JP2006124442A - Method for feeding water to heat recovery system and exhaust heat recovery boiler - Google Patents

Method for feeding water to heat recovery system and exhaust heat recovery boiler Download PDF

Info

Publication number
JP2006124442A
JP2006124442A JP2004311704A JP2004311704A JP2006124442A JP 2006124442 A JP2006124442 A JP 2006124442A JP 2004311704 A JP2004311704 A JP 2004311704A JP 2004311704 A JP2004311704 A JP 2004311704A JP 2006124442 A JP2006124442 A JP 2006124442A
Authority
JP
Japan
Prior art keywords
heat recovery
gas
water
exhaust heat
temperature steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004311704A
Other languages
Japanese (ja)
Inventor
Kiyoko Isomura
聖子 磯村
Hiroshi Arase
央 荒瀬
Shigeki Kuroba
茂樹 黒羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2004311704A priority Critical patent/JP2006124442A/en
Publication of JP2006124442A publication Critical patent/JP2006124442A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for feeding water to a heat recovery system and an exhaust heat recovery boiler to effectively utilize the thermal energy removed at the inlet port of a combustion apparatus such as a gas engine. <P>SOLUTION: A tangible fuel is thermally cracked and reformed with steam to obtain a fuel for a combustion apparatus 12. In the above fuel gas system, the cooling water to be used for the cooling and refining of the gas in a gas scrubbing and cleaning apparatus 5 for removing residual water, residual tar and soot in the reformed thermally cracked gas is used as the feed water of an exhaust heat recovery boiler 14 placed at the downstream side of the combustion apparatus 12. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温の熱分解ガスを燃焼装置の燃料とする熱分解ガス燃料供給系の熱回収システムに関するものであり、詳細にはバイオマス,プラスチック等の有形燃料を水蒸気改質し、燃焼装置の燃料とする燃料供給系統の排熱を利用することを特徴とする熱分解ガス燃料供給系の熱回収システムおよび排熱回収ボイラへの給水方法に関するものである。   The present invention relates to a heat recovery system for a pyrolysis gas fuel supply system using high-temperature pyrolysis gas as a fuel for a combustion apparatus, and more specifically, steam reforming tangible fuel such as biomass, plastic, etc. The present invention relates to a heat recovery system of a pyrolysis gas fuel supply system and a method of supplying water to an exhaust heat recovery boiler, characterized by utilizing exhaust heat of a fuel supply system as fuel.

特許文献1には、廃プラスチック,バイオマス燃料等の有形燃料(以下、有形燃料という)の熱分解による高温の熱分解ガスを燃料とする燃焼装置の燃料系統において、熱分解ガスを生成可能な熱分解炉、高温の熱分解ガスの持つ顕熱で低温水蒸気と低温空気とを加熱する熱交換器を有し、熱分解ガスの一部を燃焼させて、その燃焼熱により前記低温水蒸気と低温空気とを高温水蒸気及び高温空気に加熱し、さらにその前記高温水蒸気及び高温空気を熱分解ガスの改質域に導入することで、ガス化溶融反応に伴う煤の発生を抑制するガス化装置が記載されている。   Patent Document 1 discloses heat that can generate pyrolysis gas in a fuel system of a combustion apparatus that uses high-temperature pyrolysis gas by thermal decomposition of tangible fuel such as waste plastic and biomass fuel (hereinafter referred to as tangible fuel). A cracking furnace, a heat exchanger that heats low-temperature steam and low-temperature air with sensible heat of high-temperature pyrolysis gas, burns part of the pyrolysis gas, and the low-temperature steam and low-temperature air by the combustion heat And a high-temperature steam and high-temperature air, and further introducing the high-temperature steam and high-temperature air into the reforming region of the pyrolysis gas, thereby suppressing the generation of soot associated with the gasification and melting reaction is described. Has been.

この従来技術では、燃料改質器における水蒸気改質作用により熱分解ガス中の炭化水素を改質するために、最終的に改質器に700℃以上の高温蒸気と空気を供給する。この供給される熱エネルギーは元々、高温の熱分解ガスが持っていた顕熱や発熱量であり、それが燃料系統を循環しているものであるが、ガスエンジン等の燃焼装置の燃料として使用するために、その入口において、改質ガスを燃焼装置の燃料として受入れ可能な温度にまで更に冷却するのと合わせて、改質後の熱分解ガス中に残る、水分や残存タール及び煤分を除去するガス洗浄浄化装置を設けている。前記のガス洗浄浄化装置の入口燃料ガス温度は、熱分解ガスの元となる有形の原料材の種類によって異なるが、ガス洗浄浄化装置に燃料ガスが入る前の燃料配管部で燃料ガス中の水分が結露することを避けるために、少なくとも150℃以上の温度とされる。一方、ガス洗浄浄化装置の出口燃料ガス温度は、改質後の燃料ガス中の水分や残存するタール及び煤分を除去できる温度とする必要がある。こちらも、熱分解ガスの元となる有形の原料材の種類によって異なる。例えば、木質系のバイオマスガスの場合、木タール分の分留のためには燃料ガス温度は60℃まで下げる必要がある。更に燃料ガス中に残る水分を凝縮分離するには出来るだけ常温に近い温度まで燃料ガスを冷却する必要があることから、ガス洗浄浄化装置に外部から冷却水を供給し燃料ガスと熱交換させる場合、冷却水に常温水を用いると、ガス洗浄浄化装置出口のガス温度は40℃程度となる。すなわちガス洗浄浄化装置では150℃以上の高温から40℃程度の常温に近い温度まで、燃料ガスを冷却していることとなる。   In this prior art, in order to reform the hydrocarbons in the pyrolysis gas by the steam reforming action in the fuel reformer, high-temperature steam of 700 ° C. or higher and air are finally supplied to the reformer. This supplied thermal energy is originally the sensible heat and calorific value of the high-temperature pyrolysis gas, which circulates in the fuel system, but is used as fuel for combustion devices such as gas engines. Therefore, at the inlet, in addition to further cooling the reformed gas to a temperature that can be accepted as fuel for the combustion device, moisture, residual tar and soot remaining in the reformed pyrolysis gas are removed. A gas cleaning and purifying device for removal is provided. The fuel gas temperature at the inlet of the gas cleaning and purifying device described above varies depending on the type of tangible raw material that is the source of the pyrolysis gas, but the water content in the fuel gas before the fuel gas enters the gas cleaning and purifying device. In order to avoid dew condensation, the temperature is at least 150 ° C. or higher. On the other hand, the outlet fuel gas temperature of the gas cleaning and purifying apparatus needs to be a temperature at which moisture, remaining tar and soot in the fuel gas after reforming can be removed. This also differs depending on the type of tangible raw material that is the source of pyrolysis gas. For example, in the case of woody biomass gas, the fuel gas temperature needs to be lowered to 60 ° C. in order to fractionate wood tar. Furthermore, in order to condense and separate the water remaining in the fuel gas, it is necessary to cool the fuel gas to a temperature as close to room temperature as possible, so when supplying cooling water from the outside to the gas cleaning and purifying device and exchanging heat with the fuel gas When normal temperature water is used as the cooling water, the gas temperature at the outlet of the gas cleaning and purifying apparatus is about 40 ° C. That is, in the gas cleaning and purifying apparatus, the fuel gas is cooled from a high temperature of 150 ° C. or higher to a temperature close to room temperature of about 40 ° C.

特開2001−158885号公報JP 2001-158885 A

従来技術では、ガス洗浄浄化装置において150℃以上の高温から40℃程度の常温に近い温度まで、燃料ガスを冷却しているが、その熱が利用されていない。   In the prior art, the fuel gas is cooled from a high temperature of 150 ° C. or higher to a temperature close to room temperature of about 40 ° C. in the gas cleaning and purifying apparatus, but the heat is not utilized.

本発明は、ガスエンジン等の燃焼装置入り口において取り去られた熱エネルギーの有効利用を図ることのできる熱回収システムおよび排熱回収ボイラへの給水方法を提供することを目的とする。   An object of the present invention is to provide a heat recovery system and a method of supplying water to an exhaust heat recovery boiler that can effectively use heat energy removed at the entrance of a combustion apparatus such as a gas engine.

本発明は、有形燃料を熱分解する分解炉と、発生した熱分解ガスを改質する改質装置と、改質後の熱分解ガス中に残る水分,残留タールおよび煤分をガス冷却精製によって除去するガス洗浄浄化装置と、水分,残留タールおよび煤分の除去された改質ガスを燃料とする燃焼装置と、並びに燃焼による熱エネルギーを回収する排熱回収ボイラとを備えた熱回収システムにおいて、前記ガス洗浄浄化装置でのガス冷却精製に使用した冷却水を、前記排熱回収ボイラの給水として供給する配管を設けた熱回収システムを提供する。   The present invention includes a cracking furnace for thermally decomposing tangible fuel, a reformer for reforming generated pyrolysis gas, and gas cooling purification of moisture, residual tar and soot remaining in the reformed pyrolysis gas. In a heat recovery system comprising a gas cleaning and purifying device to be removed, a combustion device using a reformed gas from which moisture, residual tar and soot have been removed as fuel, and an exhaust heat recovery boiler for recovering thermal energy from combustion A heat recovery system provided with a pipe for supplying cooling water used for gas cooling purification in the gas cleaning and purifying apparatus as feed water for the exhaust heat recovery boiler is provided.

また、本発明は、有形燃料を熱分解する分解炉と、発生した熱分解ガスを改質する改質装置と、改質後の熱分解ガス中に残る水分,残留タールおよび煤分をガス冷却精製によって除去するガス洗浄浄化装置と、水分,残留タールおよび煤分の除去された改質ガスを燃料とする燃焼装置と、並びに燃焼による熱エネルギーを回収する排熱回収ボイラとを備えた熱回収システムにおける前記排熱回収ボイラへの給水方法において、前記ガス洗浄浄化装置でのガス冷却精製に使用した冷却水が、前記排熱回収ボイラの給水として供給される熱回収システムにおける排熱回収ボイラヘの給水方法を提供する。   The present invention also provides a cracking furnace for thermally decomposing tangible fuel, a reformer for reforming generated pyrolysis gas, and gas cooling of moisture, residual tar and soot remaining in the reformed pyrolysis gas. Heat recovery comprising a gas cleaning and purifying device to be removed by refining, a combustion device using a reformed gas from which moisture, residual tar and soot have been removed as fuel, and an exhaust heat recovery boiler for recovering thermal energy from combustion In the method of supplying water to the exhaust heat recovery boiler in the system, the cooling water used for gas cooling purification in the gas cleaning and purifying apparatus is supplied to the exhaust heat recovery boiler in the heat recovery system in which the cooling water is supplied as supply water for the exhaust heat recovery boiler. Provide water supply method.

本発明によれば、従来使用されていなかった、前記ガス洗浄浄化装置でのガス冷却精製に使用する冷却水を排熱回収ボイラの給水として使用し、ボイラ給水を予熱することにより、ボイラ蒸発量を増加させることが可能となるので、ガスエンジン等の燃焼装置と排熱回収ボイラを組み合わせた熱併給プラントとしての総合効率が向上する。これにより、単独では回収したとしても温水(一般的に80℃程度の水)としてしか回収できず、利用先が限られるエネルギーであったものを、蒸気エネルギーとしての利用先を得られるようになる。   According to the present invention, the amount of boiler evaporation is obtained by using the cooling water used for gas cooling purification in the gas cleaning and purifying apparatus, which has not been used conventionally, as the feed water for the exhaust heat recovery boiler and preheating the boiler feed water. Therefore, it is possible to increase the total efficiency as a combined heat and power plant combining a combustion apparatus such as a gas engine and an exhaust heat recovery boiler. As a result, even if it is recovered alone, it can be recovered only as hot water (generally about 80 ° C. water), and it is possible to obtain a use destination as steam energy that is energy whose use is limited. .

こうして増加したボイラ蒸気を、例えば熱分解ガスの水蒸気改質用として必要な700℃以上の高温の蒸気源としても利用できる。ガスエンジン等の燃焼装置の排熱回収ボイラ蒸気温度は約180℃(0.8MPaの飽和温度)であることが多く、この温度の蒸気をガス洗浄浄化装置の上流側の蒸気発生装置に供給すると、蒸気加温に必要な熱エネルギーが少なくて済むので、その分、ガス洗浄浄化装置入口の燃料ガス温度が上昇し、ガス洗浄浄化装置でのボイラ給水への回収熱エネルギーを増加させることが出来る。   The boiler steam thus increased can also be used as a high-temperature steam source of 700 ° C. or higher necessary for steam reforming of pyrolysis gas, for example. The exhaust heat recovery boiler steam temperature of a combustion apparatus such as a gas engine is often about 180 ° C. (saturation temperature of 0.8 MPa), and when steam of this temperature is supplied to the steam generator upstream of the gas cleaning and purifying apparatus, Since less heat energy is required for steam heating, the fuel gas temperature at the gas cleaning and purifying device inlet rises, and the recovered heat energy for boiler feed water in the gas cleaning and purifying device can be increased accordingly. .

前記課題を解決するための第1の実施例は、木質バイオマス,プラスチック等の有形燃料を熱分解する分解炉と、熱分解ガスを改質する低温蒸気発生器及び高温蒸気・空気発生器、改質後の熱分解ガス中に残る、水分や残存タール及び煤分を除去するのと合わせて改質ガスを燃焼装置の燃料として受入れ可能な温度にまでさらに冷却するための、タール・水分分離器、除塵装置から成るガス洗浄浄化装置、改質ガスを燃料とする燃焼装置、その燃焼排ガスを熱エネルギー回収するための排熱回収ボイラを備えた燃料ガス系統において、前記ガス洗浄浄化装置でのガス冷却精製に使用する冷却水を、前記排熱回収ボイラの給水として供給する配管を設けることとする熱回収システムを構成する。   A first embodiment for solving the above problems includes a cracking furnace for pyrolyzing tangible fuels such as woody biomass and plastic, a low-temperature steam generator and a high-temperature steam / air generator for reforming pyrolysis gas, Tar / moisture separator for further cooling the reformed gas to a temperature that can be accepted as fuel for the combustion device, together with removing moisture, residual tar and soot remaining in the pyrolysis gas after purification. A gas cleaning / purification device comprising a dust removal device, a combustion device using reformed gas as a fuel, and a fuel gas system equipped with an exhaust heat recovery boiler for recovering thermal energy of the combustion exhaust gas. A heat recovery system is provided in which piping for supplying cooling water used for cooling and purification as feed water for the exhaust heat recovery boiler is provided.

ガスエンジン等の燃焼装置は動力用,発電用としても使用されるが、その排ガスの持つ熱エネルギーを回収するために、燃焼装置の排ガス系統に排熱回収ボイラを設置し、その排熱回収ボイラで発生する蒸気や温水を需要先に供給することが一般的に行われている。本発明により、前記燃焼装置の燃料入口に設けるガス洗浄浄化装置の冷却水を、前記排熱回収ボイラの給水に使用し、ボイラ給水を予熱することにより、ボイラ蒸発量を増加させることを可能とする。   Combustion devices such as gas engines are also used for power and power generation. In order to recover the thermal energy of the exhaust gas, an exhaust heat recovery boiler is installed in the exhaust gas system of the combustion device, and the exhaust heat recovery boiler It is common practice to supply steam and hot water generated in Japan to customers. According to the present invention, it is possible to increase the amount of boiler evaporation by using the cooling water of the gas cleaning and purifying device provided at the fuel inlet of the combustion device for supplying water to the exhaust heat recovery boiler and preheating the boiler supply water. To do.

また、第2の実施例は、前記の熱回収システムにより前記ガス洗浄浄化装置でのガス冷却精製に使用する冷却水を、前記排熱回収ボイラの給水として使用するのと同時に、熱分解ガスを改質するための低温蒸気発生器の給水としても使用するため、前記ガス洗浄浄化装置の冷却水を前記排熱回収ボイラの給水として供給する配管及び前記低温蒸気発生器の給水として供給する配管、さらにそのガス冷却精製装置の冷却水の配分を調整するために、前記排熱回収ボイラ給水側と低温蒸気発生器の給水側の分岐部に3方弁を設けることとする熱回収システムを構成する。これにより従来は前記ガス洗浄浄化装置の冷却水の温度変動として系外に捨てられていた燃料系の熱エネルギー変動を、エネルギー密度が高いので需要の多い排熱回収ボイラの蒸発量の増減として回収することを可能にする。   Further, in the second embodiment, the cooling water used for gas cooling purification in the gas cleaning and purifying apparatus by the heat recovery system is used as feed water for the exhaust heat recovery boiler, and at the same time, pyrolysis gas is used. A pipe for supplying cooling water for the gas cleaning and purifying apparatus as feed water for the exhaust heat recovery boiler and a pipe for supplying water for the low-temperature steam generator for use as feed water for a low-temperature steam generator for reforming; Further, in order to adjust the distribution of the cooling water of the gas cooling and purifying apparatus, a heat recovery system is provided in which a three-way valve is provided at a branch portion on the supply side of the exhaust heat recovery boiler and the supply side of the low-temperature steam generator. . As a result, the thermal energy fluctuation of the fuel system, which was conventionally discarded outside the system as the temperature fluctuation of the cooling water of the gas cleaning and purifying apparatus, is recovered as an increase / decrease in the evaporation amount of the exhaust heat recovery boiler, which is in high demand because the energy density is high. Make it possible to do.

以下に、本発明の第1の実施例を図1に基づいて説明する。   In the following, a first embodiment of the present invention will be described with reference to FIG.

本発明の実施例である熱回収システム100は、有形燃料を熱分解する分解炉1と、発生した熱分解ガスを改質する改質器(装置)2と、改質後の熱分解ガス中に残る水分,残留タールおよび煤分をガス冷却精製によって除去するガス洗浄浄化装置5と、水分,残留タールおよび煤分の除去された改質ガスを燃料とするガスエンジン12などの燃焼装置と、並びに燃焼による熱エネルギーを回収する排熱回収ボイラ14とを備える。   A heat recovery system 100 according to an embodiment of the present invention includes a cracking furnace 1 for thermally decomposing tangible fuel, a reformer (device) 2 for reforming generated pyrolysis gas, and the pyrolysis gas after reforming A gas cleaning and purifying device 5 that removes moisture, residual tar, and soot remaining in the gas by gas cooling purification, and a combustion device such as a gas engine 12 that uses the reformed gas from which moisture, residual tar, and soot are removed, as fuel, And an exhaust heat recovery boiler 14 that recovers thermal energy from combustion.

改質器2とガス洗浄浄化装置5との間の配管には改質器2で使用される高温蒸気、空気を発生させるための高温蒸気発生器3および低温蒸気発生器4が設けられる。低温蒸気発生器4には配管30から水が導入され蒸気となり、配管31から導入される空気と混合される。この蒸気と空気の混合流は高温蒸気発生器3に導入され、高温の蒸気・空気となって改質器2に導入され、熱分解ガスの改質ガスとして使用される。   A pipe between the reformer 2 and the gas cleaning and purifying device 5 is provided with a high-temperature steam generator 3 and a low-temperature steam generator 4 for generating high-temperature steam and air used in the reformer 2. Water is introduced into the low-temperature steam generator 4 from the pipe 30 to become steam, and is mixed with air introduced from the pipe 31. This mixed stream of steam and air is introduced into the high-temperature steam generator 3, converted into high-temperature steam / air, introduced into the reformer 2, and used as a reformed gas for the pyrolysis gas.

ガス洗浄浄化装置5は、順にタール・水分分離器6と除塵装置7とから構成される。   The gas cleaning and purifying device 5 includes a tar / water separator 6 and a dust removing device 7 in this order.

熱分解炉1には例えば木質バイオマスや廃プラスチック等の有形の燃料材が供給される。熱分解炉1を出た高温の熱分解ガスは改質器2に送られる。熱分解ガスは炭素化合物を含むため、燃焼装置の燃料ガスとして改質するためにこの改質器2で、低温蒸気発生器4及び高温蒸気・空気発生器3を通過して700℃以上に加熱された蒸気と空気により水蒸気改質される。ここでの水蒸気改質は吸熱反応であるので、燃焼装置として使用するガスエンジン12の入口からガス加給機10により昇圧された燃料ガスの一部が管路11を通って改質器2に送り込まれ、高温空気と燃焼の燃焼熱により、その温度を維持する。   The pyrolysis furnace 1 is supplied with a tangible fuel material such as woody biomass or waste plastic. The high temperature pyrolysis gas leaving the pyrolysis furnace 1 is sent to the reformer 2. Since the pyrolysis gas contains a carbon compound, it is heated to 700 ° C. or more by passing through the low temperature steam generator 4 and the high temperature steam / air generator 3 in this reformer 2 in order to reform as a fuel gas for the combustion apparatus. Steam reforming is performed by the steam and air. Since the steam reforming here is an endothermic reaction, a part of the fuel gas pressurized by the gas charger 10 is sent to the reformer 2 through the pipe 11 from the inlet of the gas engine 12 used as a combustion device. The temperature is maintained by hot air and the combustion heat of combustion.

改質器2を出た改質済みの燃料ガスは、順次、高温蒸気・空気発生器3,低温蒸気発生器4を通り、蒸気,空気,水と熱交換することにより、その温度を下げ、ガス洗浄浄化装置5入口では、比較的低温(例えば150℃程度)となる。このガス洗浄浄化装置5では、改質器2により除去仕切れなかった残存タール分,煤分及び改質器2に加えた高温蒸気の余剰分を取り去り、ガスエンジンの燃料ガスとして適切な清浄度を確保する。ここで、ガス洗浄浄化装置5は、前述のように、タール・水分分離器6と除塵装置7とから構成されており、燃料ガス中の残存タール分と余剰水蒸気分はタール・水分分離器6にて常温の冷却水と熱交換することにより、低温(たとえば40℃程度)まで一気に冷却されることにより凝縮し、その大部分はタール受槽8に貯留される。一方、煤分は、タール・水分分離器6出口に取り付ける除塵装置7で除去されて煤分受容器9に貯められる。こうして清浄となった熱分解ガスを改質した燃料ガスは、燃料ガス加給機10により、ガスエンジン12の供給圧力にまで加給され、その大半はガスエンジン12へ供給される。このとき、前記熱分解ガスの改質に用いる高温空気供給量を低減するため、その燃料ガスの一部は燃料ガス再循環系統管路11を通り、改質器2へ送られるのは先に述べた通りである。   The reformed fuel gas exiting the reformer 2 passes through the high-temperature steam / air generator 3 and the low-temperature steam generator 4 in order to reduce its temperature by exchanging heat with steam, air, and water, At the inlet of the gas cleaning and purifying apparatus 5, the temperature becomes relatively low (for example, about 150 ° C.). In this gas cleaning and purifying device 5, the remaining tar and soot that have not been removed by the reformer 2 and the excess of the high-temperature steam added to the reformer 2 are removed, so that an appropriate cleanliness as a fuel gas for the gas engine is obtained. Secure. Here, the gas cleaning and purifying device 5 is composed of the tar / water separator 6 and the dust removing device 7 as described above, and the remaining tar content and the surplus water vapor content in the fuel gas are the tar / water separator 6. By exchanging heat with normal-temperature cooling water at, it is condensed by being cooled to a low temperature (for example, about 40 ° C.) at once, and most of it is stored in the tar receiving tank 8. On the other hand, the soot is removed by a dust removing device 7 attached to the outlet of the tar / water separator 6 and stored in a soot receptacle 9. The fuel gas obtained by reforming the pyrolysis gas thus cleaned is supplied to the supply pressure of the gas engine 12 by the fuel gas charger 10, and most of the fuel gas is supplied to the gas engine 12. At this time, in order to reduce the supply amount of high-temperature air used for reforming the pyrolysis gas, a part of the fuel gas passes through the fuel gas recirculation line 11 and is sent to the reformer 2 first. As stated.

こうして、ガスエンジン12に送られた燃料ガスはガスエンジン12で燃焼され、ガスエンジン12が発電機13を廻すことにより発電が行われる。なお、改質燃料ガスの発熱量が不足する場合や、発熱量変動が大きい場合には、必要に応じて気体や液体の助燃料20が加えられる。ガスエンジン12で仕事をした燃焼排ガスは排熱回収ボイラ14で熱エネルギーを回収し、最終的に煙突15から大気に放出される。   Thus, the fuel gas sent to the gas engine 12 is combusted by the gas engine 12, and power is generated by the gas engine 12 turning the generator 13. When the calorific value of the reformed fuel gas is insufficient or when the calorific value fluctuation is large, a gas or liquid auxiliary fuel 20 is added as necessary. The combustion exhaust gas that has worked in the gas engine 12 recovers thermal energy in the exhaust heat recovery boiler 14 and is finally released from the chimney 15 to the atmosphere.

ここで、排熱回収ボイラ14への給水には、ガス洗浄浄化装置5におけるタール・水分分離器6の出口水を用いる。この給水は、タール・水分分離器6の出口から、タール・水分分離器6と排熱回収ボイラ14を接続する配管A21を経由し、排熱回収ボイラ14に供給される。排熱回収ボイラ14側から観ると、タール・水分分離器6はボイラ給水の加熱器の役割を担っている。ボイラ給水に必要な水質は給水処理装置17でボイラ給水に必要な水質に調整され、給水タンク18に貯められた後、給水ポンプ19で加圧され、タール・水分分離器6に圧送される。タール・水分分離器6では給水タンク18から給水された水で燃料ガスの持つ熱エネルギーを回収し、100℃未満(一般的に80℃程度)まで加温された後に排熱回収ボイラ14に送られたボイラ給水は、そこでガスエンジン12の排ガスと熱交換し、排熱回収ボイラ蒸気管16を通って需要先に蒸気を送気する。このとき、給水が常温から80℃程度まで事前に加温されているので、ガスエンジン12の排ガスエネルギーのみで蒸気を発生する場合と比較して発生蒸気量を増加することができる。   Here, the outlet water of the tar / water separator 6 in the gas cleaning and purifying apparatus 5 is used for water supply to the exhaust heat recovery boiler 14. This water supply is supplied from the outlet of the tar / water separator 6 to the exhaust heat recovery boiler 14 via a pipe A21 connecting the tar / water separator 6 and the exhaust heat recovery boiler 14. When viewed from the exhaust heat recovery boiler 14 side, the tar / water separator 6 plays the role of a boiler feed water heater. The water quality required for boiler feed water is adjusted to the water quality required for boiler feed water by the feed water treatment device 17, stored in the feed water tank 18, pressurized by the feed water pump 19, and pumped to the tar / water separator 6. The tar / moisture separator 6 recovers the thermal energy of the fuel gas from the water supplied from the water supply tank 18 and heats it to below 100 ° C. (generally about 80 ° C.) before sending it to the exhaust heat recovery boiler 14. The supplied boiler feed water then exchanges heat with the exhaust gas of the gas engine 12 and sends steam to the customer through the exhaust heat recovery boiler steam pipe 16. At this time, since the feed water is preheated from room temperature to about 80 ° C., the amount of generated steam can be increased compared to the case where steam is generated only with the exhaust gas energy of the gas engine 12.

排熱回収ボイラ出口の排ガス温度は、排ガス中の酸性分の露点温度や、燃焼生成する水蒸気分が煙突で結露するのを防止するために、一般的に150℃以上に保持される。従って、排熱回収ボイラで排ガスと熱交換の前に、80℃程度まで給水を予熱しても排熱回収ボイラでのガスエンジン等の燃焼装置の排熱回収に支障なく熱回収できる。   The exhaust gas temperature at the outlet of the exhaust heat recovery boiler is generally maintained at 150 ° C. or higher in order to prevent the dew point temperature of the acidic component in the exhaust gas and the water vapor generated by combustion from condensing in the chimney. Therefore, before the heat exchange with the exhaust gas in the exhaust heat recovery boiler, even if the feed water is preheated to about 80 ° C., the heat recovery can be performed without any trouble in the exhaust heat recovery of the combustion device such as the gas engine in the exhaust heat recovery boiler.

このように、有形燃料を熱分解する分解炉1と、発生した熱分解ガスを改質する改質器2と、改質後の熱分解ガス中に残る水分、残留タールおよび煤分をガス冷却精製によって除去するガス洗浄浄化装置5と、水分,残留タールおよび煤分の除去された改質ガスを燃料とするガスエンジン12などの燃焼装置と、並びに燃焼による熱エネルギーを回収する排熱回収ボイラ14とを備えた熱回収システム100において、ガス洗浄浄化装置5でのガス冷却精製に使用した冷却水を、排熱回収ボイラ14の給水として供給する配管A21を設けた熱回収システムが構成される。   In this way, a cracking furnace 1 for pyrolyzing tangible fuel, a reformer 2 for reforming the generated pyrolysis gas, and water cooling of residual moisture, residual tar and soot in the reformed pyrolysis gas are gas-cooled. Gas cleaning and purifying device 5 to be removed by refining, a combustion device such as a gas engine 12 using the reformed gas from which moisture, residual tar and soot are removed as fuel, and an exhaust heat recovery boiler for recovering thermal energy by combustion 14, a heat recovery system provided with a pipe A <b> 21 that supplies cooling water used for gas cooling purification in the gas cleaning and purifying apparatus 5 as feed water for the exhaust heat recovery boiler 14 is configured. .

本発明の第2の実施例を図2に示す。第1の実施例と同一の構成には同一の番号が付してある。従って、同一の構成の説明は第1の実施例の説明を採用するものとする。本実施例は、第1の実施例に対し、タール・水分分離器6の出口水を排熱回収ボイラ14の他に、低温蒸気発生器4にも供給するように変更したものである。実施例1のガス洗浄浄化装置5での冷却水をの排熱回収ボイラ14の給水として供給する配管A21を設けると同時に、ガス洗浄浄化装置5におけるタール・水分分離器6と低温蒸気発生器4を配管B22で接続する。さらに、タール・水分分離器6出口水の排熱回収ボイラ14側と低温蒸気発生器4側への分岐部、すなわち配管A21と配管B22の分岐部に3方弁23を設け、高温蒸気・空気発生器3入口に設置した温度計24の温度が一定値と成るように3方弁23での排熱回収ボイラ14側と低温蒸気発生器4側への温水の配分を制御装置25で制御するものとする。温度計24の温度が目標値よりも上がると、3方弁23が低温蒸気発生器4側に開くよう制御され、低温蒸気発生器4出口蒸気温度が下がるので温度計24は制御目標温度に安定する。また、温度計24の温度が低い場合には逆動作となり制御系は安定する。これを、排熱回収ボイラ14側までも含めて考えると、燃料系での熱量の変動を排熱回収ボイラ14側で吸収できることになる。すなわち、燃料系での余剰熱を排熱回収ボイラ14側に逃がし、その分、排熱回収ボイラ14の蒸発量が増加する。   A second embodiment of the present invention is shown in FIG. The same components as those in the first embodiment are denoted by the same reference numerals. Therefore, the description of the first embodiment is adopted for the description of the same configuration. In this embodiment, the outlet water of the tar / water separator 6 is changed to be supplied to the low-temperature steam generator 4 in addition to the exhaust heat recovery boiler 14 with respect to the first embodiment. At the same time as providing the piping A21 for supplying cooling water as the feed water for the exhaust heat recovery boiler 14 in the gas cleaning and purifying apparatus 5 of Embodiment 1, the tar / water separator 6 and the low-temperature steam generator 4 in the gas cleaning and purifying apparatus 5 are provided. Are connected by piping B22. Furthermore, a three-way valve 23 is provided at a branching portion of the tar / water separator 6 outlet water to the exhaust heat recovery boiler 14 side and the low-temperature steam generator 4 side, that is, a branching portion of the pipe A21 and the pipe B22. The controller 25 controls the distribution of hot water to the exhaust heat recovery boiler 14 side and the low-temperature steam generator 4 side in the three-way valve 23 so that the temperature of the thermometer 24 installed at the inlet of the generator 3 becomes a constant value. Shall. When the temperature of the thermometer 24 rises above the target value, the three-way valve 23 is controlled to open to the low temperature steam generator 4 side, and the temperature of the low temperature steam generator 4 outlet steam decreases, so the thermometer 24 is stable at the control target temperature. To do. When the temperature of the thermometer 24 is low, the operation is reversed and the control system is stabilized. If this is considered including the exhaust heat recovery boiler 14 side as well, fluctuations in the amount of heat in the fuel system can be absorbed on the exhaust heat recovery boiler 14 side. That is, surplus heat in the fuel system is released to the exhaust heat recovery boiler 14 side, and the amount of evaporation of the exhaust heat recovery boiler 14 increases accordingly.

又は所望により、3方弁23の替りに給水流量を制限する弁を排熱回収ボイラ14側と低温蒸気発生器4側のどちらかに設置し、排熱回収ボイラ14側と低温蒸気発生器4側へのガス洗浄浄化装置5における冷却水の配分を調整することも可能である。さらに温度計24は、高温蒸気・空気発生器3入口の蒸気と空気の混合気の温度を計測する替りに、たとえば高温蒸気・空気発生器3出口の蒸気と空気の混合気の温度を計測、又は低温蒸気発生器4出口側に設けた蒸気温度計(図示せず)で計測した出口蒸気温度信号、あるいは改質器2と高温蒸気・空気発生器3の間の配管に燃料ガス温度を計測するよう設置した温度計(図示せず)で計測した燃料ガス温度信号を使用して制御するようにしても同様の効果を得られる。   Alternatively, if desired, a valve that restricts the flow rate of the water supply is installed on either the exhaust heat recovery boiler 14 side or the low temperature steam generator 4 side instead of the three-way valve 23, and the exhaust heat recovery boiler 14 side and the low temperature steam generator 4 are installed. It is also possible to adjust the distribution of the cooling water in the gas cleaning and purifying device 5 to the side. Furthermore, instead of measuring the temperature of the mixture of steam and air at the inlet of the high-temperature steam / air generator 3, the thermometer 24 measures the temperature of the mixture of steam and air at the outlet of the high-temperature steam / air generator 3, for example. Alternatively, the fuel gas temperature is measured in the outlet steam temperature signal measured by a steam thermometer (not shown) provided on the outlet side of the low temperature steam generator 4 or in the pipe between the reformer 2 and the high temperature steam / air generator 3. The same effect can be obtained by controlling using a fuel gas temperature signal measured by a thermometer (not shown) installed.

このように、排熱回収ボイラ14への給水量並びに低温蒸気発生器4への給水量を制御する制御弁手段を設け、高温蒸気・空気発生器3への配管に設けた温度計24による蒸気・空気温度信号,低温蒸気発生器4の出口側に設けた蒸気温度計による出口蒸気温度信号、もしくはおよび改質器2と高温蒸気・空気発生器3との間の配管に設けた温度計による燃料ガス温度信号を入力して、排熱回収ボイラ14への給水量並びに低温蒸気発生器4への給水量を制御する制御装置を設けることができる。   In this way, the control valve means for controlling the amount of water supplied to the exhaust heat recovery boiler 14 and the amount of water supplied to the low temperature steam generator 4 is provided, and the steam generated by the thermometer 24 provided in the pipe to the high temperature steam / air generator 3 is provided.・ Air temperature signal, outlet steam temperature signal from the steam thermometer provided on the outlet side of the low temperature steam generator 4, or thermometer provided in the pipe between the reformer 2 and the high temperature steam / air generator 3 A control device can be provided that inputs a fuel gas temperature signal and controls the amount of water supplied to the exhaust heat recovery boiler 14 and the amount of water supplied to the low-temperature steam generator 4.

これらにより、実施例1の低温蒸気発生器4出口と同一の熱エネルギーの蒸気が発生するとすると、低温蒸気発生器4にはタール・水分分離器6から、一般的な温度として80℃程度の温水が供給されるので、その分、低温蒸気発生器4の伝熱面積を小さく設計することが出来る。   As a result, when steam having the same thermal energy as the outlet of the low-temperature steam generator 4 of Example 1 is generated, the low-temperature steam generator 4 has hot water of about 80 ° C. as a general temperature from the tar / water separator 6. Therefore, the heat transfer area of the low-temperature steam generator 4 can be designed to be small accordingly.

熱回収システム100は、改質器2の後流側の配管に高温蒸気・空気発生器3と低温蒸気発生器4が設けられ、冷却水の一部を低温蒸気発生器4の給水として供給する配管B22が設けられる。   In the heat recovery system 100, a high-temperature steam / air generator 3 and a low-temperature steam generator 4 are provided on the downstream side of the reformer 2, and a part of the cooling water is supplied as feed water for the low-temperature steam generator 4. A pipe B22 is provided.

そして、冷却水の一部は排熱回収ボイラ14の給水として供給する配管A21の分岐部に3方弁23を設けることによって配管を分岐し、該3方弁の制御によって排熱回収ボイラ14への給水量並びに低温蒸気発生器4への給水量を制御する制御装置が設けられる。   A part of the cooling water is branched by providing a three-way valve 23 at a branch portion of the pipe A21 that is supplied as feed water for the exhaust heat recovery boiler 14, and the exhaust heat recovery boiler 14 is controlled by controlling the three-way valve. And a control device for controlling the amount of water supplied to the low-temperature steam generator 4.

更に、排熱回収ボイラ14への給水量並びに低温蒸気発生器4への給水量を制御する制御弁手段を設け、制御装置は、高温蒸気・空気発生器3への配管に設けた温度計24による蒸気・空気温度信号、低温蒸気発生器の出口側に設けた蒸気温度計による出口蒸気温度信号、もしくは改質器2と高温蒸気・空気発生器との間の配管に設けた温度計による燃料ガス温度信号を入力して、排熱回収ボイラ14への給水量並びに低温蒸気発生器4への給水量を制御する制御装置とすることができる。   Further, control valve means for controlling the amount of water supplied to the exhaust heat recovery boiler 14 and the amount of water supplied to the low-temperature steam generator 4 is provided, and the control device includes a thermometer 24 provided in a pipe to the high-temperature steam / air generator 3. Vapor / air temperature signal due to steam, outlet steam temperature signal due to steam thermometer provided on the outlet side of the low-temperature steam generator, or fuel due to thermometer provided on the pipe between the reformer 2 and the high-temperature steam / air generator It can be set as the control apparatus which inputs a gas temperature signal and controls the amount of water supply to the waste heat recovery boiler 14 and the amount of water supply to the low temperature steam generator 4.

以上、本発明の好適な実施例について説明したが、本発明は上記実施例に限定されるものではなく、種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications or changes can be made.

たとえば、排熱回収ボイラ14の蒸発量の変動を抑制する場合には、上記のような温度計24の指示によるガス洗浄浄化装置5の冷却水配分の制御以外にも、給水ポンプ19出口に流量調節弁を設け、排熱回収ボイラ14側への給水流量が変化しないように3方弁23での排熱回収ボイラ14側への流量調節分を補正したり、蒸発量の時間変動を抑えるため3方弁23と排熱回収ボイラ14の間の管路にバッファータンクを設け流量の平準化を図るということも可能である。   For example, in order to suppress fluctuations in the evaporation amount of the exhaust heat recovery boiler 14, the flow rate at the outlet of the feed water pump 19 is controlled in addition to the control of the cooling water distribution of the gas cleaning and purifying device 5 according to the instruction of the thermometer 24 as described above. A control valve is provided to correct the flow rate adjustment amount to the exhaust heat recovery boiler 14 side in the three-way valve 23 so as not to change the feed water flow rate to the exhaust heat recovery boiler 14 side, or to suppress the time variation of the evaporation amount. It is also possible to provide a buffer tank in the pipe line between the three-way valve 23 and the exhaust heat recovery boiler 14 to equalize the flow rate.

本発明の実施形態を示す構成図である。It is a block diagram which shows embodiment of this invention. 本発明の他の実施形態を示す構成図である。It is a block diagram which shows other embodiment of this invention.

符号の説明Explanation of symbols

1…熱分解炉、2…改質器、3…高温蒸気・空気発生器、4…低温蒸気発生器、5…ガス洗浄浄化装置、6…タール・水分分離器、7…除塵装置、8…タール受槽、9…煤分受容器、10…燃料ガス加給機、11…燃料ガス再循環系統、12…ガスエンジン、13…発電機、14…排熱回収ボイラ、15…煙突、16…排熱回収ボイラ蒸気管、17…給水処理装置、18…給水タンク、19…給水ポンプ、20…助燃料、21…配管A、22…配管B、23…3方弁、24…温度計、25…制御装置、100…熱回収システム。
DESCRIPTION OF SYMBOLS 1 ... Pyrolysis furnace, 2 ... Reformer, 3 ... High temperature steam / air generator, 4 ... Low temperature steam generator, 5 ... Gas cleaning and purification device, 6 ... Tar and moisture separator, 7 ... Dust removal device, 8 ... Tar receiving tank, 9 ... Proportion acceptor, 10 ... Fuel gas supplier, 11 ... Fuel gas recirculation system, 12 ... Gas engine, 13 ... Generator, 14 ... Waste heat recovery boiler, 15 ... Chimney, 16 ... Waste heat Recovery boiler steam pipe, 17 ... feed water treatment device, 18 ... feed water tank, 19 ... feed pump, 20 ... auxiliary fuel, 21 ... pipe A, 22 ... pipe B, 23 ... three-way valve, 24 ... thermometer, 25 ... control Apparatus, 100 ... heat recovery system.

Claims (6)

有形燃料を熱分解する分解炉と、発生した熱分解ガスを改質する改質装置と、改質後の熱分解ガス中に残る水分、残留タールおよび煤分をガス冷却精製によって除去するガス洗浄浄化装置と、水分,残留タールおよび煤分の除去された改質ガスを燃料とする燃焼装置と、並びに燃焼による熱エネルギーを回収する排熱回収ボイラとを備えた熱回収システムにおいて、
前記ガス洗浄浄化装置でのガス冷却精製に使用した冷却水を、前記排熱回収ボイラの給水として供給する配管を設けたことを特徴とする熱回収システム。
A cracking furnace that thermally decomposes tangible fuel, a reformer that reforms the generated pyrolysis gas, and gas cleaning that removes moisture, residual tar and soot remaining in the reformed pyrolysis gas by gas cooling purification In a heat recovery system comprising a purification device, a combustion device using the reformed gas from which moisture, residual tar and soot have been removed as fuel, and an exhaust heat recovery boiler for recovering thermal energy from combustion,
A heat recovery system comprising a pipe for supplying cooling water used for gas cooling purification in the gas cleaning and purifying apparatus as feed water for the exhaust heat recovery boiler.
請求項1において、前記改質装置の後流側の配管に高温蒸気・空気発生器と低温蒸気発生器が設けられ、前記冷却水の一部を前記低温蒸気発生器の給水として供給する配管を設けたことを特徴とする熱回収システム。   2. The piping according to claim 1, wherein a high-temperature steam / air generator and a low-temperature steam generator are provided in a downstream side pipe of the reformer, and a part of the cooling water is supplied as water for the low-temperature steam generator. A heat recovery system characterized by being provided. 請求項2において、前記冷却水の一部を前記排熱回収ボイラの給水として供給する配管の分岐部に3方弁を設けることによって配管を分岐し、該3方弁の制御によって前記排熱回収ボイラへの給水量並びに前記低温蒸気発生器への給水量を制御する制御装置を設けたことを特徴とする熱回収システム。   3. The exhaust heat recovery system according to claim 2, wherein a pipe is branched by providing a three-way valve at a branch portion of a pipe that supplies a part of the cooling water as feed water for the exhaust heat recovery boiler, and the exhaust heat recovery is performed by controlling the three-way valve. A heat recovery system comprising a control device for controlling the amount of water supplied to the boiler and the amount of water supplied to the low-temperature steam generator. 請求項2において、前記排熱回収ボイラへの給水量並びに前記低温蒸気発生器への給水量を制御する制御弁手段を設け、前記高温蒸気・空気発生器への配管に設けた温度計による蒸気・空気温度信号、前記低温蒸気発生器の出口側に設けた蒸気温度計による出口蒸気温度信号、もしくは前記改質装置と前記高温蒸気・空気発生器との間の配管に設けた温度計による燃料ガス温度信号を入力して、前記排熱回収ボイラへの給水量並びに前記低温蒸気発生器への給水量を制御する制御装置を設けたことを特徴とする熱回収システム。   3. Steam according to claim 2, comprising control valve means for controlling the amount of water supplied to the exhaust heat recovery boiler and the amount of water supplied to the low-temperature steam generator, and a thermometer steam provided in a pipe to the high-temperature steam / air generator・ Air temperature signal, outlet steam temperature signal from a steam thermometer provided on the outlet side of the low temperature steam generator, or fuel from a thermometer provided in a pipe between the reformer and the high temperature steam / air generator A heat recovery system comprising a controller for inputting a gas temperature signal and controlling the amount of water supplied to the exhaust heat recovery boiler and the amount of water supplied to the low-temperature steam generator. 有形燃料を熱分解する分解炉と、発生した熱分解ガスを改質する改質装置と、改質後の熱分解ガス中に残る水分、残留タールおよび煤分をガス冷却精製によって除去するガス洗浄浄化装置と、水分,残留タールおよび煤分の除去された改質ガスを燃料とする燃焼装置と、並びに燃焼による熱エネルギーを回収する排熱回収ボイラとを備えた熱回収システムにおける前記排熱回収ボイラへの給水方法において、
前記ガス洗浄浄化装置でのガス冷却精製に使用した冷却水が、前記排熱回収ボイラの給水として供給されることを特徴とする熱回収システムにおける排熱回収ボイラへの給水方法。
A cracking furnace that thermally decomposes tangible fuel, a reformer that reforms the generated pyrolysis gas, and gas cleaning that removes moisture, residual tar and soot remaining in the reformed pyrolysis gas by gas cooling purification The exhaust heat recovery in a heat recovery system comprising a purification device, a combustion device using the reformed gas from which moisture, residual tar and soot are removed as fuel, and an exhaust heat recovery boiler for recovering thermal energy from the combustion In the method of water supply to the boiler,
A method of supplying water to an exhaust heat recovery boiler in a heat recovery system, wherein cooling water used for gas cooling purification in the gas cleaning and purifying apparatus is supplied as supply water for the exhaust heat recovery boiler.
請求項1において、前記改質装置の後流側の配管に高温蒸気・空気発生器と低温蒸気発生器が設けられて、前記冷却水の一部が前記低温蒸気発生器の給水として供給されることを特徴とする熱回収システムにおける排熱回収ボイラへの給水方法。
2. A high-temperature steam / air generator and a low-temperature steam generator are provided in a downstream side pipe of the reformer, and a part of the cooling water is supplied as feed water for the low-temperature steam generator. A method of supplying water to an exhaust heat recovery boiler in a heat recovery system.
JP2004311704A 2004-10-27 2004-10-27 Method for feeding water to heat recovery system and exhaust heat recovery boiler Pending JP2006124442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311704A JP2006124442A (en) 2004-10-27 2004-10-27 Method for feeding water to heat recovery system and exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311704A JP2006124442A (en) 2004-10-27 2004-10-27 Method for feeding water to heat recovery system and exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JP2006124442A true JP2006124442A (en) 2006-05-18

Family

ID=36719491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311704A Pending JP2006124442A (en) 2004-10-27 2004-10-27 Method for feeding water to heat recovery system and exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JP2006124442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102013A (en) * 2012-01-12 2012-05-31 Tamiaki Kanabe Hydrogen gas production apparatus
CN108709790A (en) * 2018-05-02 2018-10-26 佛山市高明区杨和金属材料专业镇技术创新中心 A kind of exhaust apparatus of microwave dissolver
CN110219628A (en) * 2018-03-02 2019-09-10 新疆科瑞石油工程技术服务有限公司 A kind of novel flue gas oil recovery by heating equipment
CN111156538A (en) * 2020-02-28 2020-05-15 江华 Method for transforming coal-fired boiler into biomass fuel boiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102013A (en) * 2012-01-12 2012-05-31 Tamiaki Kanabe Hydrogen gas production apparatus
CN110219628A (en) * 2018-03-02 2019-09-10 新疆科瑞石油工程技术服务有限公司 A kind of novel flue gas oil recovery by heating equipment
CN110219628B (en) * 2018-03-02 2024-04-09 山东瑞恒兴域石油技术开发有限公司 Flue gas thermal oil extraction equipment
CN108709790A (en) * 2018-05-02 2018-10-26 佛山市高明区杨和金属材料专业镇技术创新中心 A kind of exhaust apparatus of microwave dissolver
CN111156538A (en) * 2020-02-28 2020-05-15 江华 Method for transforming coal-fired boiler into biomass fuel boiler

Similar Documents

Publication Publication Date Title
CN103108832B (en) Method and device for producing process vapor and boiler feed steam in a heatable reforming reactor for producing synthesis gas
US20110104575A1 (en) Generating clean syngas from biomass
US8367256B2 (en) Water recovery assembly for use in high temperature fuel cell systems
EP2401784B1 (en) Fuel humidifier assembly for use in high temperature fuel cell systems
RU2010101227A (en) DEVICE AND METHOD OF REFORMING
CN102047061A (en) Method of and system for generating power by oxyfuel combustion
JPS59141406A (en) Rapid starting type methanol reactor
EA010401B1 (en) Method of operating a gas engine plant and fuel feeding system of a gas engine
JP2017534697A (en) Industrial production plant that minimizes greenhouse gas emissions, especially carbon dioxide emissions, and method of operation thereof
JP2019536243A5 (en)
CN109831927B (en) Method and power plant for generating electricity and producing H2 gas comprising a Solid Oxide Fuel Cell (SOFC)
RU2610634C2 (en) Gasification reactor
TWI526655B (en) Waste heat recovery apparatus and waste heat recovery method
JP2006124442A (en) Method for feeding water to heat recovery system and exhaust heat recovery boiler
JP5804971B2 (en) Modified coal production facility
KR101392971B1 (en) Complex system consisting of fuel cell and boiler
JP2005146185A (en) Equipment for utilizing plant-derived biomass resources
JP5520441B2 (en) Biomass gasification system
US8377198B2 (en) Gasification with separate calcination
JP6259552B1 (en) Gasification system with power generation equipment
US20170122132A1 (en) Waste Management
JP5925105B2 (en) Saturator and natural gas reforming system having the same
JP4196249B2 (en) Hydrogen generator
CN101495731A (en) Method for operating a power station with integrated coal gasification and power station
JP5610950B2 (en) Waste heat energy recovery system