JP2006126108A - Water leakage detecting method - Google Patents

Water leakage detecting method Download PDF

Info

Publication number
JP2006126108A
JP2006126108A JP2004317664A JP2004317664A JP2006126108A JP 2006126108 A JP2006126108 A JP 2006126108A JP 2004317664 A JP2004317664 A JP 2004317664A JP 2004317664 A JP2004317664 A JP 2004317664A JP 2006126108 A JP2006126108 A JP 2006126108A
Authority
JP
Japan
Prior art keywords
potential
electrode
measurement
layer
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004317664A
Other languages
Japanese (ja)
Other versions
JP4377800B2 (en
Inventor
Toshiro Oshikata
利郎 押方
Masaaki Ebihara
正明 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2004317664A priority Critical patent/JP4377800B2/en
Publication of JP2006126108A publication Critical patent/JP2006126108A/en
Application granted granted Critical
Publication of JP4377800B2 publication Critical patent/JP4377800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water leakage detecting method capable of accurately detecting a leakage position of water in an impervious layer. <P>SOLUTION: The water leakage detecting method detects the leakage position of water in an impervious sheet 3 (impervious layer) which partitions an internal soil 4 (internal structure) and an external soil 2 (external structure). A plurality of electric potential measuring electrodes 10 and an internal electrode 13 are disposed in the internal soil 4, and an external electrode 14 is disposed in the external soil 2. A potential difference which is produced, when energizing across one electric potential measuring electrode 10a and the internal electrode 13, at another electric potential measuring electrode 10b, is subtracted from a potential difference which is produced at the another electric potential measuring electrode 10b when energizing across the electric potential measuring electrode 10a and the external electrode 14, thereby obtaining a measurement electrical potential of the another electric potential measuring electrode 10b. Operations of obtaining measurement electrical potentials are repeated at respective electric measuring electrodes 10, and the leakage position of water in the impervious sheet 3 is detected from an electric potential distribution obtained on the basis of the measurement electrical potentials of the electric measuring electrodes 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、遮水層を境にして内部構造物と外部構造物とに区分された遮水構造物において、遮水層の漏水位置を検知する漏水検知方法に関する。   The present invention relates to a water leakage detection method for detecting a water leakage position of a water shielding layer in a water shielding structure divided into an internal structure and an external structure with a water shielding layer as a boundary.

内部土壌(内部構造物)と外部土壌(外部構造物)との境に設けた遮水シート(遮水層)の漏水位置を検知する漏水検知方法としては、内部土壌に設けた内部電極と、外部土壌に設けた外部電極との間に通電し、内部土壌に設けた複数の電位測定電極と、外部土壌に設けた基準電極との間の電位差を測定することにより、各電位測定電極の測定電位を求め、各測定電位に基づいて内部土壌の電位分布を作成し、この電位分布の歪みから遮水シートの漏水位置を検知する方法がある(例えば、特許文献1参照)。   As a water leakage detection method for detecting the water leakage position of the water shielding sheet (water shielding layer) provided at the boundary between the internal soil (internal structure) and the external soil (external structure), an internal electrode provided in the internal soil, Each potential measurement electrode is measured by energizing between the external electrodes provided on the external soil and measuring the potential difference between the multiple potential measurement electrodes provided on the internal soil and the reference electrode provided on the external soil. There is a method of obtaining a potential, creating a potential distribution of the internal soil based on each measured potential, and detecting the water leakage position of the water shielding sheet from the distortion of the potential distribution (see, for example, Patent Document 1).

ここで、前記した検知方法を、埋め立て開始前の処分場など、内部土壌の比抵抗が高い土壌に適用した場合には、その比抵抗によって、内部土壌に固定された内部電極と、内部電極から遠く離れた場所との間の電位降下が大きくなり、内部電極から遠く離れた場所では遮水シートの表裏に電圧が殆ど掛からなくなってしまう。そのため、遮水シートが損傷して穴が開いている場合であっても、この穴を通過する電流が殆ど流れず、この電流によって生じる電位分布の歪みも発生しないため、電位分布の歪みから漏水位置を検知することが困難になってしまうという問題がある。   Here, when the detection method described above is applied to soil having a high specific resistance of the internal soil, such as a disposal site before the start of landfilling, the internal electrode fixed to the internal soil by the specific resistance, and the internal electrode The potential drop between the far away place becomes large, and the voltage is hardly applied to the front and back of the water shielding sheet at the far place from the internal electrode. For this reason, even if the water shielding sheet is damaged and a hole is opened, the current passing through the hole hardly flows, and the potential distribution distortion caused by this current does not occur. There is a problem that it is difficult to detect the position.

そこで、内部土壌に設けた複数の電位測定電極と、外部土壌に設けた外部電極との間に各々通電し、各電位測定電極と、外部土壌に設けた基準電極との間の電位差を測定することにより、各電位測定電極の測定電位を求め、各測定電位に基づいて内部土壌の電位分布を作成し、この電位分布の歪みから遮水シートの漏水位置を検知する方法がある。
この検知方法では、内部土壌への給電位置と、測定電位の測定位置とが同一であるため、内部土壌の比抵抗による電位降下を考慮することなく、各電位測定電極の測定電位を求めることができる。
Therefore, each of the potential measurement electrodes provided in the internal soil and the external electrode provided in the external soil are energized, and the potential difference between each potential measurement electrode and the reference electrode provided in the external soil is measured. Thus, there is a method of obtaining the measurement potential of each potential measurement electrode, creating a potential distribution of the internal soil based on each measurement potential, and detecting the leakage position of the water shielding sheet from the distortion of the potential distribution.
In this detection method, the power supply position to the internal soil and the measurement position of the measurement potential are the same, so the measurement potential of each potential measurement electrode can be obtained without considering the potential drop due to the specific resistance of the internal soil. it can.

なお、直径が10cm程度の銅製の電位測定電極を用いた場合には、その電位測定電極の接地抵抗は数Ω〜数万Ωの間で変化することになる。このとき、遮水シートの漏水位置における抵抗値が数十Ω〜数千Ωであることを考慮すると、内部土壌への給電位置と、測定電位の測定位置とを同一にした前記検知方法では、電位測定電極の接地抵抗が測定結果に大きく影響してしまうため、漏水位置を正確に検知することができないという問題がある。   When a copper potential measurement electrode having a diameter of about 10 cm is used, the ground resistance of the potential measurement electrode varies between several Ω to several tens of thousands Ω. At this time, considering that the resistance value at the water leakage position of the water shielding sheet is several tens of Ω to several thousand Ω, in the detection method in which the power feeding position to the internal soil is the same as the measurement potential measurement position, Since the ground resistance of the potential measuring electrode greatly affects the measurement result, there is a problem that the water leakage position cannot be detected accurately.

そのため、図6に示すように、測定対象である電位測定電極10aに対して2本の電位測定電極10b,10cを均等間隔で直線的に並設し、電位測定電極10aと電位測定電極10cとの間に通電して、電位測定電極10aと電位測定電極10bとの間の電位差を測定することにより、電位測定電極10aの接地抵抗による電位降下を求めている検知方法がある(例えば、特許文献2参照)。
この検知方法では、測定電位から接地抵抗による電位降下を除くことにより、接地抵抗の影響を除去した測定電位を求め、この測定電位から内部土壌4の電位分布を求めて遮水シート3の漏水位置を検知している。
特公平6−63901号公報(第2頁左欄第50行目〜右欄第6行目、第1図) 特開2001−330531号公報(段落0012、図1、図2)
Therefore, as shown in FIG. 6, two potential measuring electrodes 10b and 10c are linearly arranged at equal intervals with respect to the potential measuring electrode 10a to be measured, and the potential measuring electrode 10a and the potential measuring electrode 10c There is a detection method for obtaining a potential drop due to the ground resistance of the potential measurement electrode 10a by measuring the potential difference between the potential measurement electrode 10a and the potential measurement electrode 10b. 2).
In this detection method, by removing the potential drop due to the ground resistance from the measured potential, a measurement potential that eliminates the influence of the ground resistance is obtained, and the potential distribution of the internal soil 4 is obtained from the measured potential to determine the leakage position of the impermeable sheet 3. Is detected.
Japanese Examined Patent Publication No. 6-63901 (page 2, left column, line 50 to right column, line 6, line 1) JP 2001-330531 (paragraph 0012, FIG. 1, FIG. 2)

しかしながら、電位測定電極の接地抵抗は、遮水シート3の漏水位置における抵抗値よりも非常に大きい値となる場合があるため、電位測定電極10aと電位測定電極10cとの間に通電した際に、電位測定電極10aと電位測定電極10bとの間の電位差を正確に測定し、接地抵抗による電位降下を正確に把握する必要がある。
そこで、前記した検知方法では、電位測定電極10aと電位測定電極10cとの間の中間位置に電位測定電極10bを設置し、各電位測定電極10a,10b,10cの間における比抵抗の条件を揃える必要がある。例えば、電位測定電極10bが電位測定電極10aと電位測定電極10cとの中間位置に配置されておらず、電位測定電極10bが中間位置よりも電位測定電極10aに近い場合には、実際の接地抵抗による電位差よりも小さい値となり、電位測定電極10bが中間位置よりも離れている場合には、実際の接地抵抗による電位差よりも大きい値となってしまう。
However, since the ground resistance of the potential measurement electrode may be a value that is much larger than the resistance value at the water leakage position of the water-impervious sheet 3, when the current is applied between the potential measurement electrode 10a and the potential measurement electrode 10c. Therefore, it is necessary to accurately measure the potential difference between the potential measuring electrode 10a and the potential measuring electrode 10b and accurately grasp the potential drop due to the ground resistance.
Therefore, in the detection method described above, the potential measurement electrode 10b is installed at an intermediate position between the potential measurement electrode 10a and the potential measurement electrode 10c, and the specific resistance conditions between the potential measurement electrodes 10a, 10b, and 10c are made uniform. There is a need. For example, when the potential measurement electrode 10b is not disposed at the intermediate position between the potential measurement electrode 10a and the potential measurement electrode 10c, and the potential measurement electrode 10b is closer to the potential measurement electrode 10a than the intermediate position, the actual ground resistance When the potential measuring electrode 10b is far from the intermediate position, the potential difference is larger than the actual potential difference due to the ground resistance.

また、電位測定電極10aと電位測定電極10cとの間に通電した際に、電位測定電極10aおよび電位測定電極10cの等電位線は、電位測定電極10aと電位測定電極10cとを結ぶ直線軸の軸方向に歪んでいるため、電位測定電極10a,10b,10cが直線上に配置されていない場合には、歪みの影響によって、接地抵抗による電位差を正確に測定することが困難になってしまう。   In addition, when the potential measurement electrode 10a and the potential measurement electrode 10c are energized, the equipotential lines of the potential measurement electrode 10a and the potential measurement electrode 10c are linear axes that connect the potential measurement electrode 10a and the potential measurement electrode 10c. Since it is distorted in the axial direction, when the potential measuring electrodes 10a, 10b, and 10c are not arranged on a straight line, it becomes difficult to accurately measure the potential difference due to the ground resistance due to the influence of the distortion.

さらに、電位測定電極10aが内部土壌の端部に近い場合には、内部土壌の端部の影響を受けて、電位分布が歪んでしまうため、電位測定電極10a,10b,10cが等間隔で直線上に配置されていても、その歪みの影響によって、接地抵抗による電位差を正確に測定することが困難になってしまう問題もある。   Furthermore, when the potential measurement electrode 10a is close to the edge of the internal soil, the potential distribution is distorted due to the influence of the edge of the internal soil, so the potential measurement electrodes 10a, 10b, and 10c are linearly spaced at equal intervals. Even if it is disposed above, there is a problem that it becomes difficult to accurately measure the potential difference due to the ground resistance due to the influence of the distortion.

このように、前記した検知方法では、3本の電位測定電極10a,10b,10cを均等間隔で直線的に並設する必要があるが、内部土壌4の形状が複雑な場合には、内部土壌4に設けた全ての電位測定電極10を均等間隔で直線的に並設することが困難である。
したがって、前記した検知方法では、内部土壌の形状による影響や、電位測定電極10a,10b,10cを等間隔で直線的に配置することが困難であることから、電位測定電極10aの接地抵抗による電位降下を正確に把握することが困難であり、接地抵抗による影響を除去して電位分布を作成することが困難であるため、遮水シート3における漏水位置の検知精度が低くなってしまうという問題がある。
As described above, in the detection method described above, the three potential measurement electrodes 10a, 10b, and 10c need to be linearly arranged at equal intervals, but when the shape of the internal soil 4 is complicated, the internal soil It is difficult to arrange all the potential measurement electrodes 10 provided in 4 linearly at equal intervals.
Therefore, in the above-described detection method, it is difficult to arrange the potential measurement electrodes 10a, 10b, and 10c linearly at equal intervals because of the influence of the shape of the internal soil, and thus the potential due to the ground resistance of the potential measurement electrode 10a. Since it is difficult to accurately grasp the descent and it is difficult to remove the influence of the ground resistance and create a potential distribution, there is a problem that the detection accuracy of the water leakage position in the water shielding sheet 3 is lowered. is there.

そこで、本発明では、前記した問題を解決し、内部構造物の形状や、各電位測定電極を配置する間隔、或いは位置等に影響されることなく、電位測定電極の接地抵抗による影響を除去した電位分布を求めることができ、この電位分布から遮水層の漏水位置を正確に検知することができる漏水検知方法を提供することを課題とする。   Therefore, in the present invention, the above-described problems are solved, and the influence of the grounding resistance of the potential measurement electrode is removed without being affected by the shape of the internal structure, the interval between the potential measurement electrodes, or the position. It is an object of the present invention to provide a water leakage detection method capable of obtaining a potential distribution and accurately detecting a water leakage position of a water shielding layer from the potential distribution.

前記課題を解決するため、請求項1に記載の発明は、内部構造物と外部構造物とを区分する遮水層の漏水位置を検知する漏水検知方法であって、内部構造物には、複数の電位測定電極および内部電極が設けられ、外部構造物には、外部電極が設けられ、外部構造物または内部構造物には、基準電極が設けられており、一の電位測定電極と外部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差から、一の電位測定電極と内部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差を差し引くことにより、他の電位測定電極の測定電位を求め、各電位測定電極において測定電位の算出を繰り返すことにより、各電位測定電極における測定電位を求め、各測定電位に基づいて求めた電位分布から、遮水層の漏水位置を検知することを特徴としている。   In order to solve the above-mentioned problem, the invention described in claim 1 is a water leakage detection method for detecting a water leakage position of a water shielding layer that separates an internal structure and an external structure. The external structure is provided with an external electrode, the external structure or the internal structure is provided with a reference electrode, the one potential measurement electrode and the external electrode, From the potential difference generated between the other potential measurement electrode and the reference electrode, when the current is applied between the other potential measurement electrode and the reference electrode, By subtracting the potential difference generated between the two potential measurement electrodes, the measurement potentials of the other potential measurement electrodes are obtained. By repeating the calculation of the measurement potential at each potential measurement electrode, the measurement potential at each potential measurement electrode is obtained and Potential distribution It is characterized in that to detect the water leakage position of the water shield layer.

ここで、各電極の形状、および材質は限定されるものではなく、各種既存の電極を用いることができる。また、各電極間の接続、および通電は、既存の方法によって行われており、電位差も既存の電位測定計を用いて測定される。   Here, the shape and material of each electrode are not limited, and various existing electrodes can be used. In addition, the connection between the electrodes and the energization are performed by an existing method, and the potential difference is also measured using an existing potential meter.

このように、本発明の漏水検知方法では、一の電位測定電極と外部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差から、一の電位測定電極と内部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差を差し引くことにより、測定対象である他の電位測定電極の測定電位を求めている。
なお、他の電位測定電極に生じる電位差の測定は、他の電位測定電極に接続した電位測定計によって測定することになる。このとき、電位測定計の内部抵抗によって、他の電位測定電極には殆ど電流が流れないため、他の電位測定電極の接地抵抗を考慮する必要がない。
また、通電する一の電位測定電極と、測定対象である他の電位測定電極との間隔は、測定電位が内部構造物の比抵抗の影響を大きく受けないように、他の電位測定電極の近傍に設けた一の電位測定電極を選択することが好ましい。
As described above, in the water leakage detection method of the present invention, when one current measurement electrode and the external electrode are energized, one potential measurement electrode is obtained from a potential difference generated between the other potential measurement electrode and the reference electrode. By subtracting the potential difference generated between the other potential measurement electrode and the reference electrode when energized between the electrode and the internal electrode, the measurement potential of the other potential measurement electrode that is the measurement target is obtained.
Note that the potential difference generated in the other potential measurement electrodes is measured by a potential meter connected to the other potential measurement electrodes. At this time, since the current hardly flows through the other potential measurement electrodes due to the internal resistance of the potentiometer, it is not necessary to consider the ground resistance of the other potential measurement electrodes.
In addition, the distance between the one potential measurement electrode that is energized and the other potential measurement electrode that is the object of measurement is close to the other potential measurement electrode so that the measurement potential is not greatly affected by the specific resistance of the internal structure. It is preferable to select one potential measuring electrode provided in the above.

これにより、本発明の漏水検知方法では、一の電位測定電極に通電した際に、他の電位測定電極と基準電極との間に生じる電位差を測定しているため、内部構造物の比抵抗が高い場合であっても、その比抵抗による電位降下の影響が少なくなり、正確な電位分布を簡易に求めることができる。
さらに、電位測定電極の測定電位を求める際に、別の作業によって電位測定電極の接地抵抗を求めることなく、接地抵抗による影響を除去した測定電位を求めることができる。そのため、複数の電位測定電極を均等間隔で直線的に並設する必要がなくなり、内部構造物の形状や、各電位測定電極を配置する間隔、或いは位置等に影響されることなく、電位測定電極の接地抵抗による影響を除去した電位分布を簡易に求めることができる。
このようにして求めた電位分布では、遮水層の漏水位置における電位歪が明確に示されることになる。
Thereby, in the water leakage detection method of the present invention, when a potential measurement electrode is energized, a potential difference generated between another potential measurement electrode and a reference electrode is measured. Even if it is high, the influence of the potential drop due to the specific resistance is reduced, and an accurate potential distribution can be easily obtained.
Furthermore, when determining the measurement potential of the potential measurement electrode, it is possible to determine the measurement potential from which the influence of the ground resistance is removed without determining the ground resistance of the potential measurement electrode by another operation. Therefore, it is not necessary to arrange a plurality of potential measuring electrodes in a straight line at equal intervals, and the potential measuring electrodes are not affected by the shape of the internal structure, the interval or position where each potential measuring electrode is arranged, or the like. It is possible to easily obtain the potential distribution from which the influence of the ground resistance is removed.
In the potential distribution thus obtained, the potential distortion at the water leakage position of the water shielding layer is clearly shown.

また、請求項2に記載の発明は、請求項1に記載の漏水検知方法であって、遮水層は第1の層と第2の層とから構成された二重層であり、外部電極が第1の層と第2の層との間の層間部に設けられており、電位分布から第1の層の漏水位置を検知することを特徴としている。   The invention according to claim 2 is the water leakage detection method according to claim 1, wherein the water shielding layer is a double layer composed of a first layer and a second layer, and the external electrode is It is provided in an interlayer portion between the first layer and the second layer, and is characterized by detecting the water leakage position of the first layer from the potential distribution.

このように、本発明の漏水検知方法では、外部電極を第1の層と第2の層との間の層間部に設けることにより、第1の層を介して通電した電流による測定電位に基づいて電位分布を作成することができるため、第1の層の漏水位置を検知することができる。   As described above, in the water leakage detection method of the present invention, the external electrode is provided in the interlayer portion between the first layer and the second layer, so that it is based on the measured potential caused by the current passed through the first layer. Since the potential distribution can be created, the leak position of the first layer can be detected.

また、請求項3に記載の発明は、請求項1に関連する発明であり、内部構造物と外部構造物とを区分する遮水層の漏水位置を検知する漏水検知方法であって、遮水層は第1の層と第2の層とから構成された二重層であり、第1の層と第2の層の層間部には、複数の電位測定電極および層間電極が設けられ、内部構造物には、内部電極が設けられ、外部構造物には、外部電極が設けられ、外部構造物または内部構造物あるいは層間部には、基準電極が設けられており、一の電位測定電極と内部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差から、一の電位測定電極と層間電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差を差し引くことにより、他の電位測定電極の第1の測定電位を求め、一の電位測定電極と外部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差から、一の電位測定電極と層間電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差を差し引くことにより、他の電位測定電極の第2の測定電位を求め、各電位測定電極において第1の測定電位の算出を繰り返すことにより、各電位測定電極における第1の測定電位を求め、各第1の測定電位に基づいて求めた第1の電位分布から、第1の層の漏水位置を検知するとともに、各電位測定電極において第2の測定電位の算出を繰り返すことにより、各電位測定電極における第2の測定電位を求め、各第2の測定電位に基づいて求めた第2の電位分布から、第2の層の漏水位置を検知することを特徴としている。   The invention according to claim 3 is an invention related to claim 1, and is a water leakage detection method for detecting a water leakage position of a water shielding layer that separates an internal structure and an external structure, The layer is a double layer composed of a first layer and a second layer, and a plurality of potential measurement electrodes and interlayer electrodes are provided in an interlayer portion between the first layer and the second layer, and the internal structure An internal electrode is provided on the object, an external electrode is provided on the external structure, and a reference electrode is provided on the external structure, the internal structure, or the interlayer part. When a current is applied between one potential measurement electrode and an interlayer electrode, the other potential measurement electrode and the reference electrode are connected due to a potential difference generated between the other potential measurement electrode and the reference electrode. By subtracting the potential difference generated with the electrode, the first measurement potential of the other potential measurement electrode When a current is applied between one potential measurement electrode and an external electrode, a current difference is generated between the other potential measurement electrode and the reference electrode. In addition, the second measurement potential of the other potential measurement electrodes is obtained by subtracting the potential difference generated between the other potential measurement electrodes and the reference electrode, and the calculation of the first measurement potential is repeated at each potential measurement electrode. The first measurement potential at each potential measurement electrode is obtained, and the leak position of the first layer is detected from the first potential distribution obtained based on each first measurement potential, and at each potential measurement electrode, By repeating the calculation of the second measurement potential, the second measurement potential at each potential measurement electrode is obtained, and the water leakage position of the second layer is obtained from the second potential distribution obtained based on each second measurement potential. It is characterized by detecting That.

このように、本発明の漏水検知方法では、第1の層を介して通電させた電流による第1の測定電位に基づいて作成した第1の電位分布と、第2の層を介して通電させた電流による第2の測定電位に基づいて作成した第2の電位分布とを求めることにより、第1の層および第2の層の漏水位置を別々に検知することができるため、二重層に形成された遮水層の漏水を正確に把握することができる。   As described above, in the water leakage detection method of the present invention, the first potential distribution created based on the first measured potential based on the current passed through the first layer and the current supplied through the second layer. Since the leak position of the first layer and the second layer can be detected separately by obtaining the second potential distribution created based on the second measured potential by the measured current, it is formed in a double layer It is possible to accurately grasp the leakage of the water shielding layer.

このような漏水検知方法によれば、一の電位測定電極と外部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差から、一の電位測定電極と内部電極との間に通電した際に、他の電位測定電極と基準電極との間に生じる電位差を差し引くことにより、測定対象である他の電位測定電極の測定電位を求めているため、内部構造物の比抵抗が高い場合であっても、その比抵抗による電位降下の影響が少なくなり、正確な電位分布を簡易に求めることができる。
さらに、別の作業によって他の電位測定電極の接地抵抗を求めることなく、接地抵抗による影響を除去した測定電位を求めることができる。これにより、複数の電位測定電極を均等間隔で直線的に並設する必要がなくなり、内部構造物の形状や、各電位測定電極を配置する間隔、或いは位置等に影響されることなく、接地抵抗の影響を除去した電位分布を簡易に求めることができる。このようにして求めた電位分布では、遮水層の漏水位置における電位歪が明確に示されるため、遮水層の漏水位置を正確に検知することができる。
According to such a water leakage detection method, when a current is applied between one potential measurement electrode and an external electrode, the potential difference between the other potential measurement electrode and the reference electrode is used to determine whether the one potential measurement electrode and the internal electrode are internal. Since the measured potential of the other potential measurement electrode that is the object of measurement is obtained by subtracting the potential difference that occurs between the other potential measurement electrode and the reference electrode when energized with the electrode, the internal structure Even when the specific resistance is high, the influence of the potential drop due to the specific resistance is reduced, and an accurate potential distribution can be easily obtained.
Furthermore, the measurement potential from which the influence of the ground resistance is removed can be obtained without obtaining the ground resistance of another potential measurement electrode by another operation. This eliminates the need for linearly arranging a plurality of potential measurement electrodes at equal intervals, and without affecting the shape of the internal structure, the interval or position where each potential measurement electrode is disposed, and the like. It is possible to easily obtain a potential distribution that eliminates the influence of. In the potential distribution thus obtained, the potential distortion at the water leakage position of the water shielding layer is clearly shown, so that the water leakage position of the water shielding layer can be accurately detected.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各実施形態の説明において、同一の構成要素に関しては同一の符号を付し、重複した説明は省略するものとする。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the description of each embodiment, the same constituent elements are denoted by the same reference numerals, and redundant descriptions are omitted.

[第1実施形態]
まず、本発明の第1実施形態について説明する。
図1は、第1実施形態の漏水検知方法に用いる各構成要素の概略を示した側断面図である。図2は、第1実施形態の漏水検知方法に用いる各構成要素の概略を示した平面図である。
本発明の漏水検知方法は、一般廃棄物または産業廃棄物の埋立地や貯水池などの遮水構造物に適用可能であり、第1実施形態では、遮水シート(請求項における「遮水層」)を境にして、処理土(埋立廃棄物、保護土、覆土等)である内部土壌(請求項における「内部構造物」)と、地盤である外部土壌(請求項における「外部構造物」)とに区分された埋設地に適用する場合を例にして説明する。
[First Embodiment]
First, a first embodiment of the present invention will be described.
FIG. 1 is a side sectional view showing an outline of each component used in the water leakage detection method of the first embodiment. FIG. 2 is a plan view showing an outline of each component used in the water leakage detection method of the first embodiment.
The water leakage detection method of the present invention can be applied to water-impervious structures such as landfills and reservoirs for general waste or industrial waste. In the first embodiment, a water-impervious sheet ("water-impervious layer" in the claims) ) On the inside soil (landfill waste, protective soil, cover soil, etc.) that is treated soil ("internal structure" in the claim) and external soil ("external structure" in the claim) A description will be given by taking as an example a case where the present invention is applied to a buried land divided into two.

まず、第1実施形態の漏水検知方法に用いる各構成要素について説明する。
埋立地1は、図1および図2に示すように、外部土壌2に設けた掘削領域の底面および側面に遮水シート3が敷設されており、この遮水シート3上に内部土壌4が堆積されることにより、遮水シート3を境にして、内部土壌4と外部土壌2とが区分されている。
First, each component used for the water leak detection method of 1st Embodiment is demonstrated.
As shown in FIGS. 1 and 2, the landfill 1 has a water shielding sheet 3 laid on the bottom and side surfaces of the excavation area provided in the external soil 2, and the internal soil 4 is deposited on the water shielding sheet 3. By doing so, the internal soil 4 and the external soil 2 are separated with the water shielding sheet 3 as a boundary.

遮水シート3は、電気抵抗が大きなシートであり、その材質や厚さは限定されるものではなく、例えば、ゴム製のシートを用いることができる。   The water shielding sheet 3 is a sheet having a large electric resistance, and the material and thickness thereof are not limited. For example, a rubber sheet can be used.

また、内部土壌4において、遮水シート3の上方近傍には、銅製の電位測定電極10が10m〜20m間隔で設けられている。なお、遮水シート3の上方近傍に設けた各電位測定電極10・・・は、遮水シート3の上面と接していてもよい。
さらに、第1実施形態では、各電位測定電極10・・・が格子状に均等間隔で配置されているが、各電位測定電極10・・・を均等間隔で直線的に並設する必要はなく、埋立地1の形状に対応させて配置することができ、その個数も限定されるものではない。
Further, in the internal soil 4, copper potential measuring electrodes 10 are provided at intervals of 10 m to 20 m near the upper portion of the water shielding sheet 3. In addition, each electric potential measurement electrode 10 ... provided in the upper vicinity of the water shielding sheet 3 may be in contact with the upper surface of the water shielding sheet 3.
Further, in the first embodiment, the potential measuring electrodes 10 are arranged at regular intervals in a grid pattern, but it is not necessary to arrange the potential measuring electrodes 10 linearly at regular intervals. These can be arranged in correspondence with the shape of the landfill 1 and the number thereof is not limited.

各電位測定電極10・・・は、電線によって給電スキャナ11に各々接続されている。また、給電スキャナ11は、電線によって交流電源12に接続されており、給電スキャナ11の接点を切り替えることにより、特定の電位測定電極10と交流電源12とが接続されるように構成されている。   Each potential measuring electrode 10 is connected to the power supply scanner 11 by an electric wire. In addition, the power supply scanner 11 is connected to an AC power supply 12 by an electric wire, and is configured to connect a specific potential measurement electrode 10 and the AC power supply 12 by switching the contact of the power supply scanner 11.

また、内部土壌4において、遮水シート3の上方近傍には、銅製の内部電極13が設けられており、さらに、外部土壌2には、銅製の外部電極14が埋設されている。
そして、交流電源12は、切替スイッチ15を介して電線によって内部電極13および外部電極14に接続されており、切替スイッチ15の接点を切り替えることにより、交流電源12と、内部電極13または外部電極14とが接続されるように構成されている。
Further, in the internal soil 4, a copper internal electrode 13 is provided in the vicinity of the upper portion of the water shielding sheet 3, and a copper external electrode 14 is embedded in the external soil 2.
The AC power supply 12 is connected to the internal electrode 13 and the external electrode 14 by an electric wire via the changeover switch 15, and the AC power supply 12 and the internal electrode 13 or the external electrode 14 are switched by switching the contacts of the changeover switch 15. And are configured to be connected.

さらに、各電位測定電極10・・・は、電線によって測定スキャナ16に各々接続されている。一方、外部土壌2には銅製の基準電極17が埋設されており、測定スキャナ16は、電線によって基準電極17に接続されている。そして、測定スキャナ16の接点を切り替えることにより、特定の電位測定電極10と基準電極17とが接続されるように構成されている。また、測定スキャナ16と基準電極17との間には電位測定計18が介設されており、各電位測定電極10・・・と基準電極17との間の電位差を測定することができる。   Furthermore, each potential measurement electrode 10... Is connected to the measurement scanner 16 by an electric wire. On the other hand, a copper reference electrode 17 is embedded in the external soil 2, and the measurement scanner 16 is connected to the reference electrode 17 by an electric wire. The specific potential measurement electrode 10 and the reference electrode 17 are connected by switching the contact of the measurement scanner 16. Further, a potential measuring meter 18 is interposed between the measurement scanner 16 and the reference electrode 17, and a potential difference between each potential measuring electrode 10 ... and the reference electrode 17 can be measured.

なお、図1および図2は、第1実施形態の漏水検知方法に用いる各構成要素を簡略化しており、給電スキャナ11が特定の電位測定電極10a(以下、「一の電位測定電極」という)に接続され、測定スキャナ16が特定の電位測定電極10b(以下、「他の電位測定電極」という)に接続された状態を示しており、これら以外の各電位測定電極10・・・と、給電スキャナ11または測定スキャナ16との接続を省略している。   1 and 2 simplify the respective components used in the water leakage detection method of the first embodiment, and the power supply scanner 11 has a specific potential measurement electrode 10a (hereinafter referred to as “one potential measurement electrode”). , And the measurement scanner 16 is connected to a specific potential measurement electrode 10b (hereinafter referred to as “other potential measurement electrode”), and each of the other potential measurement electrodes 10. Connection with the scanner 11 or the measurement scanner 16 is omitted.

次に、前記した各構成要素を用いた漏水検知方法について説明する。
(電位測定工程)
まず、給電スキャナ11の接点を切り替えて、一の電位測定電極10aと交流電源12を接続するとともに、切替スイッチ15の接点を切り替えて交流電源12と外部電極14を接続する。
また、測定スキャナ16の接点を切り替えて、測定対象である他の電位測定電極10bと基準電極17を接続する。
このとき、給電スキャナ11と接続する一の電位測定電極10aは、測定対象である他の電位測定電極10bの最も近傍に設けられた電位測定電極10aを選択することが好ましい。
Next, a water leakage detection method using each of the above-described components will be described.
(Potential measurement process)
First, the contact of the power supply scanner 11 is switched to connect the one potential measurement electrode 10 a and the AC power supply 12, and the contact of the changeover switch 15 is switched to connect the AC power supply 12 and the external electrode 14.
Further, the contact of the measurement scanner 16 is switched to connect the other potential measurement electrode 10 b to be measured and the reference electrode 17.
At this time, it is preferable to select the potential measurement electrode 10a provided closest to the other potential measurement electrode 10b to be measured as the one potential measurement electrode 10a connected to the power supply scanner 11.

続いて、交流電源12を発電させ、一の電位測定電極10aから遮水シート3および外部土壌2を介して外部電極14に通電させることにより、一の電位測定電極10aと外部電極14との間に通電する。
一方、交流電源12の発電によって、他の電位測定電極10bと基準電極17との間に生じた電位差を電位測定計18によって測定する。
Subsequently, the AC power supply 12 is caused to generate power, and the external electrode 14 is energized from the single potential measurement electrode 10a through the water shielding sheet 3 and the external soil 2, so that the potential measurement electrode 10a and the external electrode 14 are electrically connected. Energize to.
On the other hand, the potential difference generated between the other potential measurement electrode 10 b and the reference electrode 17 by the power generation of the AC power supply 12 is measured by the potential measurement meter 18.

さらに、交流電源12の発電を停止した後に、切替スイッチ15の接点を切り替えて交流電源12と内部電極13とを接続する。そして、交流電源12を発電させ、一の電位測定電極10aから内部土壌4を介して内部電極13に通電させることにより、一の電位測定電極10aと内部電極13との間に通電する。
一方、交流電源12の発電によって、他の電位測定電極10bと基準電極17との間に生じた電位差を電位測定計18によって測定する。
Furthermore, after the power generation of the AC power supply 12 is stopped, the AC power supply 12 and the internal electrode 13 are connected by switching the contact of the changeover switch 15. And it supplies with electricity between the one electric potential measurement electrode 10a and the internal electrode 13 by making the alternating current power supply 12 generate electric power, and making the internal electrode 13 pass electricity through the internal soil 4 from the one electric potential measurement electrode 10a.
On the other hand, the potential difference generated between the other potential measurement electrode 10 b and the reference electrode 17 by the power generation of the AC power supply 12 is measured by the potential measurement meter 18.

このように、一の電位測定電極10aと外部電極14との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じる電位差、および、一の電位測定電極10aと内部電極13との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じる電位差を測定することにより、内部土壌4の比抵抗が高い場合であっても、その比抵抗による電位降下の影響が少なくなっている。   As described above, when a current is applied between one potential measurement electrode 10a and the external electrode 14, the potential difference generated between the other potential measurement electrode 10b and the reference electrode 17, and the one potential measurement electrode 10a and the internal Even when the specific resistance of the internal soil 4 is high by measuring the potential difference generated between the other potential measurement electrode 10b and the reference electrode 17 when energized with the electrode 13, the specific resistance The effect of potential drop due to is reduced.

そして、一の電位測定電極10aと外部電極14との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じた電位差から、一の電位測定電極10aと内部電極13との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じた電位差を差し引くことにより、他の電位測定電極10bの測定電位を求める。
このとき、電位測定計18の内部抵抗によって、他の電位測定電極10bと基準電極17との間には殆ど電流が流れないため、他の電位測定電極10bと基準電極17との間の電位差の測定結果は、他の電位測定電極10bおよび基準電極17の接地抵抗の影響を受けることがない。
Then, from the potential difference generated between the other potential measurement electrode 10b and the reference electrode 17 when energized between the one potential measurement electrode 10a and the external electrode 14, the one potential measurement electrode 10a and the internal electrode 13 are obtained. By subtracting the potential difference generated between the other potential measurement electrode 10b and the reference electrode 17 when the current is supplied between the first and second potential measurement electrodes 10b, the measurement potential of the other potential measurement electrode 10b is obtained.
At this time, almost no current flows between the other potential measurement electrode 10b and the reference electrode 17 due to the internal resistance of the potential meter 18, and therefore, the potential difference between the other potential measurement electrode 10b and the reference electrode 17 is reduced. The measurement result is not affected by the ground resistances of the other potential measurement electrodes 10b and the reference electrode 17.

このように、測定対象である他の電位測定電極10bの測定電位を測定する際に、別の作業によって他の電位測定電極10bの接地抵抗を求めることなく、接地抵抗による影響を除去した測定電位を求めることができる。これにより、複数の電位測定電極10・・・を均等間隔で直線的に並設する必要がなくなり、内部土壌4の形状や、各電位測定電極10・・・を配置する間隔、或いは位置等に影響されることなく、電位測定電極10の接地抵抗による影響を除去した測定電位を簡易に求めることができる。   Thus, when measuring the measurement potential of the other potential measurement electrode 10b that is the measurement target, the measurement potential from which the influence of the ground resistance is removed without obtaining the ground resistance of the other potential measurement electrode 10b by another operation. Can be requested. This eliminates the need for linearly arranging a plurality of potential measuring electrodes 10... At the same interval, so that the shape of the internal soil 4, the interval or position at which each potential measuring electrode 10. Without being influenced, it is possible to easily obtain the measurement potential from which the influence of the ground resistance of the potential measurement electrode 10 is removed.

(電位分布作成工程)
また、内部土壌4に設けた複数の電位測定電極10・・・に対して電位測定工程を繰り返すことにより、各電位測定電極10・・・における測定電位を求める。
その後、各測定電位に基づいて内部土壌4の電位分布を作成する。このとき、遮水シート3に漏水箇所がある場合には、漏水位置の電位分布に歪みが生じるため、その歪み位置から遮水シート3の漏水位置を特定する。特に、本発明では、電位分布から電位測定電極10の接地抵抗による影響が除去されるとともに、漏水位置の近傍で給電することができ、遮水シート3の漏水位置における電位歪が明確に示されるため、遮水シート3の漏水位置を正確に特定することができる。
(Potential distribution creation process)
Moreover, the measurement potential in each potential measurement electrode 10... Is obtained by repeating the potential measurement process for the plurality of potential measurement electrodes 10.
Thereafter, a potential distribution of the internal soil 4 is created based on each measured potential. At this time, when there is a water leakage location on the water shielding sheet 3, since the potential distribution at the water leakage position is distorted, the water leakage position of the water shielding sheet 3 is specified from the distorted position. In particular, in the present invention, the influence of the ground resistance of the potential measurement electrode 10 is removed from the potential distribution, and power can be supplied in the vicinity of the water leakage position, and the potential distortion at the water leakage position of the water shielding sheet 3 is clearly shown. For this reason, the water leakage position of the water shielding sheet 3 can be accurately specified.

したがって、本発明の漏水検知方法では、複数の電位測定電極10・・・を均等間隔で直線的に並設して、測定対象である電位測定電極10の接地抵抗を求めることなく、接地抵抗による影響を除去した測定電位を求めることができる。このように、内部土壌4の形状や、各電位測定電極10・・・を配置する間隔、或いは位置等に影響されることなく、電位測定電極10の接地抵抗による影響を除去した電位分布を簡易に求めることができる。
さらに、遮水シート3が損傷して穴が生じ、漏水が発生した場合も、その漏水位置に最も近い電位測定電極10に給電した際の電位差を測定することができるため、給電する電位測定電極10から漏水位置までの間の電圧降下を非常に小さくすることができ、内部土壌4の比抵抗が高い場合であっても、その比抵抗による影響が少なくなり、漏水による電位歪を大きな差として把握することができる。
このようにして求めた電位分布では、遮水シート3の漏水位置における電位歪が明確に示されるため、遮水シート3の漏水位置を正確に検知することができる。
Therefore, in the water leakage detection method of the present invention, a plurality of potential measurement electrodes 10... Are linearly arranged at equal intervals, and the ground resistance is determined without determining the ground resistance of the potential measurement electrode 10 to be measured. The measurement potential from which the influence has been removed can be obtained. In this way, the potential distribution in which the influence of the ground resistance of the potential measuring electrode 10 is removed is simplified without being affected by the shape of the internal soil 4, the interval at which the potential measuring electrodes 10 are arranged, or the position. Can be requested.
Further, even when the water shielding sheet 3 is damaged and a hole is formed and water leakage occurs, the potential difference when power is supplied to the potential measuring electrode 10 closest to the water leakage position can be measured. The voltage drop from 10 to the water leakage position can be made very small, and even if the specific resistance of the internal soil 4 is high, the influence of the specific resistance is reduced, and the potential distortion due to water leakage is a large difference. I can grasp it.
In the potential distribution thus obtained, the potential distortion at the water leakage position of the water shielding sheet 3 is clearly shown, so that the water leakage position of the water shielding sheet 3 can be accurately detected.

[第2実施形態]
次に、本発明の第2実施形態について説明する。
図3は、第2実施形態の漏水検知方法に用いる各構成要素の概略を示した側断面図である。
第2実施形態は、前記第1実施形態と略同様の構成であり、遮水シートが二重シートであるとともに、外部電極の配置が異なっている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
FIG. 3 is a side sectional view showing an outline of each component used in the water leakage detection method of the second embodiment.
The second embodiment has substantially the same configuration as the first embodiment, and the water shielding sheet is a double sheet and the arrangement of the external electrodes is different.

第2実施形態の遮水シート3’は、図3に示すように、所定間隔を空けて上下に配置された第1の層3aと第2の層3bとから構成された二重シートであり、第1の層3aと第2の層3bとの間の層間部3cは導電性を備えた状態となっている。例えば、導電性マットを層間部3cに敷設することにより、導電性を備えることができる。
さらに、第2実施形態では、外部電極14aおよび基準電極17が層間部3cに設けられている。
As shown in FIG. 3, the water-impervious sheet 3 ′ of the second embodiment is a double sheet composed of a first layer 3 a and a second layer 3 b arranged above and below at a predetermined interval. The interlayer portion 3c between the first layer 3a and the second layer 3b is in a state having conductivity. For example, conductivity can be provided by laying a conductive mat on the interlayer 3c.
Furthermore, in the second embodiment, the external electrode 14a and the reference electrode 17 are provided in the interlayer portion 3c.

このように、第2実施形態では、第1の層3aと第2の層3bとの間の層間部3cが、第1実施形態における外部土壌2(図1参照)に相当し、第1の層3aが第1実施形態における遮水シート3(図1参照)に相当することになる。
これにより、第1実施形態と同様にして求めた電位分布は、第1の層3aを介して通電させた電流による測定電位に基づいて作成された電位分布であり、この電位分布の歪みは第1の層3aの漏水位置を示していることになるため、第1の層3aの漏水位置を簡易かつ正確に求めることができる。
Thus, in 2nd Embodiment, the interlayer part 3c between the 1st layer 3a and the 2nd layer 3b is equivalent to the external soil 2 (refer FIG. 1) in 1st Embodiment, 1st The layer 3a corresponds to the water shielding sheet 3 (see FIG. 1) in the first embodiment.
As a result, the potential distribution obtained in the same manner as in the first embodiment is a potential distribution created based on the measured potential caused by the current passed through the first layer 3a. Since the leak position of the first layer 3a is shown, the leak position of the first layer 3a can be easily and accurately obtained.

[第3実施形態]
次に、本発明の第3実施形態について説明する。
図4は、第3実施形態の漏水検知方法に用いる各構成要素の概略を示した側断面図である。
第3実施形態は、前記第1実施形態と略同様の構成であり、遮水シートが二重シートであるとともに、電位測定電極の配置が異なっている。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
FIG. 4 is a side sectional view showing an outline of each component used in the water leakage detection method of the third embodiment.
The third embodiment has substantially the same configuration as that of the first embodiment, and the water shielding sheet is a double sheet, and the arrangement of the potential measurement electrodes is different.

第3実施形態の遮水シート3’は、図4に示すように、第1の層3aと第2の層3bとから構成された二重シートであり、第2実施形態の遮水シート3’と同様の構成である。
さらに、第3実施形態では、第1の層3aと第2の層3bとの間の層間部3cに各電位測定電極10・・・および層間電極19が設けられている。
なお、交流電源12と、内部電極13、外部電極14および層間電極19との接続は、切替スイッチ15によって切り替え可能となっている。
As shown in FIG. 4, the water shielding sheet 3 ′ of the third embodiment is a double sheet composed of a first layer 3a and a second layer 3b, and the water shielding sheet 3 of the second embodiment. The configuration is the same as'.
Furthermore, in the third embodiment, each potential measurement electrode 10... And the interlayer electrode 19 are provided in the interlayer portion 3 c between the first layer 3 a and the second layer 3 b.
The connection between the AC power source 12 and the internal electrode 13, the external electrode 14, and the interlayer electrode 19 can be switched by a changeover switch 15.

そして、第3実施形態では、電位測定工程において、一の電位測定電極10aと、内部土壌4に設けた内部電極13との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じる電位差から、一の電位測定電極10aと層間電極19との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じる電位差を差し引くことにより、第1の測定電位を求める。
また、一の電位測定電極10aと、外部土壌2に設けた外部電極14との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じる電位差から、一の電位測定電極10aと層間電極19との間に通電した際に、他の電位測定電極10bと基準電極17との間に生じる電位差を差し引くことにより、第2の測定電位を求める。
And in 3rd Embodiment, when it supplies with electricity between one electric potential measurement electrode 10a and the internal electrode 13 provided in the internal soil 4 in an electric potential measurement process, other electric potential measurement electrode 10b, the reference electrode 17, and By subtracting the potential difference generated between the other potential measurement electrode 10b and the reference electrode 17 when the current is applied between the one potential measurement electrode 10a and the interlayer electrode 19 from the potential difference generated between Obtain the measured potential.
In addition, when a current is applied between one potential measurement electrode 10a and the external electrode 14 provided on the external soil 2, one potential measurement is performed based on a potential difference generated between another potential measurement electrode 10b and the reference electrode 17. The second measurement potential is obtained by subtracting the potential difference generated between the other potential measurement electrode 10b and the reference electrode 17 when the electrode 10a and the interlayer electrode 19 are energized.

さらに、各電位測定電極10・・・に対して電位測定工程を繰り返すことにより、各電位測定電極10・・・における第1の測定電位および第2の測定電位を求める。そして、各第1の測定電位に基づいて第1の電位分布を作成するとともに、各第2の測定電位に基づいて第2の電位分布を作成する。
この第1の電位分布は、第1の層3aを介して通電した電流による第1の測定電位に基づいて作成されているため、第1の電位分布から第1の層3aの漏水位置を検知することができる。同様に、第2の電位分布は、第2の層3bを介して通電した電流による第2の測定電位に基づいて作成されているため、第2の電位分布から第2の層3bの漏水位置を検知することができる。
Furthermore, the first measurement potential and the second measurement potential at each potential measurement electrode 10... Are obtained by repeating the potential measurement process for each potential measurement electrode 10. Then, a first potential distribution is created based on each first measured potential, and a second potential distribution is created based on each second measured potential.
Since the first potential distribution is created based on the first measured potential based on the current passed through the first layer 3a, the leakage position of the first layer 3a is detected from the first potential distribution. can do. Similarly, since the second potential distribution is created based on the second measured potential due to the current passed through the second layer 3b, the leakage position of the second layer 3b from the second potential distribution. Can be detected.

これにより、第3実施形態の漏水検知方法では、第1の測定電位および第2の測定電位を各々求めており、電位測定電極10の接地抵抗に影響されない第1の電位分布および第2の電位分布を求めることにより、第1の層3aまたは第2の層3bの漏水位置を簡易かつ正確に検知することができ、二重層に形成された遮水シート3’の漏水を正確に把握することができる。   Thereby, in the water leak detection method of the third embodiment, the first measurement potential and the second measurement potential are respectively obtained, and the first potential distribution and the second potential that are not affected by the ground resistance of the potential measurement electrode 10 are obtained. By obtaining the distribution, the leakage position of the first layer 3a or the second layer 3b can be detected easily and accurately, and the leakage of the water shielding sheet 3 'formed in the double layer is accurately grasped. Can do.

以上、本発明の実施形態について説明したが、本発明は前記各実施形態には限定されない。例えば、第1実施形態では、図1に示すように、基準電極17を外部土壌2に設けているが、基準電極17を内部土壌4に設けた場合であっても、測定対象である他の電位測定電極10bと基準電極17との間で測定した電位差は、第1実施形態の測定値と同じになる。
また、第2実施形態では、図3に示すように、基準電極17を層間部3cに設けているが、基準電極17を外部土壌2または内部土壌4に設けた場合であっても、測定対象である他の電位測定電極10bと基準電極17との間で測定した電位差は、第2実施形態の測定値と同じになる。
さらに、第3実施形態では、図4に示すように、基準電極17を外部土壌2に設けているが、基準電極17を内部土壌4または外部土壌2或いは層間部3cに設けた場合であっても、測定対象である他の電位測定電極10bと基準電極17との間で測定した電位差は、第3実施形態の測定値と同じになる。
また、第3実施形態において、異なる位置に複数の基準電極17を設け、第1の層3aの測定の場合と、第2の層3bの測定の場合において、異なる基準電極17を用いても同様の結果を得ることができる。
また、本実施形態では、交流電源を用いて給電していたが、これに限定されるものではなく、直流電源を用いてもよく、或いは、図5で示すように、矩形の電源(交差直流)を用いてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to each said embodiment. For example, in the first embodiment, as shown in FIG. 1, the reference electrode 17 is provided on the external soil 2, but even when the reference electrode 17 is provided on the internal soil 4, The potential difference measured between the potential measurement electrode 10b and the reference electrode 17 is the same as the measurement value of the first embodiment.
In the second embodiment, as shown in FIG. 3, the reference electrode 17 is provided in the interlayer portion 3 c, but even if the reference electrode 17 is provided in the external soil 2 or the internal soil 4, the measurement target The potential difference measured between the other potential measurement electrode 10b and the reference electrode 17 is the same as the measurement value of the second embodiment.
Furthermore, in 3rd Embodiment, as shown in FIG. 4, although the reference electrode 17 is provided in the external soil 2, it is a case where the reference electrode 17 is provided in the internal soil 4, the external soil 2, or the interlayer part 3c. However, the potential difference measured between the other potential measurement electrode 10b to be measured and the reference electrode 17 is the same as the measurement value of the third embodiment.
Further, in the third embodiment, a plurality of reference electrodes 17 are provided at different positions, and the same applies even when different reference electrodes 17 are used in the measurement of the first layer 3a and the measurement of the second layer 3b. Result can be obtained.
In the present embodiment, power is supplied using an AC power supply. However, the power supply is not limited to this, and a DC power supply may be used. Alternatively, as shown in FIG. ) May be used.

第1実施形態の漏水検知方法に用いる各構成要素の概略を示した側断面図である。It is the sectional side view which showed the outline of each component used for the water leak detection method of 1st Embodiment. 第1実施形態の漏水検知方法に用いる各構成要素の概略を示した平面図である。It is the top view which showed the outline of each component used for the water leak detection method of 1st Embodiment. 第2実施形態の漏水検知方法に用いる各構成要素の概略を示した側断面図である。It is the sectional side view which showed the outline of each component used for the water leak detection method of 2nd Embodiment. 第3実施形態の漏水検知方法に用いる各構成要素の概略を示した側断面図である。It is the sectional side view which showed the outline of each component used for the water leak detection method of 3rd Embodiment. 矩形の電源を示した概念図である。It is the conceptual diagram which showed the rectangular power supply. 従来の漏水検知方法に用いる各構成要素の概略を示した側断面図である。It is the sectional side view which showed the outline of each component used for the conventional water leak detection method.

符号の説明Explanation of symbols

1 埋立地
2 外部土壌
3 遮水シート
4 内部土壌
10 電位測定電極
12 交流電源
13 内部電極
14 外部電極
17 基準電極
18 電位測定計
DESCRIPTION OF SYMBOLS 1 Landfill 2 External soil 3 Impermeable sheet 4 Internal soil 10 Electric potential measurement electrode 12 AC power supply 13 Internal electrode 14 External electrode 17 Reference electrode 18 Electric potential meter

Claims (3)

内部構造物と外部構造物とを区分する遮水層の漏水位置を検知する漏水検知方法であって、
前記内部構造物には、複数の電位測定電極および内部電極が設けられ、
前記外部構造物には、外部電極が設けられ、
前記外部構造物または前記内部構造物には、基準電極が設けられており、
一の前記電位測定電極と前記外部電極との間に通電した際に、他の前記電位測定電極と前記基準電極との間に生じる電位差から、
一の前記電位測定電極と前記内部電極との間に通電した際に、他の前記電位測定電極と前記基準電極との間に生じる電位差を差し引くことにより、他の前記電位測定電極の測定電位を求め、
前記各電位測定電極において前記測定電位の算出を繰り返すことにより、前記各電位測定電極における前記測定電位を求め、前記各測定電位に基づいて求めた電位分布から、前記遮水層の漏水位置を検知することを特徴とする漏水検知方法。
A water leakage detection method for detecting a water leakage position of a water shielding layer that separates an internal structure and an external structure,
The internal structure is provided with a plurality of potential measurement electrodes and internal electrodes,
The external structure is provided with external electrodes,
The external structure or the internal structure is provided with a reference electrode,
From the potential difference generated between the other potential measurement electrode and the reference electrode when energized between the one potential measurement electrode and the external electrode,
By subtracting the potential difference generated between the other potential measurement electrode and the reference electrode when energized between the one potential measurement electrode and the internal electrode, the measurement potential of the other potential measurement electrode is reduced. Seeking
By repeatedly calculating the measurement potential at each potential measurement electrode, the measurement potential at each potential measurement electrode is obtained, and the leakage position of the water shielding layer is detected from the potential distribution obtained based on each measurement potential. A water leakage detection method characterized by:
前記遮水層は第1の層と第2の層とから構成された二重層であり、
前記外部電極が前記第1の層と前記第2の層との間の層間部に設けられており、
前記電位分布から前記第1の層の漏水位置を検知することを特徴とする請求項1に記載の漏水検知方法。
The water shielding layer is a double layer composed of a first layer and a second layer,
The external electrode is provided in an interlayer portion between the first layer and the second layer;
The water leakage detection method according to claim 1, wherein the water leakage position of the first layer is detected from the potential distribution.
内部構造物と外部構造物とを区分する遮水層の漏水位置を検知する漏水検知方法であって、
前記遮水層は第1の層と第2の層とから構成された二重層であり、
前記第1の層と前記第2の層の層間部には、複数の電位測定電極および層間電極が設けられ、
前記内部構造物には、内部電極が設けられ、
前記外部構造物には、外部電極が設けられ、
前記外部構造物または前記内部構造物あるいは前記層間部には、基準電極が設けられており、
一の前記電位測定電極と前記内部電極との間に通電した際に、他の前記電位測定電極と前記基準電極との間に生じる電位差から、
一の前記電位測定電極と前記層間電極との間に通電した際に、他の前記電位測定電極と前記基準電極との間に生じる電位差を差し引くことにより、他の前記電位測定電極の第1の測定電位を求め、
一の前記電位測定電極と前記外部電極との間に通電した際に、他の前記電位測定電極と前記基準電極との間に生じる電位差から、
一の前記電位測定電極と前記層間電極との間に通電した際に、他の前記電位測定電極と前記基準電極との間に生じる電位差を差し引くことにより、他の前記電位測定電極の第2の測定電位を求め、
前記各電位測定電極において前記第1の測定電位の算出を繰り返すことにより、前記各電位測定電極における前記第1の測定電位を求め、前記各第1の測定電位に基づいて求めた第1の電位分布から、前記第1の層の漏水位置を検知するとともに、
前記各電位測定電極において前記第2の測定電位の算出を繰り返すことにより、前記各電位測定電極における前記第2の測定電位を求め、前記各第2の測定電位に基づいて求めた第2の電位分布から、前記第2の層の漏水位置を検知することを特徴とする漏水検知方法。
A water leakage detection method for detecting a water leakage position of a water shielding layer that separates an internal structure and an external structure,
The water shielding layer is a double layer composed of a first layer and a second layer,
A plurality of potential measurement electrodes and interlayer electrodes are provided in an interlayer portion between the first layer and the second layer,
The internal structure is provided with an internal electrode,
The external structure is provided with external electrodes,
A reference electrode is provided on the external structure or the internal structure or the interlayer part,
From the potential difference generated between the other potential measuring electrode and the reference electrode when energized between the one potential measuring electrode and the internal electrode,
The first potential of the other potential measuring electrode is subtracted by subtracting the potential difference generated between the other potential measuring electrode and the reference electrode when energized between the one potential measuring electrode and the interlayer electrode. Find the measurement potential,
From the potential difference generated between the other potential measurement electrode and the reference electrode when energized between the one potential measurement electrode and the external electrode,
By subtracting the potential difference generated between the other potential measuring electrode and the reference electrode when energized between the one potential measuring electrode and the interlayer electrode, the second potential of the other potential measuring electrode is reduced. Find the measurement potential,
By repeating the calculation of the first measurement potential at each potential measurement electrode, the first measurement potential at each potential measurement electrode is obtained, and the first potential obtained based on each first measurement potential is obtained. From the distribution, detecting the water leakage position of the first layer,
By repeating the calculation of the second measurement potential at each potential measurement electrode, the second measurement potential at each potential measurement electrode is obtained, and the second potential obtained based on the second measurement potential is obtained. A water leak detection method comprising detecting the water leak position of the second layer from the distribution.
JP2004317664A 2004-11-01 2004-11-01 Water leakage detection method Expired - Fee Related JP4377800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317664A JP4377800B2 (en) 2004-11-01 2004-11-01 Water leakage detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317664A JP4377800B2 (en) 2004-11-01 2004-11-01 Water leakage detection method

Publications (2)

Publication Number Publication Date
JP2006126108A true JP2006126108A (en) 2006-05-18
JP4377800B2 JP4377800B2 (en) 2009-12-02

Family

ID=36720982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317664A Expired - Fee Related JP4377800B2 (en) 2004-11-01 2004-11-01 Water leakage detection method

Country Status (1)

Country Link
JP (1) JP4377800B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239609A (en) * 2015-10-16 2016-01-13 上海岩土工程勘察设计研究院有限公司 Underground continuous wall leakage detection method
CN109839431A (en) * 2018-03-23 2019-06-04 中国环境科学研究院 A kind of system and method carrying out impervious barrier detection using magnetic field
CN109839432A (en) * 2018-03-23 2019-06-04 中国环境科学研究院 A kind of impervious barrier detection system and method based on magnetic field
CN113960679A (en) * 2021-10-27 2022-01-21 黄河勘测规划设计研究院有限公司 Leakage detection method and device based on hexahedron magnetic detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105239609A (en) * 2015-10-16 2016-01-13 上海岩土工程勘察设计研究院有限公司 Underground continuous wall leakage detection method
CN105239609B (en) * 2015-10-16 2017-05-03 上海岩土工程勘察设计研究院有限公司 Underground continuous wall leakage detection method
CN109839431A (en) * 2018-03-23 2019-06-04 中国环境科学研究院 A kind of system and method carrying out impervious barrier detection using magnetic field
CN109839432A (en) * 2018-03-23 2019-06-04 中国环境科学研究院 A kind of impervious barrier detection system and method based on magnetic field
CN113960679A (en) * 2021-10-27 2022-01-21 黄河勘测规划设计研究院有限公司 Leakage detection method and device based on hexahedron magnetic detection device
CN113960679B (en) * 2021-10-27 2024-01-26 黄河勘测规划设计研究院有限公司 Leakage detection method and device based on hexahedral magnetic detection device

Also Published As

Publication number Publication date
JP4377800B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
CA2779735C (en) Method and apparatus for differential voltage grid-based moisture monitoring of structures
JP4377800B2 (en) Water leakage detection method
JP3622172B2 (en) Water leak occurrence position detection method
JP3236965B2 (en) Method and apparatus for detecting damaged portion of impermeable sheet in waste disposal site
JP3710657B2 (en) Leak detection system
JP3668958B2 (en) Impermeable sheet inspection method
JP4469066B2 (en) Method for obtaining specific resistance distribution and method for detecting damage position of impermeable layer
JP3259912B2 (en) Leakage location detector for waste disposal sites
JP4159201B2 (en) Water leak detection system
JP4479861B2 (en) Device for detecting leakage of water shielding material
JP3716250B2 (en) Water leakage detection device and water leakage detection method
JP3384849B2 (en) Leakage location detection system for impermeable structures
JP2008076355A (en) System for identifying location of break in double impervious sheet
JP3380386B2 (en) Water leakage detection method and water leakage detection laminated sheet
JP4375894B2 (en) Water leakage occurrence position detection device having a correction function and method thereof
JP2001099742A (en) Water leakage detection system and method thereof
JP3212294B2 (en) Water leak detection device and water leak detection method by potential method
JP4053864B2 (en) Water leakage detection system and water leakage detection method
JP2001330531A (en) Water leakage detection system
JP3048309B2 (en) Apparatus and method for detecting breakage of impermeable sheet
JP3233398B2 (en) Water leak detection device and water leak detection method
JP2007178252A (en) Water leakage outbreak position-detecting device
JP3913616B2 (en) Damage detection system for vertical impermeable walls, and damage detection method for vertical impermeable walls
JPH11248589A (en) System for detecting water leaking position
JP2004333222A (en) Water leakage location detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Ref document number: 4377800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees