JP2006124622A - POLISHING alpha-ALUMINA COMPOSITION, AND METHOD FOR PRODUCING THE SAME - Google Patents

POLISHING alpha-ALUMINA COMPOSITION, AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2006124622A
JP2006124622A JP2004318606A JP2004318606A JP2006124622A JP 2006124622 A JP2006124622 A JP 2006124622A JP 2004318606 A JP2004318606 A JP 2004318606A JP 2004318606 A JP2004318606 A JP 2004318606A JP 2006124622 A JP2006124622 A JP 2006124622A
Authority
JP
Japan
Prior art keywords
polishing
alumina
composition
particle size
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004318606A
Other languages
Japanese (ja)
Other versions
JP4236195B2 (en
Inventor
Kazuto Tago
千人 田子
Katsuhisa Takishita
勝久 滝下
Masamitsu Shijo
正光 四條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAKI TEKKU KK
Ishihara Chemical Co Ltd
Original Assignee
WAKI TEKKU KK
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAKI TEKKU KK, Ishihara Chemical Co Ltd filed Critical WAKI TEKKU KK
Priority to JP2004318606A priority Critical patent/JP4236195B2/en
Publication of JP2006124622A publication Critical patent/JP2006124622A/en
Application granted granted Critical
Publication of JP4236195B2 publication Critical patent/JP4236195B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing α-alumina composition useful as a polishing material having an excellent polishing rate, not leaving a polishing defect, and giving a good finish after the polishing, and to provide a method for producing the same. <P>SOLUTION: This polishing α-alumina composition is characterized in that α-alumina used for a polishing composition in which the α-alumina is dispersed in water or an organic solvent as polishing particles has an α-crystal particle diameter of ≤1 μm, an oil absorption of ≥50 mL/100 g, a 50% average particle diameter of 2 to 8 μm, and a 90% particle diameter of ≤20 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、研磨用α−アルミナ組成物及びその製造方法に関する。さらに詳しくは、自動車塗装表面、プラスチック部品表面、金属表面、ガラス表面をバフ研磨又は手磨きする際の仕上げ磨き用研磨組成物に用いる研磨用α−アルミナ組成物及びその製造方法に関する。 The present invention relates to an α-alumina composition for polishing and a method for producing the same. More specifically, the present invention relates to an α-alumina composition for polishing used for a polishing composition for finish polishing when buffing or hand polishing an automobile paint surface, a plastic part surface, a metal surface, or a glass surface, and a method for producing the same.

α−アルミナは、バフ研磨用組成物等に研磨粒子として一般的に用いられているが、硬度が非常に高いために、高硬質面の研磨には良好であるが、自動車塗装表面、プラスチック部品表面等のやや軟質な表面では、研磨キズが残りやすく、特に、自動車塗装表面のように高度な仕上がりを必要とする場合は、仕上げ用途では満足のいくものではなかった。
市販の研磨用α−アルミナは、α結晶粒子径が1μm以上の大きいものは、粉砕して粒度を小さく調整しても、研磨キズが深くなり、α結晶粒子径が1μm以下の小さいものは、粒度調整することによって、研磨キズは浅くなるが、光沢良く仕上がらず、50%平均粒子径を1μm程度に調整すれば、光沢はよくなるものの、研磨力が低下するという問題があり、自動車塗装表面、プラスチック部品表面、金属表面、ガラス表面等の仕上げ研磨には不適当であった。
α-Alumina is generally used as abrasive particles in buffing compositions and the like, but because of its very high hardness, it is good for polishing highly rigid surfaces, but it is used for automotive painted surfaces, plastic parts. A slightly soft surface such as a surface is likely to have polishing scratches, and is not satisfactory in finishing applications, particularly when a high degree of finish is required, such as a car paint surface.
Commercially available α-alumina for polishing has a large α crystal particle diameter of 1 μm or more, and even if it is pulverized to adjust the particle size to a small size, the polishing scratches become deep, and the α crystal particle diameter of 1 μm or less is small. By adjusting the particle size, the polishing scratches become shallow, but it does not finish with a high gloss, and if the 50% average particle size is adjusted to about 1 μm, the gloss will improve, but there will be a problem that the polishing power will decrease, It was unsuitable for finish polishing of plastic part surfaces, metal surfaces, glass surfaces, and the like.

このように前記従来の仕上げ磨き用研磨組成物に用いるα−アルミナには
特に、自動車塗装表面の仕上げ研磨において、仕上がり状態が不十分な場合があった。
本発明は、かかる事情に鑑みなされたものであって、自動車塗装表面等の仕上げ研磨において、良好な研磨力を有し、研磨キズを残さず、かつ光沢良く仕上げることができる仕上げ磨き用研磨組成物に用いるα−アルミナとその製造方法を提供することを目的とする。
これによって、従来不十分であった仕上げ磨き用研磨組成物に用いるα−アルミナの研磨力と仕上がり性が同時に改善され、自動車塗装表面等の良好な仕上げ研磨を行うことができる。
As described above, the α-alumina used in the conventional polishing composition for finish polishing may have an insufficient finished state particularly in the finish polishing of the automobile paint surface.
The present invention has been made in view of such circumstances, and has a good polishing power in finish polishing of automobile paint surfaces and the like, and does not leave polishing scratches and can be finished with a high gloss. It aims at providing the alpha alumina used for a thing, and its manufacturing method.
As a result, the polishing power and finish of α-alumina used in the polishing composition for finish polishing, which has been insufficient in the past, are improved at the same time, and satisfactory finish polishing of the automobile paint surface and the like can be performed.

本発明者らは、鋭意研究した結果、研磨粒子として水や有機溶剤に分散した研磨組成物に用いるα−アルミナであって、α結晶粒子径が1μm以下であり、かつ、吸油量が50ml/100g以上であり、かつ、50%平均粒子径が2〜8μm、90%粒子径が20μm以下であることを特徴とする研磨用α−アルミナ組成物であれば、目的を達することがわかった。また、このような研磨用α−アルミナ組成物は、50%平均粒子径が2〜8μm、90%粒子径が20μm以下である水酸化アルミニウムを1050〜1250℃で焼成することによって得られることがわかった。 As a result of diligent research, the inventors of the present invention are α-alumina used in a polishing composition dispersed in water or an organic solvent as abrasive particles, the α crystal particle diameter is 1 μm or less, and the oil absorption is 50 ml / The polishing α-alumina composition having a weight of 100 g or more, a 50% average particle diameter of 2 to 8 μm, and a 90% particle diameter of 20 μm or less has been found to achieve the object. Further, such an α-alumina composition for polishing can be obtained by firing aluminum hydroxide having a 50% average particle diameter of 2 to 8 μm and a 90% particle diameter of 20 μm or less at 1050 to 1250 ° C. all right.

本発明の研磨組成物用α−アルミナを用いると、表1の結果から明らかなように、研磨速度に優れ、研磨キズが残らず、研磨後の仕上がりが良い研磨組成物を提供することができた。 When the α-alumina for polishing composition of the present invention is used, as is apparent from the results of Table 1, it is possible to provide a polishing composition that is excellent in polishing rate, has no polishing scratches, and has a good finish after polishing. It was.

本発明の研磨用α−アルミナ組成物は、研磨粒子として水や有機溶剤に分散した研磨組成物に用いるα−アルミナであって、α結晶粒子径は、1μm以下であることが好ましく、さらに好ましくは0.5μm以下である。α結晶粒子径が1μm以上では自動車塗装表面などの被研磨面に研磨キズを残しやすく、光沢が不良となる。
吸油量は、アマニ油吸油量(JIS K 5101に規定するもの)を表し、50ml/100g以上であることが好ましく、さらに好ましくは65ml/100g以上である。吸油量が50ml/100g以下であると、光沢が不良となる。
The α-alumina composition for polishing of the present invention is α-alumina used in a polishing composition dispersed in water or an organic solvent as abrasive particles, and the α crystal particle diameter is preferably 1 μm or less, more preferably. Is 0.5 μm or less. When the α crystal particle diameter is 1 μm or more, it is easy to leave a scratch on the surface to be polished such as the painted surface of an automobile, resulting in poor gloss.
The oil absorption represents the oil absorption of linseed oil (as defined in JIS K 5101), preferably 50 ml / 100 g or more, and more preferably 65 ml / 100 g or more. When the oil absorption is 50 ml / 100 g or less, the gloss is poor.

市販のα−アルミナは、水酸化アルミニウムを焼成後に粉砕して粒度調整していることが多く、粉砕過程でα−アルミナの吸油量が低下するという問題があった。
本発明においては、焼成前に粒度調整を行い、焼成後は粉砕しないというα−アルミナの製造方法を行なった結果、焼成後に粉砕する場合より吸油量の高いα−アルミナ組成物が得られこれが研磨用に適していることを確かめた。
粒子径は、体積基準の積算%粒子径を表し、50%平均粒子径は2〜8μm、90%粒子径は20μm以下であることが好ましく、さらに好ましくは、50%平均粒子径は4〜6μm、90%粒子径は15μm以下である。50%平均粒子径が2μmより小さいと研磨力が低下し、8μmより大きいと研磨キズが目立ち、光沢が低下する。90%粒子径が20μmより大きいと研磨キズが目立つ。
Commercially available α-alumina often has a particle size adjusted by pulverizing aluminum hydroxide after firing, and there is a problem that the oil absorption of α-alumina decreases during the pulverization process.
In the present invention, as a result of the production method of α-alumina in which the particle size is adjusted before firing and not pulverized after firing, an α-alumina composition having a higher oil absorption than when pulverized after firing is obtained. Confirmed that it is suitable for use.
The particle diameter represents an integrated% particle diameter on a volume basis, the 50% average particle diameter is preferably 2 to 8 μm, the 90% particle diameter is preferably 20 μm or less, and more preferably, the 50% average particle diameter is 4 to 6 μm. The 90% particle size is 15 μm or less. When the 50% average particle diameter is smaller than 2 μm, the polishing power is reduced, and when it is larger than 8 μm, polishing scratches are noticeable and the gloss is lowered. When the 90% particle diameter is larger than 20 μm, scratches on the polishing are conspicuous.

本発明の研磨用α−アルミナ組成物の製造方法は、50%平均粒子径が2〜8μm、90%粒子径が20μm以下である水酸化アルミニウムを原料とするのが好ましく、より好ましくは50%平均粒子径が4〜6μm、90%粒子径が15μm以下である。
原料とする水酸化アルミニウムの粒度を調整する理由は、目的とするα−アルミナの粒度と対応させるためであり、焼成後に粉砕による粒度調整をしないためである。
本発明の研磨用α−アルミナ組成物は、電子顕微鏡で観察すると、α−アルミナ結晶の凝集体であり、凝集体の形状は、多角形板状であることがわかった。
The method for producing the polishing α-alumina composition of the present invention preferably uses aluminum hydroxide having a 50% average particle diameter of 2 to 8 μm and a 90% particle diameter of 20 μm or less, more preferably 50%. The average particle size is 4-6 μm, and the 90% particle size is 15 μm or less.
The reason for adjusting the particle size of the aluminum hydroxide used as a raw material is to make it correspond to the target α-alumina particle size and not to adjust the particle size by pulverization after firing.
When the α-alumina composition for polishing of the present invention was observed with an electron microscope, it was found to be an aggregate of α-alumina crystals, and the shape of the aggregate was a polygonal plate.

このような水酸化アルミニウムの例としては、B−703(日本軽金属製)が挙げられる。
α−アルミナの焼成炉は、電気炉、ガス炉等所定の温度で焼成できれば何でもよいが、焼成雰囲気が酸化雰囲気で、大気圧で焼成可能な電気炉が望ましい。
α−アルミナの焼成温度は、1050〜1250℃が好ましく、より好ましくは1120〜1180℃である。α−アルミナの焼成温度が1050℃より低いとアルミナ結晶のα化率が低すぎるため、このようなアルミナでは研磨組成物に用いた場合、研磨力が低下する。α−アルミナの焼成温度が1250℃より高いとα−アルミナの結晶が成長しすぎるために、研磨組成物に用いた場合、微細な線キズが目立つようになる。
An example of such aluminum hydroxide is B-703 (manufactured by Nippon Light Metal).
The α-alumina firing furnace may be anything as long as it can be fired at a predetermined temperature, such as an electric furnace or a gas furnace, but an electric furnace capable of firing at an atmospheric pressure in an oxidizing atmosphere is desirable.
The firing temperature of α-alumina is preferably 1050 to 1250 ° C, more preferably 1120 to 1180 ° C. When the firing temperature of α-alumina is lower than 1050 ° C., the α conversion rate of the alumina crystals is too low, so that when such alumina is used in a polishing composition, the polishing power is lowered. When the firing temperature of α-alumina is higher than 1250 ° C., α-alumina crystals grow too much, and when used in the polishing composition, fine line scratches become conspicuous.

本発明によるα−アルミナを特定する手段として、電子顕微鏡で粒子の形状を観察したり、α結晶粒子径を計測する以外に、X線回折装置を用いて、特定の回折角における強度比を調べる方法がある。本発明による研磨用α−アルミナにおいては、回折角2θ(deg)=35.2付近のピーク強度(I2)と回折角2θ(deg)=66.5付近のピーク強度(I12)の強度比が、I2:I12=100:25〜35であることがわかった。
As means for specifying α-alumina according to the present invention, in addition to observing the shape of the particles with an electron microscope or measuring the α crystal particle diameter, the intensity ratio at a specific diffraction angle is examined using an X-ray diffractometer. There is a way. In the α-alumina for polishing according to the present invention, the intensity of the peak intensity (I 2 ) near the diffraction angle 2θ (deg) = 35.2 and the intensity of the peak intensity (I 12 ) near the diffraction angle 2θ (deg) = 66.5. The ratio was found to be I 2 : I 12 = 100: 25-35.

本発明の実施の形態をまとめると以下の通りである。
(1)研磨粒子として水や有機溶剤に分散した研磨組成物に用いるα−アルミナであって、α結晶粒子径が1μm以下であり、かつ、吸油量が50ml/100g以上であり、かつ、50%平均粒子径が2〜8μm、90%粒子径が20μm以下であることを特徴とする研磨用α−アルミナ組成物。
(2)粒子の形状が、多角形板状であることを特徴とする上記1記載の研磨用α−アルミナ組成物。
(3)X線回折法による回折角2θ(deg)=35.2付近のピーク強度(I2)と回折角2θ(deg)=66.5付近のピーク強度(I12)の強度比が、I2:I12=100:25〜35であることを特徴とする上記1及び2に記載の研磨用α−アルミナ組成物。
The embodiments of the present invention are summarized as follows.
(1) α-alumina used in a polishing composition dispersed in water or an organic solvent as abrasive particles, the α crystal particle diameter is 1 μm or less, the oil absorption is 50 ml / 100 g or more, and 50 A polishing α-alumina composition having a% average particle size of 2 to 8 μm and a 90% particle size of 20 μm or less.
(2) The α-alumina composition for polishing as described in 1 above, wherein the shape of the particles is a polygonal plate.
(3) The intensity ratio of the peak intensity (I 2 ) near the diffraction angle 2θ (deg) = 35.2 by the X-ray diffraction method and the peak intensity (I 12 ) near the diffraction angle 2θ (deg) = 66.5 is The polishing α-alumina composition as described in 1 or 2 above, wherein I 2 : I 12 = 100: 25 to 35.

(4)50%平均粒子径が2〜8μm、90%粒子径が20μm以下である水酸化アルミニウムを1050〜1250℃で焼成することによって得られる上記1〜上記3に記載された研磨用α−アルミナ組成物の製造方法。
(5)上記1〜上記3に記載された研磨用α−アルミナ組成物を、塗装表面、プラスチック表面、金属表面、ガラス表面の研磨用組成物に添加して用いること。
次に実施例によって本発明をさらに具体的に詳細に亘って説明するが、本発明はこれらの例によって何ら限定されるものではない。
(4) Polishing α- described in the above 1 to 3 obtained by firing aluminum hydroxide having a 50% average particle size of 2 to 8 μm and a 90% particle size of 20 μm or less at 1050 to 1250 ° C. A method for producing an alumina composition.
(5) The polishing α-alumina composition described in 1 to 3 above is used by adding it to the polishing composition for a coating surface, a plastic surface, a metal surface, or a glass surface.
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

水酸化アルミニウム(B703、50%平均粒子径3.8μm、90%粒子径7.2μm、日本軽金属製)1kgを焼成用の鞘に入れ、電気炉で、約100℃/時間で昇温させ、1180℃、3.5時間保持し、α−アルミナを焼成した。焼結体を解砕して研磨用α−アルミナ組成物を得た。α−アルミナ組成物の吸油量は72ml/100gであり、50%平均粒子径は4.4μm、90%粒子径は15.6μmであった。 1kg of aluminum hydroxide (B703, 50% average particle size 3.8μm, 90% particle size 7.2μm, made by Nippon Light Metal Co., Ltd.) is put in a sheath for firing, heated in an electric furnace at about 100 ℃ / hour, 1180 ℃ For 3.5 hours, and calcined α-alumina. The sintered body was crushed to obtain an α-alumina composition for polishing. The oil absorption of the α-alumina composition was 72 ml / 100 g, the 50% average particle size was 4.4 μm, and the 90% particle size was 15.6 μm.

水酸化アルミニウム(B703、50%平均粒子径3.8μm、90%粒子径7.2μm、日本軽金属製)1kgを焼成用の鞘に入れ、電気炉で、約100℃/時間で昇温させ、1150℃、3.5時間保持し、α−アルミナを焼成した。焼結体を解砕して研磨用α−アルミナ組成物を得た。α−アルミナ組成物の吸油量は75ml/100gであり、50%平均粒子径は4.5μm、90%粒子径は13.1μmであった。 1kg of aluminum hydroxide (B703, 50% average particle size 3.8μm, 90% particle size 7.2μm, made by Nippon Light Metal Co., Ltd.) is put in a sheath for firing, heated in an electric furnace at about 100 ℃ / hour, 1150 ℃ For 3.5 hours, and calcined α-alumina. The sintered body was crushed to obtain an α-alumina composition for polishing. The oil absorption of the α-alumina composition was 75 ml / 100 g, the 50% average particle size was 4.5 μm, and the 90% particle size was 13.1 μm.

水酸化アルミニウム(B703、50%平均粒子径3.8μm、90%粒子径7.2μm、日本軽金属製)1kgを焼成用の鞘に入れ、電気炉で、約100℃/時間で昇温させ、1120℃、3.5時間保持し、α−アルミナを焼成した。焼結体を解砕して研磨用α−アルミナ組成物を得た。α−アルミナ組成物の吸油量は73ml/100gであり、50%平均粒子径は4.6μm、90%粒子径は12.2μmであった。 1kg of aluminum hydroxide (B703, 50% average particle size 3.8μm, 90% particle size 7.2μm, made by Nippon Light Metal Co., Ltd.) is placed in a sheath for firing, heated in an electric furnace at about 100 ℃ / hour, 1120 ℃ For 3.5 hours, and calcined α-alumina. The sintered body was crushed to obtain an α-alumina composition for polishing. The oil absorption of the α-alumina composition was 73 ml / 100 g, the 50% average particle size was 4.6 μm, and the 90% particle size was 12.2 μm.

(比較例1)
水酸化アルミニウム(B103、50%平均粒子径6.0μm、90%粒子径22.8μm、日本軽金属製)1kgを焼成用の鞘に入れ、電気炉で、約100℃/時間で昇温させ、1150℃、3.5時間保持し、α−アルミナを焼成した。焼結体を解砕してα−アルミナ組成物を得た。α−アルミナ組成物の吸油量は72ml/100gであり、50%平均粒子径は7.3μm、90%粒子径は22.3μmであった。
(Comparative Example 1)
1kg of aluminum hydroxide (B103, 50% average particle size 6.0μm, 90% particle size 22.8μm, made by Nippon Light Metal Co., Ltd.) is placed in a sheath for firing, heated in an electric furnace at about 100 ℃ / hour, 1150 ℃ For 3.5 hours, and calcined α-alumina. The sintered body was crushed to obtain an α-alumina composition. The oil absorption of the α-alumina composition was 72 ml / 100 g, the 50% average particle size was 7.3 μm, and the 90% particle size was 22.3 μm.

(比較例2)
水酸化アルミニウム(H42、50%平均粒子径1.0μm、90%粒子径4.2μm、昭和電工製)1kgを焼成用の鞘に入れ、電気炉で、約100℃/時間で昇温させ、1200℃、3.5時間保持したが、α−アルミナは得られず、κ−アルミナが得られた。焼結体を解砕後の50%平均粒子径は3.3μm、90%粒子径は6.1μmであった。
(Comparative Example 2)
1kg of aluminum hydroxide (H42, 50% average particle size 1.0μm, 90% particle size 4.2μm, Showa Denko) is put into a sheath for firing, heated in an electric furnace at about 100 ℃ / hour, 1200 ℃ For 3.5 hours, α-alumina was not obtained, and κ-alumina was obtained. The 50% average particle size after pulverization of the sintered body was 3.3 μm, and the 90% particle size was 6.1 μm.

(比較例3)
50%平均粒子径が40μm、α結晶粒径が1μm以下のα−アルミナ(A-26、住友化学製)をボールミルで粉砕して50%平均粒子径が5.1μm、90%粒子径が16.6μmであるα−アルミナを得た。このα−アルミナの吸油量は35ml/100gであった。
(Comparative Example 3)
Α-Alumina (A-26, manufactured by Sumitomo Chemical Co., Ltd.) with a 50% average particle size of 40μm and an α crystal particle size of 1μm or less is pulverized with a ball mill and the 50% average particle size is 5.1μm and the 90% particle size is 16.6μm. Α-alumina was obtained. The oil absorption of this α-alumina was 35 ml / 100 g.

実施例1〜3、比較例1〜3で得られたα−アルミナ組成物を用いて研磨組成物を調合し、バフ研磨試験を行ってそれぞれの性能を評価した。
(1)研磨組成物の調合(実施例1〜3、比較例1〜3共通)
水52.5g中に会合型アルカリ可溶性アクリルポリマー(ロームアンドハースジャパン株式会社製プライマル
TT−615)1g、グリセリン2g、ポリオキシエチレンソルビタンモノオレエート(花王株式会社製レオドールTW−O120)0.5gを均一に混合し、実施例1〜3、比較例1〜3で得られたα−アルミナ組成物を10g均一に分散させた。ストッダードソルベント(日石三菱株式会社製ニューソルベントF)30gに、流動パラフィン(クロンプトン社製)2g、ヒマシ油1g、ポリオキシエチレンソルビタンモノオレエート(花王株式会社製レオドールTW−O106)0.5g混合して、研磨粒子分散液中に乳化させた後、アルカリ剤としてトリエタノールアミン0.5gを添加して組成物を増粘させ、研磨組成物を得た。
(2)バフ研磨試験
普通乗用車の黒色ボンネット塗装(補修用速乾ウレタン塗料を塗装したもの)表面を耐水ペーパー#2000を用いて軽く水研ぎした。上記(1)で調整した研磨組成物とスポンジバフを用いてペーパー磨き跡の修正を行ない、ペーパー目(ペーパーの磨き傷)の除去速度、仕上げ後のバフ目(バフ及びコンパウンドによる磨き傷)、光沢について評価した。
バフ研磨条件:電動ポリッシャー(リョービ株式会社製PE―2000)
ポリッシャー回転速度・・・1500rpm
バフ・・・スポンジバフ(石原薬品製B−500)
押圧荷重・・・4kg
Polishing compositions were prepared using the α-alumina compositions obtained in Examples 1 to 3 and Comparative Examples 1 to 3, and a buffing test was performed to evaluate each performance.
(1) Preparation of polishing composition (common to Examples 1-3 and Comparative Examples 1-3)
1g of associative alkali-soluble acrylic polymer (Primal TT-615 manufactured by Rohm and Haas Japan Co., Ltd.), 5g of polyoxyethylene sorbitan monooleate (Rheodor TW-O120 manufactured by Kao Corporation) in 52.5g of water Were uniformly mixed, and 10 g of the α-alumina composition obtained in Examples 1 to 3 and Comparative Examples 1 to 3 was uniformly dispersed. 30 g of Stoddard solvent (New Solvent F manufactured by Mitsubishi Oil Corporation), 2 g of liquid paraffin (Crompton), 1 g of castor oil, 0.5 g of polyoxyethylene sorbitan monooleate (Reodol TW-O106 manufactured by Kao Corporation) After mixing and emulsifying in the abrasive particle dispersion, 0.5 g of triethanolamine was added as an alkaline agent to increase the viscosity of the composition to obtain a polishing composition.
(2) Buffing test The surface of a black passenger bonnet (painted with a quick-drying urethane paint for repair) of an ordinary passenger car was lightly polished with water-resistant paper # 2000. Paper polishing marks are corrected using the polishing composition and sponge buff prepared in (1) above, the removal speed of paper eyes (paper scratches), the buff eyes after finishing (scratches due to buffs and compounds), The gloss was evaluated.
Buffing condition: Electric polisher (PE-2000 manufactured by Ryobi Corporation)
Polisher rotation speed: 1500rpm
Buff ... Sponge buff (Ishihara Yakuhin B-500)
Press load: 4kg

それぞれの評価結果を表1に表わす。
バフ目の除去速度:除去状態は目視評価
○・・・10〜15秒
△・・・15〜20秒
×・・・20秒以上
仕上げ後のバフ目:目視評価
◎・・・全くない
○・・・目立たない
△・・・やや目立つ
×・・・よく目立つ
光沢:60°鏡面光沢度計による評価
◎・・・90以上
○・・・85以上90未満
△・・・75以上85未満
×・・・75未満
Each evaluation result is shown in Table 1.
Removal speed of buffing eyes: The removal state is visually evaluated
○ ... 10-15 seconds
△ ... 15-20 seconds
X: Buffing after finishing for 20 seconds or more: Visual evaluation
◎ ・ ・ ・ Nothing at all
○ ・ ・ ・ Inconspicuous
△ ... Slightly noticeable
× ・ ・ ・ Gloss which stands out well: Evaluation by 60 ° specular gloss meter
◎ ... 90 or more ○ ... 85 or more but less than 90
Δ: 75 to less than 85
× ・ ・ ・ less than 75

本発明の研磨用α−アルミナ組成物は、研磨速度に優れ、研磨キズが残らず、研磨後の仕上がりが良い研磨材として有用であるので、機械部品や電子部品の仕上げ等にも利用することが期待される。 The α-alumina composition for polishing according to the present invention is useful as a polishing material that is excellent in polishing rate, has no polishing scratches, and has a good finish after polishing. Therefore, it can also be used for finishing mechanical parts and electronic parts. There is expected.

本発明の研磨用α−アルミナ組成物の電子顕微鏡写真Electron micrograph of α-alumina composition for polishing of the present invention

Claims (5)

研磨粒子として水や有機溶剤に分散した研磨組成物に用いるα−アルミナであって、α結晶粒子径が1μm以下であり、かつ、吸油量が50ml/100g以上であり、かつ、50%平均粒子径が2〜8μm、90%粒子径が20μm以下であることを特徴とする研磨用α−アルミナ組成物。 Α-alumina used for polishing composition dispersed in water or organic solvent as abrasive particles, α crystal particle diameter is 1 μm or less, oil absorption is 50 ml / 100 g or more, and 50% average particle A polishing α-alumina composition having a diameter of 2 to 8 μm and a 90% particle size of 20 μm or less. 粒子の形状が、多角形板状であることを特徴とする請求項1に記載の研磨用α−アルミナ組成物。 2. The α-alumina composition for polishing according to claim 1, wherein the shape of the particles is a polygonal plate shape. X線回折法による回折角2θ(deg)=35.2付近のピーク強度(I2)と回折角2θ(deg)=66.5付近のピーク強度(I12)の強度比が、I2:I12=100:25〜35であることを特徴とする請求項1及び2に記載の研磨用α−アルミナ組成物。 The intensity ratio of the peak intensity (I 2 ) near the diffraction angle 2θ (deg) = 35.2 by the X-ray diffraction method and the peak intensity (I 12 ) near the diffraction angle 2θ (deg) = 66.5 is I 2 : It is I < 12 > = 100: 25-35, The alpha-alumina composition for grinding | polishing of Claim 1 and 2 characterized by the above-mentioned. 50%平均粒子径が2〜8μm、90%粒子径が20μm以下である水酸化アルミニウムを1050〜1250℃で焼成することによって得られる研磨用α−アルミナ組成物の製造方法。 A method for producing a polishing α-alumina composition obtained by firing aluminum hydroxide having a 50% average particle diameter of 2 to 8 μm and a 90% particle diameter of 20 μm or less at 1050 to 1250 ° C. 請求項1〜請求項3に記載された研磨組成物用α−アルミナを、塗装表面、プラスチック表面、金属表面、ガラス表面の研磨用組成物に添加して用いること。 The α-alumina for polishing composition according to any one of claims 1 to 3 is added to a polishing composition for a coating surface, a plastic surface, a metal surface, or a glass surface.
JP2004318606A 2004-11-01 2004-11-01 Polishing α-alumina composition and production method thereof Active JP4236195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318606A JP4236195B2 (en) 2004-11-01 2004-11-01 Polishing α-alumina composition and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318606A JP4236195B2 (en) 2004-11-01 2004-11-01 Polishing α-alumina composition and production method thereof

Publications (2)

Publication Number Publication Date
JP2006124622A true JP2006124622A (en) 2006-05-18
JP4236195B2 JP4236195B2 (en) 2009-03-11

Family

ID=36719658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318606A Active JP4236195B2 (en) 2004-11-01 2004-11-01 Polishing α-alumina composition and production method thereof

Country Status (1)

Country Link
JP (1) JP4236195B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163154A (en) * 2006-12-27 2008-07-17 Kao Corp Method for production of polishing liquid composition
JP2008255232A (en) * 2007-04-05 2008-10-23 Soft99 Corporation Abrasive composition
JP2010163553A (en) * 2009-01-16 2010-07-29 Nicca Chemical Co Ltd Abrasive composition and polishing method
JP2012516245A (en) * 2009-01-30 2012-07-19 レンズセーバーズ リミテッド ライアビリティ カンパニー Plastic cover and lens repair compositions and methods
JP2015086238A (en) * 2013-10-28 2015-05-07 株式会社ユーテック Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent
JP2015120816A (en) * 2013-12-24 2015-07-02 花王株式会社 Polishing-liquid composition
CN110461545A (en) * 2017-02-15 2019-11-15 圣戈本陶瓷及塑料股份有限公司 Alumina abrasive particle for painting dressing automobiles composition
JP2021534317A (en) * 2018-08-10 2021-12-09 サン−ゴバン セラミックス アンド プラスティクス, インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Compositions containing multiple grinding particles and how to use them

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163154A (en) * 2006-12-27 2008-07-17 Kao Corp Method for production of polishing liquid composition
JP2008255232A (en) * 2007-04-05 2008-10-23 Soft99 Corporation Abrasive composition
JP2010163553A (en) * 2009-01-16 2010-07-29 Nicca Chemical Co Ltd Abrasive composition and polishing method
JP2012516245A (en) * 2009-01-30 2012-07-19 レンズセーバーズ リミテッド ライアビリティ カンパニー Plastic cover and lens repair compositions and methods
JP2015086238A (en) * 2013-10-28 2015-05-07 株式会社ユーテック Polishing agent, polishing article, polishing agent aerosol, polishing member and method for producing polishing agent
JP2015120816A (en) * 2013-12-24 2015-07-02 花王株式会社 Polishing-liquid composition
CN110461545A (en) * 2017-02-15 2019-11-15 圣戈本陶瓷及塑料股份有限公司 Alumina abrasive particle for painting dressing automobiles composition
JP2020510605A (en) * 2017-02-15 2020-04-09 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Alumina abrasive particles used in automotive finishing compositions
US11130682B2 (en) 2017-02-15 2021-09-28 Saint-Gobain Ceramics & Plastics, Inc. Alumina abrasive particles used for automotive finishing compositions
CN110461545B (en) * 2017-02-15 2022-01-28 圣戈本陶瓷及塑料股份有限公司 Alumina abrasive particles for automotive coating compositions
EP3582932B1 (en) 2017-02-15 2022-03-30 Saint-Gobain Ceramics&Plastics, Inc. Alumina abrasive particles used for automotive finishing compositions
JP2021534317A (en) * 2018-08-10 2021-12-09 サン−ゴバン セラミックス アンド プラスティクス, インコーポレイティドSaint−Gobain Ceramics And Plastics, Inc. Compositions containing multiple grinding particles and how to use them
JP7284263B2 (en) 2018-08-10 2023-05-30 サン-ゴバン セラミックス アンド プラスティクス,インコーポレイティド Compositions Containing Multiple Abrasive Particles and Methods of Use Thereof
US11674065B2 (en) 2018-08-10 2023-06-13 Saint-Gobain Ceramics & Plastics, Inc. Composition including a plurality of abrasive particles and method of using same

Also Published As

Publication number Publication date
JP4236195B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
KR101836879B1 (en) Sapphire polishing slurry and sapphire polishing method
KR950002333B1 (en) Sintered aluminous abrasive and method of producting the same
TWI554601B (en) Abrasive and polishing composition
JP5218736B2 (en) Method for producing polishing composition
CN1377395A (en) CMP products
JP5278631B1 (en) Composite particles for glass polishing
JP4236195B2 (en) Polishing α-alumina composition and production method thereof
CN105647391B (en) A kind of stone polishing powder
KR100560223B1 (en) Metal oxide powder for high precision polishing and preparation thereof
CN1330574C (en) Method for producing alpha -alumina powder
JPH082913A (en) Alpha-alumina for abrasive and its production
JPH11268911A (en) Alumina powder, its production, and composition for polishing
JP2006326787A (en) Grinding/polishing tool with fixed abrasive grains
JP4284771B2 (en) Α-alumina abrasive for metal polishing and its production method
KR100328308B1 (en) Composition for polishing metal on semiconductcr wafer and method of using same
CN111868201A (en) Polishing composition
TWI705947B (en) Grinding method of negatively charged substrate and manufacturing method of negatively charged substrate with high surface smoothness
EP1444308B1 (en) Cerium-based polish and cerium-based polish slurry
CN1245470C (en) Cerium-based abrasive and production process thereof
CN1379803A (en) Improved CMP products
JP4471072B2 (en) Method of grinding cerium oxide using a ball mill device
CN106915760A (en) A kind of preparation method of cerium oxide and its application in STI polishing fields
JP4666138B2 (en) Polishing composition containing aqueous zirconia sol
TW202016254A (en) Composition including a plurality of abrasive particles and method of using same
JP2005014204A (en) Polishing composition and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

R150 Certificate of patent or registration of utility model

Ref document number: 4236195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250