JP2006121589A - Echo cancellation method, apparatus for executing same, program, and recording medium thereof - Google Patents

Echo cancellation method, apparatus for executing same, program, and recording medium thereof Download PDF

Info

Publication number
JP2006121589A
JP2006121589A JP2004309639A JP2004309639A JP2006121589A JP 2006121589 A JP2006121589 A JP 2006121589A JP 2004309639 A JP2004309639 A JP 2004309639A JP 2004309639 A JP2004309639 A JP 2004309639A JP 2006121589 A JP2006121589 A JP 2006121589A
Authority
JP
Japan
Prior art keywords
echo
signal
short
time spectrum
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309639A
Other languages
Japanese (ja)
Other versions
JP4504782B2 (en
Inventor
Akira Emura
暁 江村
Suehiro Shimauchi
末廣 島内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004309639A priority Critical patent/JP4504782B2/en
Publication of JP2006121589A publication Critical patent/JP2006121589A/en
Application granted granted Critical
Publication of JP4504782B2 publication Critical patent/JP4504782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable remarkably shortening an inevitably occurring processing delay in an algorithm while avoiding the deterioration in echo component ratio estimating performance in an echo cancellation method. <P>SOLUTION: The ratio of echo components included in a short-time spectrum of a residual signal is estimated by using not only the short-time spectrum of a multi-channel reproduction signal of a present frame but also the short-time spectrum of a reproduction signal of a past frame. More specifically, the present frame and past frame of the multi-channel reproduction signal are separated into a main component consisting of the short-time spectrum of a first channel reproduction signal of the present frame, and a sub-frame consisting of the short-time spectrum of the other reproduction signal from which the correlation with the main component is removed, the ratio of the echo of the main component occupied in the residual signal is obtained, the ratio of the echo of the sub-component is obtained in the voice picked-up signal from which the correlation with the main component is removed, and the ratio of echo components of the multichannel reproduction signal occupied in the residual voice signal is obtained, and the ratio of echo component of the multi-channel reproduction signal occupied in a picked-up voice signal is estimated from these two ratios. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば多チャネル音響再生系を有する通信会議システムに適用され、ハウリングの原因及び聴覚上の障害となる音響エコーを消去する多チャネル反響消去方法、その装置、そのプログラム及びその記録媒体に関するものである。   The present invention relates to a multi-channel echo cancellation method, an apparatus thereof, a program thereof, and a recording medium thereof, which are applied to, for example, a communication conference system having a multi-channel sound reproduction system and cancel acoustic echoes that cause acoustic feedback and cause hearing problems. Is.

近年のディジタルネットワークの大容量化により、複数の人が容易に参加でき、より自然な通話環境を提供できる多チャネル拡声型の通信会議システムが検討されている。このシステムでは、受話音声がスピーカから再生されマイクロホンに収音されて音響エコーが生じ、そのまま送信されると通話の障害や不快感などの問題が生じる。さらにスピーカ再生信号の信号パワーよりも音響エコー信号の信号パワーが大きくなる場合には、音響エコーがハウリングを引き起こして通話を不可能にしてしまう。快適な通話環境を実現するにはスピーカからマイクロホンへの音響的回り込みに対応する信号成分を、マイクロホン収音信号から消去する音響エコーキャンセラが必要となる。   With the recent increase in capacity of digital networks, a multi-channel loudspeaker type teleconferencing system is being studied that allows multiple people to participate easily and provide a more natural calling environment. In this system, the received voice is reproduced from the speaker and picked up by the microphone to generate an acoustic echo. If the received voice is transmitted as it is, problems such as a telephone call failure and discomfort arise. Further, when the signal power of the acoustic echo signal is larger than the signal power of the speaker reproduction signal, the acoustic echo causes howling and makes a call impossible. In order to realize a comfortable telephone call environment, an acoustic echo canceller that erases a signal component corresponding to acoustic wraparound from the speaker to the microphone from the microphone sound pickup signal is required.

M(≧2)チャネルの再生系とN(≧1)チャネルの収音系とで構成される通信会議システムは、図1に示すような構成により音響エコーの消去を行う。すなわち各受話端子1(m=1,…,M)からの受話信号は各スピーカ2(m=1,…,M)で音響信号として再生され、各M個の音響エコー経路を経て各マイクロホン3(n=1,…,N)に回り込む。受話側の全Mチャネルの受話端子1(m=1,…,M)と、Nチャネル送話側の送話端子5(n=1,…,N)それぞれとの間にMチャネルエコーキャンセル部6(n=1,…,N)を接続して音響エコーを消去する。図1の構成は、図2のM入力1出力のエコーキャンセル部をN個並列に並べた構成になっている。 A communication conference system including an M (≧ 2) channel reproduction system and an N (≧ 1) channel sound collection system performs acoustic echo cancellation with the configuration shown in FIG. That is, the received signal from each receiving terminal 1 m (m = 1,..., M) is reproduced as an acoustic signal by each speaker 2 m (m = 1,..., M), and passes through each M acoustic echo paths. It goes around the microphone 3 n (n = 1,..., N). M channel echoes between the receiving terminals 1 m (m = 1,..., M) of all M channels on the receiving side and the transmitting terminals 5 n (n = 1,..., N) on the N channel transmitting side. The cancel unit 6 n (n = 1,..., N) is connected to cancel the acoustic echo. The configuration of FIG. 1 is a configuration in which N echo cancellation units of M input and 1 output in FIG. 2 are arranged in parallel.

Mチャネルエコーキャンセル部6の内部では、多チャネル受話信号から予測エコー信号が生成され、マイクロホン収音信号との差e(k)および受話信号に基づいて収音信号と予測エコー信号の差が小さくなるように予測エコー生成用の適応フィルタ係数が逐次更新される。収音信号に非エコー信号が含まれる状況では、適応フィルタの係数がこの分だけ誤って更新されるので、適応フィルタが発散する危険もある。発散を回避するには適応フィルタの更新量を十分小さくする必要がある。実際には不必要に小さい更新量を選択するか、発散しない程度の大きさの更新量ではあるが非エコー信号の妨害による不正確な更新をある程度の確率で許容することになり、収束速度を低下させてしまう。 Inside the M-channel echo canceling unit 6 n, prediction echo signals from the multi-channel reception signal is generated, the difference between the collected signal and the predicted echo signal on the basis of the difference e (k) and the received signal with the microphone sound pickup signal The adaptive filter coefficient for predictive echo generation is sequentially updated so as to decrease. In a situation where a non-echo signal is included in the collected sound signal, the adaptive filter coefficient is erroneously updated by this amount, so there is a risk that the adaptive filter diverges. In order to avoid divergence, the update amount of the adaptive filter needs to be made sufficiently small. In practice, an update amount that is unnecessarily small is selected, or an update amount that is large enough not to diverge, but inaccurate updates due to non-echo signal interference are allowed with a certain probability, and the convergence speed is reduced. It will decrease.

この非エコー成分に対して頑健に動作する多チャネルエコー消去法が特開2003−250193号公報(特許文献1)に示されている。この方法と特開2002−223182号公報(特許文献2)で示されている適応フィルタ処理での処理遅延が短いマルチディレイ・フィルタ(以下、MDFと略す。)法とを組み合わせた場合のMチャネルエコーキャンセル部6の構成例を図3に示す。この方法では、残差信号すなわち収音信号と予測エコー信号との差信号に占めるエコー成分の比率を周波数成分ごとに推定し、この比率に応じて周波数成分ごとに適応フィルタ係数の更新を制御する。また、MDF法は、畳み込み処理がより小さいブロック同士のオーバーラップセーブ処理に分割できることを利用する。適応フィルタのタップ長をL、分割数をD(ただしLはDで割り切れる)、L=L/Dとすると、MDF法ではLサンプル毎に畳み込み処理が可能なため、Lサンプル毎に適応信号処理を適用することが可能になる。したがって、ハードウェア等の処理能力にかかわらずアルゴリズム上必ず存在する遅延である処理遅延を1/Dにできる。 Japanese Unexamined Patent Publication No. 2003-250193 (Patent Document 1) discloses a multi-channel echo cancellation method that operates robustly against this non-echo component. M channel when this method is combined with a multi-delay filter (hereinafter abbreviated as MDF) method having a short processing delay in adaptive filter processing disclosed in Japanese Patent Laid-Open No. 2002-223182 (Patent Document 2) A configuration example of the echo cancellation unit 6 is shown in FIG. In this method, the ratio of the echo component in the residual signal, that is, the difference signal between the collected sound signal and the predicted echo signal is estimated for each frequency component, and the update of the adaptive filter coefficient is controlled for each frequency component according to this ratio. . Further, the MDF method uses that the convolution process can be divided into overlap save processes between smaller blocks. The tap length of the adaptive filter L, the number of divisions D (where L is divisible by D), when the L D = L / D, since the MDF method capable convolution processing for each L D samples, each L D Sample Adaptive signal processing can be applied. Therefore, the processing delay, which is always a delay in the algorithm regardless of the processing capability of hardware or the like, can be reduced to 1 / D.

予測エコー生成部60では、各再生信号x(k)(m=1,…,M)はLサンプル毎に長さ2Lの信号ベクトルにフレーム化されて周波数領域に変換されて蓄積され、D個のフレームから周波数領域処理を経由して予測エコー信号が生成される。減算部61では、マイクロホン3からの収音信号のフレームと予測エコー信号のフレームとの差がとられる。この残差信号フレームは、TF変換部62を経てエコー成分比率推定部63およびフィルタ係数更新部64に入力される。エコー成分比率推定部63は、周波数成分ごとに残差信号に含まれるエコー成分の比率を推定する。フィルタ係数更新部64は、受話信号と残差信号から周波数成分ごとにフィルタ係数の修正方向を求め、その大きさをエコー成分の比率に応じて制御する。 The prediction echo generator 60, the reproduced signal x m (k) (m = 1, ..., M) is stored after being converted into the frequency domain are framed into a signal vector of length 2L D per L D Sample A predicted echo signal is generated from the D frames via frequency domain processing. In the subtracting unit 61, the difference between the frame of the collected sound signal from the microphone 3 and the frame of the predicted echo signal is taken. The residual signal frame is input to the echo component ratio estimation unit 63 and the filter coefficient update unit 64 via the TF conversion unit 62. The echo component ratio estimation unit 63 estimates the ratio of echo components included in the residual signal for each frequency component. The filter coefficient updating unit 64 obtains the correction direction of the filter coefficient for each frequency component from the received signal and the residual signal, and controls the magnitude according to the ratio of the echo component.

エコー成分比率推定部63の構成を図4に示す。相関除去部631では、多チャネル再生信号のスペクトルX(j,f),…,X(j,f)から互いに相関のない多チャネルのスペクトルX(j,f),X2(1)(j,f),…,XM(M−1)(j,f)を求める。相関除去部632では、残差信号のスペクトルE(j,f)から第1〜第m−1チャネル再生信号の相関成分を除去したスペクトルE(m―1)(j,f)(m=2,…,M)を求める。コヒーレンス算出部633では、コヒーレンス算出部633で第1チャネル再生信号X(j,f)と残差信号E(j,f)のコヒーレンスγ1y (j,f)を、コヒーレンス算出部633で短時間スペクトルXm(m−1)(j,f)とE(m−1)(j,f)(m=2,…,M)のコヒーレンスγmy(m−1) (j,f)を求める。エコー成分比率算出部634では、次式によりエコー成分比率γ(j,f)を求める。

Figure 2006121589
エコー成分比率推定のフローを図5に示す。
特開2003−250193号公報 特開2002−223182号公報 The configuration of the echo component ratio estimation unit 63 is shown in FIG. In the correlation removal unit 631, multi-channel spectra X 1 (j, f), X 2 (1 ) that are not correlated with each other from the spectra X 1 (j, f),..., X M (j, f) of the multi-channel reproduction signal. ) (J, f),..., X M (M-1) (j, f) is obtained. In the correlation removing unit 632, a spectrum E (m−1) (j, f) (m = 2) obtained by removing the correlation component of the first to (m−1) -th channel reproduction signals from the residual signal spectrum E (j, f). , ..., M). In the coherence calculation unit 633, the coherence calculation unit 633 1 converts the coherence γ 1y 2 (j, f) of the first channel reproduction signal X 1 (j, f) and the residual signal E (j, f) into the coherence calculation unit 633. m for a short time spectrum X m (m−1) (j, f) and E (m−1) (j, f) (m = 2,..., M) coherence γ my (m−1) 2 (j , F). The echo component ratio calculation unit 634 obtains an echo component ratio γ 2 (j, f) by the following equation.
Figure 2006121589
The flow of echo component ratio estimation is shown in FIG.
JP 2003-250193 A JP 2002-223182 A

