JP2006126233A - Spectacle lens with antireflection film - Google Patents

Spectacle lens with antireflection film Download PDF

Info

Publication number
JP2006126233A
JP2006126233A JP2004310434A JP2004310434A JP2006126233A JP 2006126233 A JP2006126233 A JP 2006126233A JP 2004310434 A JP2004310434 A JP 2004310434A JP 2004310434 A JP2004310434 A JP 2004310434A JP 2006126233 A JP2006126233 A JP 2006126233A
Authority
JP
Japan
Prior art keywords
layer
light
refractive index
spectacle lens
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004310434A
Other languages
Japanese (ja)
Inventor
Toshihito Kanai
利仁 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004310434A priority Critical patent/JP2006126233A/en
Publication of JP2006126233A publication Critical patent/JP2006126233A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Eyeglasses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dissolve problems in which when a user wears a spectacle lens, reflection of an image occurs by light made incident at some degree of incident angle from backward and in which an antireflection film having such small total number of components that the antireflection film can be film-formed on the spectacle lens lowers in its antireflection characteristic when the incident angle derives from a designed angle, thereby when strong light is made incident thereon, especially a large amount of reflected light enters an eyeball, then, the user feels as if the reflection of the image occurs on a lens surface, which interrupts a visual field. <P>SOLUTION: The spectacle lens has a reflectivity of ≤1.0% within the wavelength range of 420 nm to 720 nm for light having an incident angle of 0° and light having an incident angle of 15° to 30°. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面に反射防止膜を被膜した眼鏡レンズに関する。   The present invention relates to a spectacle lens having a surface coated with an antireflection film.

プラスチックを基材とした光学レンズが眼鏡レンズを含めて広く使用されている。基材にプラスチックを用いることで、ガラス製のものよりも軽量で加工しやすくなるといった利点がある一方で、傷が入りやすく、屈折率も低いためレンズが厚くなりやすいという欠点がある。傷の入りやすさに対しては、プラスチック基材表面に硬化膜を成膜して、傷を入りにくくする技術が、今では広く用いられている。材料開発によって、基材の屈折率を向上させることによって、光の屈折角をより大きくすることができるようになった結果、レンズを薄くすることができるようになり、基材の上に成膜される硬化膜も、干渉縞を見えにくくするためにレンズ基材の屈折率と近いものを用いるようになっている。   Optical lenses based on plastics are widely used including spectacle lenses. The use of plastic as the base material has the advantage of being lighter and easier to process than glass, but has the disadvantage that the lens tends to be thick because it is easily scratched and has a low refractive index. For ease of scratching, a technique of forming a cured film on the surface of a plastic substrate to make it difficult to scratch is now widely used. As a result of material development, the refractive index of the base material can be improved to increase the angle of refraction of the light. As a result, the lens can be made thinner and deposited on the base material. As the cured film, a film close to the refractive index of the lens substrate is used in order to make the interference fringes difficult to see.

一方で、基材と硬化膜の高屈折率化は、必然的にレンズ表面における光の反射率の増大を起こすものであるため、反射防止膜を成膜して可視光域の反射率を低減させる技術も広く導入されている。表面での光の反射を抑えることで、光の透過量を増やし、且つ後方からの像の映り込み(ゴースト現象)を低減させることが目的である。特に眼鏡レンズの場合、顔の正面方向からレンズを透過してくる光に対して最も効果があるように、眼鏡レンズ表面に成膜された反射防止膜は、両面とも入射角0度の光について、最も反射防止特性が発揮されるように設計されていることが一般的である。よって、入射角が0度の状態で可視光領域の波長に対する反射率を抑えられれば、眼鏡レンズに用いられる反射防止膜の機能としては十分である、とされていた。他の光学レンズに成膜される反射防止膜の場合も同様で、光の入射角の変動を考慮した膜設計は僅かであった。   On the other hand, increasing the refractive index of the base material and the cured film inevitably increases the reflectance of light on the lens surface, so an antireflection film is formed to reduce the reflectance in the visible light region. Technology to make it widely introduced. The purpose is to suppress the reflection of light on the surface, thereby increasing the amount of transmitted light and reducing image reflection (ghost phenomenon) from the rear. Particularly in the case of a spectacle lens, the antireflection film formed on the spectacle lens surface is effective for light having an incident angle of 0 degrees on both surfaces so that it is most effective for light transmitted through the lens from the front direction of the face. In general, it is designed to exhibit the most antireflection properties. Therefore, if the reflectance with respect to the wavelength in the visible light region can be suppressed in the state where the incident angle is 0 degree, it is said that the function of the antireflection film used for the spectacle lens is sufficient. The same applies to the case of an antireflection film formed on another optical lens, and the film design considering the variation of the incident angle of light is slight.

特開2002−71903JP 2002-71903 A

しかし、実際に眼鏡を着用したときの後方からの像の映り込みを抑えるという点では不十分なところがある。眼鏡レンズを装着する場合、後方からの像の映り込みは、ある程度の入射角度を持って入射する光によって起こるものである。反射防止膜の設計角度からずれると反射防止特性は低下するため、強い光が入射してきた場合は、特に多くの反射光が眼球に入ることになり、レンズ面に像が映り込んだように見えて視界を遮ることになる。特に、反射防止膜の層数が4層から7層程度と少ないもので、反射防止特性を垂直入射する光に対して設計した場合は、光の入射角が垂直からずれていくにつれて、反射防止帯域が短波長側へ狭まりながらずれていき、結果として長波長側の赤い色の反射率が高くなってくるため、赤く濃い像が映り込むことになる。   However, there is an insufficient point in terms of suppressing the reflection of an image from behind when actually wearing glasses. When a spectacle lens is attached, the reflection of an image from the rear is caused by light incident at a certain incident angle. Since the anti-reflection properties deteriorate when the angle is deviated from the design angle of the anti-reflective coating, especially when strong light is incident, a large amount of reflected light enters the eyeball, and the image appears to be reflected on the lens surface. Will obstruct the view. In particular, when the number of antireflection films is as small as 4 to 7 layers and the antireflection characteristics are designed for light that is incident perpendicularly, the reflection prevention is performed as the incident angle of light deviates from vertical. The band is shifted while narrowing to the short wavelength side, and as a result, the reflectance of the red color on the long wavelength side is increased, so that a red and dark image is reflected.

本発明は、眼鏡を着用したときの斜め後方からの光の入射による、像の映り込みを低減し、且つレンズ正面からの光の透過も十分に高くできることを特徴とする反射防止膜付き眼鏡レンズを提供することを目的としている。   The present invention relates to an eyeglass lens with an antireflection film that reduces reflection of an image due to incidence of light from obliquely behind when wearing eyeglasses and can sufficiently increase the transmission of light from the front of the lens. The purpose is to provide.

斜め後方から入射する光の反射は、眼鏡レンズの両面で起こる。両面に斜め入射に対する反射防止特性の高い反射防止膜を成膜すれば、眼鏡レンズへの像の映り込みを防ぐことはできるが、前述したように、構成層数の少ない反射防止膜では、光の入射角が設計段階の角度からずれるほど反射防止特性が低下してしまうので、今度は垂直に入射する光に対する反射防止特性が低下することになる。眼鏡レンズの反射防止膜は、レンズ前方から来る光の透過率を高める役割もあるので、垂直入射の光と斜め入射の光の両方に対して十分な反射防止特性を実現しなければならない。前記目的を達成するために、以下に示す発明をした。   Reflection of light incident obliquely from behind occurs on both sides of the spectacle lens. If an anti-reflection film with high anti-reflection properties against oblique incidence is formed on both sides, it is possible to prevent the image from being reflected on the spectacle lens. As the incident angle deviates from the angle at the design stage, the antireflection characteristic decreases, and this time, the antireflection characteristic for light incident perpendicularly decreases. Since the antireflection film of the spectacle lens also has a role of increasing the transmittance of light coming from the front of the lens, a sufficient antireflection characteristic must be realized for both vertically incident light and obliquely incident light. In order to achieve the above object, the following inventions have been made.

第1に示す発明は、透明な基材からなる眼鏡レンズの表面に成膜される被膜であって、入射角が15度から30度の間の光に対して、波長範囲420nmから720nmの光の反射率が1.0%以下であり、且つ入射角が0度の光に対して、波長範囲420nmから720nmの光の反射率が1.0%以下である反射防止膜が、少なくとも片面に形成されており、前記反射防止膜は、低屈折率物質には1.44から1.47までの範囲にある屈折率を有する物質を、高屈折率物質には2.20から2.45までの範囲にある屈折率を有する物質を用いて、設計中心波長λ0を520nmから580nmまでの範囲にある任意の波長としたときに、基材側から数えて、
第1層を光学的膜厚0.06λ0以上0.09λ0以下である低屈折率物質層とし、
第2層を光学的膜厚0.085λ0以上0.095λ0以下である高屈折率物質層とし、
第3層を光学的膜厚0.085λ0以上0.095λ0以下である低屈折率物質層とし、
第4層を光学的膜厚0.22λ0以上0.25λ0以下である高屈折率物質層とし、
第5層を光学的膜厚0.04λ0以上0.060λ0以下である低屈折率物質層とし、
第6層を光学的膜厚0.14λ0以上0.16λ0以下である高屈折率物質層とし、
第7層を光学的膜厚0.25λ0以上0.28λ0以下である低屈折率物質であることを特徴とする、反射防止膜付き眼鏡レンズに関するものである。
The first invention is a film formed on the surface of a spectacle lens made of a transparent base material, and light having a wavelength range of 420 nm to 720 nm with respect to light having an incident angle of 15 degrees to 30 degrees. An antireflection film having a reflectance of 1.0% or less for light having a wavelength range of 420 nm to 720 nm with respect to light having a reflectance of 1.0% or less and an incident angle of 0 degree is at least on one side. The antireflective coating is formed of a material having a refractive index in the range of 1.44 to 1.47 for a low refractive index material and 2.20 to 2.45 for a high refractive index material. When the design center wavelength λ0 is set to an arbitrary wavelength in the range from 520 nm to 580 nm using a material having a refractive index in the range of
The first layer is a low refractive index material layer having an optical film thickness of 0.06λ0 or more and 0.09λ0 or less,
The second layer is a high refractive index material layer having an optical film thickness of 0.085λ0 or more and 0.095λ0 or less,
The third layer is a low refractive index material layer having an optical film thickness of 0.085λ0 or more and 0.095λ0 or less,
The fourth layer is a high refractive index material layer having an optical film thickness of 0.22λ0 or more and 0.25λ0 or less,
The fifth layer is a low refractive index material layer having an optical film thickness of 0.04λ0 or more and 0.060λ0 or less,
The sixth layer is a high refractive index material layer having an optical film thickness of 0.14λ0 or more and 0.16λ0 or less,
The present invention relates to a spectacle lens with an antireflection film, wherein the seventh layer is a low refractive index substance having an optical film thickness of 0.25λ0 or more and 0.28λ0 or less.

第1の発明によると、レンズ表面に像の映り込みを起こす光の反射率を下げることができて、映り込みを弱くすることができる。入射角を15度から30度の範囲としたのは、眼鏡レンズを装着している時に斜め後方から入射し、レンズ表面で反射されて眼球内に入るような光は、レンズの度数や形状にも影響されるが、レンズ面に対しての入射角15度から30度の間である、と考えたためである。入射角が30度の時も0度の時も、波長範囲420nmから720nmの可視光の反射率を1.0%以下に抑えることができれば、斜め後方からの光の入射で濃い像が映り込むことを防ぐことができるのである。前記の性能を実現させるためには、低屈折率物質は1.44から1.47の範囲の屈折率を、高屈折率物質はより高い屈折率を有していることが望ましい。薄膜を構成する物質として実用的な物質で高い屈折率を有するのは、Nb25とTiO2があるが、それらの物質が有する屈折率範囲は2.20から2.45の範囲であることから、高屈折率物質の屈折率は2.20から2.45の範囲であることに定めた。反射防止帯域を可視光領域に作り出すために、設計中心波長λ0を波長範囲520nmから580nmの任意の波長として、反射防止膜を構成する各層の光学的膜厚を定めた。 According to the first invention, the reflectance of light that causes an image to be reflected on the lens surface can be lowered, and the reflection can be weakened. The angle of incidence is in the range of 15 degrees to 30 degrees because light that is incident obliquely from the rear when wearing a spectacle lens and is reflected by the lens surface and enters the eyeball has a degree and shape of the lens. This is because it is considered that the incident angle with respect to the lens surface is between 15 degrees and 30 degrees. Whether the incident angle is 30 degrees or 0 degrees, if the reflectance of visible light in the wavelength range of 420 nm to 720 nm can be suppressed to 1.0% or less, a dark image is reflected by incidence of light from an oblique rear side. This can be prevented. In order to realize the above performance, it is desirable that the low refractive index material has a refractive index in the range of 1.44 to 1.47, and the high refractive index material has a higher refractive index. Nb 2 O 5 and TiO 2 have a high refractive index as a practical material constituting a thin film, and the refractive index range of these materials is in the range of 2.20 to 2.45. Therefore, the refractive index of the high refractive index substance was determined to be in the range of 2.20 to 2.45. In order to create an antireflection band in the visible light region, the optical thickness of each layer constituting the antireflection film was determined with the design center wavelength λ0 set to an arbitrary wavelength in the wavelength range of 520 nm to 580 nm.

第2に示す発明は、第1の発明に記載の眼鏡レンズの基材上に金属酸化物微粒子を含む被膜を成膜して、前記金属酸化物微粒子を含む被膜上に反射防止膜を成膜したことを特徴とする眼鏡レンズに関するものである。   In a second aspect of the invention, a film containing metal oxide fine particles is formed on the base material of the spectacle lens according to the first invention, and an antireflection film is formed on the film containing metal oxide fine particles. The present invention relates to a spectacle lens characterized by the above.

第2の発明によれば、眼鏡レンズ基材と反射防止膜との密着性を向上させ、耐久性の高い反射防止膜付きの眼鏡レンズを実現できる。反射防止膜の基板との密着性は、眼鏡レンズ基材と反射防止膜に用いられる物質の影響を受けるため、どのような組み合わせでも密着性を安定させることができるわけではない。特に基材がプラスチックで、反射防止膜が真空蒸着法等で成膜した金属酸化物で構成されている場合は、それぞれの膨張率の違いなどから密着性を高めることは難しい。プラスチックにも金属酸化物にも密着性の高い金属酸化物微粒子と含む層を導入することで、基材と反射防止膜の密着性を高めると同時に、膨張率が大きく異なる物質同士が接する状態を解消することができるのである。また、プラスチックが基材の場合には、硬化膜としての効果も期待できるのである。   According to the second aspect of the present invention, it is possible to improve the adhesion between the spectacle lens substrate and the antireflection film and realize a spectacle lens with a highly durable antireflection film. The adhesion of the antireflection film to the substrate is affected by the substances used for the spectacle lens substrate and the antireflection film, and therefore, the adhesion cannot be stabilized by any combination. In particular, when the base material is made of plastic and the antireflection film is made of a metal oxide formed by a vacuum deposition method or the like, it is difficult to increase the adhesion due to the difference in expansion coefficient. By introducing a layer containing metal oxide fine particles with high adhesion to both plastic and metal oxide, the adhesion between the base material and the antireflection film is improved, and at the same time, substances with greatly different expansion coefficients are in contact with each other. It can be solved. Moreover, when a plastic is a base material, the effect as a cured film can also be expected.

眼鏡レンズを装着しているとき、斜め後方からの像の映り込みを低減させることができて、且つ正面を見るときにも十分に高い透過率を確保できた反射防止膜付き眼鏡レンズを提供することができた。   Provided is a spectacle lens with an antireflection film capable of reducing the reflection of an image from an oblique rear when wearing a spectacle lens and ensuring a sufficiently high transmittance even when looking at the front. I was able to.

[実施例1]   [Example 1]

実施例1におけるプラスチック眼鏡レンズのモデルを図1−(1)に、プラスチック眼鏡レンズの凹面(眼球側)に成膜された被膜のモデルを図1−(2)に、プラスチック眼鏡レンズの凸面(物体側)に成膜された被膜のモデルを図1−(3)に示す。   The plastic spectacle lens model in Example 1 is shown in FIG. 1- (1), the model of the coating film formed on the concave surface (eyeball side) of the plastic spectacle lens is shown in FIG. A model of the film formed on the object side is shown in FIG.

プラスチック眼鏡レンズ基材の両面には、ディッピング法によって金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層101と102を成膜した。ハードコート層の屈折率は、どちらも1.67である。両面に7層からなる反射防止膜を成膜した。その設計主波長λ0は550nmで、各層はプラスチック眼鏡レンズ基材側から数えて(各層におけるSiO2の屈折率は1.46、TiO2の屈折率は2.35である)、
第1層目111と121に、0.080λ0の光学的膜厚を持つSiO2層、
第2層目112と122に、0.090λ0の光学的膜厚を持つTiO2層、
第3層目113と123に、0.090λ0の光学的膜厚を持つSiO2層、
第4層目114と124に、0.225λ0の光学的膜厚を持つTiO2層、
第5層目115と125に、0.053λ0の光学的膜厚を持つSiO2層、
第6層目116と126に、0.145λ0の光学的膜厚を持つTiO2層、
第7層目117と127に、0.275λ0の光学的膜厚を持つSiO2層、
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、290nmから300nm程度である。
On both surfaces of the plastic spectacle lens substrate, hard coat layers 101 and 102 containing metal oxide fine particles and an organosilicon compound as main components were formed by dipping. Both of the hard coat layers have a refractive index of 1.67. An antireflection film consisting of 7 layers was formed on both sides. Its design principal wavelength λ0 is 550 nm, and each layer is counted from the plastic spectacle lens substrate side (the refractive index of SiO 2 in each layer is 1.46, the refractive index of TiO 2 is 2.35),
In the first layers 111 and 121, an SiO 2 layer having an optical film thickness of 0.080λ0,
In the second layers 112 and 122, a TiO 2 layer having an optical film thickness of 0.090λ0,
In the third layers 113 and 123, an SiO 2 layer having an optical film thickness of 0.090λ0,
In the fourth layers 114 and 124, a TiO 2 layer having an optical film thickness of 0.225λ0,
In the fifth layers 115 and 125, an SiO 2 layer having an optical film thickness of 0.053λ0,
In the sixth layers 116 and 126, a TiO 2 layer having an optical film thickness of 0.145λ0,
In the seventh layers 117 and 127, an SiO 2 layer having an optical film thickness of 0.275λ0,
The antireflection film formed by sequentially laminating the films was formed. The thickness of the formed antireflection film is about 290 nm to 300 nm.

両面に成膜した反射防止膜の、入射角30度の光に対する反射率スペクトルを図2−(1)の曲線21に示し、入射角0度の光に対する反射率スペクトルを図2−(2)の曲線23に示す。
[実施例2]
The reflectance spectrum for the light with an incident angle of 30 degrees of the antireflection film formed on both surfaces is shown by a curve 21 in FIG. 2- (1), and the reflectance spectrum for the light with an incident angle of 0 degrees is shown in FIG. 2- (2). The curve 23 is shown.
[Example 2]

実施例2におけるプラスチック眼鏡レンズのモデルを図3−(1)に、プラスチック眼鏡レンズの凹面に成膜された被膜のモデル図3−(2)に、プラスチック眼鏡レンズの凸面に成膜された被膜のモデルを図3−(3)に示す。   A model of the plastic spectacle lens in Example 2 is shown in FIG. 3- (1), and a model of the film formed on the concave surface of the plastic spectacle lens is shown in FIG. 3- (2). This model is shown in FIG.

プラスチック眼鏡レンズ基材の両面には、ディッピング法によって金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層301と302を成膜した。ハードコート層の屈折率は、どちらも1.60である。両面に7層からなる反射防止膜を成膜した。その設計主波長λ0は550nmで、各層はプラスチック眼鏡レンズ基材側から数えて(各層におけるSiO2の屈折率は1.46、Nb25の屈折率は2.24である)、
第1層目311と321に、0.080λ0の光学的膜厚を持つSiO2層、
第2層目312と322に、0.093λ0の光学的膜厚を持つNb25層、
第3層目313と323に、0.088λ0の光学的膜厚を持つSiO2層、
第4層目314と324に、0.235λ0の光学的膜厚を持つNb25層、
第5層目315と325に、0.045λ0の光学的膜厚を持つSiO2層、
第6層目316と326に、0.155λ0の光学的膜厚を持つNb25層、
第7層目317と327に、0.265λ0の光学的膜厚を持つSiO2層、
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、290nmから300nm程度である。両面に成膜した反射防止膜の、入射角30度の光に対する反射率スペクトルを図4−(1)の曲線41に示し、入射角0度の光に対する反射率スペクトルを図4−(2)の曲線43に示す。
[比較例1]
On both surfaces of the plastic spectacle lens substrate, hard coat layers 301 and 302 containing metal oxide fine particles and an organosilicon compound as main components were formed by dipping. The refractive indices of the hard coat layers are both 1.60. An antireflection film consisting of 7 layers was formed on both sides. Its design principal wavelength λ0 is 550 nm, and each layer is counted from the plastic spectacle lens substrate side (the refractive index of SiO 2 in each layer is 1.46, and the refractive index of Nb 2 O 5 is 2.24),
In the first layers 311 and 321, a SiO 2 layer having an optical film thickness of 0.080λ0,
Nb 2 O 5 layers having an optical film thickness of 0.093λ0 are formed on the second layers 312 and 322,
In the third layers 313 and 323, an SiO 2 layer having an optical film thickness of 0.088λ0,
In the fourth layer 314 and 324, an Nb 2 O 5 layer having an optical film thickness of 0.235λ0,
In the fifth layers 315 and 325, an SiO 2 layer having an optical film thickness of 0.045λ0,
Sixth layers 316 and 326 include Nb 2 O 5 layers having an optical film thickness of 0.155λ0,
In the seventh layers 317 and 327, an SiO 2 layer having an optical film thickness of 0.265λ0,
The antireflection film formed by sequentially laminating the films was formed. The thickness of the formed antireflection film is about 290 nm to 300 nm. The reflectance spectrum for the light with an incident angle of 30 degrees of the antireflection film formed on both surfaces is shown by a curve 41 in FIG. 4- (1), and the reflectance spectrum for the light with an incident angle of 0 degrees is shown in FIG. 4- (2). The curve 43 is shown.
[Comparative Example 1]

比較例1のプラスチック眼鏡レンズのモデルを図5−(1)に、プラスチック眼鏡レンズの凹面に成膜された被膜のモデルを図5−(2)に、プラスチック眼鏡レンズの凸面に成膜された被膜のモデルを図5−(3)に示す。   The model of the plastic spectacle lens of Comparative Example 1 is shown in FIG. 5- (1), and the model of the film formed on the concave surface of the plastic spectacle lens is shown in FIG. 5- (2). A model of the coating is shown in FIG.

プラスチック眼鏡レンズ基材の両面には、ディッピング法によって金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層501と502を成膜した。ハードコート層の屈折率は、どちらも1.67である。両面に7層からなる反射防止膜を成膜した。その設計主波長λ0は515nmで、各層はプラスチック眼鏡レンズ基材側から数えて(各層におけるSiO2の屈折率は1.46、TiO2の屈折率は2.42である)、
第1層目511と521に、0.060λ0の光学的膜厚を持つSiO2層、
第2層目512と522に、0.063λ0の光学的膜厚を持つTiO2層、
第3層目513と523に、0.110λ0の光学的膜厚を持つSiO2層、
第4層目514と524に、0.195λ0の光学的膜厚を持つTiO2層、
第5層目515と525に、0.060λ0の光学的膜厚を持つSiO2層、
第6層目516と526に、0.160λ0の光学的膜厚を持つTiO2層、
第7層目517と527に、0.275λ0の光学的膜厚を持つSiO2層、
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、260nmから270nm程度である。両面に成膜した反射防止膜の、入射角30度の光に対する反射率スペクトルを図2−(1)の曲線22に示し、入射角0度の光に対する反射率スペクトルを図2−(2)の曲線24に示す。
[比較例2]
Hard coat layers 501 and 502 containing metal oxide fine particles and an organosilicon compound as main components were formed on both surfaces of a plastic spectacle lens substrate by dipping. Both of the hard coat layers have a refractive index of 1.67. An antireflection film consisting of 7 layers was formed on both sides. Its design principal wavelength λ0 is 515 nm, and each layer is counted from the plastic spectacle lens substrate side (the refractive index of SiO 2 in each layer is 1.46, the refractive index of TiO 2 is 2.42),
In the first layers 511 and 521, an SiO 2 layer having an optical film thickness of 0.060λ0,
In the second layers 512 and 522, a TiO 2 layer having an optical film thickness of 0.063λ0,
In the third layers 513 and 523, an SiO 2 layer having an optical film thickness of 0.110λ0,
In the fourth layers 514 and 524, a TiO 2 layer having an optical film thickness of 0.195λ0,
In the fifth layers 515 and 525, an SiO 2 layer having an optical film thickness of 0.060λ0,
In the sixth layers 516 and 526, a TiO 2 layer having an optical film thickness of 0.160λ0,
In the seventh layers 517 and 527, an SiO 2 layer having an optical film thickness of 0.275λ0,
The antireflection film formed by sequentially laminating the films was formed. The thickness of the formed antireflection film is about 260 nm to 270 nm. The reflectance spectrum for the light with an incident angle of 30 degrees of the antireflection film formed on both surfaces is shown by the curve 22 in FIG. 2- (1), and the reflectance spectrum for the light with an incident angle of 0 degrees is shown in FIG. 2- (2). The curve 24 is shown.
[Comparative Example 2]

比較例2のプラスチック眼鏡レンズのモデルを図6−(1)に、プラスチック眼鏡レンズの凹面に成膜された被膜のモデルを図6−(2)に、プラスチック眼鏡レンズの凸面に成膜された被膜のモデルを図6−(3)に示す。   A model of the plastic spectacle lens of Comparative Example 2 is shown in FIG. 6- (1), and a model of the film formed on the concave surface of the plastic spectacle lens is shown in FIG. 6- (2). A model of the coating is shown in FIG.

プラスチック眼鏡レンズ基材の両面には、ディッピング法によって金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層601と602を成膜した。ハードコート層の屈折率は、どちらも1.60である。両面に5層からなる反射防止膜を成膜した。その設計主波長λ0は515nmで、各層はプラスチック眼鏡レンズ基材側から数えて(各層におけるSiO2の屈折率は1.46、ZrO2の屈折率は2.06である)、
第1層目611と621に、0.080λ0の光学的膜厚を持つSiO2層、
第2層目612と622に、0.150λ0の光学的膜厚を持つZrO2層、
第3層目613と623に、0.055λ0の光学的膜厚を持つSiO2層、
第4層目614と624に、0.255λ0の光学的膜厚を持つZrO2層、
第5層目615と625に、0.270λ0の光学的膜厚を持つSiO2層、
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、240nmから250nm程度である。両面に成膜した反射防止膜の、入射角30度の光に対する反射率スペクトルを図4−(1)の曲線42に示し、入射角0度の光に対する反射率スペクトルを図4−(2)の曲線44に示す。
Hard coat layers 601 and 602 containing metal oxide fine particles and an organosilicon compound as main components were formed on both surfaces of the plastic spectacle lens substrate by dipping. The refractive indices of the hard coat layers are both 1.60. An antireflection film consisting of 5 layers was formed on both sides. Its design principal wavelength λ0 is 515 nm, each layer is counted from the plastic spectacle lens substrate side (the refractive index of SiO 2 in each layer is 1.46, the refractive index of ZrO 2 is 2.06),
In the first layers 611 and 621, an SiO 2 layer having an optical film thickness of 0.080λ0,
In the second layers 612 and 622, a ZrO 2 layer having an optical film thickness of 0.150λ0,
In the third layers 613 and 623, an SiO 2 layer having an optical film thickness of 0.055λ0,
In the fourth layer 614 and 624, a ZrO 2 layer having an optical film thickness of 0.255λ0,
In the fifth layers 615 and 625, an SiO 2 layer having an optical film thickness of 0.270λ0,
The antireflection film formed by sequentially laminating the films was formed. The thickness of the formed antireflection film is about 240 nm to 250 nm. The reflectance spectrum for the light with an incident angle of 30 degrees of the antireflection film formed on both surfaces is shown by a curve 42 in FIG. 4- (1), and the reflectance spectrum for the light with an incident angle of 0 degrees is shown in FIG. 4- (2). A curve 44 is shown.

実施例1,2と比較例1,2を比較する。斜め後方からの光の入射で濃い像が映り込んでしまう原因は、入射角が大きくなることで長波長側の光の反射率が増大していくためである。比較例1,2とも、入射角が30度の時の曲線22、42が示すように、700nm付近の反射率が2%を越えて他の波長よりも目立って反射率が大きくなってしまうと、赤く濃い像が見えることになる。実施例1,2とも、入射角が0度の時も30度の時も、反射率が1%を越えることが、可視光領域である420nmから720nmの範囲においては存在しないため、濃い像が映り込むことは無いのである。つまり、入射角が0度の時も30度の時も安定して高い透過率を実現することができているのである。   Examples 1 and 2 are compared with Comparative Examples 1 and 2. The reason why a dark image is reflected by the incidence of light from obliquely behind is that the reflectance of light on the long wavelength side increases as the incident angle increases. In both Comparative Examples 1 and 2, as shown by the curves 22 and 42 when the incident angle is 30 degrees, the reflectance near 700 nm exceeds 2%, and the reflectance becomes conspicuously larger than other wavelengths. A red and dark image can be seen. In both Examples 1 and 2, when the incident angle is 0 degree and 30 degrees, the reflectance does not exceed 1% in the visible light range of 420 nm to 720 nm, and thus a dark image is formed. There is no reflection. That is, a high transmittance can be stably realized when the incident angle is 0 degree and 30 degrees.

実際の眼鏡レンズ使用状況に、より適応した反射防止特性で、より広い範囲の視野を明瞭化できる眼鏡を提供できる。   It is possible to provide spectacles capable of clarifying a wider field of view with anti-reflection characteristics that are more adapted to actual spectacle lens usage.

実施例1に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the film formed into a film on the plastic spectacle lens surface shown in Example 1. FIG. 実施例1と比較例1に示した反射防止膜の反射率スペクトル。The reflectance spectrum of the anti-reflective film shown in Example 1 and Comparative Example 1. 実施例2に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the film formed into a film on the plastic spectacle lens surface shown in Example 2. FIG. 実施例2と比較例2に示した、反射防止膜の反射率スペクトル。The reflectance spectrum of the antireflection film shown in Example 2 and Comparative Example 2. 比較例1に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the film | membrane formed into a film on the plastic spectacle lens surface shown in the comparative example 1. FIG. 比較例2に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the coating film formed on the plastic spectacle lens surface shown in Comparative Example 2.

符号の説明Explanation of symbols

101,102 ハードコート層
111,113,115,117,121,123,125,127 SiO2
112,114,116,122,124,126 TiO2
21 実施例1に示した反射防止膜の、入射角30度の光に対する反射率
22 比較例1に示した反射防止膜の、入射角30度の光に対する反射率
23 実施例1に示した反射防止膜の、入射角0度の光に対する反射率
24 比較例1に示した反射防止膜の、入射角0度の光に対する反射率
301,302 ハードコート層
311,313,315,317,321,323,325,327 SiO2
312,314,316,322,324,326 Nb25
41 実施例2に示した反射防止膜の、入射角30度の光に対する反射率
42 比較例2に示した反射防止膜の、入射角30度の光に対する反射率
43 実施例1に示した反射防止膜の、入射角0度の光に対する反射率
44 比較例2に示した反射防止膜の、入射角0度の光に対する反射率
501,502 ハードコート層
511,513,515,517,521,523,525,527 SiO2
512,514,516,522,524,526 TiO2
601,602 ハードコート層
611,613,615,621,623,625 SiO2
612,614,622,624 ZrO2
101, 102 Hard coat layer 111, 113, 115, 117, 121, 123, 125, 127 SiO 2 layer 112, 114, 116, 122, 124, 126 TiO 2 layer 21 Of the antireflection film shown in Example 1, Reflectivity 22 for light with an incident angle of 30 degrees Reflectivity 23 for light with an incident angle of 30 degrees of the antireflection film shown in Comparative Example 1 Reflection of light with an incident angle of 0 degrees of the antireflective film shown in Example 1 Rate 24 Reflectivity 301,302 with respect to light with an incident angle of 0 degree of the antireflection film shown in Comparative Example 1 Hard coat layers 311, 313, 315, 317, 321, 323, 325, 327 SiO 2 layers 312, 314 316,322,324,326 Nb 2 O antireflection film shown in five layers 41 example 2, the antireflection film shown in reflectivity 42 Comparative example 2 with respect to light incident angle of 30 degrees The reflectance 43 with respect to light with an incident angle of 30 degrees The reflectance 44 with respect to light with an incident angle of 0 degrees of the antireflection film shown in Example 1 The antireflection film shown in Comparative Example 2 with respect to light with an incident angle of 0 degrees Reflectivity 501, 502 Hard coat layer 511, 513, 515, 517, 521, 523, 525, 527 SiO 2 layer 512, 514, 516, 522, 524, 526 TiO 2 layer 601, 602 Hard coat layer 611, 613 615, 621, 623, 625 SiO 2 layer 612, 614, 622, 624 ZrO 2 layer

Claims (2)

透明な基材からなる眼鏡レンズの眼球側の面、および前記眼鏡レンズの前記眼球側の面に対して反対側に位置する外側の面に成膜される被膜であって、入射角が15度から30度の間の光に対して、波長範囲420nmから720nmの光の反射率が1.0%以下であり、且つ入射角が0度の光に対して、波長範囲420nmから720nmの光の反射率が1.0%以下である反射防止膜を少なくとも片面に形成されており、前記反射防止膜は、低屈折率物質には1.44から1.47までの範囲にある屈折率を有する物質を、高屈折率物質には2.20から2.45までの範囲にある屈折率を有する物質を用いて、設計中心波長λ0を520nmから580nmまでの範囲にある任意の波長としたときに、基材側から数えて
第1層が光学的膜厚0.06λ0以上0.09λ0以下である低屈折率物質層、
第2層が光学的膜厚0.085λ0以上0.095λ0以下である高屈折率物質層、
第3層が光学的膜厚0.085λ0以上0.095λ0以下である低屈折率物質層、
第4層が光学的膜厚0.22λ0以上0.25λ0以下である高屈折率物質層、
第5層が光学的膜厚0.04λ0以上0.060λ0以下である低屈折率物質層、
第6層が光学的膜厚0.14λ0以上0.16λ0以下である高屈折率物質層、
第7層が光学的膜厚0.25λ0以上0.28λ0以下である低屈折率物質であることを特徴とする反射防止膜付き眼鏡レンズ。
A film formed on an eyeball side surface of a spectacle lens made of a transparent base material and an outer surface positioned opposite to the eyeball side surface of the spectacle lens, and having an incident angle of 15 degrees The reflectance of light with a wavelength range of 420 nm to 720 nm is 1.0% or less for light between 30 degrees and 30 degrees, and the light with a wavelength range of 420 nm to 720 nm is relative to light with an incident angle of 0 degrees. An antireflection film having a reflectance of 1.0% or less is formed on at least one surface, and the antireflection film has a refractive index in the range of 1.44 to 1.47 for a low refractive index material. When a material having a refractive index in the range of 2.20 to 2.45 is used as the high refractive index material and the design center wavelength λ0 is set to an arbitrary wavelength in the range of 520 nm to 580 nm. The first layer is optically counted from the substrate side The thickness 0.06λ0 above 0.09λ0 is below the low-refractive index material layer,
A high refractive index material layer in which the second layer has an optical film thickness of 0.085λ0 or more and 0.095λ0 or less,
A low-refractive-index material layer in which the third layer has an optical film thickness of 0.085λ0 or more and 0.095λ0 or less,
A high refractive index material layer in which the fourth layer has an optical film thickness of 0.22λ0 or more and 0.25λ0 or less;
A low-refractive-index material layer in which the fifth layer has an optical film thickness of 0.04λ0 or more and 0.060λ0 or less;
A sixth layer having a high refractive index material layer having an optical thickness of 0.14λ0 or more and 0.16λ0 or less;
A spectacle lens with an antireflection film, wherein the seventh layer is a low refractive index substance having an optical film thickness of 0.25λ0 or more and 0.28λ0 or less.
前記眼鏡レンズの基材上に金属酸化物微粒子を含む被膜を成膜して、前記金属酸化物微粒子を含む被膜上に反射防止膜を成膜したことを特徴とする、請求項1記載の反射防止膜付き眼鏡レンズ。
2. The reflection according to claim 1, wherein a film containing metal oxide fine particles is formed on a base material of the spectacle lens, and an antireflection film is formed on the film containing metal oxide fine particles. Eyeglass lens with protective film.
JP2004310434A 2004-10-26 2004-10-26 Spectacle lens with antireflection film Withdrawn JP2006126233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004310434A JP2006126233A (en) 2004-10-26 2004-10-26 Spectacle lens with antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004310434A JP2006126233A (en) 2004-10-26 2004-10-26 Spectacle lens with antireflection film

Publications (1)

Publication Number Publication Date
JP2006126233A true JP2006126233A (en) 2006-05-18

Family

ID=36721071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004310434A Withdrawn JP2006126233A (en) 2004-10-26 2004-10-26 Spectacle lens with antireflection film

Country Status (1)

Country Link
JP (1) JP2006126233A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133833A1 (en) * 2008-04-30 2009-11-05 Hoya株式会社 Optical device and antireflection film
JP2010079013A (en) * 2008-09-26 2010-04-08 Nittoh Kogaku Kk Manufacturing process of optical member, and optical member
JP2010085886A (en) * 2008-10-02 2010-04-15 Konica Minolta Opto Inc Optical element and method of manufacturing the same
WO2012023371A1 (en) 2010-08-20 2012-02-23 東海光学株式会社 Optical product and plastic eyeglass lens
CN103226211A (en) * 2012-01-31 2013-07-31 株式会社拓普康 Optical substrate
CN103282823A (en) * 2010-09-29 2013-09-04 株式会社尼康依视路 Optical component and method for producing same
KR20160117459A (en) * 2014-02-04 2016-10-10 토카이 옵티칼 주식회사 Optical product, glasses lens and glasses
JP2016186661A (en) * 2016-07-19 2016-10-27 Hoya株式会社 Optical member
JP2017097364A (en) * 2010-12-10 2017-06-01 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Optical article with anti-reflection coating having low reflectivity both in ultraviolet and visible regions
CN108803083A (en) * 2018-08-09 2018-11-13 张家港志辰光学技术有限公司 A kind of antireflection optical lens with curved surface
CN109154726A (en) * 2016-05-17 2019-01-04 卡尔蔡司光学国际有限公司 Spectacle lens and method for calculating and manufacturing spectacle lens
CN110058331A (en) * 2019-05-17 2019-07-26 信阳舜宇光学有限公司 A kind of waterproof eyeglass preparation process and waterproof eyeglass
EP2902817B2 (en) 2012-09-28 2023-09-27 Nikon-Essilor Co., Ltd. Optical component and method for producing same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275843A1 (en) * 2008-04-30 2011-01-19 Hoya Corporation Optical device and antireflection film
JPWO2009133833A1 (en) * 2008-04-30 2011-09-01 Hoya株式会社 Optical element and antireflection film
EP2275843A4 (en) * 2008-04-30 2013-02-06 Hoya Corp Optical device and antireflection film
US8481148B2 (en) 2008-04-30 2013-07-09 Hoya Corporation Optical device and antireflection film
WO2009133833A1 (en) * 2008-04-30 2009-11-05 Hoya株式会社 Optical device and antireflection film
JP2010079013A (en) * 2008-09-26 2010-04-08 Nittoh Kogaku Kk Manufacturing process of optical member, and optical member
JP2010085886A (en) * 2008-10-02 2010-04-15 Konica Minolta Opto Inc Optical element and method of manufacturing the same
US9188768B2 (en) 2008-10-02 2015-11-17 Konica Minolta, Inc. Optical element and production method of the same
US8908275B2 (en) 2010-08-20 2014-12-09 Tokai Optical Co., Ltd. Optical product and spectacle plastic lens
WO2012023371A1 (en) 2010-08-20 2012-02-23 東海光学株式会社 Optical product and plastic eyeglass lens
KR20130137131A (en) 2010-08-20 2013-12-16 토카이 옵티칼 주식회사 Optical product and plastic eyeglass lens
CN103282823B (en) * 2010-09-29 2014-12-31 株式会社尼康依视路 Optical component and method for producing same
CN103282823A (en) * 2010-09-29 2013-09-04 株式会社尼康依视路 Optical component and method for producing same
JP2017097364A (en) * 2010-12-10 2017-06-01 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Optical article with anti-reflection coating having low reflectivity both in ultraviolet and visible regions
CN103226211B (en) * 2012-01-31 2015-05-13 株式会社拓普康 Optical substrate
CN103226211A (en) * 2012-01-31 2013-07-31 株式会社拓普康 Optical substrate
EP2902817B2 (en) 2012-09-28 2023-09-27 Nikon-Essilor Co., Ltd. Optical component and method for producing same
KR20160117459A (en) * 2014-02-04 2016-10-10 토카이 옵티칼 주식회사 Optical product, glasses lens and glasses
KR102232170B1 (en) 2014-02-04 2021-03-26 토카이 옵티칼 주식회사 Optical product, glasses lens and glasses
CN109154726A (en) * 2016-05-17 2019-01-04 卡尔蔡司光学国际有限公司 Spectacle lens and method for calculating and manufacturing spectacle lens
US11126013B2 (en) 2016-05-17 2021-09-21 Carl Zeiss Vision International Gmbh Spectacle lens and method for calculating and producing a spectacle lens
JP2016186661A (en) * 2016-07-19 2016-10-27 Hoya株式会社 Optical member
CN108803083A (en) * 2018-08-09 2018-11-13 张家港志辰光学技术有限公司 A kind of antireflection optical lens with curved surface
CN110058331A (en) * 2019-05-17 2019-07-26 信阳舜宇光学有限公司 A kind of waterproof eyeglass preparation process and waterproof eyeglass

Similar Documents

Publication Publication Date Title
JP7266510B2 (en) Optical components with antireflection coatings with low reflectivity in both the ultraviolet and visible regions
JP6275781B2 (en) Optical lens with scratch-resistant antireflection layer
US10031349B2 (en) Optical product, and spectacle lens and spectacles
US8908275B2 (en) Optical product and spectacle plastic lens
EP1697770B1 (en) Optical article covered with a visible-absorbing, multi-layer anti-reflective coating, and production method thereof
CN107111000B (en) Including the optical article in ultraviolet region interference coatings with high reflectivity
AU2018201510A1 (en) Mirror-coated lens
CN109073785A (en) It include the optical goods of the anti-reflective coating near infrared region (NIR) with high reflection
JP2006126233A (en) Spectacle lens with antireflection film
CN107636495A (en) It is included in the optical goods of the antireflection coatings in visible region for low light conditions
EP3223042B1 (en) Optical member and method of manufacturing the same
JP2005215038A (en) Spectacle lens
TWI557439B (en) Infrared filter and lens module
WO2015080160A1 (en) Spectacle lens
CN215895150U (en) Ultra-low reflective clear ground color blue light-proof resin lens
JP5976363B2 (en) Optical member
WO2018110017A1 (en) Optical product
CN114127622A (en) User-wearable optical article, method for producing optical article, and eyewear using optical article
JP7399963B2 (en) Optical lenses with mirror coatings and multilayer systems for improved wear resistance
WO2022052268A1 (en) Lens and lens assembly
CN220650923U (en) Ultralow-reflectivity optical antireflection film applied to polycarbonate lens
JP2001290112A (en) Mirror coated lens made of plastic
US10353116B2 (en) Delamination resistant coated substrates and methods of preparing the same
TWI836881B (en) glasses lenses
JP2016186661A (en) Optical member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108