JP2005215038A - Spectacle lens - Google Patents

Spectacle lens Download PDF

Info

Publication number
JP2005215038A
JP2005215038A JP2004018408A JP2004018408A JP2005215038A JP 2005215038 A JP2005215038 A JP 2005215038A JP 2004018408 A JP2004018408 A JP 2004018408A JP 2004018408 A JP2004018408 A JP 2004018408A JP 2005215038 A JP2005215038 A JP 2005215038A
Authority
JP
Japan
Prior art keywords
spectacle lens
layer
ultraviolet rays
eyeball
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004018408A
Other languages
Japanese (ja)
Inventor
Toshihito Kanai
利仁 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004018408A priority Critical patent/JP2005215038A/en
Publication of JP2005215038A publication Critical patent/JP2005215038A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/107Interference colour filters

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectacle lens for reducing the amount entering the inside of eyeball, by transmitting the spectacle lens by a near-ultraviolet from forward, by allowing the near-ultraviolet rays from oblique rearward, when wearing the spectacle to be reflected on a face of an eyeball side of the spectacle lens to reduce an amount entering the inside of the eyeball. <P>SOLUTION: In a coat formed on the face of the eyeball side of the spectacle lens, comprising a transparent base substance and the surface of an outside face, on the spectacle lens a coat which reflects or absorbs wavelength range near-ultraviolet of 350 nm-400 nm on the outside face of the spectacle lens, and forms an antireflection film transmitting the near-ultraviolet on the face of the eyeball side of the spectacle lens. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、反射防止膜を設けた眼鏡レンズに関する物である。   The present invention relates to a spectacle lens provided with an antireflection film.

近年、眼鏡レンズはガラス製のものよりもプラスチック製のものが広く使用されている。基材にプラスチックを用いることで、ガラス製のものよりも軽量で加工しやすくなるといった利点がある一方で、傷が付きやすく、屈折率が低くレンズが厚くなりやすいという欠点もある。そのため、傷を付きにくくするためにプラスチック基材表面に硬化膜を成膜して、傷を付きにくくする技術が一般的になっている。そして、基材の屈折率を向上させることによって光の屈折角をより大きくすることが出来るようになった結果、レンズを薄くすることが出来るようになった。また、基材の上に成膜される硬化膜も、干渉縞を見えにくくするために、レンズ基材の屈折率と近いものを用いるようになっている。   In recent years, plastic lenses are more widely used than glass lenses. The use of plastic as the base material has the advantage of being lighter and easier to process than glass, but also has the disadvantage of being easily scratched and having a low refractive index and a thick lens. Therefore, in order to make it hard to be damaged, a technique for forming a cured film on the surface of a plastic substrate to make it difficult to be damaged is becoming common. As a result of increasing the refractive angle of light by improving the refractive index of the substrate, the lens can be made thinner. In addition, a cured film formed on the base material has a refractive index close to that of the lens base material in order to make interference fringes difficult to see.

一方で、基材と硬化膜の高屈折率化は、必然的にレンズ表面における光の反射率の増大を起こすため、反射防止膜を成膜して可視光域の反射率を低減させる技術が広く導入されている。反射防止膜を装備することで、表面での光の反射を抑え、光の透過量を増やし、且つ後方からの像の映り込み(ゴースト現象)を低減させてレンズを通してみる視野を明瞭にすることが出来る。   On the other hand, increasing the refractive index of the base material and the cured film inevitably increases the reflectance of light on the lens surface, so there is a technology to reduce the reflectance in the visible light region by forming an antireflection film. Widely introduced. Equipped with an anti-reflective coating to suppress the reflection of light on the surface, increase the amount of transmitted light, and reduce the reflection of images from behind (ghost phenomenon) to make the field of view through the lens clear. I can do it.

また、紫外線の眼球への悪影響についても認識が高まっていることから、眼鏡レンズにおいて紫外線をカット出来るような工夫がなされてきている。プラスチック基材やハードコート層に、紫外線吸収剤を添加することで、眼鏡レンズを透過する紫外線の量を大幅に減少させることが出来るのである。   In addition, since the recognition of the adverse effect of ultraviolet rays on the eyeball is also increasing, a device has been devised that can cut ultraviolet rays in spectacle lenses. By adding an ultraviolet absorber to the plastic substrate or hard coat layer, the amount of ultraviolet rays that pass through the spectacle lens can be greatly reduced.

特開平6−88064号公報JP-A-6-88064 特許第172742号公報Japanese Patent No. 172742 特開平9−265059号公報Japanese Patent Laid-Open No. 9-265059 特開2001−91906号公報JP 2001-91906 A 特公平6−85002号公報Japanese Patent Publication No. 6-85002 特公平7−119844号公報Japanese Patent Publication No.7-119844

通常眼鏡レンズに装備されるような、層数が4層から7層程度の反射防止膜では、反射防止帯域は可視光領域のみである。よって波長範囲350nmから400nmの近紫外線や近赤外線の反射率は高くなってしまっている。図1に眼鏡レンズ着用時の眼球とレンズの位置関係、及び光の入射する方向とレンズ面の呼称を示す。前方から来る光1に関しては、近紫外線や近赤外線の反射率増加は眼球への侵入を防ぐ性能という観点で良い性能と言えるが、斜め後方から来る光2に関しては、眼球へ反射光として近紫外線や近赤外線が侵入するため、目に悪影響を及ぼすことになる。近紫外線は、眼球組織に悪影響を及ぼす可能性があることから、眼球に入る量を出来るだけ少なくしたいが、プラスチック眼鏡レンズの場合、前述した様に前方から来る近紫外線は、可視光域反射防止膜による高い近紫外線反射率や、プラスチック基材自体の吸収や添加された紫外線吸収剤によって、眼球に届く量を減らすことが出来る。しかし、斜め後方からの近紫外線は、眼鏡レンズの眼球側の反射防止膜が、近紫外線の反射率が高い反射防止膜となって、かなりの量の近紫外線が眼球に入ることになってしまっていた。   In the case of an antireflection film having about 4 to 7 layers, which is usually provided in spectacle lenses, the antireflection band is only in the visible light region. Therefore, the reflectance of near ultraviolet rays and near infrared rays in the wavelength range of 350 nm to 400 nm has been increased. FIG. 1 shows the positional relationship between the eyeball and the lens when the spectacle lens is worn, the direction in which light enters and the name of the lens surface. Regarding the light 1 coming from the front, it can be said that the increase in the reflectivity of near ultraviolet rays and near infrared rays is good from the viewpoint of preventing the invasion into the eyeball, but the light 2 coming from the oblique rear is near ultraviolet rays as reflected light to the eyeball. Or near infrared rays will invade the eyes. Since near ultraviolet rays may adversely affect the eyeball tissue, we want to reduce the amount that enters the eyeball as much as possible. However, in the case of plastic spectacle lenses, near ultraviolet rays coming from the front as described above prevent reflection in the visible light range. The amount that reaches the eyeball can be reduced by the high near-UV reflectivity by the film, the absorption of the plastic substrate itself, and the added UV absorber. However, the near-ultraviolet rays from diagonally behind the anti-reflection film on the eyeball side of the spectacle lens become an anti-reflection film with a high reflectivity of near-ultraviolet rays, and a considerable amount of near-ultraviolet light enters the eyeball. It was.

本発明は、眼鏡を着用したときの斜め後方からの近紫外線が、眼鏡レンズの眼球側の面で反射されて眼球内に入る量を減らし、前方からの近紫外線が眼鏡レンズを透過して眼球内に入る量を減らした、眼鏡レンズを提供することを目的としている。   The present invention reduces the amount of near-ultraviolet rays from obliquely behind when spectacles are worn being reflected by the eyeball-side surface of the spectacle lens and entering the eyeball, and the near-ultraviolet rays from the front pass through the spectacle lens and the eyeball The object is to provide a spectacle lens with a reduced amount.

斜め後方からの近紫外線は、眼鏡レンズの両面で反射される可能性がある。ただし、眼球側の面で反射されず外側の面で反射された場合は、プラスチック基材自体、或いは添加した紫外線吸収剤による吸収によって、外側の面で反射されて眼球に届く近紫外線の量は僅かとなる。よって、斜め後方からの近紫外線が眼球に入る量を減らす場合は、眼球側の面で起こる反射率を下げることのみを考えれば良いことがわかった。また、前方から来る近紫外線は、外側の面において近紫外線を反射もしくは、吸収させることで、眼球に届く量を減らすことが出来た。前記目的を達成するために、以下に示す発明をした。   Near-ultraviolet rays from obliquely behind may be reflected on both surfaces of the spectacle lens. However, if it is reflected off the outer surface but not on the eyeball side surface, the amount of near UV rays that are reflected on the outer surface and reach the eyeball due to absorption by the plastic substrate itself or the added UV absorber is Slightly. Therefore, it has been found that when reducing the amount of near-ultraviolet rays entering from the oblique rear side into the eyeball, it is only necessary to consider reducing the reflectance that occurs on the eyeball side surface. Moreover, near ultraviolet rays coming from the front were able to reduce the amount reaching the eyeball by reflecting or absorbing near ultraviolet rays on the outer surface. In order to achieve the above object, the following inventions have been made.

第1に示す発明は、透明な基材からなる眼鏡レンズの眼球側の面、及び外側の面の表面に形成される被膜であって、前記眼鏡レンズの外側の面には、波長範囲350nmから400nmの近紫外線を反射もしくは吸収する被膜が形成され、前記眼鏡レンズの眼球側の面には、前記近紫外線を透過する反射防止膜が形成されていることを特徴とする眼鏡レンズに関するものである。   A first aspect of the present invention is a film formed on the eyeball side surface and the outer surface of a spectacle lens made of a transparent substrate, and the outer surface of the spectacle lens has a wavelength range of 350 nm. The present invention relates to a spectacle lens characterized in that a coating that reflects or absorbs near-ultraviolet rays of 400 nm is formed, and an antireflection film that transmits the near-ultraviolet rays is formed on the eyeball side surface of the spectacle lens. .

第2に示す発明は、眼鏡レンズの眼球側の面に、波長範囲350nmから400nmの近紫外線の反射率を0.1%以上1%以下とし、波長範囲400nmから650nmの可視光線の反射率を0.3%以上1.5%以下に抑えた反射防止特性を持つ反射防止膜を備えることを特徴とする、眼鏡レンズに関するものである。   In the second aspect of the invention, the near-ultraviolet ray reflectance in the wavelength range of 350 nm to 400 nm is set to 0.1% to 1% on the eyeball side surface of the spectacle lens, and the visible light reflectance in the wavelength range of 400 nm to 650 nm is set. The present invention relates to a spectacle lens comprising an antireflection film having an antireflection property suppressed to 0.3% or more and 1.5% or less.

第1、第2の発明によれば、前方からの光の中で有害な近紫外線を反射もしくは吸収し、斜め後方からの光の中で有害な近紫外線を前方へ透過させるため、眼球への近紫外線の侵入を少なくすることが可能である。   According to the first and second inventions, the harmful near ultraviolet rays are reflected or absorbed in the light from the front, and the harmful near ultraviolet rays are transmitted forward in the obliquely backward light. It is possible to reduce the penetration of near ultraviolet rays.

第3に示す発明は、第1および第2の発明の眼鏡レンズにおいて、眼鏡レンズの眼球側の面に低屈折率層にSiO2を用いて、高屈折率層にTiO2とNb25のいずれか、或いは両方を用いていて、低屈折率層と高屈折率層を交互に少なくとも3層以上積層してなる反射防止膜を備えていることを特徴とする。 According to a third invention, in the spectacle lenses of the first and second inventions, SiO 2 is used for the low refractive index layer on the eyeball side surface of the spectacle lens, and TiO 2 and Nb 2 O 5 are used for the high refractive index layer. Either or both of these are used, and an antireflection film comprising at least three low refractive index layers and high refractive index layers alternately stacked is provided.

第3の発明によれば、反射防止膜の層数を出来るだけ少なくした上で望む反射防止特性を得ることが可能となり、且つ眼鏡として必要な耐久性品質も得られる。   According to the third aspect of the present invention, it is possible to obtain the desired antireflection characteristic while reducing the number of antireflection films as much as possible, and the durability quality required for glasses can be obtained.

第4に示す発明は、第1から第3の発明の眼鏡レンズにおいて、眼鏡レンズの外側の面に波長範囲350nmから400nmの近紫外線を吸収する被膜を形成していることを特徴とする。   The fourth invention is characterized in that in the spectacle lens of the first to third inventions, a film that absorbs near ultraviolet rays having a wavelength range of 350 nm to 400 nm is formed on the outer surface of the spectacle lens.

第4の発明によれば、被膜において近紫外線を選択的に吸収させることで、眼鏡レンズを透過して眼球に届く近紫外線の量を減らすことが可能である。   According to the fourth invention, it is possible to reduce the amount of near ultraviolet rays that pass through the spectacle lens and reach the eyeball by selectively absorbing near ultraviolet rays in the coating.

第5に示す発明は、第1から第3の発明の眼鏡レンズにおいて、眼鏡レンズの外側の面に波長範囲350nmから400nmの近紫外線を吸収する被膜と波長範囲350nmから400nmの近紫外線を5%以上反射するような反射防止膜を形成していることを特徴とする。   According to a fifth aspect of the present invention, in the spectacle lens of the first to third aspects of the invention, the outer surface of the spectacle lens absorbs near ultraviolet rays having a wavelength range of 350 nm to 400 nm and 5% of near ultraviolet rays having a wavelength range of 350 nm to 400 nm. An antireflection film reflecting the above is formed.

第5の発明によれば、眼鏡レンズの外側の面に近紫外線を吸収する被膜だけでなく、反射する被膜も併せ持つことで、更に眼球への前方からの近紫外線の侵入を防ぐことが可能である。   According to the fifth invention, the outer surface of the spectacle lens has not only a coating that absorbs near-ultraviolet rays but also a coating that reflects, thereby further preventing near-ultraviolet rays from entering the eyeball from the front. is there.

第6に示す発明は、第1から第3および第5の発明の眼鏡レンズにおいて、眼鏡レンズ基材上に金属酸化物微粒子を含む層を成膜して、その上に反射防止膜を成膜することを特徴とする。   According to a sixth invention, in the spectacle lenses of the first to third and fifth inventions, a layer containing metal oxide fine particles is formed on a spectacle lens substrate, and an antireflection film is formed thereon. It is characterized by doing.

第6の発明によれば、眼鏡レンズ基材と反射防止膜との密着性を向上させ、耐久性の高い反射防止膜付きの眼鏡レンズを実現できる。   According to the sixth aspect of the invention, it is possible to improve the adhesion between the spectacle lens substrate and the antireflection film and realize a spectacle lens with a highly durable antireflection film.

眼鏡レンズの眼球側の面に成膜される反射防止膜を、350nmから400nmの範囲の反射率を0.1%以上1%以下にすることで、眼鏡レンズ着用時に、斜め後方から来る近紫外線が、眼球に入ることを大幅に減らすことが出来た。眼鏡レンズの外側の面に近紫外線を吸収あるいは反射する被膜を成膜することで、前方から来る近紫外線を高い確率で遮断することが出来た。また同時に、眼鏡として使用するために求められる、可視光線の反射防止も実現した眼鏡レンズを提供することが出来た。   Near-ultraviolet rays coming from diagonally behind when wearing spectacle lenses by making the antireflection film formed on the eyeball side surface of the spectacle lens have a reflectance in the range of 350 nm to 400 nm of 0.1% to 1%. However, I was able to greatly reduce entering the eyeball. By forming a film that absorbs or reflects near ultraviolet rays on the outer surface of the spectacle lens, it was possible to block near ultraviolet rays coming from the front with a high probability. At the same time, it was possible to provide a spectacle lens that is required to be used as spectacles and that also prevents the reflection of visible light.

〔実施例1〕
図2−(1)に、プラスチック眼鏡レンズのモデルを示す。図2−(2)に、プラスチック眼鏡レンズの眼球側の面に成膜された被膜のモデルを示す。図2−(3)に、プラスチック眼鏡レンズの外側の面に成膜された被膜のモデルを示す。なお、図2−(1)、(2)、(3)は説明の便宜上、誇張して描かれている。
[Example 1]
FIG. 2- (1) shows a plastic spectacle lens model. FIG. 2- (2) shows a model of the film formed on the eyeball side surface of the plastic spectacle lens. FIG. 2- (3) shows a model of the film formed on the outer surface of the plastic spectacle lens. 2 (1), (2), and (3) are exaggerated for convenience of explanation.

眼球側の面には7層からなる反射防止膜を成膜した。その設計主波長λ0は470nmであり、各層はプラスチック眼鏡レンズ基材側から数えて、
第1層目21に、0.090λ0の光学的膜厚を持つSiO2層(屈折率1.46)、
第2層目22に、0.094λ0の光学的膜厚を持つTiO2層(屈折率2.40)、
第3層目23に、0.085λ0の光学的膜厚を持つSiO2層、
第4層目24に、0.221λ0の光学的膜厚を持つTiO2層、
第5層目25に、0.051λ0の光学的膜厚を持つSiO2層、
第6層目26に、0.148λ0の光学的膜厚を持つTiO2層、
第7層目27に、0.266λ0の光学的膜厚を持つSiO2
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、240nmから250nm程度である。
An antireflection film consisting of 7 layers was formed on the eyeball side surface. Its design principal wavelength λ0 is 470 nm, and each layer is counted from the plastic spectacle lens substrate side,
In the first layer 21, an SiO 2 layer (refractive index 1.46) having an optical film thickness of 0.090λ0,
In the second layer 22, a TiO 2 layer (refractive index 2.40) having an optical film thickness of 0.094λ0,
In the third layer 23, an SiO 2 layer having an optical film thickness of 0.085λ0,
In the fourth layer 24, a TiO 2 layer having an optical film thickness of 0.221λ0,
In the fifth layer 25, an SiO 2 layer having an optical film thickness of 0.051λ0,
In the sixth layer 26, a TiO 2 layer having an optical film thickness of 0.148λ0,
On the seventh layer 27, an antireflection film was formed by sequentially laminating SiO 2 layers having an optical film thickness of 0.266λ0. The thickness of the formed antireflection film is about 240 nm to 250 nm.

眼鏡レンズの外側の面には、スピンコート法により、紫外線吸収剤を添加した金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層28を成膜した。成膜したハードコート層の厚みは、2μmから3μm程度である。プラスチック眼鏡レンズ基材とハードコート層の屈折率は、どちらも1.67である。   On the outer surface of the spectacle lens, a hard coat layer 28 mainly composed of metal oxide fine particles added with an ultraviolet absorber and an organosilicon compound was formed by spin coating. The thickness of the deposited hard coat layer is about 2 μm to 3 μm. Both the refractive index of the plastic spectacle lens substrate and the hard coat layer are 1.67.

図3に、眼球側の面に成膜した反射防止膜の反射率スペクトルを曲線31で示す。また図4に、前記ハードコート層を成膜した前記プラスチック眼鏡レンズ基材の近紫外線透過率スペクトルを曲線41で示す。   In FIG. 3, the reflectance spectrum of the antireflection film formed on the eyeball side surface is shown by a curve 31. FIG. 4 shows a near-ultraviolet transmittance spectrum of the plastic spectacle lens substrate on which the hard coat layer is formed as a curve 41.

〔比較例1〕
図5−(1)に、プラスチック眼鏡レンズのモデルを示す。図5−(2)に、プラスチック眼鏡レンズの眼球側の面に成膜された被膜のモデルを示す。図5−(3)に、プラスチック眼鏡レンズの外側の面に成膜された被膜のモデルを示す。なお、図5−(1)、(2)、(3)は説明の便宜上、誇張して描かれている。
[Comparative Example 1]
FIG. 5- (1) shows a plastic spectacle lens model. FIG. 5- (2) shows a model of a film formed on the eyeball side surface of the plastic spectacle lens. FIG. 5- (3) shows a model of the film formed on the outer surface of the plastic spectacle lens. 5 (1), (2), and (3) are exaggerated for convenience of explanation.

眼球側の面には、実施例1と物質と積層順序が同じで各層の光学的膜厚のみが異なる、7層からなる反射防止膜を成膜した。その設計主波長λ0は510nmであり、各層はプラスチック眼鏡レンズ基材側から数えて、
第1層目51に、0.060λ0の光学的膜厚を持つSiO2層(屈折率1.46)、
第2層目52に、0.063λ0の光学的膜厚を持つTiO2層(屈折率2.40)、
第3層目53に、0.110λ0の光学的膜厚を持つSiO2層、
第4層目54に、0.193λ0の光学的膜厚を持つTiO2層、
第5層目55に、0.060λ0の光学的膜厚を持つSiO2層、
第6層目56に、0.165λ0の光学的膜厚を持つTiO2層、
第7層目57に、0.275λ0の光学的膜厚を持つSiO2
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、260nmから270nm程度である。
On the eyeball side surface, an antireflection film consisting of 7 layers was formed, which was the same as the material of Example 1 in the order of lamination and differed only in the optical film thickness of each layer. Its design principal wavelength λ0 is 510 nm, and each layer is counted from the plastic spectacle lens substrate side,
In the first layer 51, an SiO 2 layer (refractive index 1.46) having an optical film thickness of 0.060λ0,
In the second layer 52, a TiO 2 layer (refractive index 2.40) having an optical film thickness of 0.063λ0,
In the third layer 53, an SiO 2 layer having an optical film thickness of 0.110λ0,
In the fourth layer 54, a TiO 2 layer having an optical film thickness of 0.193λ0,
In the fifth layer 55, an SiO 2 layer having an optical film thickness of 0.060λ0,
In the sixth layer 56, a TiO 2 layer having an optical film thickness of 0.165λ0,
On the seventh layer 57, an antireflection film was formed by sequentially laminating SiO 2 layers having an optical film thickness of 0.275λ0. The thickness of the formed antireflection film is about 260 nm to 270 nm.

眼鏡レンズの外側には、スピンコート法により、金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層58を成膜した。成膜したハードコート層の厚みは、2μmから3μm程度である。プラスチック眼鏡レンズ基材とハードコート層の屈折率は、どちらも1.67である。   On the outside of the spectacle lens, a hard coat layer 58 mainly composed of metal oxide fine particles and an organosilicon compound was formed by spin coating. The thickness of the deposited hard coat layer is about 2 μm to 3 μm. Both the refractive index of the plastic spectacle lens substrate and the hard coat layer are 1.67.

図3に、眼球側の面に成膜した反射防止膜の反射率スペクトルを曲線32で示す。また図4に、前記ハードコート層を成膜した前記プラスチック眼鏡レンズ基材の近紫外線透過率スペクトルを曲線42で示す。   In FIG. 3, the reflectance spectrum of the antireflection film formed on the eyeball side surface is shown by a curve 32. FIG. 4 shows a near-ultraviolet transmittance spectrum of the plastic spectacle lens substrate on which the hard coat layer is formed as a curve 42.

実施例1と比較例1を比較する。
図3および図4の結果から、斜め後方から来る近紫外線については、図3における実施例1を示す曲線31と比較例1を示す曲線32において、曲線31の方が曲線32よりも、400nmより短い波長域において、反射率が劇的に小さくなっている。即ち、実施例1は、斜め後方から来て眼球側の面で反射されて眼球内に侵入する近紫外線の量を減らすことが出来る。
Example 1 and Comparative Example 1 are compared.
From the results of FIGS. 3 and 4, for near ultraviolet rays coming obliquely from behind, in the curve 31 showing Example 1 and the curve 32 showing Comparative Example 1 in FIG. 3, the curve 31 is more than 400 nm than the curve 32. In the short wavelength range, the reflectance is dramatically reduced. That is, Example 1 can reduce the amount of near-ultraviolet rays that come from obliquely rearward and are reflected from the eyeball side surface and enter the eyeball.

前方から来る近紫外線については、図4における実施例1を示す曲線41と比較例1を示す曲線42を見ると、曲線41が曲線42の右側、即ち透過率が小さくなっていることを示している。このことは、実施例1は、外側の面のハードコート層に紫外線吸収剤を添加したことにより、前方から来る近紫外線の吸収効率を高めることが出来たことを示している。   As for the near ultraviolet rays coming from the front, looking at the curve 41 showing Example 1 and the curve 42 showing Comparative Example 1 in FIG. 4, the curve 41 shows the right side of the curve 42, that is, the transmittance is small. Yes. This indicates that Example 1 was able to increase the absorption efficiency of near ultraviolet rays coming from the front by adding an ultraviolet absorber to the hard coat layer on the outer surface.

以上から、眼球側の面に近紫外線の反射率を小さくした反射防止膜を成膜して、外側の面に紫外線吸収剤を添加したハードコート層を成膜することによって、眼球内に侵入する近紫外線の量を減らせることが確認できた。   From the above, an antireflection film with a reduced near ultraviolet reflectance is formed on the eyeball side surface, and a hard coat layer to which an ultraviolet absorber is added is formed on the outer surface, thereby entering the eyeball. It was confirmed that the amount of near ultraviolet rays could be reduced.

〔実施例2〕
図6−(1)にプラスチック眼鏡レンズのモデルを示す。図6−(2)に、プラスチック眼鏡レンズの眼球側の面に成膜された被膜のモデルを示す。図6−(3)に、プラスチック眼鏡レンズの外側の面に成膜された被膜のモデルを示す。なお、図6−(1)、(2)、(3)は説明の便宜上、誇張して描かれている。
[Example 2]
FIG. 6- (1) shows a model of a plastic spectacle lens. FIG. 6 (2) shows a model of a film formed on the eyeball side surface of the plastic spectacle lens. FIG. 6- (3) shows a model of a film formed on the outer surface of the plastic spectacle lens. 6 (1), (2), and (3) are exaggerated for convenience of explanation.

プラスチック眼鏡レンズ基材上に、ディッピング法によって、紫外線吸収剤を添加した金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層601と602を成膜した。ハードコート層は眼球側の面と外側の面の両方に成膜され、その厚みは2μmから3μm程度である。プラスチック眼鏡レンズ基材とハードコート層の屈折率は、どちらも1.60である。   Hard coat layers 601 and 602 mainly composed of metal oxide fine particles added with an ultraviolet absorber and an organosilicon compound were formed on a plastic spectacle lens substrate by dipping. The hard coat layer is formed on both the eyeball side surface and the outer surface and has a thickness of about 2 μm to 3 μm. The refractive indexes of the plastic spectacle lens substrate and the hard coat layer are both 1.60.

眼球側の面には9層からなる反射防止膜を成膜した。その設計主波長λ0は500nmであり、各層はプラスチック眼鏡レンズ基材側から数えて、
第1層目611に、0.100λ0の光学的膜厚を持つSiO2層(屈折率1.46)、
第2層目612に、0.068λ0の光学的膜厚を持つNb25層(屈折率2.26)、
第3層目613に、0.085λ0の光学的膜厚を持つSiO2層、
第4層目614に、0.090λ0の光学的膜厚を持つNb25層、
第5層目615に、0.013λ0の光学的膜厚を持つSiO2層、
第6層目616に、0.110λ0の光学的膜厚を持つNb25層、
第7層目617に0.055λ0の光学的膜厚を持つSiO2層、
第8層目618に、0.123λ0の光学的膜厚を持つNb25層、
第9層目619に、0.250λ0の光学的膜厚を持つSiO2
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、255nmから265nm程度である。
An antireflection film consisting of 9 layers was formed on the eyeball side surface. Its design principal wavelength λ0 is 500 nm, and each layer is counted from the plastic spectacle lens substrate side,
In the first layer 611, an SiO 2 layer (refractive index 1.46) having an optical film thickness of 0.100λ0,
In the second layer 612, an Nb 2 O 5 layer (refractive index: 2.26) having an optical film thickness of 0.068λ0,
In the third layer 613, a SiO 2 layer having an optical film thickness of 0.085λ0,
In the fourth layer 614, an Nb 2 O 5 layer having an optical film thickness of 0.090λ0,
In the fifth layer 615, an SiO 2 layer having an optical film thickness of 0.013λ0,
In the sixth layer 616, an Nb 2 O 5 layer having an optical film thickness of 0.110λ0,
A SiO 2 layer having an optical film thickness of 0.055λ0 on the seventh layer 617,
In the eighth layer 618, an Nb 2 O 5 layer having an optical film thickness of 0.123λ0,
On the ninth layer 619, an antireflection film was formed by sequentially laminating SiO 2 layers having an optical film thickness of 0.250λ0. The thickness of the formed antireflection film is about 255 nm to 265 nm.

外側の面には5層からなる反射防止膜を成膜した。その設計主波長λ0は520nmであり、各層はプラスチック基材側から数えて、
第1層目621に、0.088λ0の光学的膜厚を持つSiO2層(屈折率1.46)、
第2層目622に、0.160λ0の光学的膜厚を持つZrO2層(屈折率2.05)、
第3層目623に、0.050λ0の光学的膜厚を持つSiO2層、
第4層目624に、0.270λ0の光学的膜厚を持つZrO2層、
第5層目625に、0.265λ0の光学的膜厚を持つSiO2
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、240nmから250nm程度である。
An antireflection film consisting of five layers was formed on the outer surface. Its design principal wavelength λ0 is 520 nm, and each layer is counted from the plastic substrate side.
In the first layer 621, an SiO 2 layer (refractive index 1.46) having an optical film thickness of 0.088λ0,
On the second layer 622, a ZrO 2 layer (refractive index of 2.05) having an optical film thickness of 0.160λ0,
In the third layer 623, an SiO 2 layer having an optical film thickness of 0.050λ0,
In the fourth layer 624, a ZrO 2 layer having an optical film thickness of 0.270λ0,
On the fifth layer 625, an antireflection film was formed by sequentially laminating SiO 2 layers having an optical film thickness of 0.265λ0. The thickness of the formed antireflection film is about 240 nm to 250 nm.

図7に眼球側の面に成膜した反射防止膜の反射率スペクトルを曲線71で示す。図8に外側の面に成膜した反射防止膜の反射率スペクトルを曲線81で示す。図9に前記ハードコート層を成膜した前記プラスチック眼鏡レンズ基材の透過率スペクトルを示す。   FIG. 7 shows a reflectance spectrum of the antireflection film formed on the eyeball side surface by a curve 71. FIG. 8 shows a reflectance spectrum of an antireflection film formed on the outer surface by a curve 81. FIG. 9 shows a transmittance spectrum of the plastic spectacle lens substrate on which the hard coat layer is formed.

〔比較例2〕
図10−(1)にプラスチック眼鏡レンズのモデルを示す。図10−(2)に、プラスチック眼鏡レンズの眼球側の面に成膜された被膜のモデルを示す。図10−(3)に、プラスチック眼鏡レンズの外側の面に成膜された被膜のモデルを示す。なお、図10−(1)、(2)、(3)は説明の便宜上、誇張して描かれている。
[Comparative Example 2]
FIG. 10- (1) shows a plastic spectacle lens model. FIG. 10- (2) shows a model of the coating film formed on the eyeball side surface of the plastic spectacle lens. FIG. 10- (3) shows a model of a film formed on the outer surface of the plastic spectacle lens. 10- (1), (2), and (3) are exaggerated for convenience of explanation.

プラスチック眼鏡レンズ基材上に、ディッピング法によって、紫外線吸収剤を添加した金属酸化物微粒子と有機珪素化合物を主成分とするハードコート層1001と1002を成膜した。ハードコート層は眼球側の面と外側の面の両方に成膜され、その厚みは2μmから3μm程度である。プラスチック眼鏡レンズ基材とハードコート層の屈折率は、どちらも1.60である。   Hard coat layers 1001 and 1002 mainly composed of metal oxide fine particles added with an ultraviolet absorber and an organosilicon compound were formed on a plastic spectacle lens substrate by dipping. The hard coat layer is formed on both the eyeball side surface and the outer surface and has a thickness of about 2 μm to 3 μm. The refractive indexes of the plastic spectacle lens substrate and the hard coat layer are both 1.60.

眼球側の面と外側の面の両方に、7層からなる同一構成の反射防止膜を成膜した。その設計主波長λ0は520nmであり、各層はプラスチック眼鏡レンズ基材側から数えて、
第1層目1011と1021に、0.063λ0の光学的膜厚を持つSiO2層(屈折率1.46)、
第2層目1012と1022に、0.050λ0の光学的膜厚を持つTa25層(屈折率2.26)、
第3層目1013と1023に、0.100λ0の光学的膜厚を持つSiO2層、
第4層目1014と1024に、0.175λ0の光学的膜厚を持つTa25層、
第5層目1015と1025に、0.060λ0の光学的膜厚を持つSiO2層、
第6層目1016と1026に、0.165λ0の光学的膜厚を持つTa25層、
第7層目1017と1027に、0.275λ0の光学的膜厚を持つSiO2
を順次積層してなる反射防止膜を成膜した。成膜した反射防止膜の厚みは、260nmから270nm程度である。
An antireflection film having the same configuration consisting of seven layers was formed on both the eyeball side surface and the outer surface. Its design principal wavelength λ0 is 520 nm, and each layer is counted from the plastic spectacle lens substrate side,
In the first layers 1011 and 1021, an SiO 2 layer (refractive index 1.46) having an optical film thickness of 0.063λ0,
In the second layers 1012 and 1022, a Ta 2 O 5 layer (refractive index: 2.26) having an optical film thickness of 0.050λ0,
In the third layers 1013 and 1023, an SiO 2 layer having an optical film thickness of 0.100λ0,
In the fourth layers 1014 and 1024, a Ta 2 O 5 layer having an optical film thickness of 0.175λ0,
In the fifth layers 1015 and 1025, an SiO 2 layer having an optical film thickness of 0.060λ0,
In the sixth layers 1016 and 1026, a Ta 2 O 5 layer having an optical film thickness of 0.165λ0,
On the seventh layers 1017 and 1027, an antireflection film was formed by sequentially laminating SiO 2 layers having an optical thickness of 0.275λ0. The thickness of the formed antireflection film is about 260 nm to 270 nm.

図7と図8に、成膜した反射防止膜の反射率スペクトルを、それぞれ曲線72と曲線82で示す。図9に前記ハードコート層を成膜した前記プラスチック眼鏡レンズ基材の透過率スペクトルを示す。   7 and 8 show the reflectance spectrum of the formed antireflection film as a curve 72 and a curve 82, respectively. FIG. 9 shows a transmittance spectrum of the plastic spectacle lens substrate on which the hard coat layer is formed.

実施例2と比較例2を比較する。
図9に示すように、プラスチック眼鏡レンズ基材とハードコート層における近紫外線吸収能力に関しては差がない。しかし、図7と図8に示すように、眼球側の面と外側の面における近紫外線反射特性に差がある。
Example 2 and Comparative Example 2 are compared.
As shown in FIG. 9, there is no difference in the near-ultraviolet absorbing ability between the plastic spectacle lens substrate and the hard coat layer. However, as shown in FIGS. 7 and 8, there is a difference in near-ultraviolet reflection characteristics between the eyeball side surface and the outer surface.

まず、眼球側の面における近紫外線反射特性について見る。図7における実施例2を示す曲線71と比較例2を示す曲線72を比べると、曲線71は400nmより短い波長域において、反射率が劇的に小さくなっている。即ち、実施例2は、斜め後方から来て眼球側の面で反射されて眼球内に侵入する近紫外線の量を減らすことが出来る。   First, the near-ultraviolet reflection characteristics on the eyeball side surface will be described. When the curve 71 indicating the second embodiment in FIG. 7 is compared with the curve 72 indicating the second comparative example, the reflectance of the curve 71 is dramatically reduced in a wavelength region shorter than 400 nm. That is, Example 2 can reduce the amount of near-ultraviolet rays that come from obliquely behind and are reflected by the eyeball side surface and enter the eyeball.

続いて、外側の面における近紫外線反射特性について見る。図8における実施例2を示す曲線81と比較例2を示す曲線82を比べると、曲線81の方が近紫外線の反射率が高くなっている。即ち、実施例2は、前方から来た近紫外線を、より多く反射させることが出来たことを示している。   Next, the near-ultraviolet reflection characteristics on the outer surface will be examined. When the curve 81 showing the second embodiment in FIG. 8 is compared with the curve 82 showing the second comparative example, the curve 81 has a higher near-UV reflectance. That is, Example 2 shows that more near-ultraviolet rays coming from the front could be reflected.

以上から、眼球側の面に近紫外線の反射率の小さい反射防止膜を成膜して、外側の面に近紫外線の反射率の大きい反射防止膜を成膜することで、眼球内に侵入する近紫外線の量を減らせることが確認できた。   As described above, an antireflection film having a low near-UV reflectivity is formed on the eyeball side surface, and an antireflection film having a high near-UV reflectivity is formed on the outer surface, thereby entering the eyeball. It was confirmed that the amount of near ultraviolet rays could be reduced.

視力補正機能の他に紫外線からの眼球保護機能を持つ眼鏡レンズを提供することが出来る。   In addition to the vision correction function, it is possible to provide a spectacle lens having an eyeball protection function from ultraviolet rays.

眼鏡レンズ着用時の眼球とレンズの位置関係、及び光の入射する方向とレンズ面の呼称。The positional relationship between the eyeball and the lens when the spectacle lens is worn, and the direction in which light enters and the name of the lens surface. 実施例1に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the film formed into a film on the plastic spectacle lens surface shown in Example 1. FIG. 実施例1と比較例1に示した、反射防止膜の反射率スペクトル。The reflectance spectrum of the antireflection film shown in Example 1 and Comparative Example 1. 実施例1と比較例1に示した、ハードコート層を成膜したプラスチック眼鏡レンズ基材の近紫外線透過率スペクトル。The near-ultraviolet-ray transmittance spectrum of the plastic spectacle lens base material which formed the hard-coat layer into a film as shown in Example 1 and Comparative Example 1. 比較例1に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the film | membrane formed into a film on the plastic spectacle lens surface shown in the comparative example 1. FIG. 実施例2に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the film formed into a film on the plastic spectacle lens surface shown in Example 2. FIG. 実施例2と比較例2に示した、プラスチック眼鏡レンズ眼球側に成膜された反射防止膜の反射率スペクトル。The reflectance spectrum of the anti-reflective film formed in the plastic spectacle lens eyeball side shown in Example 2 and Comparative Example 2. 実施例2と比較例2に示した、プラスチック眼鏡レンズ外側に成膜された反射防止膜の反射率スペクトル。The reflectance spectrum of the anti-reflective film formed into the outer side of the plastic spectacle lens shown in Example 2 and Comparative Example 2. 実施例2と比較例2に示した、ハードコート層を成膜したプラスチック眼鏡レンズ基材の近紫外線透過率スペクトル。The near-ultraviolet-ray transmittance spectrum of the plastic spectacle lens base material which formed the hard-coat layer into the film shown in Example 2 and Comparative Example 2. 比較例2に示した、プラスチック眼鏡レンズ表面に成膜された被膜のモデル。The model of the coating film formed on the plastic spectacle lens surface shown in Comparative Example 2.

符号の説明Explanation of symbols

21,23,25,27 SiO2
22,24,26 TiO2
28 ハードコート層
31 実施例1の反射防止膜の反射率
32 比較例1の反射防止膜の反射率
41 実施例1のハードコート付きプラスチック基材の近紫外線透過率
42 比較例1のハードコート付きプラスチック基材の近紫外線透過率
51,53,55,57 SiO2
52,54,56 TiO2
601,602 ハードコート層
611,613,615,617,619,621,623,625 SiO2
612,614,616,618 Nb25
622,624 ZrO2
71,81 実施例2の反射防止膜の反射率
72,82 比較例2の反射防止膜の反射率
1001,1002 ハードコート層
1011,1013,1015,1017,1021,1023,1025,1027 SiO2
1012,1014,1016,1022,1024,1026 Ta25
21, 23, 25, 27 SiO 2 layer 22, 24, 26 TiO 2 layer 28 Hard coat layer 31 Reflectivity of antireflection film of Example 1 32 Reflectivity of antireflection film of Comparative Example 1 41 Hard of Example 1 Near-UV transmittance 42 of coated plastic substrate Near-UV transmittance 51, 53, 55, 57 of SiO 2 layer 52, 54, 56 TiO 2 layer 601, 602 Hard coat layer of hard coated plastic substrate of Comparative Example 1 611, 613, 615, 617, 619, 621, 623, 625 SiO 2 layer 612, 614, 616, 618 Nb 2 O 5 layer 622, 624 ZrO 2 layer 71, 81 Reflectivity 72 of the antireflection film of Example 2 , 82 Reflectivity of the antireflection film of Comparative Example 2 1001, 1002 Hard coat layers 1011, 1013, 1015, 1017, 1021, 1023, 10 5,1027 SiO 2 layer 1012,1014,1016,1022,1024,1026 Ta 2 O 5 layer

Claims (6)

透明な基材からなる眼鏡レンズの眼球側の面、及び前記眼鏡レンズの前記眼球側の面の反対側の面となる、外側の面の表面に形成される被膜であって、前記眼鏡レンズの前記外側の面には、波長範囲350nmから400nmの近紫外線を反射もしくは吸収する被膜が形成され、前記眼鏡レンズの前記眼球側の面には、前記近紫外線を透過する反射防止膜が形成されていることを特徴とする眼鏡レンズ。   A film formed on a surface of an eyeball side of a spectacle lens made of a transparent base material and a surface of an outer surface which is a surface opposite to the eyeball side surface of the spectacle lens, A film that reflects or absorbs near ultraviolet rays having a wavelength range of 350 nm to 400 nm is formed on the outer surface, and an antireflection film that transmits the near ultraviolet rays is formed on the eyeball side surface of the spectacle lens. Eyeglass lenses characterized by 前記眼鏡レンズの前記眼球側の面に、波長範囲350nmから400nmの近紫外線の反射率を0.1%以上1%以下とし、波長範囲400nmから650nmの可視光線の反射率を0.3%以上1.5%以下に抑えた反射防止特性を持つ反射防止膜を形成したことを特徴とする、請求項1記載の眼鏡レンズ。   On the eyeball side surface of the spectacle lens, the reflectance of near ultraviolet rays having a wavelength range of 350 nm to 400 nm is 0.1% or more and 1% or less, and the reflectance of visible light having a wavelength range of 400 nm to 650 nm is 0.3% or more. The spectacle lens according to claim 1, wherein an antireflection film having an antireflection property suppressed to 1.5% or less is formed. 前記眼鏡レンズの前記眼球側の面に、低屈折率層にSiO2を用いて、高屈折率層にTiO2とNb25のいずれか、或いは両方を用いて、低屈折率層と高屈折率層を交互に3層以上積層してなる反射防止膜を形成したことを特徴とする、請求項1または2記載の眼鏡レンズ。 The eyeglass side surface of the spectacle lens is made of SiO 2 for the low refractive index layer and TiO 2 and / or Nb 2 O 5 for the high refractive index layer, or both. The spectacle lens according to claim 1, wherein an antireflection film is formed by alternately stacking three or more refractive index layers. 前記眼鏡レンズの前記外側の面に、波長範囲350nmから400nmの近紫外線を吸収する被膜を形成したことを特徴とする、請求項1乃至3のいずれかに記載の眼鏡レンズ。   The spectacle lens according to any one of claims 1 to 3, wherein a film that absorbs near ultraviolet rays having a wavelength range of 350 nm to 400 nm is formed on the outer surface of the spectacle lens. 前記眼鏡レンズの前記外側の面に、波長範囲350nmから400nmの近紫外線を吸収する被膜と波長範囲350nmから400nmの近紫外線を5%以上反射するような反射防止膜を形成したことを特徴とする、請求項1乃至3のいずれかに記載の眼鏡レンズ。   A film that absorbs near ultraviolet rays having a wavelength range of 350 nm to 400 nm and an antireflection film that reflects near ultraviolet rays having a wavelength range of 350 nm to 400 nm are formed on the outer surface of the spectacle lens. The spectacle lens according to any one of claims 1 to 3. 前記眼鏡レンズの基材上に金属酸化物微粒子を含む層を成膜して、前記金属酸化物微粒子を含む被膜上に反射防止膜を成膜したことを特徴とする、請求項1乃至3および5のいずれかに記載の眼鏡レンズ。
4. A layer containing metal oxide fine particles is formed on a base material of the spectacle lens, and an antireflection film is formed on a film containing the metal oxide fine particles. The spectacle lens according to any one of 5.
JP2004018408A 2004-01-27 2004-01-27 Spectacle lens Withdrawn JP2005215038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018408A JP2005215038A (en) 2004-01-27 2004-01-27 Spectacle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018408A JP2005215038A (en) 2004-01-27 2004-01-27 Spectacle lens

Publications (1)

Publication Number Publication Date
JP2005215038A true JP2005215038A (en) 2005-08-11

Family

ID=34902939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018408A Withdrawn JP2005215038A (en) 2004-01-27 2004-01-27 Spectacle lens

Country Status (1)

Country Link
JP (1) JP2005215038A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237509A (en) * 2008-03-28 2009-10-15 Kanazawa Medical Univ Lens for eyeglasses
WO2009133833A1 (en) * 2008-04-30 2009-11-05 Hoya株式会社 Optical device and antireflection film
JP2010217445A (en) * 2009-03-16 2010-09-30 Hoya Corp Reflection preventing film and optical element
WO2010125667A1 (en) * 2009-04-30 2010-11-04 山本光学株式会社 Spectacle lens
WO2012043218A1 (en) * 2010-09-29 2012-04-05 株式会社ニコン・エシロール Optical component and method for producing same
CN103329013A (en) * 2010-12-10 2013-09-25 埃西勒国际通用光学公司 Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
JP2013205805A (en) * 2012-03-29 2013-10-07 Hoya Corp Optical member
JP2014513818A (en) * 2011-12-23 2014-06-05 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Evaluation of spectacle lenses for protection against UV hazards
JP2015007695A (en) * 2013-06-25 2015-01-15 株式会社ニコン・エシロール Optical component
EP2902817A1 (en) 2012-09-28 2015-08-05 Nikon-Essilor Co., Ltd. Optical component and method for producing same
WO2016149644A1 (en) 2015-03-18 2016-09-22 Vision Ease, Lp Crazing resistant coating and method thereof
JP2016186661A (en) * 2016-07-19 2016-10-27 Hoya株式会社 Optical member
KR20190008044A (en) * 2017-07-14 2019-01-23 유흥상 CCTV dome lens anti- reflection coated by vacuum coating method and its product method
JP2019502169A (en) * 2016-10-21 2019-01-24 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Coated spectacle lens, method of manufacturing spectacle lens, computer-implemented method for designing spectacle lens, and experimental method for designing spectacle lens
JP2019049712A (en) * 2012-05-16 2019-03-28 エシロール アンテルナショナルEssilor International Ophthalmic lens
EP3974893A1 (en) * 2020-09-28 2022-03-30 Essilor International Method for reducing near-infrared light exposure by a laminate film structure on an eyewear
WO2023120117A1 (en) * 2021-12-22 2023-06-29 ホヤ レンズ タイランド リミテッド Method for manufacturing spectacle lens, spectacle lens, and spectacles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265059A (en) * 1996-03-28 1997-10-07 Asahi Optical Co Ltd Lens for spectacles
JP2000298249A (en) * 1999-04-13 2000-10-24 Seiko Epson Corp Spectacle lens for color vision correction
JP2001124901A (en) * 1999-10-25 2001-05-11 Asahi Optical:Kk Method for producing episulfide high-refractive index plastic lens
JP2002031701A (en) * 2000-07-17 2002-01-31 Konica Corp Optical element and ophthalmic lens
JP2002258002A (en) * 2001-03-02 2002-09-11 Nidek Co Ltd Method of dyeing plastic lens and plastic lens obtained by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265059A (en) * 1996-03-28 1997-10-07 Asahi Optical Co Ltd Lens for spectacles
JP2000298249A (en) * 1999-04-13 2000-10-24 Seiko Epson Corp Spectacle lens for color vision correction
JP2001124901A (en) * 1999-10-25 2001-05-11 Asahi Optical:Kk Method for producing episulfide high-refractive index plastic lens
JP2002031701A (en) * 2000-07-17 2002-01-31 Konica Corp Optical element and ophthalmic lens
JP2002258002A (en) * 2001-03-02 2002-09-11 Nidek Co Ltd Method of dyeing plastic lens and plastic lens obtained by the method

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009237509A (en) * 2008-03-28 2009-10-15 Kanazawa Medical Univ Lens for eyeglasses
WO2009133833A1 (en) * 2008-04-30 2009-11-05 Hoya株式会社 Optical device and antireflection film
JPWO2009133833A1 (en) * 2008-04-30 2011-09-01 Hoya株式会社 Optical element and antireflection film
US8481148B2 (en) 2008-04-30 2013-07-09 Hoya Corporation Optical device and antireflection film
JP2010217445A (en) * 2009-03-16 2010-09-30 Hoya Corp Reflection preventing film and optical element
WO2010125667A1 (en) * 2009-04-30 2010-11-04 山本光学株式会社 Spectacle lens
WO2012043218A1 (en) * 2010-09-29 2012-04-05 株式会社ニコン・エシロール Optical component and method for producing same
CN103282823A (en) * 2010-09-29 2013-09-04 株式会社尼康依视路 Optical component and method for producing same
US10371867B2 (en) 2010-09-29 2019-08-06 Nikon-Essilor Co., Ltd. Optical component and method of manufacturing the same
CN103282823B (en) * 2010-09-29 2014-12-31 株式会社尼康依视路 Optical component and method for producing same
KR101477940B1 (en) * 2010-09-29 2014-12-30 가부시키가이샤 니콘. 에시로루 Optical component and method for producing same
JP2013545145A (en) * 2010-12-10 2013-12-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical component with antireflective coating with low reflectivity in both ultraviolet and visible regions
JP2022106954A (en) * 2010-12-10 2022-07-20 エシロール アテルナジオナール Optical component having reflection prevention film with low reflectivity in both ultraviolet region and visible region
CN103885100A (en) * 2010-12-10 2014-06-25 埃西勒国际通用光学公司 Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
KR20130126633A (en) * 2010-12-10 2013-11-20 에실러에떼르나쇼날(꽁빠니제네랄돕띠끄) Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
CN103329013A (en) * 2010-12-10 2013-09-25 埃西勒国际通用光学公司 Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
JP2020034936A (en) * 2010-12-10 2020-03-05 エシロール アテルナジオナール Optical article having antireflection film with low reflection both in ultraviolet region and visible region
EP2649477B1 (en) 2010-12-10 2015-07-01 Essilor International (Compagnie Générale D'Optique) Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
JP7266510B2 (en) 2010-12-10 2023-04-28 エシロール アテルナジオナール Optical components with antireflection coatings with low reflectivity in both the ultraviolet and visible regions
US10649232B2 (en) 2010-12-10 2020-05-12 Essilor International Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
KR101590077B1 (en) 2010-12-10 2016-02-01 에실러에떼르나쇼날(꽁빠니제네랄돕띠끄) Ophthalmic Lens Comprising an Antireflective Coating with a Low Reflection Both in the Ultraviolet Region and in the Visible Region
US10073279B2 (en) 2010-12-10 2018-09-11 Essilor International Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
JP2017097364A (en) * 2010-12-10 2017-06-01 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Optical article with anti-reflection coating having low reflectivity both in ultraviolet and visible regions
EP2649477B2 (en) 2010-12-10 2022-05-04 Essilor International Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
US9488852B2 (en) 2010-12-10 2016-11-08 Essilor International (Compagnie Generale D'optique) Optical article comprising an antireflective coating with a low reflection both in the ultraviolet region and in the visible region
JP2016130740A (en) * 2011-12-23 2016-07-21 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method for providing evaluation of spectacle lens to customers, spectacle lens, and method for evaluating spectacle lens
JP2014513818A (en) * 2011-12-23 2014-06-05 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Evaluation of spectacle lenses for protection against UV hazards
JP2015163879A (en) * 2011-12-23 2015-09-10 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method of providing calculation of spectacle lenses to customer, spectacle lenses, and method of evaluating spectacle lenses
JP2013205805A (en) * 2012-03-29 2013-10-07 Hoya Corp Optical member
JP2021167968A (en) * 2012-05-16 2021-10-21 エシロール アンテルナショナルEssilor International Ophthalmic lens
JP2019049712A (en) * 2012-05-16 2019-03-28 エシロール アンテルナショナルEssilor International Ophthalmic lens
JP7279112B2 (en) 2012-05-16 2023-05-22 エシロール アンテルナショナル ophthalmic lens
EP2902817B1 (en) * 2012-09-28 2020-11-18 Nikon-Essilor Co., Ltd. Optical component and method for producing same
JP2016197253A (en) * 2012-09-28 2016-11-24 株式会社ニコン・エシロール Spectacle lens and manufacturing method therefor
EP2902817A1 (en) 2012-09-28 2015-08-05 Nikon-Essilor Co., Ltd. Optical component and method for producing same
JP2015007695A (en) * 2013-06-25 2015-01-15 株式会社ニコン・エシロール Optical component
WO2016149644A1 (en) 2015-03-18 2016-09-22 Vision Ease, Lp Crazing resistant coating and method thereof
US11112620B2 (en) 2015-03-18 2021-09-07 Vision Ease, Lp Crazing resistant coating and method thereof
EP3271755A4 (en) * 2015-03-18 2018-10-31 Vision Ease LP Crazing resistant coating and method thereof
EP3271755B1 (en) 2015-03-18 2023-05-03 Hoya Optical Labs Of America, Inc Crazing resistant coating
JP2016186661A (en) * 2016-07-19 2016-10-27 Hoya株式会社 Optical member
JP2019502169A (en) * 2016-10-21 2019-01-24 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Coated spectacle lens, method of manufacturing spectacle lens, computer-implemented method for designing spectacle lens, and experimental method for designing spectacle lens
KR101960599B1 (en) 2017-07-14 2019-03-20 유흥상 CCTV dome lens anti- reflection coated by vacuum coating method and its product method
KR20190008044A (en) * 2017-07-14 2019-01-23 유흥상 CCTV dome lens anti- reflection coated by vacuum coating method and its product method
EP3974893A1 (en) * 2020-09-28 2022-03-30 Essilor International Method for reducing near-infrared light exposure by a laminate film structure on an eyewear
WO2022064050A1 (en) * 2020-09-28 2022-03-31 Essilor International Method for reducing near-infrared light exposure by a laminate film structure on an eyewear
WO2023120117A1 (en) * 2021-12-22 2023-06-29 ホヤ レンズ タイランド リミテッド Method for manufacturing spectacle lens, spectacle lens, and spectacles

Similar Documents

Publication Publication Date Title
JP7266510B2 (en) Optical components with antireflection coatings with low reflectivity in both the ultraviolet and visible regions
JP6591685B2 (en) Coated spectacle lens, method of manufacturing spectacle lens, computer-implemented method for designing spectacle lens, and experimental method for designing spectacle lens
JP2005215038A (en) Spectacle lens
US8733929B2 (en) Color contrast enhancing sunglass lens
US10031349B2 (en) Optical product, and spectacle lens and spectacles
JP6119747B2 (en) Near-infrared cut filter
CN107003545B (en) Spectacle lens and spectacles
EP2589992B1 (en) Optical product and plastic eyeglass lens
US20170003520A1 (en) Mirror-coated lens
CN109073785A (en) It include the optical goods of the anti-reflective coating near infrared region (NIR) with high reflection
JP2007206172A (en) Imaging system optical element
JP5969195B2 (en) Manufacturing method of spectacle lens
TWI557439B (en) Infrared filter and lens module
JP2010032867A (en) Infrared ray cutoff filter
JP2006126233A (en) Spectacle lens with antireflection film
WO2015080160A1 (en) Spectacle lens
WO2010125667A1 (en) Spectacle lens
KR20200081557A (en) Strength improving method of glass substrate for optical filter and optical filter thereby
CN211878219U (en) Prevent ruddiness lens
WO2022052268A1 (en) Lens and lens assembly
JPH0532828Y2 (en)
KR20230172041A (en) Spectacle lens
WO2024066880A1 (en) S-polarized light transflective film, windshield window, display apparatus, and transportation device
CN219695497U (en) Low reflectivity lens
CN219715781U (en) Antireflection polarized light car room lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090609