上記従来法では、適応フィルタのタップ長Lを残響時間にほぼ相当する長さに設定する。残響時間は、通常の部屋では300ms以上になる。仮に、この時間にあわせてフレーム長2Lを取った場合、信号のバッファリングにより生じる遅延(処理遅延)がLサンプルになり、通話系として非常に話しづらくなってしまう。そのため上記従来法では、この遅延を短くするために適応フィルタのタップ長Lよりもフレーム長2Lを短く設定し、エコー成分比率を推定し、適応フィルタ係数の更新量を制御する。
しかし、スピーカから再生されてマイクロホンに収音されるまでに2Lサンプル以上遅延するエコー成分は、非エコー成分として扱われることが問題となる。つまり、フレーム長2Lを、適応フィルタのタップ長Lよりも大幅に短く設定した場合には、非エコー成分とみなされるエコー成分が増大する。その結果、エコー成分比率が小さめに設定されたり、エコー成分の推定値が揺らいだりするために、エコー成分比率の推定性能が劣化し、エコー消去性能が劣化してしまう。
In the above conventional method, the tap length L of the adaptive filter is set to a length substantially corresponding to the reverberation time. The reverberation time is 300 ms or more in a normal room. If a frame length of 2L is taken in accordance with this time, a delay (processing delay) caused by signal buffering becomes L samples, which makes it very difficult to talk as a communication system. Therefore the above-described conventional method, set a short frame length 2L D than tap length L of the adaptive filter in order to shorten this delay, estimating an echo component ratio, controls the update amount of the adaptive filter coefficients.
However, the echo component for delaying 2L D samples above until picked up is reproduced from speaker to microphone, be treated as non-echo component becomes a problem. That is, the frame length 2L D, when set much shorter than tap length L of the adaptive filter echo component considered non-echo component is increased. As a result, since the echo component ratio is set to be small or the estimated value of the echo component fluctuates, the estimation performance of the echo component ratio deteriorates and the echo cancellation performance deteriorates.

この発明では、残差信号の短時間スペクトルE(j,f)に含まれるエコー成分の比率を、現時点の多チャネル再生信号フレームから求めた短時間スペクトルX(j,f),…,X(j,f)だけでなく、過去の再生信号フレームから求めた短時間スペクトルも一緒に使用して推定する方法を提案する。
この発明では更に、多チャネル再生信号の現時点のフレームと過去のフレームとを、現時点のフレームの第1チャネル再生信号からなる主成分および主成分との相関が除去されたその他のフレームからなる副成分に分け、主成分のエコーが残差信号に占める割合を求め、副成分のエコーが主成分との相関を除去した残差信号に占める割合を求め、これら2つの割合から収音信号に占める多チャネル再生信号のエコー成分比率を推定する方法を提案する。
In the present invention, the ratio of echo components included in the short-time spectrum E (j, f) of the residual signal is calculated from the short-time spectrum X 1 (j, f),. A method is proposed for estimation using not only M (j, f) but also a short-time spectrum obtained from a past reproduction signal frame.
In the present invention, the current frame and the past frame of the multi-channel reproduction signal are further divided into the main component consisting of the first channel reproduction signal of the current frame and the sub-component consisting of other frames from which the correlation with the main component has been removed. The ratio of the principal component echo to the residual signal is obtained, and the ratio of the sub component echo to the residual signal from which the correlation with the principal component is removed is obtained. A method for estimating the echo component ratio of the channel reproduction signal is proposed.

この方法により、過去の信号フレームをエコー成分比率の推定に取り込むことができ、フレーム長が残響時間よりも大幅に短く設定された場合でもエコー成分比率の推定性能劣化を回避し、エコー消去性能の劣化を防ぐことができる。   With this method, past signal frames can be incorporated into the estimation of the echo component ratio, and even when the frame length is set to be significantly shorter than the reverberation time, the estimation performance of the echo component ratio is avoided and the echo cancellation performance is improved. Deterioration can be prevented.

以下にこの発明の実施形態を図面を参照しながら説明するが、各図中の対応する部分は同一参照番号を付けて重複説明を省略する。
[第1実施形態]
この発明を図1のようなM(≧2)チャネル再生系とN(≧1)チャネル収音系からなる場合について説明する。上記従来法と同様に、図2のようなM入力1出力のエコーキャンセル部をN個並列に並べることで、Nチャネルの収音系に対応する。この発明では、図3に内部構成を示している図1のMチャネルエコーキャンセル部6を、図6に内部構造が示されているMチャネルエコーキャンセル部7に置き換える。図7には図6中のエコー成分比率推定部73の構成を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. Corresponding portions in the respective drawings are given the same reference numerals, and redundant description is omitted.
[First Embodiment]
The present invention will be described with respect to the case where it is composed of an M (≧ 2) channel reproduction system and an N (≧ 1) channel sound pickup system as shown in FIG. Similar to the above-described conventional method, N echo cancellation units with M inputs and 1 outputs as shown in FIG. 2 are arranged in parallel to support an N-channel sound collection system. In the present invention, the M channel echo cancellation unit 6 shown in FIG. 1 whose internal configuration is shown in FIG. 3 is replaced with an M channel echo cancellation unit 7 whose internal structure is shown in FIG. FIG. 7 shows the configuration of the echo component ratio estimation unit 73 in FIG.

以下では、適応フィルタのタップ長をL、分割数をD(ただしLはDで割り切れる)、L=L/D、フレーム長を2Lサンプル、シフト長をLサンプル、フレーム時刻をjとする。フレーム時刻jの信号フレームは、サンプル時刻k=jL−2L+1〜jLの信号サンプルからなる。このときの信号のサンプル時刻kとフレーム時刻jの関係は図12のようになる。また、過去の再生信号フレームから求めたスペクトルとして、1フレーム前の短時間スペクトルX(j−1,f),…,X(j−1,f)を使用する例を説明する。 In the following, the tap length of the adaptive filter is L, the number of divisions is D (where L is divisible by D), L D = L / D, the frame length is 2L D samples, the shift length is L D samples, and the frame time is j. To do. The signal frame at frame time j is composed of signal samples at sample times k = jL D −2L D +1 to jL D. The relationship between the signal sampling time k and the frame time j at this time is as shown in FIG. An example in which the short-time spectrum X 1 (j−1, f),..., X M (j−1, f) one frame before is used as the spectrum obtained from the past reproduction signal frame will be described.

図6の予測エコー生成部70内のTF変換部701(m=1,…,M)において、各チャネルの時間領域の再生信号x(k)をLサンプル毎に長さ2Lの信号ベクトルにフレーム化し、FFTを使って短時間スペクトルに変換し、フィルタ処理部702に蓄積する。

Figure 2006121589
TF conversion unit 701 m in the predicted echo generation unit 70 of FIG. 6 (m = 1, ..., M) in the playback signal x m (k) in the time domain of each channel L D sample length per 2L D The signal vector is framed, converted to a short-time spectrum using FFT, and stored in the filter processing unit 702.
Figure 2006121589

次にフィルタ処理部702において、次式に示すように蓄積された第mチャネル再生信号の短時間スペクトルX(j,f)と周波数領域の適応フィルタ係数W(j,d,f)を乗算処理し、足し合わせることで、第mスピーカからマイクロホンに回り込む周波数領域の予測エコー信号Y^(j,f)を得る。

Figure 2006121589
この各スピーカからの予測エコー信号Y^(j,f)を足し合わせて周波数領域の予測エコー信号Y^(j,f)を次式のように得る。
Figure 2006121589
Next, in the filter processing unit 702, the short-time spectrum X m (j, f) of the m-th channel reproduction signal accumulated as shown in the following equation and the adaptive filter coefficient W m (j, d, f) in the frequency domain are obtained. Multiplication processing and addition are performed to obtain a predicted echo signal Y ^ m (j, f) in the frequency domain that wraps around the microphone from the m-th speaker.
Figure 2006121589
Obtaining prediction echo signal Y ^ m (j, f) from the respective speakers predicted echo signal Y ^ (j, f) in the frequency domain sum of the the following equation.
Figure 2006121589

FT変換部703において、周波数領域の予測エコーを逆FFTにより時間領域に変換し、時間領域の予測エコーy^(k)を次のように得る。

Figure 2006121589
The FT transform unit 703 transforms the frequency domain prediction echo to the time domain by inverse FFT, and obtains the time domain prediction echo ^ (k) as follows.
Figure 2006121589

減算部71では、フレーム化部711において時間領域の収音信号y(k)をフレーム化し、減算器712において予測エコー信号y^(k)のフレームを差し引いて時間領域での残差信号e(k)のフレームを求める。

Figure 2006121589
In the subtracting unit 71, the framed unit 711 frames the collected sound signal y (k) in the time domain, and the subtractor 712 subtracts the frame of the predicted echo signal y ^ (k) to obtain the residual signal e ( Find the frame of k).
Figure 2006121589

TF変換部72では、次式のように時間領域の残差信号e(k)のフレームにL個の0を詰めて周波数領域に変換することで周波数領域の残差信号E(j,f)を求める。

Figure 2006121589
The TF transform unit 72 fills the frame of the time domain residual signal e (k) with L D zeros and transforms it into the frequency domain as shown in the following equation, thereby converting the frequency domain residual signal E (j, f )
Figure 2006121589

エコー成分比率推定部73において以下のステップF1〜F7により、周波数領域の多チャネル再生信号X(j,f)と周波数領域の残差信号E(j,f)から、周波数成分ごとに残差信号に含まれるエコー成分の比率S(j,f)を求める。図8にエコー成分比率S(j,f)を推定するためのフローを示す。
ステップF1
現時点のフレームから求めた多チャネル再生信号の短時間スペクトルX(j,f),…,X(j,f)を図7に示す相関除去部731内の現時点の蓄積部731a1に保存する。
In the echo component ratio estimation unit 73, the following steps F1 to F7 are used to perform a residual for each frequency component from the frequency domain multi-channel reproduction signal X m (j, f) and the frequency domain residual signal E (j, f). A ratio S (j, f) of echo components included in the signal is obtained. FIG. 8 shows a flow for estimating the echo component ratio S (j, f).
Step F1
The short-time spectrum X 1 (j, f),..., X M (j, f) of the multi-channel reproduction signal obtained from the current frame is stored in the current accumulation unit 731a1 in the correlation removal unit 731 shown in FIG. .

ステップF2
相関除去部731b1では、例えば次式の方法で多チャネル再生信号の短時間スペクトルX(j,f),…,X(j,f)からX(j,f)との相関成分を除去して、スペクトルX2(1)(j,f),…,XM(1)(j,f)を得、多チャネル再生信号スペクトルの副成分の一部とする。

Figure 2006121589
ここで、ε[]は、平均をとることを意味し、平均処理の一例としては、
Figure 2006121589
のように、1フレーム前の処理結果と0〜1の値をとる平滑化定数βを用いる方法がある。 Step F2
The decorrelation unit 731B1, for example, short-time spectrum X 2 multichannel reproduction signal by the following equation method (j, f), ..., X M (j, f) from X 1 (j, f) the correlation components of the The spectrum X 2 (1) (j, f),..., X M (1) (j, f) is obtained as a part of the sub-component of the multi-channel reproduction signal spectrum.
Figure 2006121589
Here, ε [] means taking an average, and as an example of the averaging process,
Figure 2006121589
As described above, there is a method using a processing result of one frame before and a smoothing constant β that takes a value of 0 to 1.

ステップF3
相関除去部731b2において、過去の蓄積部731a2に蓄積された1フレーム前の多チャネル再生信号のスペクトルX(j−1,f),…,X(j−1,f)から、X(j,f)との相関を次のように除去したスペクトルX1(1)(j−1,f),…,XM(1)(j−1,f)を求め、多チャネル再生信号スペクトルの副成分の一部とする。

Figure 2006121589
なお、nフレーム前の短時間スペクトルX(j−n,f),…,X(j−n,f)をエコー成分比率推定に使用する場合にも、同様の計算により得られた結果を多チャネル再生信号スペクトルの副成分の一部とすればよい。 Step F3
From the spectrum X 1 (j−1, f),..., X M (j−1, f) of the multi-channel reproduction signal one frame before accumulated in the past accumulating unit 731a2 in the correlation removing unit 731b2, X 1 A spectrum X 1 (1) (j−1, f),..., X M (1) (j−1, f) obtained by removing the correlation with (j, f) as follows is obtained, and a multi-channel reproduction signal is obtained. Let it be part of a subcomponent of the spectrum.
Figure 2006121589
Incidentally, n frames before short-time spectrum X 1 (j-n, f ), ..., X M (j-n, f) in the case of using the echo component ratio estimation results obtained by the similar calculation May be a part of the sub-component of the multi-channel reproduction signal spectrum.

ステップF4
相関除去部732では、現時点のフレームの残差信号の短時間スペクトルE(j,f)からX(j,f)との相関成分を除去したスペクトルE(1)(j,f)を求める。

Figure 2006121589
Step F4
The correlation removing unit 732 obtains a spectrum E (1) (j, f) obtained by removing a correlation component with X 1 (j, f) from the short-time spectrum E (j, f) of the residual signal of the current frame. .
Figure 2006121589

ステップF5
コヒーレンス算出部733では、多チャネル再生信号スペクトルの主成分である現時点のフレームの第1チャネル再生信号の短時間スペクトルX(j,f)と現時点の残差信号のスペクトルE(j,f)から、次のコヒーレンスを求める。

Figure 2006121589
Step F5
In the coherence calculation unit 733 1 , the short-time spectrum X 1 (j, f) of the first channel reproduction signal of the current frame, which is the main component of the multi-channel reproduction signal spectrum, and the spectrum E (j, f) of the current residual signal. ) To find the next coherence.
Figure 2006121589

ステップF6
副成分エコー比率算出部733では、まず相関除去された残差信号スペクトルE(1)(j,f)に含まれるエコー成分E^(1)(j,f)を求める。エコー成分E^(1)(j,f)は、多チャネル再生信号短時間スペクトルの副成分X2(1)(j,f),…,XM(1)(j,f),X1(1)(j−1,f),…,XM(1)(j−1,f)の線形和

Figure 2006121589
のうちで、相関除去された残差信号スペクトルとの誤差
|E(1)(j,f)−E^(1)(j,f)|
が最小となるスペクトルである。この誤差を最小にするスペクトルは、
Figure 2006121589
とし、 Step F6
In subcomponent echo ratio calculation unit 733 2, first decorrelation residual signal spectrum E (1) (j, f ) echo component E ^ (1) contained in the Request (j, f). The echo component E ^ (1) (j, f) is a sub-component X 2 (1) (j, f),..., X M (1) (j, f), X 1 of the multi-channel reproduction signal short-time spectrum. (1) (j−1, f),..., X M (1) (j−1, f) linear sum
Figure 2006121589
Of the residual signal spectrum from which correlation has been removed | E (1) (j, f) −E ^ (1) (j, f) | 2
Is the spectrum with the minimum. The spectrum that minimizes this error is
Figure 2006121589
age,

Figure 2006121589
により求められる。さらに、次式により副成分のエコー比率を周波数成分ごとに求める。
Figure 2006121589
Figure 2006121589
Is required. Further, the echo ratio of subcomponents is obtained for each frequency component by the following equation.
Figure 2006121589

ステップF7
図7のエコー成分比率算出部734において、ステップF5、F6で求めた各比率から、残差信号スペクトルE(j,f)に占めるエコー成分の比率を求める。

Figure 2006121589
Step F7
In the echo component ratio calculation unit 734 in FIG. 7, the ratio of echo components in the residual signal spectrum E (j, f) is obtained from the ratios obtained in steps F5 and F6.
Figure 2006121589

図6のフィルタ更新部74では、まず周波数成分ごとに残差信号E(j,f)と再生信号X(j,f)から、周波数領域の適応フィルタ係数の修正量dW(j,d,f)を求める。次に周波数領域の残差信号の各周波数成分に含まれる残留エコー成分の比率S(j,f)を使用して適応フィルタ係数の修正量dW(j,d,f)の大きさを制御しながら、周波数領域の適応フィルタ係数W(j,d,f)を逐次更新する。具体的には、例えばJia-sien Soo, Khee K. Pang, “Multidelay Block Frequency Domain Adaptive Filter,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.38, No.2, pp.373-376, 1990.の提案と組み合わせ、以下のように修正量dW(j,d,f)および適応フィルタ係数W(j,d,f)を求めることができる。

Figure 2006121589
ただし、d=1,…,D、X (j,f)はX(j,f)の複素共役である。 In the filter update unit 74 of FIG. 6, first, the frequency domain adaptive filter coefficient correction amount dW m (j, d) is calculated from the residual signal E (j, f) and the reproduced signal X m (j, f) for each frequency component. , F). Next, the magnitude of the correction amount dW m (j, d, f) of the adaptive filter coefficient is controlled using the ratio S (j, f) of the residual echo component included in each frequency component of the frequency domain residual signal. Meanwhile, the adaptive filter coefficient W m (j, d, f) in the frequency domain is sequentially updated. Specifically, for example, Jia-sien Soo, Khee K. Pang, “Multidelay Block Frequency Domain Adaptive Filter,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.38, No.2, pp.373-376, In combination with the proposal of 1990., the correction amount dW m (j, d, f) and the adaptive filter coefficient W m (j, d, f) can be obtained as follows.
Figure 2006121589
Here, d = 1,..., D, and X m * (j, f) are complex conjugates of X m (j, f).

Figure 2006121589
ただし、m=1,…,M、d=1,…,D、f=1,…,2L、μは0〜1の値をとるステップサイズ、δは正則化定数である。また、p(j,f)は次式により計算される。
Figure 2006121589
Figure 2006121589
Here, m = 1,..., M, d = 1,..., D, f = 1,..., 2L D , μ is a step size having a value of 0 to 1, and δ is a regularization constant. P (j, f) is calculated by the following equation.
Figure 2006121589

このように適応フィルタ係数W(j,d,f)を処理単位ごとに更新することで、次の処理では更新された適応フィルタ係数が使用できる。
現時点のフレームの処理が終了すると、最後に現時点の蓄積部731a1に蓄積された再生信号情報は過去の蓄積部731a2に転送され、蓄積される。
なお、蓄積部731a内で現時点の蓄積部731a1と過去の蓄積部731a2とを特に区別し、上記のように一連の処理の最後に現時点の蓄積部731a1に蓄積された再生信号情報を過去の蓄積部731a2に転送するのではなく、1つの蓄積部731aに蓄積された情報の中で最新情報を現時点の情報として処理する方法もある。また、図9に示すように処理に利用する現時点の再生信号のスペクトルを、蓄積部から取り出すのではなく、入力された再生信号のスペクトルを直接利用する方法もある。
In this way, by updating the adaptive filter coefficient W m (j, d, f) for each processing unit, the updated adaptive filter coefficient can be used in the next processing.
When the processing of the current frame is completed, the reproduction signal information stored last in the current storage unit 731a1 is transferred to and stored in the past storage unit 731a2.
Note that the current storage unit 731a1 and the past storage unit 731a2 are particularly distinguished in the storage unit 731a, and the reproduction signal information stored in the current storage unit 731a1 at the end of the series of processes as described above is stored in the past. There is also a method of processing the latest information as the current information in the information stored in one storage unit 731a instead of transferring to the unit 731a2. In addition, as shown in FIG. 9, there is a method of directly using the spectrum of the input reproduction signal instead of taking out the spectrum of the current reproduction signal used for processing from the storage unit.

[第2実施形態]
この発明は、第1実施形態に対してエコー経路推定速度の向上を図ったものであり、図10に全体構成を、図11にMチャネルエコーキャンセル部の構成を示す。
図10の相関変動処理部9(m=1,…,M)では、例えば次式のようにチャネル毎に受話信号u(k)を乱数で振幅変調して元の信号に付加して相互相関が絶えず変動している再生信号x(k)を生成し、各スピーカから再生する。

Figure 2006121589
[Second Embodiment]
The present invention is intended to improve the echo path estimation speed with respect to the first embodiment. FIG. 10 shows the overall configuration, and FIG. 11 shows the configuration of the M channel echo cancellation unit.
In the correlation fluctuation processing unit 9 m (m = 1,..., M) in FIG. 10, for example, the received signal u m (k) is amplitude-modulated with a random number and added to the original signal for each channel as shown in the following equation. A reproduction signal x m (k) whose cross-correlation is constantly changing is generated and reproduced from each speaker.
Figure 2006121589

この相関変動処理がない場合、Mチャネルの受話信号のチャネル間相関が高いために、第mチャネル再生信号と第1チャネルの収音信号の入出力関係から、第mチャネルの真のエコー経路特性が必ず求められるとは限らない。しかし、この相関変動処理を受話信号に適用することにより、Mチャネルのエコー経路特性が確実に推定できる。
図11のMチャネルエコーキャンセル部8では、付加信号成分が受話信号成分よりも強調されたチャネル間相関の小さい信号のベクトルを信号変換部85により生成し、チャネル間相関の大きい再生信号ベクトルの代わりに使用して適応フィルタを更新する。この更新には、例えば特許文献2で提案されている適応アルゴリズムを使用し、そのステップサイズを残差信号に含まれる残留エコー成分の比率S(j,f)で制御する。チャネル間相関の小さい修正ベクトルを使用することで、適応フィルタによるエコー経路の収束速度が向上する。
Without this correlation variation processing, since the channel correlation of the M channel received signal is high, the true echo path characteristic of the mth channel is obtained from the input / output relationship between the mth channel reproduction signal and the first channel sound pickup signal. Is not always required. However, by applying this correlation variation process to the received signal, the echo path characteristics of the M channel can be reliably estimated.
In the M channel echo canceling unit 8 of FIG. 11, a signal vector having a smaller inter-channel correlation in which the additional signal component is emphasized than the received signal component is generated by the signal converting unit 85, and instead of a reproduced signal vector having a large inter-channel correlation. Use to update the adaptive filter. For this update, for example, the adaptive algorithm proposed in Patent Document 2 is used, and the step size is controlled by the ratio S (j, f) of the residual echo component included in the residual signal. By using a correction vector having a small correlation between channels, the convergence speed of the echo path by the adaptive filter is improved.

M入力N出力のエコー消去装置の一般的構成を示す図。The figure which shows the general structure of the echo cancellation apparatus of M input N output. M入力1出力のエコー消去装置の一般的構成を示す図。The figure which shows the general structure of the echo cancellation apparatus of M input 1 output. 従来のMチャネルエコーキャンセル部の構成を示す図。The figure which shows the structure of the conventional M channel echo cancellation part. 従来のエコー成分比率推定部の構成を示す図。The figure which shows the structure of the conventional echo component ratio estimation part. 従来のエコー成分比率推定のフローを示す図。The figure which shows the flow of the conventional echo component ratio estimation. 第1実施形態のMチャネルエコーキャンセル部の構成を示す図。The figure which shows the structure of the M channel echo cancellation part of 1st Embodiment. 第1実施形態のエコー成分比率推定部の構成を示す図。The figure which shows the structure of the echo component ratio estimation part of 1st Embodiment. 第1実施形態のエコー成分比率推定のフローを示す図。The figure which shows the flow of echo component ratio estimation of 1st Embodiment. 第1実施形態のエコー成分比率推定部の変形例の構成を示す図。The figure which shows the structure of the modification of the echo component ratio estimation part of 1st Embodiment. 第2実施形態のM入力1出力チャネルのエコー消去装置の一般的構成を示す図。The figure which shows the general structure of the echo cancellation apparatus of M input 1 output channel of 2nd Embodiment. 第2実施形態のMチャネルエコーキャンセル部の構成を示す図。The figure which shows the structure of the M channel echo cancellation part of 2nd Embodiment. 信号のサンプル時刻kとフレーム時刻jの関係を示す図。The figure which shows the relationship between the sample time k of a signal, and the frame time j.

Claims (16)

複数チャネルの再生信号からエコー信号を予測し、少なくとも1チャネルの収音信号の各収音信号から予測したエコー信号を差し引くことでエコー成分を消去する方法において、
残差信号の短時間スペクトルに含まれるエコー成分の比率を、現時点のフレームの再生信号の短時間スペクトルおよび少なくとも1つの過去のフレームの再生信号の短時間スペクトルから、周波数ごとに推定し、
上記残差信号の短時間スペクトルに含まれるエコー成分の比率から、適応フィルタ係数を修正すること、
を特徴とするエコー消去方法。
In a method of canceling an echo component by predicting an echo signal from a reproduced signal of a plurality of channels and subtracting the predicted echo signal from each collected signal of at least one channel of collected sound signals,
Estimating the ratio of echo components contained in the short-time spectrum of the residual signal for each frequency from the short-time spectrum of the reproduction signal of the current frame and the short-time spectrum of the reproduction signal of at least one past frame;
Correcting the adaptive filter coefficient from the ratio of echo components contained in the short-time spectrum of the residual signal,
An echo canceling method characterized by the above.
請求項1記載の方法において、
適応フィルタのタップ長よりも短いフレーム長ごとに残差信号の短時間スペクトルに含まれるエコー成分の比率を推定すること、
を特徴とするエコー消去方法。
The method of claim 1, wherein
Estimating the ratio of echo components contained in the short-time spectrum of the residual signal for each frame length shorter than the tap length of the adaptive filter;
An echo canceling method characterized by the above.
請求項1又は2記載の方法において、
適応フィルタ係数をフレームごとに修正すること、
を特徴とするエコー消去方法。
The method according to claim 1 or 2, wherein
Modifying the adaptive filter coefficients for each frame;
An echo canceling method characterized by the above.
請求項1〜3の何れかに記載の方法において、
現時点のフレームの第1チャネル再生信号の短時間スペクトルを主成分とし、
主成分との相関を除去したその他の短時間スペクトルを副成分とし、
主成分のエコーが残差信号の短時間スペクトルに占める割合を求め、
副成分のエコーが主成分との相関を除去した残差信号の短時間スペクトルに占める割合を求め、
上記2つの割合から残差信号の短時間スペクトルに占めるエコー成分比率を推定すること、
を特徴とするエコー消去方法。
In the method in any one of Claims 1-3,
The main component is the short-time spectrum of the first channel playback signal of the current frame,
The other short-time spectrum from which the correlation with the main component is removed is used as a subcomponent,
Find the ratio of the principal component echo to the short-time spectrum of the residual signal,
Find the fraction of the short-time spectrum of the residual signal that sub-component echoes have removed the correlation with the main component,
Estimating an echo component ratio in the short-time spectrum of the residual signal from the above two ratios;
An echo canceling method characterized by the above.
請求項4記載の方法において、
残差信号の短時間スペクトルに占めるエコー成分比率S(f)を、主成分のエコーが残差信号の短時間スペクトルに占める割合γ (f)と副成分のエコーが主成分との相関を除去した残差信号の短時間スペクトルに占める割合γ (f)から、
Figure 2006121589
により求めること、
を特徴とするエコー消去方法。
The method of claim 4, wherein
Correlation between the echo component ratio S (f) in the short-time spectrum of the residual signal, the ratio γ 1 2 (f) of the main component echo in the short-time spectrum of the residual signal, and the sub-component echo with the main component From the ratio γ 2 2 (f) in the short-time spectrum of the residual signal from which
Figure 2006121589
Asking for,
An echo canceling method characterized by the above.
請求項5記載の方法において、
主成分との相関が除去された残差信号の短時間スペクトルE(1)(f)に含まれるエコー成分E^(1)(f)を、|E(1)(f)−E^(1)(f)|を最小とする線形和として求め、
副成分のエコーが主成分との相関を除去した残差信号の短時間スペクトルに占める割合γ (f)を、
Figure 2006121589
により求めること、
を特徴とするエコー消去方法。
The method of claim 5, wherein
The echo component E ^ (1) (f) included in the short-time spectrum E (1) (f) of the residual signal from which the correlation with the principal component is removed is represented by | E (1) (f) -E ^ ( 1) (f) | Obtain as a linear sum that minimizes 2 ;
The ratio γ 2 2 (f) in the short-time spectrum of the residual signal from which the echo of the subcomponent is removed from the correlation with the main component is expressed as follows:
Figure 2006121589
Asking for,
An echo canceling method characterized by the above.
請求項1〜6の何れかに記載の方法において、
再生信号として、受話信号に相関変動処理した受話信号を付加した信号を用い、
適応フィルタ更新に付加信号成分が受話信号成分よりも強調された信号を使用すること、
を特徴とするエコー消去方法。
In the method in any one of Claims 1-6,
As a reproduction signal, using a signal obtained by adding a reception signal subjected to correlation variation processing to the reception signal,
Use a signal in which the additional signal component is emphasized over the received signal component in the adaptive filter update;
An echo canceling method characterized by the above.
複数チャネルの再生信号および少なくとも1チャネルの収音信号を受信する手段と、
エコー信号を予測する適応フィルタと、
予測したエコー信号を各収音部からの信号から差し引く手段と、
残差信号の短時間スペクトルに含まれるエコー成分の比率を、現時点のフレームの再生信号の短時間スペクトルおよび少なくとも1つの過去のフレームの再生信号の短時間スペクトルから、周波数ごとに推定する手段と、
上記残差信号の短時間スペクトルに含まれるエコー成分の比率から、適応フィルタ係数を修正する手段と、
を備えるエコー消去装置。
Means for receiving a reproduced signal of a plurality of channels and a collected sound signal of at least one channel;
An adaptive filter that predicts an echo signal;
Means for subtracting the predicted echo signal from the signal from each sound collection unit;
Means for estimating the ratio of echo components included in the short-time spectrum of the residual signal for each frequency from the short-time spectrum of the reproduced signal of the current frame and the short-time spectrum of the reproduced signal of at least one past frame;
Means for correcting an adaptive filter coefficient from a ratio of echo components included in the short-time spectrum of the residual signal;
An echo canceller comprising:
請求項9記載の装置において、
適応フィルタのタップ長よりも短いフレーム長ごとに残差信号の短時間スペクトルに含まれるエコー成分の比率を推定する手段、
を備えるエコー消去装置。
The apparatus of claim 9.
Means for estimating the ratio of echo components contained in the short-time spectrum of the residual signal for each frame length shorter than the tap length of the adaptive filter;
An echo canceller comprising:
請求項8又は9記載の装置において、
適応フィルタ係数をフレームごとに修正する手段、
を備えるエコー消去装置。
The device according to claim 8 or 9,
Means for correcting the adaptive filter coefficients for each frame;
An echo canceller comprising:
請求項8〜10の何れかに記載の装置において、
現時点のフレームの第1チャネル再生信号の短時間スペクトル(主成分)のエコーが、残差信号の短時間スペクトルに占める割合を求める手段と、
主成分との相関を除去したその他の短時間スペクトル(副成分)のエコーが、主成分との相関を除去した残差信号の短時間スペクトルに占める割合を求める手段と、
上記2つの割合を求める手段の出力から残差信号の短時間スペクトルに占めるエコー成分比率を推定する手段と、
を備えるエコー消去装置。
In the apparatus in any one of Claims 8-10,
Means for determining the proportion of the short-term spectrum (principal component) of the first channel reproduction signal of the current frame in the short-time spectrum of the residual signal;
Means for determining the proportion of echoes of other short-time spectra (subcomponents) that have been de-correlated with the principal component in the short-time spectrum of the residual signal that has been de-correlated with the main component;
Means for estimating an echo component ratio in the short-time spectrum of the residual signal from the output of the means for obtaining the two ratios;
An echo canceller comprising:
請求項11記載の装置において、
残差信号の短時間スペクトルに占めるエコー成分比率S(f)を推定する手段として、主成分のエコーが残差信号の短時間スペクトルに占める割合γ (f)と副成分のエコーが主成分との相関を除去した残差信号の短時間スペクトルに占める割合γ (f)から、
Figure 2006121589
により求める手段、
を備えるエコー消去装置。
The apparatus of claim 11.
As a means for estimating the echo component ratio S (f) in the short-time spectrum of the residual signal, the ratio γ 1 2 (f) in which the main component echo occupies the short-time spectrum of the residual signal and the sub-component echo are mainly used. From the ratio γ 2 2 (f) in the short-time spectrum of the residual signal from which the correlation with the component is removed,
Figure 2006121589
Means to obtain,
An echo canceller comprising:
請求項12記載の装置において、
副成分のエコーが主成分との相関を除去した残差信号の短時間スペクトルに占める割合γ (f)を求める手段として、主成分との相関が除去された残差信号の短時間スペクトルE(1)(f)に含まれるエコー成分E^(1)(f)を、
|E(1)(f)−E^(1)(f)|
を最小とする線形和として求め、副成分のエコーが主成分との相関を除去した残差信号の短時間スペクトルに占める割合γ (f)を、
Figure 2006121589
により求める手段、
を備えるエコー消去装置。
The apparatus of claim 12.
The short-time spectrum of the residual signal from which the correlation with the main component has been removed is used as a means for obtaining the ratio γ 2 2 (f) of the residual signal from which the echo of the subcomponent has been removed from the short-term spectrum from which the correlation with the main component has been removed. E (1) Echo component E ^ (1) (f) included in (f)
| E (1) (f) −E ^ (1) (f) | 2
And the ratio γ 2 2 (f) in the short-time spectrum of the residual signal from which the echo of the subcomponent is removed from the correlation with the main component,
Figure 2006121589
Means to obtain,
An echo canceller comprising:
請求項8〜13の何れかに記載の装置において、
受話信号の相関を変動処理する相関変動処理部と、
付加信号成分が受話信号成分よりも強調された信号を生成する信号変換部と、
を備えるエコー消去装置。
The apparatus according to any one of claims 8 to 13,
A correlation fluctuation processing unit for fluctuating the correlation of the received signal;
A signal converter that generates a signal in which the additional signal component is emphasized over the received signal component;
An echo canceller comprising:
請求項1〜7に記載のエコー消去方法をコンピュータにより実行するエコー消去プログラム。   An echo cancellation program for executing the echo cancellation method according to claim 1 by a computer. 請求項15に記載のエコー消去プログラムを記録したコンピュータ読み取り可能な記録媒体。
The computer-readable recording medium which recorded the echo cancellation program of Claim 15.
JP2004309639A 2004-10-25 2004-10-25 Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor Expired - Fee Related JP4504782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309639A JP4504782B2 (en) 2004-10-25 2004-10-25 Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309639A JP4504782B2 (en) 2004-10-25 2004-10-25 Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor

Publications (2)

Publication Number Publication Date
JP2006121589A true JP2006121589A (en) 2006-05-11
JP4504782B2 JP4504782B2 (en) 2010-07-14

Family

ID=36539029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309639A Expired - Fee Related JP4504782B2 (en) 2004-10-25 2004-10-25 Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor

Country Status (1)

Country Link
JP (1) JP4504782B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166484A (en) * 2010-02-10 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Multi-channel echo cancellation method, multi-channel echo canceler, multi-channel echo cancellation program and recording medium therefor
JP4897921B2 (en) * 2007-04-30 2012-03-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and system for reducing acoustic echo in a multi-channel audio communication system
JP2013117639A (en) * 2011-12-02 2013-06-13 Fujitsu Ltd Sound processing device, sound processing method, and sound processing program
JP2015201787A (en) * 2014-04-09 2015-11-12 日本電信電話株式会社 Echo cancellation device, method thereof and program
CN115171721A (en) * 2022-07-03 2022-10-11 北京星汉博纳医药科技有限公司 Audio data slice identification processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223182A (en) * 2000-11-22 2002-08-09 Nippon Telegr & Teleph Corp <Ntt> Echo canceling method, its device, its program and its recording medium
JP2003188776A (en) * 2001-12-21 2003-07-04 Nippon Telegr & Teleph Corp <Ntt> Acoustic echo erasing method and device, and acoustic echo erasure program
JP2003250193A (en) * 2002-02-25 2003-09-05 Nippon Telegr & Teleph Corp <Ntt> Echo elimination method, device for executing the method, program and recording medium therefor
JP2003284183A (en) * 2002-03-20 2003-10-03 Nippon Telegr & Teleph Corp <Ntt> Echo suppression apparatus, echo suppression method, and program
JP2003309493A (en) * 2002-04-17 2003-10-31 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for reducing echo
JP2004147069A (en) * 2002-10-24 2004-05-20 Nippon Telegr & Teleph Corp <Ntt> Voice switching method, voice switch, voice switching program, and recording medium having the program recorded thereon
JP2004274412A (en) * 2003-03-10 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Echo canceler, canceling method, and canceling program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223182A (en) * 2000-11-22 2002-08-09 Nippon Telegr & Teleph Corp <Ntt> Echo canceling method, its device, its program and its recording medium
JP2003188776A (en) * 2001-12-21 2003-07-04 Nippon Telegr & Teleph Corp <Ntt> Acoustic echo erasing method and device, and acoustic echo erasure program
JP2003250193A (en) * 2002-02-25 2003-09-05 Nippon Telegr & Teleph Corp <Ntt> Echo elimination method, device for executing the method, program and recording medium therefor
JP2003284183A (en) * 2002-03-20 2003-10-03 Nippon Telegr & Teleph Corp <Ntt> Echo suppression apparatus, echo suppression method, and program
JP2003309493A (en) * 2002-04-17 2003-10-31 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for reducing echo
JP2004147069A (en) * 2002-10-24 2004-05-20 Nippon Telegr & Teleph Corp <Ntt> Voice switching method, voice switch, voice switching program, and recording medium having the program recorded thereon
JP2004274412A (en) * 2003-03-10 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Echo canceler, canceling method, and canceling program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897921B2 (en) * 2007-04-30 2012-03-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Method and system for reducing acoustic echo in a multi-channel audio communication system
US8204249B2 (en) 2007-04-30 2012-06-19 Hewlett-Packard Development Company, L.P. Methods and systems for reducing acoustic echoes in multichannel audio-communication systems
JP2011166484A (en) * 2010-02-10 2011-08-25 Nippon Telegr & Teleph Corp <Ntt> Multi-channel echo cancellation method, multi-channel echo canceler, multi-channel echo cancellation program and recording medium therefor
JP2013117639A (en) * 2011-12-02 2013-06-13 Fujitsu Ltd Sound processing device, sound processing method, and sound processing program
JP2015201787A (en) * 2014-04-09 2015-11-12 日本電信電話株式会社 Echo cancellation device, method thereof and program
CN115171721A (en) * 2022-07-03 2022-10-11 北京星汉博纳医药科技有限公司 Audio data slice identification processing method
CN115171721B (en) * 2022-07-03 2023-10-17 北京星汉博纳医药科技有限公司 Audio data slice identification processing method

Also Published As

Publication number Publication date
JP4504782B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5451876B2 (en) Acoustic multichannel cancellation
US8594320B2 (en) Hybrid echo and noise suppression method and device in a multi-channel audio signal
US20090046866A1 (en) Apparatus capable of performing acoustic echo cancellation and a method thereof
JP5391103B2 (en) Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor
JP3607625B2 (en) Multi-channel echo suppression method, apparatus thereof, program thereof and recording medium thereof
JP5662232B2 (en) Echo canceling apparatus, method and program
JP2004349806A (en) Multichannel acoustic echo canceling method, apparatus thereof, program thereof, and recording medium thereof
JP5469564B2 (en) Multi-channel echo cancellation method, multi-channel echo cancellation apparatus and program thereof
JP4504782B2 (en) Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor
JP3756839B2 (en) Reverberation reduction method, Reverberation reduction device, Reverberation reduction program
JP3756828B2 (en) Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor
JP3673727B2 (en) Reverberation elimination method, apparatus thereof, program thereof, and recording medium thereof
JP2009017029A (en) Device and method for processing sound signal
JP4448423B2 (en) Echo suppression method, apparatus for implementing this method, program, and recording medium therefor
JP4594854B2 (en) Voice switch method, voice switch device, voice switch program, and recording medium recording the program
JP6143702B2 (en) Echo canceling apparatus, method and program
JP4448424B2 (en) Voice switch method, apparatus for implementing the method, program, and recording medium therefor
JP4159967B2 (en) Multi-channel acoustic echo cancellation method and apparatus
JP6075783B2 (en) Echo canceling apparatus, echo canceling method and program
JP2006148375A (en) Echo cancellation method, echo canceller, and telephone repeater
RU2786157C2 (en) Echo cancellation device, echo cancellation method, and echo cancellation program
JP4247158B2 (en) Multi-channel acoustic echo cancellation method, multi-channel acoustic echo cancellation apparatus, multi-channel acoustic echo cancellation program, recording medium
JP2000165300A (en) Method and system for identifying unknown system using sub band adaptive filter
JP4209348B2 (en) Echo suppression method, apparatus for implementing this method, program, and recording medium
US20220319489A1 (en) Sound pick-up device, sound pick-up method and non-transitory computer-readable recording medium recording sound pick-up program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees