006-05-31 2007-12-13 Kao Corp Water-in-oil type emulsion cosmetic material
CN100355658C (en) * 2006-05-12 2007-12-19 南京钛白化工有限责任公司 Method for preparing anatase chemical fiber special titanium pigment
WO2008038592A1 (en) * 2006-09-28 2008-04-03 Shiseido Company Ltd. Porous titanium oxide and method for producing the same
JP2008518873A (en) * 2004-11-02 2008-06-05 ナノゲート エージー Synthesis of titanium dioxide nanoparticles
JP2010180402A (en) * 2009-01-08 2010-08-19 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment, method for producing the same, and printing ink composition
JP2012225789A (en) * 2011-04-20 2012-11-15 Sumitomo Metal Mining Co Ltd Method of manufacturing thin sample for electron microscope and observation method of the sample
JP2013004922A (en) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp Resin package for semiconductor light-emitting device and semiconductor light-emitting device having resin package
JP5173424B2 (en) * 2005-09-14 2013-04-03 株式会社コーセー Cosmetics
CN104058452A (en) * 2013-12-05 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Settlement titanium liquid processing method
WO2022014404A1 (en) * 2020-07-16 2022-01-20 堺化学工業株式会社 Energy absorbing and releasing material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230964A (en) * 2008-04-03 2008-10-02 Ishihara Sangyo Kaisha Ltd Strong cohesive titanium oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367512A (en) * 1991-06-13 1992-12-18 Naigai Ceramics Kk Sperical porous anatase-type titanium dioxide fine particle and its production
JPH05163022A (en) * 1991-12-11 1993-06-29 Ishihara Sangyo Kaisha Ltd Spherical anatase titanium oxide and its production
JPH07138021A (en) * 1993-11-10 1995-05-30 Ishihara Sangyo Kaisha Ltd Dendritic or stelliform titanium dioxide fine particle and its production
JPH09188518A (en) * 1996-01-05 1997-07-22 Tioxide Group Services Ltd Production of anatase-type titanium dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367512A (en) * 1991-06-13 1992-12-18 Naigai Ceramics Kk Sperical porous anatase-type titanium dioxide fine particle and its production
JPH05163022A (en) * 1991-12-11 1993-06-29 Ishihara Sangyo Kaisha Ltd Spherical anatase titanium oxide and its production
JPH07138021A (en) * 1993-11-10 1995-05-30 Ishihara Sangyo Kaisha Ltd Dendritic or stelliform titanium dioxide fine particle and its production
JPH09188518A (en) * 1996-01-05 1997-07-22 Tioxide Group Services Ltd Production of anatase-type titanium dioxide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008874A (en) * 2004-06-28 2006-01-12 Nagashima Tokushu Toryo Kk Coating material
JP2008518873A (en) * 2004-11-02 2008-06-05 ナノゲート エージー Synthesis of titanium dioxide nanoparticles
JP2006299096A (en) * 2005-04-20 2006-11-02 Soken Chem & Eng Co Ltd Emulsion type organic resin composition of high refraction index imparting material and its application
JP5173424B2 (en) * 2005-09-14 2013-04-03 株式会社コーセー Cosmetics
CN100355658C (en) * 2006-05-12 2007-12-19 南京钛白化工有限责任公司 Method for preparing anatase chemical fiber special titanium pigment
JP2007320892A (en) * 2006-05-31 2007-12-13 Kao Corp Water-in-oil type emulsion cosmetic material
JP2008081366A (en) * 2006-09-28 2008-04-10 Shiseido Co Ltd Porous titanium oxide and its manufacturing method
WO2008038592A1 (en) * 2006-09-28 2008-04-03 Shiseido Company Ltd. Porous titanium oxide and method for producing the same
US8168145B2 (en) 2006-09-28 2012-05-01 Shiseido Company Ltd. Porous titanium oxide and process for producing the same
JP2010180402A (en) * 2009-01-08 2010-08-19 Ishihara Sangyo Kaisha Ltd Titanium dioxide pigment, method for producing the same, and printing ink composition
JP2016000836A (en) * 2009-01-08 2016-01-07 石原産業株式会社 Titanium dioxide pigment and method for producing the same, and printing ink composition
JP2012225789A (en) * 2011-04-20 2012-11-15 Sumitomo Metal Mining Co Ltd Method of manufacturing thin sample for electron microscope and observation method of the sample
JP2013004922A (en) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp Resin package for semiconductor light-emitting device and semiconductor light-emitting device having resin package
CN104058452A (en) * 2013-12-05 2014-09-24 攀钢集团攀枝花钢铁研究院有限公司 Settlement titanium liquid processing method
WO2022014404A1 (en) * 2020-07-16 2022-01-20 堺化学工業株式会社 Energy absorbing and releasing material

Also Published As

Publication number Publication date
JP4153066B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP2585128B2 (en) Colored fine particle inorganic pigment
US4192691A (en) Metal oxide platelets as nacreous pigments
JP4018770B2 (en) Fan-shaped titanium oxide, method for producing fan-shaped or plate-shaped titanium oxide, and use thereof
US4075031A (en) TiO2 Pigment coated with dense silica and porous alumina/silica
US5714260A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JP2004511644A (en) Method for producing pearlescent pigment by coating metal oxide on synthetic mica
JP4153066B2 (en) Method for producing strongly cohesive titanium oxide
JPS602338B2 (en) TiO↓2 pigment coated with porous alumina/silica and dense silica
US4405376A (en) Titanium dioxide pigment and process for producing same
JPH1081517A (en) Superfine titanium oxide and its production
JP2010163369A (en) Powder cosmetic
US5837050A (en) Ultrafine iron-containing rutile titanium oxide and process for producing the same
JPH0350120A (en) Production of titanium dioxide pigment powder
JP4256133B2 (en) Method for producing acicular titanium dioxide fine particles
JPH07751B2 (en) Fine particle titanium dioxide powder
JP4562492B2 (en) Rod-like titanium dioxide, near-infrared shielding agent containing the same, and resin composition containing the near-infrared shielding agent
JP4195254B2 (en) Rutile type titanium dioxide fine particles and method for producing the same
JP2008230964A (en) Strong cohesive titanium oxide
JP3877235B2 (en) Rutile-type titanium dioxide particles and production method thereof
JP4256134B2 (en) Method for producing iron-containing acicular titanium dioxide fine particles
JPH0611872B2 (en) Titanium dioxide coated silica beads, production method and use thereof
JPH0769636A (en) Iron-containing titanium dioxide and production thereof
CN1631996A (en) Method for preparing silicon oxide/titanium dioxide composite oxide ultraviolet screening agent
JP2660766B2 (en) Ultrafine yellow pigment and method for producing the same
JPH0753216A (en) Titanium dioxide fine powder and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees