JP2006124257A - Method of synthesizing high purity silicon carbide fine powder - Google Patents

Method of synthesizing high purity silicon carbide fine powder Download PDF

Info

Publication number
JP2006124257A
JP2006124257A JP2004317526A JP2004317526A JP2006124257A JP 2006124257 A JP2006124257 A JP 2006124257A JP 2004317526 A JP2004317526 A JP 2004317526A JP 2004317526 A JP2004317526 A JP 2004317526A JP 2006124257 A JP2006124257 A JP 2006124257A
Authority
JP
Japan
Prior art keywords
sic
fine powder
raw material
silica
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004317526A
Other languages
Japanese (ja)
Other versions
JP4714830B2 (en
JP2006124257A5 (en
Inventor
Hidehiko Tanaka
英彦 田中
Satoyuki Nishimura
聡之 西村
Satoru Ishihara
知 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004317526A priority Critical patent/JP4714830B2/en
Publication of JP2006124257A publication Critical patent/JP2006124257A/en
Publication of JP2006124257A5 publication Critical patent/JP2006124257A5/en
Application granted granted Critical
Publication of JP4714830B2 publication Critical patent/JP4714830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing high purity SiC fine powder or an SiC/C mixed fine powder used for an SiC sintered compact for a semiconductor manufacturing apparatus component by uniformly mixing inexpensive SiO<SB>2</SB>and C and reacting with each other at a high temperature. <P>SOLUTION: The method of synthesizing the high purity SiC fine powder comprising SiC single body or a mixture of SiC with C is carried out by using fine particle silica as an SiO<SB>2</SB>raw material and a liquid thermosetting resin producing C upon thermal decomposition as a C source, uniformly mixing the both by a sol-gel reaction under a solvent and after solidifying the mixture, heat-treating it in an inert gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、SiCあるいはSiCとCが混合した高純度微粉末を合成するに当たって、安価な
原料を用い、コストがかかる粉砕や精製など後処理をする必要がなく、簡単な工程で合成
する方法に関する。
The present invention relates to a method of synthesizing in a simple process without using post-treatment such as costly pulverization and purification in synthesizing SiC or a high-purity fine powder mixed with SiC and C, using an inexpensive raw material. .

半導体製造にはシリコンウェハーを熱処理したり、微量元素を熱拡散する工程があり、
その高温炉の炉心管やダミーウェハーなどには高純度なSiC焼結体が用いられている。こ
れらのSiC焼結体は研磨材用のSiCを精製した粉末から作られている。研磨材用のSiC粉末
は鉱物原料であるシリカサンドやカーボンブラックを高温で反応させて製造される。その
ため微粉末が合成できなくまた未反応シリカ(SiO2)が残り、精製処理するので、微粉末化
と高純度化が困難であった。
Semiconductor manufacturing includes heat treatment of silicon wafers and thermal diffusion of trace elements.
High-purity SiC sintered bodies are used for the core tube and dummy wafer of the high-temperature furnace. These SiC sintered bodies are made from powder obtained by purifying SiC for abrasives. SiC powder for abrasives is produced by reacting silica sand or carbon black, which are mineral raw materials, at high temperatures. For this reason, fine powder could not be synthesized and unreacted silica (SiO 2 ) remained and was subjected to purification treatment, and it was difficult to make fine powder and high purity.

これに対して、原料のSiO2とCに液状有機物質を用いて、重合反応による前駆体を合成
し、ケイ化を経てSiC微粉末を作る方法が発明された(特許文献1)。この方法では、エ
チルシリケートなど液状有機シリカ原料と、フェノール樹脂など液状有機炭素原料を用い
、加水分解や熱分解によってSiO2とCの混合物質(前駆体)を合成し、ケイ化反応をへてS
iCを合成する。原料が高純度なため、合成されたSiC粉末も高純度で、しかも微粉末が直
接合成でき、半導体製造装置の高温炉用SiC焼結体の原料として用いられるようになった
On the other hand, a method has been invented in which a liquid organic substance is used for raw materials SiO 2 and C to synthesize a precursor by a polymerization reaction and to produce SiC fine powder through silicidation (Patent Document 1). In this method, a liquid organic silica raw material such as ethyl silicate and a liquid organic carbon raw material such as phenol resin are used to synthesize a mixed substance (precursor) of SiO 2 and C by hydrolysis or thermal decomposition, and then carry out silicification reaction. S
Synthesize iC. Since the raw material is highly pure, the synthesized SiC powder is also highly pure and fine powder can be directly synthesized, and it has been used as a raw material for SiC sintered bodies for high-temperature furnaces of semiconductor manufacturing equipment.

特公平1-42886号公報JP-B-1-42886

前記特許文献1に開示されている技術で用いられるエチルシリケート等の液状シリカ原
料はSiに換算すると価格が高く、広く工業的に用いられるSiC粉末合成法としては難点が
ある。
Liquid silica raw materials such as ethyl silicate used in the technique disclosed in Patent Document 1 are expensive when converted to Si, and have a drawback as a SiC powder synthesis method widely used industrially.

本発明者は、液状シリカ原料に替えてより安価な微粒子シリカを原料とし、安価に高純
度SiC微粉末を合成することと、C原料としては比較的安価な液状の熱硬化性樹脂を用いて
微粒子シリカと均一に混合し、未反応SiO2が残らなく、精製処理のいらない純度99.9%以
上の高純度SiC微粉末の合成工程を開発した。
The present inventor uses a cheaper fine particle silica as a raw material instead of a liquid silica raw material, synthesizes high-purity SiC fine powder at a low cost, and uses a relatively inexpensive liquid thermosetting resin as a C raw material. We have developed a process for synthesizing high-purity SiC fine powder with a purity of 99.9% or more that does not require unreacted SiO 2 , which is uniformly mixed with fine-particle silica and does not require purification.

工業原料の微粒子シリカはヒュームドシリカである。特許文献1で用いられる液状シリ
カ原料(エチルシリケート)も微粒子シリカも四塩化ケイ素を出発原料として合成され、
いずれも同程度に高純度であるが、前者の価格はヒュームドシリカの3倍程度価格が高い
。ヒュームドシリカには、表面がOH基で覆われて水になじむ親水性と表面がCH3で覆われ
疎水化した疎水性シリカがある。いずれも、メタノールやエタノールと親和性を持ってい
る。
Industrial raw material fine particle silica is fumed silica. Both the liquid silica raw material (ethyl silicate) and fine particle silica used in Patent Document 1 are synthesized using silicon tetrachloride as a starting material,
Both are as highly pure, but the former is about three times as expensive as fumed silica. Fumed silica is classified into hydrophilic silica whose surface is covered with OH groups and familiar with water, and hydrophobic silica whose surface is covered with CH 3 to be hydrophobized. Both have affinity with methanol and ethanol.

本発明者は、安価なヒュームドシリカと液状の熱硬化性樹脂を混合する工程において、
両者をゾル状態にして均一に混合する技術を見いだし安価に高純度SiC微粉末合成技術の
発明に至った。特に、ゾル化を液状の熱硬化性樹脂を溶かす溶媒中で行った。ゾル化後に
ゲル化を行い、液状の熱硬化性樹脂が重合反応を経て固化する。この固体を、不活性雰囲
気で加熱すると熱硬化性樹脂は炭素になりSiC前駆体が得られる。さらに高温で処理する
とSiO2とCが反応してSiCを生ずる。前駆体はCとSiO2が均一に混合しているため、未反応S
iO2を含まない、単相のβ−SiCあるいはCを含有するβ−SiC粉末が生成する。
In the process of mixing an inexpensive fumed silica and a liquid thermosetting resin,
The inventors have found a technology for mixing both materials in a sol state and have come to the invention of a high-purity SiC fine powder synthesis technology at low cost. In particular, the sol formation was performed in a solvent that dissolves the liquid thermosetting resin. Gelation is performed after sol formation, and the liquid thermosetting resin is solidified through a polymerization reaction. When this solid is heated in an inert atmosphere, the thermosetting resin becomes carbon and a SiC precursor is obtained. When treated at a higher temperature, SiO 2 and C react to produce SiC. The precursor is a mixture of C and SiO 2, so unreacted S
iO 2 does not contain, beta-SiC powder containing beta-SiC or C single phase is formed.

本発明によって、安価な原料から高純度β−SiC微粉末あるいはβ−SiCとCが混合する
高純度微粉末を簡単な工程で合成することができる。
According to the present invention, high-purity β-SiC fine powder or high-purity fine powder in which β-SiC and C are mixed can be synthesized from an inexpensive raw material by a simple process.

以下、本発明について詳細に説明する。
高純度SiC微粉末合成の出発原料は平均粒径が100nm以下5nm以上の微粒子シリカと熱分
解してCを生じる液状の熱硬化性樹脂である。シリカの平均粒径が100nm以上であると、後
に述べる溶媒とのゾル化が困難であるし、SiCへの反応が不均一になり、反応が完結しな
い。また、平均粒径が5nm以下では粉体の嵩密度が著しく低く、扱いがむつかしい。なお
、平均粒径は走査型と透過型電子顕微鏡の画像から、画像処理ソフトウェアーを用いて測
定した値である。
Hereinafter, the present invention will be described in detail.
The starting material for the synthesis of high-purity SiC fine powder is a liquid thermosetting resin that thermally decomposes with fine-particle silica having an average particle size of 100 nm or less and 5 nm or more to generate C. When the average particle diameter of silica is 100 nm or more, it is difficult to make a sol with a solvent described later, and the reaction to SiC becomes non-uniform and the reaction is not completed. In addition, when the average particle size is 5 nm or less, the bulk density of the powder is extremely low, which is difficult to handle. The average particle diameter is a value measured using image processing software from images of a scanning type and a transmission type electron microscope.

前者の原料にはヒュームドシリカがある。ヒュームドシリカは四塩化ケイ素や揮発性ケ
イ素化合物を酸素・水素火炎中で熱分解して合成され、一次粒子の粒径は通常100nm 以下
5nm以上の微粉で、典型的には平均粒径が12-20nm程度である。液状の熱硬化性樹脂は重合
して固体になり、高温で熱分解してCを生じるもので、フェノール樹脂(フェノールホル
ムアルデヒド縮重合体)がある。フェノール樹脂は安価であり、純度は99.9%以上のもの
が入手できる。
The former raw material is fumed silica. Fumed silica is synthesized by thermally decomposing silicon tetrachloride and volatile silicon compounds in an oxygen / hydrogen flame, and the primary particle size is usually less than 100 nm.
It is a fine powder of 5 nm or more, and typically has an average particle size of about 12-20 nm. A liquid thermosetting resin is polymerized to become a solid and is thermally decomposed at a high temperature to produce C. There is a phenol resin (phenol formaldehyde condensation polymer). Phenolic resins are inexpensive and available with a purity of 99.9% or higher.

微粒子シリカと液状の熱硬化性樹脂の混合割合については、SiO2中のSiと液状の熱硬化
性樹脂が熱分解してできるCのモル比C/Siが2-3でSiC単相の粉末ができる。正確なモル比
は原料の熱硬化性樹脂の残炭率や反応率に依存し、残炭率が37%の熱硬化性樹脂を用いた
場合では2.4程度である。
Regarding the mixing ratio of fine-particle silica and liquid thermosetting resin, the Si molar ratio C / Si formed by thermal decomposition of Si in SiO 2 and liquid thermosetting resin is 2-3, and SiC single-phase powder Can do. The exact molar ratio depends on the residual carbon rate and reaction rate of the raw thermosetting resin, and is about 2.4 when a thermosetting resin with a residual carbon rate of 37% is used.

SiCとCの混合粉末を合成するにはこれ以上の原料配合比にする。高純度SiC焼結体はSiC
粉末に焼結助剤のCを添加して焼結するが、その量は0.1以上10重量%以下である。従って
、SiCに0.1から10重量%の炭素を含む粉末はこれに好適である。また反応焼結の原料粉末
はSiC粉末にCを混合してSiと反応させるが、Cの混合量は10から50重量%程度で、30重量%
が適当である。この割合で合成されたSiCとCの混合粉末は原料として利用できる。Cを50
重量%を超えて含有すると、成型密度が低くなり、また反応焼結が進みにくくなる。
To synthesize a mixed powder of SiC and C, the raw material mixture ratio should be higher. High purity SiC sintered compact is SiC
The sintering aid C is added to the powder and sintered, but the amount is 0.1 to 10% by weight. Accordingly, a powder containing 0.1 to 10% by weight of carbon in SiC is suitable for this. The raw material powder for reactive sintering is mixed with SiC powder and reacted with Si. The amount of C mixed is about 10 to 50% by weight, 30% by weight.
Is appropriate. The mixed powder of SiC and C synthesized at this ratio can be used as a raw material. C to 50
When the content exceeds 5% by weight, the molding density becomes low, and the reaction sintering hardly proceeds.

微粒子シリカと液状の熱硬化性樹脂は、後者を溶解する溶媒中でゾル化する。ゾル化に
よってシリカと液状の熱硬化性樹脂を均一に混合できる。溶媒を使わないと微粒子シリカ
と液状の熱硬化性樹脂のゾル化と均一混合はできない。フュームドシリカとフェノール樹
脂を原料にする場合は、フェノール樹脂を溶解するエタノールを溶媒に選ぶ。液状の熱硬
化性樹脂の総量に対して重量で5倍量程度の溶媒に両原料を加え撹拌混合しゾル化する。
これを75℃前後に加熱し、溶媒をある程度揮発させるとゲル化する。このゾル−ゲル化に
は数時間を要するが、オルガノシラン等のカップリング剤や、トルエンスルホン酸や希塩
酸等の酸触媒を加えると、ゾル−ゲル化時間を著しく短縮できる。
The fine particle silica and the liquid thermosetting resin are solated in a solvent that dissolves the latter. Silica and liquid thermosetting resin can be uniformly mixed by sol formation. Unless a solvent is used, solification and uniform mixing of fine-particle silica and liquid thermosetting resin cannot be performed. When fumed silica and phenol resin are used as raw materials, ethanol that dissolves phenol resin is selected as the solvent. Both raw materials are added to a solvent about 5 times by weight with respect to the total amount of the liquid thermosetting resin, and mixed with stirring to form a sol.
When this is heated to around 75 ° C. and the solvent is volatilized to some extent, it gels. This sol-gelation takes several hours, but the addition of a coupling agent such as organosilane or an acid catalyst such as toluenesulfonic acid or dilute hydrochloric acid can significantly shorten the sol-gelation time.

ゲル状原料を乾燥させると液状の熱硬化性樹脂は固化する。これを黒鉛炉でアルゴン(
Ar)など不活性雰囲気の高温で処理する。固化した原料中の熱硬化性樹脂成分は450-800
℃で炭化し、SiO2微粒子に均一にCが混合されたSiC前駆体ができる。前駆体を高温に熱す
ると反応してβ-SiC粉末あるいはβ-SiCとCの混合粉末が合成できる。SiO2とCが均一に混
合しているので未反応のSiO2はなく、コスト高につながる酸処理などの後処理は必要がな
い。反応は1200℃から始まり、通常1500〜1600℃で終了する。1200℃未満では未反応SiO2
が残る。より完全な結晶で粒径が大きいSiC粉末を合成するには1600℃以上〜2300℃程度
の高温で処理をする。2300℃を超えると経済的でない。
When the gel material is dried, the liquid thermosetting resin is solidified. This in a graphite furnace with argon (
Ar) and other inert atmospheres. The thermosetting resin component in the solidified raw material is 450-800
An SiC precursor that is carbonized at ℃ and uniformly mixed with SiO 2 fine particles is obtained. When the precursor is heated to a high temperature, it reacts to synthesize β-SiC powder or a mixed powder of β-SiC and C. Since SiO 2 and C are uniformly mixed, there is no unreacted SiO 2 , and post-treatment such as acid treatment that leads to high cost is not necessary. The reaction starts at 1200 ° C and usually ends at 1500-1600 ° C. Below 1200 ° C, unreacted SiO 2
Remains. In order to synthesize SiC powder with a more complete crystal and a large particle size, treatment is performed at a high temperature of 1600 ° C. to 2300 ° C. It is not economical to exceed 2300 ℃.

SiO2原料に親水性フュームドシリカ25gとC原料に液状フェノール樹脂31.7gを用いた。
親水性フュームドシリカの一次粒子平均粒径は12nmであった。平均粒径は粉末の電子顕微
鏡写真と画像処理ソフトウェアーを用いて計った。液状フェノール樹脂の1200℃における
残炭素率は37.8重量%である。これらを400gのエタノール溶媒中、室温で撹拌混合した。
1時間経過後にゾルになった。ゾル化した混合物を75℃で撹拌しながら加熱し、エタノー
ルを徐々に揮発させた。6時間で体積がほぼ3/4まで減少すると、ゾルはゲル化した。ゲル
化した混合物をさらに乾燥させ、白褐色の固体を得た。
25 g of hydrophilic fumed silica was used as the SiO 2 raw material, and 31.7 g of liquid phenol resin was used as the C raw material.
The primary particle average particle size of hydrophilic fumed silica was 12 nm. The average particle size was measured using an electron micrograph of the powder and image processing software. The residual carbon ratio of the liquid phenolic resin at 1200 ° C is 37.8 wt%. These were stirred and mixed at room temperature in 400 g of ethanol solvent.
After 1 hour, it became sol. The solubilized mixture was heated at 75 ° C. with stirring to gradually evaporate ethanol. When the volume decreased to almost 3/4 in 6 hours, the sol gelled. The gelled mixture was further dried to obtain a white brown solid.

これをAr雰囲気、1200℃で炭化処理すると、SiO2とCが均一に混合したSiC前駆体が得ら
れた。前駆体のSi/Cモル比は2.4であった。前駆体をAr雰囲気の炭素炉で1800℃に加熱し
たところβ-SiC単相からな微粉末が得られた。粉末は灰黄色をしており、純度は99.9%以
上であった。粉末の特性を表1の第2列に記した。原料のフュームドシリカとフェノール樹
脂の価格は各々、1500円/kgと350円/kgであり、これから計算した原料コストも記した。
When this was carbonized at 1200 ° C. in an Ar atmosphere, a SiC precursor in which SiO 2 and C were uniformly mixed was obtained. The Si / C molar ratio of the precursor was 2.4. When the precursor was heated to 1800 ° C in a carbon furnace in an Ar atmosphere, fine powder composed of β-SiC single phase was obtained. The powder was grayish yellow and the purity was 99.9% or more. The powder properties are listed in the second column of Table 1. The prices of raw fumed silica and phenolic resin are 1500 yen / kg and 350 yen / kg, respectively.

SiO2原料に疎水性フュームドシリカ25gと、C原料に実施例1と同じ液状フェノール樹脂5
2.9gを用いた。疎水性フュームドシリカの一次粒子平均粒径は16nmであった。これらを40
0gのエタノールと1gのシランカップリング剤(N-2アミノエチル3アミノプロピルトリエト
キシシラン)の溶媒中、室温で撹拌混合したところ、直ちにゾル化し、室温で30分撹拌し
たところゲル化した。乾燥した白褐色の固体を、実施例1と同様に1200℃で炭化処理した
。前駆体のC/Siのモル比は4.0であった。前駆体を実施例1と同様に1600℃に加熱すると、
β−SiCが59.4 重量%と残部Cからなる混合微粉末が得られた。SiC とC粉末としての純度
は99.9%以上であった。粉末の特性と原料コストは表1の第3列のようであった。
[比較例1]
Hydrophobic fumed silica 25g as SiO 2 raw material and liquid phenolic resin 5 same as Example 1 as C raw material
2.9 g was used. The average primary particle size of the hydrophobic fumed silica was 16 nm. 40 of these
In a solvent of 0 g of ethanol and 1 g of a silane coupling agent (N-2 aminoethyl 3-aminopropyltriethoxysilane), the mixture was stirred and mixed at room temperature, and immediately sol was formed. After stirring at room temperature for 30 minutes, gelation occurred. The dried white brown solid was carbonized at 1200 ° C. as in Example 1. The precursor C / Si molar ratio was 4.0. When the precursor was heated to 1600 ° C. as in Example 1,
A mixed fine powder consisting of 59.4 wt% β-SiC and the balance C was obtained. The purity as SiC and C powder was more than 99.9%. The powder characteristics and raw material costs are shown in the third column of Table 1.
[Comparative Example 1]

Si原料にエチルシリケート(Si(OC2H5)4)100gとC原料に実施例1と同じ液状フェノール
樹脂38.4gを用いた。水40gと重合触媒とともに、50℃で撹拌混合したところ、約12時間後
にゲル化した。ゲル物質を乾燥させ、実施例1と同様にSiC前駆体からβ−SiC粉末を合成
した。なお前駆体のC/Si のモル比は2.52であった。合成した粉末の特性は表-1の第4列の
ようであった。原料のエチルシリケートは1kgで1200円である。
100 g of ethyl silicate (Si (OC 2 H 5 ) 4 ) was used as the Si raw material, and 38.4 g of the same liquid phenol resin as in Example 1 was used as the C raw material. When 40 g of water and a polymerization catalyst were mixed with stirring at 50 ° C., gelation occurred after about 12 hours. The gel material was dried, and β-SiC powder was synthesized from the SiC precursor in the same manner as in Example 1. The molar ratio of C / Si of the precursor was 2.52. The properties of the synthesized powder are shown in the fourth column of Table-1. Raw material ethyl silicate is 1200 yen per 1kg.

実施例1と実施例2より、Si原料に微粒子シリカ(フュームドシリカ)と液状有機炭素原
料(フェノール樹脂)を原料として、ゾル−ゲル反応で均一に混合し、炭化とケイ化処理
をすれば、未反応SiO2を含まない高純度β−SiC微粉末またはβ−SiCとC混合粉末ができ
た。この方法は、特許文献1で開示した比較例1のSi原料に液状シリカ(エチルシリケー
ト)を用いる方法より原料コストが著しく安い。
From Example 1 and Example 2, if fine silica (fumed silica) and liquid organic carbon raw material (phenol resin) are used as raw materials for Si raw material, they are uniformly mixed by sol-gel reaction, and carbonized and silicified. A high-purity β-SiC fine powder containing no unreacted SiO 2 or a mixed powder of β-SiC and C was obtained. This method is significantly cheaper than the method using liquid silica (ethyl silicate) as the Si raw material of Comparative Example 1 disclosed in Patent Document 1.

Figure 2006124257
Figure 2006124257

本発明によって、安価な原料から高純度β−SiC微粉末あるいはβ−SiCとCが混合する
高純度微粉末を合成することに成功した。前者はホットプレス焼結を利用して、シリコン
ウェハー熱処理時に使うダミーウェハーの原料として利用できる。また、従来、SiC粉末
にCを混合してSiと反応焼結をおこない、拡散路反応管など高純度半導体製造用機器の重
要な部品を供給している。反応焼結の原料はSiCにCとSiであるからCを含有するβ−SiC粉
末はこの原料として好適である。
The present invention succeeded in synthesizing high-purity β-SiC fine powder or high-purity fine powder in which β-SiC and C are mixed from inexpensive raw materials. The former can be used as a raw material for a dummy wafer used during heat treatment of a silicon wafer by using hot press sintering. Also, conventionally, SiC powder is mixed with C and subjected to reaction sintering with Si to supply important parts of high-purity semiconductor manufacturing equipment such as diffusion reaction tubes. Since the raw materials for reaction sintering are SiC and C, β-SiC powder containing C is suitable as this raw material.

Claims (3)

一次粒子の平均粒径が100nm以下5nm以上の微粒子シリカと、熱分解して炭素(C)を生
じる液状の熱硬化性樹脂を、樹脂を溶解する溶媒中でゾル化して混合し、その後ゲル化し
、固体化した原料を、不活性雰囲気で1200℃以上に加熱し、β型炭化ケイ素(β−SiC)
単相あるいはβ−SiCとCが混合した純度99.9%以上の高純度微粉末を合成する合成方法。
Fine silica particles with an average primary particle size of 100 nm or less and 5 nm or more and a liquid thermosetting resin that thermally decomposes to generate carbon (C) are mixed in a solvent that dissolves the resin, and then gelled. The solidified raw material is heated to 1200 ° C or higher in an inert atmosphere to form β-type silicon carbide (β-SiC)
A synthesis method for synthesizing single-phase or high-purity fine powder with a purity of 99.9% or more mixed with β-SiC and C.
一次粒子の平均粒径が100nm以下5nm以上の微粒子シリカが火炎加熱分解法で作られたヒュ
ームドシリカである請求項1記載の合成方法。
The synthesis method according to claim 1, wherein the fine particle silica having an average primary particle size of 100 nm or less and 5 nm or more is fumed silica produced by a flame pyrolysis method.
微粒子シリカと液状の熱硬化性樹脂を混合しゾルーゲル化する工程において、カップリン
グ剤や触媒を加えて行う請求項1記載の合成方法。
The synthesis method according to claim 1, wherein in the step of mixing the fine particle silica and the liquid thermosetting resin to form a sol-gel, a coupling agent or a catalyst is added.
JP2004317526A 2004-11-01 2004-11-01 Method for synthesizing silicon carbide or fine powder in which silicon carbide and carbon are mixed Expired - Fee Related JP4714830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317526A JP4714830B2 (en) 2004-11-01 2004-11-01 Method for synthesizing silicon carbide or fine powder in which silicon carbide and carbon are mixed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317526A JP4714830B2 (en) 2004-11-01 2004-11-01 Method for synthesizing silicon carbide or fine powder in which silicon carbide and carbon are mixed

Publications (3)

Publication Number Publication Date
JP2006124257A true JP2006124257A (en) 2006-05-18
JP2006124257A5 JP2006124257A5 (en) 2008-06-05
JP4714830B2 JP4714830B2 (en) 2011-06-29

Family

ID=36719341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317526A Expired - Fee Related JP4714830B2 (en) 2004-11-01 2004-11-01 Method for synthesizing silicon carbide or fine powder in which silicon carbide and carbon are mixed

Country Status (1)

Country Link
JP (1) JP4714830B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501871A (en) * 2006-08-29 2010-01-21 エーエルデー・バキューム・テクノロジーズ・ゲーエムベーハー Spherical fuel element for gas-cooled high temperature pebble bed reactor (HTR) and method for producing the same
JP2012046401A (en) * 2010-08-30 2012-03-08 Sumitomo Osaka Cement Co Ltd Method for manufacturing silicon carbide precursor, and method for manufacturing silicon carbide powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141612A (en) * 1983-12-28 1985-07-26 Nippon Cement Co Ltd Preparation of silicon carbide powder having high purity
JPH01197306A (en) * 1987-10-05 1989-08-09 Engelhard Corp Thermally reduced ceramic material and production thereof
JPH02233513A (en) * 1987-05-15 1990-09-17 Union Oil Co Calif Dispersion of silica particles in carbon and manufacture of silicon carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141612A (en) * 1983-12-28 1985-07-26 Nippon Cement Co Ltd Preparation of silicon carbide powder having high purity
JPH02233513A (en) * 1987-05-15 1990-09-17 Union Oil Co Calif Dispersion of silica particles in carbon and manufacture of silicon carbide
JPH01197306A (en) * 1987-10-05 1989-08-09 Engelhard Corp Thermally reduced ceramic material and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501871A (en) * 2006-08-29 2010-01-21 エーエルデー・バキューム・テクノロジーズ・ゲーエムベーハー Spherical fuel element for gas-cooled high temperature pebble bed reactor (HTR) and method for producing the same
US8243871B2 (en) 2006-08-29 2012-08-14 Ald Vacuum Technologies Gmbh Spherical fuel element and production thereof for gas-cooled high temperature pebble bed nuclear reactors (HTR)
JP2012046401A (en) * 2010-08-30 2012-03-08 Sumitomo Osaka Cement Co Ltd Method for manufacturing silicon carbide precursor, and method for manufacturing silicon carbide powder

Also Published As

Publication number Publication date
JP4714830B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
US5589116A (en) Process for preparing a silicon carbide sintered body for use in semiconductor equipment
KR101678624B1 (en) A method for preparing silicon carbide powder of ultra-high purity
KR101578988B1 (en) Ceramic sintered body and method of manufacturing ceramic sintered body
CN109790035B (en) Silicon carbide powder and method for producing same
KR100972601B1 (en) Process for producing nano-sized silicon carbide powder
KR101627371B1 (en) Preparing method of size-controlled silicon carbide powder
KR102149834B1 (en) A method for manufacturing of a porous silicon carbide sintered body by carbothermal reduction process
JP2009269797A (en) Method for producing silicon carbide powder
KR101116755B1 (en) SiC/C/SiO2 composite powders fabricated by sol-gel process, and fabrication method of reaction bonded silicon carbide with high purity and high strength using them
JP2008150263A (en) Method of manufacturing silicon carbide powder
KR101084711B1 (en) A method for manufacturing SiC micro-powder with high purity at low temperature
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JP4714830B2 (en) Method for synthesizing silicon carbide or fine powder in which silicon carbide and carbon are mixed
JP2021084858A (en) METHOD FOR PRODUCING GRANULAR α-PHASE SILICON CARBIDE POWDERS WITH HIGH-PURITY
CN108996483B (en) Method for synthesizing silicon nitride powder by combustion
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JP4788873B2 (en) Precursor for silicon carbide production
JP2006124257A5 (en) Solid raw material used for production of SiC powder, production method thereof, and SiC synthesis method
JP4111478B2 (en) Method for producing silicon carbide microspheres
JPH0137324B2 (en)
JPH0421605B2 (en)
JPH0142886B2 (en)
KR101448241B1 (en) Composition for producing the high-purity silicon carbide powder and method for producing the high-purity silicon carbide powder used it
JPS61168514A (en) Production of easily sinterable silicon carbide
JP2002316812A (en) Method for producing silicon carbide fine powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees