JP2003250193A - Echo elimination method, device for executing the method, program and recording medium therefor - Google Patents

Echo elimination method, device for executing the method, program and recording medium therefor

Info

Publication number
JP2003250193A
JP2003250193A JP2002048553A JP2002048553A JP2003250193A JP 2003250193 A JP2003250193 A JP 2003250193A JP 2002048553 A JP2002048553 A JP 2002048553A JP 2002048553 A JP2002048553 A JP 2002048553A JP 2003250193 A JP2003250193 A JP 2003250193A
Authority
JP
Japan
Prior art keywords
signal
echo
channel
adaptive filter
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002048553A
Other languages
Japanese (ja)
Other versions
JP3756828B2 (en
Inventor
Akira Emura
暁 江村
Yoichi Haneda
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002048553A priority Critical patent/JP3756828B2/en
Publication of JP2003250193A publication Critical patent/JP2003250193A/en
Application granted granted Critical
Publication of JP3756828B2 publication Critical patent/JP3756828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an echo elimination method for strongly estimating the echo route of an adaptive filter even under the conditions that interference signals other than echoes are present, and to provide a device and a program. <P>SOLUTION: In the echo elimination method for reproducing M channel reception signals (M: an integer of ≥2) and subtracting pseudo echo signals from sound pick-up signals, the pseudo echo signals are generated by adding convolution signals generated by the convolution operation of adaptive filter coefficients corresponding to respective channels to the M channel reception signals over the respective channels and the ratio of echo components occupying residual signals obtained by subtracting the pseudo echo signals from the sound pick-up signals is obtained. A correction vector composed of the product of the reception signals of the respective channels corresponding to the residual signals is corrected by the ratio of the echo components occupying the residual signals and updated vectors are added. Thus, the frequency domain coefficient of the adaptive filter coefficient is updated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、反響消去方法、
装置、プログラムおよびその記録媒体に関し、特に、拡
声通話装置の如き音響通信装置において通話の障害とな
り、時にはハウリングを引き起こす反響を消去する反響
消去方法、装置、プログラムおよびその記録媒体に関す
る。
TECHNICAL FIELD The present invention relates to an echo canceling method,
The present invention relates to an apparatus, a program, and a recording medium thereof, and more particularly, to an echo canceling method, an apparatus, a program, and a recording medium for canceling an echo that sometimes causes howling in an acoustic communication apparatus such as a voice communication apparatus.

【0002】[0002]

【従来の技術】拡声通話装置においては、受話音声がス
ピーカから拡声されてマイクロホンに回り込み収音され
て生じる反響が問題となる。通信回線を介して相互接続
された拡声通話装置について閉ループのループゲインが
1より大きい場合、ハウリングを引き起こして通話を不
可能にする。また、ループゲインが1より小さい場合で
あっても、反響は通話の障害となると共に不快感を与え
る。より自然な通話環境を実現するために、スピーカか
らマイクロホンへの音響的回り込みにより生じる反響の
消去が必要となる。
2. Description of the Related Art In a loudspeaker communication device, there is a problem of a reverberation that occurs when a received voice is amplified by a speaker and sneaks into a microphone. If the loop gain of the closed loop of the loudspeaker communication apparatus interconnected via the communication line is larger than 1, howling is caused to make the communication impossible. Even when the loop gain is smaller than 1, the echo causes an obstacle to the call and gives an unpleasant feeling. In order to realize a more natural call environment, it is necessary to eliminate the echo caused by the acoustic sneak from the speaker to the microphone.

【0003】図1を参照するに、反響消去装置はMチャ
ネル再生系と1チャネル収音系に接続され、反響の消去
を行う。ここで、受話端子1m (m=1ないしM)から
入力される受話信号は、スピーカ2m (m=1ないし
M)において音響信号として再生され、反響経路hm
(m=1ないしM)を経てマイクロホン3に回り込む。
受話端子1m と送話端子5の間に接続される反響消去部
4により反響を消去する。この反響消去部4はM入力1
出力適応フィルタより成る。マイクロホン3がN個ある
場合は、図1に示されるM入力1出力適応フィルタをN
個並列に並べた構成とする。
Referring to FIG. 1, the echo canceller is connected to an M-channel reproduction system and a 1-channel sound pickup system to cancel echoes. Here, the reception signal input from the reception terminal 1 m (m = 1 to M) is reproduced as an acoustic signal in the speaker 2 m (m = 1 to M), and the echo path h m
Go around the microphone 3 via (m = 1 to M).
The echo canceller 4 connected between the reception terminal 1 m and the transmission terminal 5 cancels the echo. This echo canceller 4 receives M input 1
It consists of an output adaptive filter. When there are N microphones 3, the M input 1 output adaptive filter shown in FIG.
It is arranged in parallel.

【0004】この反響消去部4の構成を図2を参照して
説明する。各受話信号を予測反響生成部41に入力して
予測反響信号を生成し、この予測反響信号とマイクロホ
ン3から入力する収音信号との間の差が減算器42にお
いてとられ、この残差信号e(k)が反響経路推定部43
にフィードバックされる。予測反響生成部41への入力
信号をxm(k)、マイクロホン3により収音された収
音信号をy(k)、スピーカ2mからマイクロホン3に到
る反響経路のインパルス応答をhm、その長さをLとす
ると、受話チャネル数M=1のとき、入力信号xm(k)
と収音信号y(k)の間には、
The structure of the echo canceller 4 will be described with reference to FIG. Each received signal is input to the predictive echo generator 41 to generate a predictive echo signal, and the difference between the predicted echo signal and the sound pickup signal input from the microphone 3 is taken in the subtractor 42, and the residual signal is obtained. e (k) is the echo path estimation unit 43
Be fed back to. The input signal to the predicted echo generation unit 41 is x m (k), the sound pickup signal picked up by the microphone 3 is y (k), the impulse response of the echo path from the speaker 2 m to the microphone 3 is h m , If the length is L, and the number of receiving channels M = 1, the input signal x m (k)
Between the sound pickup signal y (k) and

【0005】[0005]

【数6】 [Equation 6]

【0006】の様にベクトル化することで、入力信号x
(k)と収音信号y(k)の関係を受話チャネル数M=1の
ケースと同様に記述することができる。反響消去部4の
内部においては、予測反響生成部41により予測反響信
号が生成されて、実際の収音信号y(k)との間の差e
(k)および過去の入力信号xm(k)に基づいて収音信号
y(k)と予測反響信号の差である残差信号e(k)が小さ
くなる様に予測反響信号生成用の適応フィルタの係数が
逐次更新される。ここにおいては、適応フィルタ係数の
更新法をNLMS法とした場合を説明する。実際の収音
信号y(k)から適応フィルタにより予測された予測反響
信号を差し引いて得られる残差信号e(k)は、
By vectorizing as described above, the input signal x
The relationship between (k) and the picked-up signal y (k) can be described in the same manner as in the case where the number of receiving channels M = 1. In the echo canceller 4, a predicted echo signal is generated by the predicted echo generator 41, and a difference e between the predicted echo signal y (k) and the actual sound pickup signal y (k) is generated.
(k) and the input signal x m (k) in the past so that the residual signal e (k), which is the difference between the picked-up signal y (k) and the predicted echo signal, becomes small so that the predicted echo signal is generated. The filter coefficients are updated sequentially. Here, a case will be described where the adaptive filter coefficient updating method is the NLMS method. The residual signal e (k) obtained by subtracting the predicted echo signal predicted by the adaptive filter from the actual sound pickup signal y (k) is

【0007】[0007]

【数7】 [Equation 7]

【0008】により更新する。ただし、μは推定を安定
にするため、0〜1の固定した値に設定されるステップ
サイズである。この適応フィルタ更新方法において、収
音信号y(k)は反響のみが収音されたものであることを
前提としている。しかし、拡声通話装置が実際に使用さ
れるときは、収音信号y(k)には送話および騒音の如き
反響以外の信号が当然に含まれる。ここで、反響信号を
E(k)、送話および騒音の如き反響以外の信号を妨害
信号yI(k)とし、収音信号y(k)が y(k)=yE(k)+yI(k) で表されるものとする。このとき、NLMS法の適応フ
ィルタ更新式は
Update by However, μ is a step size set to a fixed value of 0 to 1 in order to stabilize the estimation. In this adaptive filter updating method, it is premised that the picked-up signal y (k) is the picked-up echo only. However, when the voice communication device is actually used, the sound pickup signal y (k) naturally includes signals other than reverberation such as speech and noise. Here, a reverberation signal is y E (k), a signal other than reverberation such as speech and noise is a disturbance signal y I (k), and the sound pickup signal y (k) is y (k) = y E (k). Let + y I (k). At this time, the adaptive filter update formula of the NLMS method is

【0009】[0009]

【数8】 [Equation 8]

【0010】の方向に修正される。ただし、ε[・]は
平均をとることを意味する。この第2項は理想的な修正
方向からのズレを表し、送話および騒音が妨害信号とし
て働くことがわかる。収音信号y(k)に妨害信号y
I(k)が含まれる状況においては、適応フィルタの係数
がこの分だけ誤って更新されるので、ステップサイズμ
の値に応じたノイズが発生し、ときには適応フィルタを
発散させる。発散を回避するには、ステップサイズμを
充分に小さくする必要があるが、実際は不必要に小さい
μを選択するか、或は発散しない程度の大きさのμで反
響以外の音響の妨害による不正確な修正を或る確率で許
容することになり、収束速度を低下させることにつなが
る。
It is corrected in the direction of. However, ε [·] means to take an average. This second term represents the deviation from the ideal correction direction, and it can be seen that speech and noise act as interference signals. Interfering signal y in the picked up signal y (k)
When I (k) is included, the adaptive filter coefficient is erroneously updated by this amount, so the step size μ
Noise is generated according to the value of, and sometimes the adaptive filter is diverged. In order to avoid divergence, it is necessary to make the step size μ sufficiently small, but in reality, select an unnecessarily small μ, or use a μ that is small enough not to diverge to avoid interference due to acoustic interference other than reverberation. Accurate correction is allowed with a certain probability, which leads to a decrease in convergence speed.

【0011】文献 A.Mader,H.Puder,G.U.Schmidt,“Ste
p-size control for acoustic echocancellation filte
rs-an overview,”Signal Processing,80,pp.1697-1719
(2000)には、この様な状況において最適なステップサイ
ズμを導く方法が示されている。これによれば、反響と
予測反響の差である残留反響信号
References A. Mader, H. Puder, GU Schmidt, “Ste
p-size control for acoustic echocancellation filte
rs-an overview, ”Signal Processing, 80, pp.1697-1719
(2000) shows a method for deriving an optimum step size μ in such a situation. According to this, the residual echo signal, which is the difference between the echo and the predicted echo,

【0012】[0012]

【数9】 [Equation 9]

【0013】で求められる。この式によれば、妨害信号
パワーε[yI 2(k)]が大きくなる程ステップサイズμ
が小さく設定されることにより、妨害信号yI(k)が適
応フィルタ推定に及ぼす影響を減少させている。
Is calculated by According to this formula, the step size μ increases as the interference signal power ε [y I 2 (k)] increases.
Is set small, the influence of the interference signal y I (k) on the adaptive filter estimation is reduced.

【0014】[0014]

【発明が解決しようとする課題】しかし、実際の環境で
この最適なステップサイズμをそのまま求めて適応フィ
ルタを更新することはできなかった。それは、残留反響
信号eE(k)に妨害信号が重畳している残差信号から、
残留反響信号eE(k)だけを抽出することはできないか
らである。また、反響消去装置は、本来、スピーカ2m
からマイクロホン3までの未知の反響経路hを推定し
ながら反響を消去するに使用されるので、 eE(k)=(h(k)−h^(k))Tx(k) の関係式から残留反響信号を求めることもできないから
である。
However, it was not possible to update the adaptive filter by directly obtaining this optimum step size μ in an actual environment. That is, from the residual signal in which the disturbing signal is superimposed on the residual echo signal e E (k),
This is because it is not possible to extract only the residual echo signal e E (k). In addition, the echo canceller is originally a speaker 2 m.
Is used to eliminate the echo while estimating the unknown echo path h from the microphone to the microphone 3, so the relational expression of e E (k) = (h (k) −h ^ (k)) T x (k) This is because the residual echo signal cannot be obtained from

【0015】仮に、妨害信号yI(k)のパワーε[y
I 2(k)]が一定で、そのレベルが予め分かっている場
合、最適なステップサイズμを算出することはできる。
しかし、通常は、騒音信号のレベルは一定とは限らない
し、送話信号のレベルは時々刻々と変動している。以上
の状況において、最適なステップサイズμを使用して適
応フィルタを更新するには、残差信号に占める反響成分
の比率を推定する必要がある。この発明の目的は、残差
信号あるいは収音信号から残差信号に占める反響成分の
比率を求め、この情報をもちいて適応フィルタ係数を更
新することにより、多チャネル音響通信における上述の
問題を解決する反響消去方法、装置、プログラムおよび
その記録媒体を提供することにある。
Let us assume that the power ε [y of the interference signal y I (k) is
If I 2 (k)] is constant and its level is known in advance, the optimum step size μ can be calculated.
However, normally, the level of the noise signal is not always constant, and the level of the transmission signal varies from moment to moment. In the above situation, in order to update the adaptive filter using the optimum step size μ, it is necessary to estimate the ratio of the reverberation component in the residual signal. An object of the present invention is to solve the above-mentioned problems in multi-channel acoustic communication by obtaining the ratio of the reverberation component occupying in the residual signal from the residual signal or the picked-up signal and updating the adaptive filter coefficient using this information. To provide an echo canceling method, device, program, and recording medium therefor.

【0016】[0016]

【課題を解決するための手段】この発明によれば、スピ
ーカM個(Mは2以上の整数)とマイクロホンN個(N
は1以上の整数)が共通の音場に配置され、スピーカか
らMチャネル信号を再生し、各マイクロホンに対応する
各M入力1出力適応フィルタにMチャネル再生信号を入
力して反響信号を予測し、マイクロホンからの収音信号
から適応フィルタ出力信号を差し引いて得られる残差信
号を小さくするように適応フィルタ係数を更新する多チ
ャネル音響通信システムにおいて、残差信号に占める反
響成分の比率を使用して適応フィルタ係数を更新する反
響消去方法を構成する。また残差信号の代わりに収音信
号に占める反響成分の比率を使用して適応フィルタ係数
を更新する反響消去方法を構成することもできる。これ
により、収音信号に反響以外の信号が含まれる状況でも
適応フィルタによる反響消去と反響経路推定が安定にな
る。
According to the present invention, M speakers (M is an integer of 2 or more) and N microphones (N) are used.
Are integers greater than or equal to 1) are arranged in a common sound field, reproduce the M channel signal from the speaker, and input the M channel reproduction signal to each M input 1 output adaptive filter corresponding to each microphone to predict the echo signal. , In a multi-channel acoustic communication system in which the adaptive filter coefficient is updated so as to reduce the residual signal obtained by subtracting the adaptive filter output signal from the sound pickup signal from the microphone, the ratio of the reverberation component to the residual signal is used. And an echo canceling method for updating the adaptive filter coefficient. It is also possible to configure an echo canceling method for updating the adaptive filter coefficient by using the ratio of the echo component in the picked-up signal instead of the residual signal. As a result, echo cancellation and echo path estimation by the adaptive filter are stable even in a situation where the collected signal includes signals other than echo.

【0017】また、Mチャネル再生信号を短時間区間ご
とに周波数領域に変換し、周波数領域の適応フィルタ係
数に乗算し、時間領域に変換して反響信号を予測し、収
音信号から予測した反響信号を差し引いて得られた残差
信号を短時間区間ごとに周波数領域に変換し、再生信号
と対象信号の短時間スペクトルから、周波数帯域ごとに
対象信号に占める反響成分の比率を求める。周波数領域
で周波数成分ごとに残差信号と再生信号を乗算して求め
た修正ベクトルを、対象信号に占める反響成分の比率、
および入力信号と修正用信号の情報に基づいて周波数帯
域ごとに補正して、適応フィルタ係数を更新する反響消
去方法を構成した。適応フィルタ係数を周波数領域で取
り扱うことにより、収音信号に反響以外の信号が含まれ
る状況での反響消去と反響経路推定を安定にしつつ、ト
ータルの演算量を大幅に削減することができる。
Further, the M-channel reproduction signal is converted into the frequency domain for each short time interval, multiplied by the adaptive filter coefficient in the frequency domain, converted into the time domain to predict the echo signal, and the echo predicted from the picked-up signal. The residual signal obtained by subtracting the signal is converted into the frequency domain for each short time interval, and the ratio of the reverberation component to the target signal for each frequency band is obtained from the short time spectrum of the reproduced signal and the target signal. The correction vector obtained by multiplying the residual signal and the reproduction signal for each frequency component in the frequency domain is the ratio of the reverberation component to the target signal,
And, an echo canceling method for updating the adaptive filter coefficient by correcting each frequency band based on the information of the input signal and the correction signal is constructed. By handling the adaptive filter coefficient in the frequency domain, it is possible to significantly reduce the total calculation amount while stabilizing the echo cancellation and the echo path estimation in the situation where the collected signal includes signals other than the echo.

【0018】また、Mチャネル受話信号を処理して、チ
ャネル間相関がほぼ無相関とみなせるMチャネル付加信
号を生成し受話信号に加算して再生信号とし、短時間区
間ごとに周波数領域に変換して周波数領域の適応フィル
タ係数に乗算したのち時間領域に変換して反響信号を予
測し、収音信号と予測した反響信号との残差信号を短時
間区間ごとに周波数領域に変換し、再生信号と対象信号
の短時間スペクトルから周波数帯域ごとに対象信号に占
める反響成分の比率を求め、Mチャネル付加信号にa倍
(aは0〜1の値)したMチャネル受話信号を加算して修
正用信号を生成し、修正用信号を短時間区間ごとに周波
数領域に変換し、周波数領域で周波数成分ごとに残差信
号と修正用信号を乗算して求めた修正ベクトルを対象信
号に占める反響成分の比率および入力信号と修正用信号
の情報に基づいて周波数帯域ごとに補正し、補正された
修正ベクトルで適応フィルタ係数を更新する反響消去方
法を構成した。これにより、収音信号に反響以外の信号
が含まれる状況での反響消去および反響経路推定を安定
にし、トータルの演算量を大幅に削減しつつ、反響経路
推定を高速化できる。
Further, the M-channel reception signal is processed to generate an M-channel additional signal whose inter-channel correlation can be regarded as almost uncorrelated, and added to the reception signal to be a reproduction signal, which is converted into a frequency domain for each short time section. After that, the adaptive filter coefficient in the frequency domain is multiplied and then converted into the time domain to predict the echo signal, and the residual signal between the picked-up signal and the predicted echo signal is converted into the frequency domain for each short-term interval, and the reproduced signal And the short-term spectrum of the target signal, obtain the ratio of the reverberation component in the target signal for each frequency band, and add the M channel additional signal to the M channel additional signal a times (a is a value between 0 and 1) for correction. A signal is generated, the correction signal is converted into the frequency domain for each short time interval, and the correction vector obtained by multiplying the residual signal and the correction signal for each frequency component in the frequency domain An echo canceling method is constructed in which correction is performed for each frequency band based on the ratio and information of the input signal and the correction signal, and the adaptive filter coefficient is updated with the corrected correction vector. As a result, echo cancellation and echo path estimation can be stabilized in a situation where the collected signal includes a signal other than the echo, and the echo path estimation can be speeded up while significantly reducing the total calculation amount.

【0019】更に、第mチャネル再生信号より第1〜第
m-1チャネル再生信号との相関成成分を除去した信号の
短時間スペクトルを求め、対象信号より、第1〜第m-1
チャネル再生信号との相関成分を除去した信号の短時間
スペクトルを求め、これらの短時間スペクトルから求め
たコヒーレンスをもちいて、対象信号に占める反響成分
の比率を求める反響消去方法を構成する。このような推
定法により、再生信号、収音信号に含まれる反響以外が
時々刻々と変動する状況でも残差信号もしくは収音信号
に占める反響成分の比率を確実に推定することが可能と
なる。
Further, from the m-th channel reproduction signal,
The short-term spectrum of the signal from which the correlation component with the m-1 channel reproduction signal has been removed is obtained, and from the target signal,
An echo canceling method is obtained in which a short-time spectrum of a signal from which a correlation component with a channel reproduction signal is removed is obtained, and the coherence obtained from these short-time spectra is used to obtain a ratio of an echo component in a target signal. With such an estimation method, it is possible to reliably estimate the ratio of the reverberation component to the residual signal or the picked-up signal even in a situation where the reverberation other than the reverberation contained in the reproduced signal and the picked-up signal fluctuates every moment.

【0020】[0020]

【発明の実施の形態】残差信号もしくは収音信号を対象
信号とするときに対象信号に占める反響成分の比率を推
定する目的で、コヒーレンス即ち、クロススペクトルを
パワースペクトルで正規化して得られる複素関数の振幅
2乗値を使用することができる。以下、残差信号を対象
信号とする場合について説明する。入力チャネル数がM
=1のモノラルの反響消去装置について、適応フィルタ
への入力信号x(k)と残差信号e(k)のパワースペクト
ルをSxx(f)、See(f)、クロススペクトルをSxe(f)
とするとき、コヒーレンスは
BEST MODE FOR CARRYING OUT THE INVENTION A coherence, that is, a complex spectrum obtained by normalizing a cross spectrum with a power spectrum for the purpose of estimating a ratio of an echo component occupying the target signal when a residual signal or a sound pickup signal is set as the target signal. The magnitude squared value of the function can be used. Hereinafter, the case where the residual signal is the target signal will be described. Number of input channels is M
For the monaural echo canceller with = 1, the power spectra of the input signal x (k) to the adaptive filter and the residual signal e (k) are S xx (f) and S ee (f), and the cross spectrum is S xe ( f)
And the coherence is

【0021】[0021]

【数10】 [Equation 10]

【0022】で計算される。通常、入力信号x(k)と妨
害信号yI(k)、および残留反響信号eE(k)と妨害信
号yI(k)は無相関と見なせるので、
Is calculated by Usually, the input signal x (k) and the disturbing signal y I (k), and the residual reverberation signal e E (k) and the disturbing signal y I (k) can be regarded as uncorrelated.

【0023】[0023]

【数11】 [Equation 11]

【0024】を満たしている。この式によれば、コヒー
レンスγ2(f)とは、入力信号スペクトルと相関のある
成分が残差信号e(k)のパワースペクトルに占める割合
である。即ち、入力信号x(k)と残差信号e(k)のコヒ
ーレンスは、残差信号e(k)に占める反響成分即ち残留
反響信号eE(k)のパワー比を表わしている。なお、コ
ヒーレンスについては、例えば日野著、朝倉書店発行
『スペクトル解析』に詳説されており、コヒーレンスを
使用する解析については、例えば森下、小畑著、計測自
動制御学会発行『信号処理』に詳説されている。
[0024] is satisfied. According to this equation, coherence γ 2 (f) is the ratio of the component correlated with the input signal spectrum to the power spectrum of the residual signal e (k). That is, the coherence between the input signal x (k) and the residual signal e (k) represents the power ratio of the reverberant component in the residual signal e (k), that is, the residual echo signal e E (k). Coherence is described in detail in, for example, Hino, published by Asakura Shoten, "Spectral Analysis," and analysis using coherence is described in detail in, for example, Morishita, Obata, and the Institute of Instrument and Control Engineers, "Signal Processing." There is.

【0025】各パワースペクトルとクロススペクトル
は、入力信号x(k)、残留反響信号e E(k)を2L点離
散フーリエ変換して求めた短時間スペクトルX(f)、E
(f)(f=1、・・・・・・、2L)および時間平均ε[・]
から、
Each power spectrum and cross spectrum
Is the input signal x (k) and the residual echo signal e E(k) is separated by 2L
Short-time spectrum X (f), E obtained by Fourier transform
(f) (f = 1, ..., 2L) and time average ε [•]
From

【0026】[0026]

【数12】 [Equation 12]

【0027】の様に求められる。残差信号e(k)から残
留反響信号eE(k)と妨害信号yI(k)を分離すること
はできないが、このコヒーレンス解析を行うことによ
り、最適なステップサイズμを求めることが可能にな
る。
It is calculated as follows. Although the residual echo signal e E (k) and the disturbing signal y I (k) cannot be separated from the residual signal e (k), it is possible to obtain the optimum step size μ by performing this coherence analysis. become.

【0028】[0028]

【数13】 [Equation 13]

【0029】[0029]

【数14】 [Equation 14]

【0030】Xm・(m-1)!(f):信号xm(k)から信号x1
(k)、・・・・・・、x(m-1)(k)との相関成分を除去した信
号の短時間スペクトル、および E・(m-1)!(f):信号e(k)から信号x1(k)、・・・・・・、
(m-1)(k)との相関成分を除去した信号の短時間スペ
クトルのコヒーレンスになっている。チャネル数M=2
のときと同様に、相関成分を除去した後の短時間スペク
トルXm・(m-1)!(f)は
X m · (m−1)! (F): signal x m (k) to signal x 1
(k), ..., Short-time spectrum of the signal from which the correlation component with x (m-1) (k) has been removed, and E. (m-1)! (f): signal e (k ) From the signal x 1 (k), ...
It is the coherence of the short-time spectrum of the signal from which the correlation component with x (m-1) (k) has been removed. Number of channels M = 2
Similarly to the case of, the short-time spectrum X m · (m-1)! (F) after removing the correlation component is

【0031】[0031]

【数15】 [Equation 15]

【0032】以上の相関成分除去演算は図9の第1の相
関除去部4321mと第2の相関除去部4322mにより
実行する。第1の相関除去部4321mに入力信号の短
時間スペクトルXm(j、f)と相関が除去された信号の
スペクトルを入力して相関成分を除去した後の短時間ス
ペクトルXm・(m-1)!(j、f)を得る。第2の相関除去部
4322mに反響信号E(j、f)と相関が除去された信
号のスペクトルXm・(m- 1)!(j、f)を入力して相関成分
を除去した後の短時間スペクトルE・(m-1)!(f)を得
る。
The above-described correlation component removal calculation is executed by the first correlation removal section 4321 m and the second correlation removal section 4322 m shown in FIG. The short time spectrum X m (j, f) of the input signal and the spectrum of the signal whose correlation is removed are input to the first correlation removing unit 4321 m to remove the correlation component, and the short time spectrum X m · (m -1)! (J, f) is obtained. After removing the correlation component by inputting the spectrum X m · (m− 1)! (J, f) of the echo-removed signal E (j, f) and the correlation removed to the second correlation removing unit 4322 m To obtain the short-time spectrum E · (m−1)!

【0033】残留反響信号eE(k)の予測値と入力信号
x(k)のコヒーレンスγ^2(f)をステップサイズ制御に
使用することも考えられる。残留反響信号の予測法とし
て、例えば反響信号yE(k)の各周波数成分をt(f)倍
する方法が考えられる。一例として、t(f)=0.1に
設定する場合、残留反響の信号パワーを反響信号パワー
の−20dBであるものと想定して、残差信号e(k)に
占める残留反響信号e E(k)の比率を求めることに対応
する。上述したMチャネル入力信号と残差信号e(k)の
コヒーレンス算出と同様にしてMチャネル入力信号x
1(k)・・・・・xM(k)と収音信号y(k)のコヒーレンスγ'
(f)が求められているとき、残差信号に占める反響信号
成分の比率γ^2(f)は
Residual echo signal eEPredicted value of (k) and input signal
coherence γ of x (k)^ 2(f) for step size control
It is also possible to use it. As a method of predicting residual echo signals
For example, the echo signal yEEach frequency component of (k) is multiplied by t (f)
There are possible ways to do this. As an example, t (f) = 0.1
If set, the residual echo signal power is set to the echo signal power.
-20 dB of the residual signal e (k)
Occupy residual echo signal e ECorresponding to obtaining the ratio of (k)
To do. Of the M channel input signal and the residual signal e (k) described above.
Similar to the coherence calculation, M channel input signal x
1(k) ・ ・ ・ ・ ・ xM(k) and the coherence γ'of the picked-up signal y (k)
Echo signal in the residual signal when (f) is required
Ratio of ingredients γ^ 2(f) is

【0034】[0034]

【数16】 [Equation 16]

【0035】の様に、γ'(f)から算出することができ
る。適応フィルタの更新方法としては、上述したNLM
S法の如く毎サンプルの処理を時間領域で行う仕方の他
に、一定区間毎に処理を行うブロック処理方式がある。
これは、文献 E.R.Ferrara,“Fast Implementation of
LMS adaptive filters,”IEEE Trans.Acoust.,Speech
Signal Processing,vol.ASSP-28,pp.474-475(1980)です
でに提案されている通り、FFTを利用して周波数領域
の適応フィルタ係数を扱うことにより、トータルの計算
量を大幅に削減することができる。この適応アルゴリズ
ムでは、周波数領域の適応フィルタ係数ベクトルH^
(j)が
As in the above, it can be calculated from γ '(f). As a method of updating the adaptive filter, the above-mentioned NLM is used.
In addition to the method of performing processing of each sample in the time domain as in the S method, there is a block processing method of performing processing in each fixed section.
This is the document ERFerrara, “Fast Implementation of
LMS adaptive filters, ”IEEE Trans.Acoust., Speech
As already proposed in Signal Processing, vol.ASSP-28, pp.474-475 (1980), using FFT to handle adaptive filter coefficients in the frequency domain significantly reduces the total amount of calculation. can do. In this adaptive algorithm, the frequency domain adaptive filter coefficient vector H ^
(J) is

【0036】[0036]

【数17】 [Equation 17]

【0037】以下、この発明の実施の形態を実施例を参
照して説明する。 実施例1 実施例1においては、文献D.Mansour and A.H.Gray,“U
nconstrained Frequency-Domain Adaptive Filter,”IE
EE Trans.Acoust.,Speech,Signal Processing,vol.ASSP
・30,No.5,pp.726-734(1982)で提案されたアルゴリズム
をマルチチャネルに拡張し、コヒーレンスに基づくステ
ップサイズ制御方法を適用した場合を説明する。この周
波数領域適応アルゴリズムは、白色化処理により受話信
号の如きスペクトルに偏りのある信号が入力されても適
応フィルタの収束特性の劣化が防止される。
Embodiments of the present invention will be described below with reference to examples. Example 1 In Example 1, reference D. Mansour and AHGray, “U
nconstrained Frequency-Domain Adaptive Filter, ”IE
EE Trans.Acoust., Speech, Signal Processing, vol.ASSP
・ The case where the algorithm proposed in 30, No. 5, pp. 726-734 (1982) is extended to multi-channel and the step size control method based on coherence is applied will be described. This frequency domain adaptive algorithm prevents deterioration of the convergence characteristic of the adaptive filter even when a signal having a spectrum bias such as a received signal is input by the whitening process.

【0038】以下の説明は、残差信号を対象信号とし、
適応フィルタ長をLとし、Overlap-save方式を使用して
L/Dサンプル毎に長さ2Lの信号ベクトルを処理する
場合を取り扱っている。 (ステップ1)入力信号xm(k)(m=1、…、M)
を、L/Dサンプル毎に長さ2Lの信号ベクトルにブロ
ック化して、FFTにより周波数領域に変換する。Xm (j)=diag(FFT([xm(jL/D−2
L+1)、・・・・・、xm(jL/D)]T)、ここで、
(m=1、・・・・・、M) ただし、関数FFT(x)はベクトルxをFFT変換す
る関数であり、ベクトルxは関数diag(x)により
その要素を対角成分とする行列に変換される。即ち、
x=[x(1)・・・・・・x(2L)]Tのとき
In the following description, the residual signal is the target signal,
Let L be the adaptive filter length and use the overlap-save method.
Process a 2L length signal vector for each L / D sample
You are dealing with the case. (Step 1) Input signal xm(k) (m = 1, ..., M)
To a signal vector of length 2L for each L / D sample.
And converted into the frequency domain by FFT. Xm (J) = diag (FFT ([xm(JL / D-2
L + 1), ..., xm(JL / D)]T),here,
(M = 1, ..., M) However, the function FFT (x) transforms the vector x by FFT.
And the vector x is the function diag (x)
It is converted into a matrix whose elements are diagonal elements. That is,
x = [x (1) ... x (2L)]TWhen

【0039】[0039]

【数18】 [Equation 18]

【0040】(ステップ2)周波数領域でXm(j)
と第mチャネルの周波数領域での適応フィルタ係数ベク
トルH^ m(j)を掛けることで、チャンネル毎に入力
信号ベクトルをフィルタ処理する。計算結果を逆FFT
処理して、時間領域の信号ベクトルy^ m(j)を得
る。y^ m (j)=[0LL]IFFT(X
m(j)H^ m(j)) ただし、H^ m(j)は要素数2Lの複素数ベクトルで
あり、逆FFT変換して前半L個を取り出すと、適応フ
ィルタのインパルス応答になる。0LはL×Lの零行
列、ILはL×Lの単位行列である。
(Step 2) X m (j) in the frequency domain
And the input signal vector is filtered for each channel by multiplying by the adaptive filter coefficient vector H ^ m (j) in the frequency domain of the m-th channel. Inverse FFT of calculation result
The signal vector y ^ m (j) in the time domain is obtained by processing. y ^ m (j) = [0 L I L ] IFFT (X
m (j) H ^ m (j)) However, H ^ m (j) is a complex vector having 2L elements, and the inverse FFT transform to extract the first L results in the impulse response of the adaptive filter. 0 L is an L × L zero matrix, and I L is an L × L identity matrix.

【0041】(ステップ3)信号ベクトルy^ m(j)
を加算して、予測反響信号のベクトルy^(j)を得
る。y^ (j)=ΣM m=1^ m(j) (ステップ4)時間領域にて収音信号ベクトルy
(j)と予測反響ベクトルy^(j)から残差信号ベ
クトルE(j)を求め、FFTにより周波数領域に変
換する。
(Step 3) Signal vector y ^ m (j)
Are added to obtain the vector y ^ (j) of the predicted echo signal. y ^ (j) = Σ M m = 1 y ^ m (j) (Step 4) Sound signal vector y in the time domain
The residual signal vector E (j) is obtained from (j) and the predicted echo vector y ^ (j), and is transformed into the frequency domain by FFT.

【0042】[0042]

【数19】 (ステップ5)[Formula 19] (Step 5)

【0043】[0043]

【数20】 [Equation 20]

【0044】[0044]

【数21】 [Equation 21]

【0045】(ステップ6)残差信号と入力信号を周波
数領域で処理し、修正ベクトルdH^ m(j)を求め
る。
(Step 6) The residual signal and the input signal are processed in the frequency domain to obtain a correction vector dH ^ m (j).

【0046】[0046]

【数22】 [Equation 22]

【0047】ただし、行列X* m(k)の各成分は行列
m(k)各成分の複素共役である。 (ステップ7)行列P(k)を、
However, each element of the matrix X * m (k) is a complex conjugate of each element of the matrix Xm (k). (Step 7) The matrix P (k) is

【0048】[0048]

【数23】 [Equation 23]

【0049】により求めた入力信号のパワースペクトル
総和である。ただし、X*は複素数Xの複素共役であ
り、βは短時間平均をとるための平滑化定数で0<β<
1の値をとる。 (ステップ8)ステップ5において求められた残差信号
に占める反響成分の比率γ2(f)から
It is the sum of power spectra of the input signal obtained by Where X * is the complex conjugate of the complex number X, and β is a smoothing constant for averaging in a short time, 0 <β <
Takes a value of 1. (Step 8) From the ratio γ 2 (f) of the reverberation component in the residual signal obtained in Step 5,

【0050】[0050]

【数24】 [Equation 24]

【0051】によりコヒーレンスγ2(f)を対角要素と
する行列M(j)を求める。ただし、μ0は0〜1の
間の固定値に設定される。適応フィルタを次式で更新す
る。H^ m (j+1)=H^ m(j)+M(j)P
(j)dH^ m(j) 行列M(j)を掛けることにより周波数帯域毎に残差
信号に占める反響成分の比率γ2(f)に基づいてステッ
プサイズが最適に制御される。行列P(j)を修正ベ
クトルdH^ m(j)に掛けることは入力信号の白色化
処理に対応し、入力信号が音声の様に有色性信号のとき
適応フィルタの収束特性を向上させることが知られてい
る。
A matrix M (j) having diagonal elements of coherence γ 2 (f) is obtained by However, μ 0 is set to a fixed value between 0 and 1. Update the adaptive filter with the following formula. H ^ m (j + 1) = H ^ m (j) + M (j) P
(J) dH ^ m (j) The step size is optimally controlled based on the ratio γ 2 (f) of the reverberation component in the residual signal for each frequency band by multiplying by the matrix M (j). Multiplying the correction vector dH ^ m (j) by the matrix P (j) corresponds to whitening processing of the input signal, and can improve the convergence characteristic of the adaptive filter when the input signal is a chromatic signal like speech. Are known.

【0052】実施例1の方法は、図3の構成の反響消去
部4により実施される。入力信号x1(k)......M(k)
はTF変換部4111〜411Mにてステップ1の如くに
ブロック化され、周波数領域に変換される。そして、フ
ィルタ処理部4121〜412MとFT変換部4131
413M、ベクトル加算部414にてステップ2、3の
様に時間領域の予測反響信号のベクトルy^(j)が
算出される。収音信号y(k)は、入力信号x(k)と時間
ズレが生じない様にブロック化部45でブロック化さ
れ、そして、信号ベクトル減算部42でステップ4の様
に予測反響の信号ベクトルy^(j)が差し引かれ、
TF変換部431にて周波数領域の残差信号ベクトル
E(j)が求められる。
The method of the first embodiment is carried out by the echo canceller 4 having the configuration shown in FIG. Input signal x 1 (k) ...... x M (k)
Is converted into blocks by the TF converters 411 1 to 411 M as in step 1 and converted into the frequency domain. The filter processing unit 412 1 ~412 M and FT conversion unit 413 1
413 M , the vector adder 414 calculates the vector y ^ (j) of the predicted echo signal in the time domain as in steps 2 and 3. The picked-up sound signal y (k) is divided into blocks by the blocking unit 45 so as not to be time-shifted from the input signal x (k), and the signal vector subtraction unit 42 calculates the predicted echo signal vector as in step 4. y ^ (j) is deducted,
The TF converter 431 obtains the residual signal vector E (j) in the frequency domain.

【0053】コヒーレンス推定部432は、周波数領域
の残差信号ベクトルE(j)と周波数領域の入力信号
ベクトルXm(j)から、ステップ5に従ってコヒー
レンスを算出する。コヒーレンス推定部432の具体的
構成は図8および図9に示されている。各周波数帯域に
対応する第1および第2の相関除去部4321m、43
22mに残差信号ベクトルE(j)と周波数領域の入
力信号ベクトルXm(j)を入力し、相関の除去され
た短時間スペクトルからコヒーレンス算出部43231
〜4323Mによりコヒーレンスを算出し、反響成分比
率算出部4324にて残差信号に占める反響成分の比率
を求める。
The coherence estimation unit 432 calculates the coherence from the residual signal vector E (j) in the frequency domain and the input signal vector X m (j) in the frequency domain according to step 5. The specific configuration of the coherence estimation unit 432 is shown in FIGS. 8 and 9. The first and second correlation removing units 4321 m , 43 corresponding to each frequency band
The residual signal vector E (j) and the input signal vector X m (j) in the frequency domain are input to 22 m , and the coherence calculation unit 4323 1
The coherence is calculated from ˜4323 M , and the echo component ratio calculation unit 4324 obtains the ratio of the echo component in the residual signal.

【0054】フィルタ更新部4331〜433Mは周波数
領域の入力信号ベクトルXm(j)と周波数領域の残
差信号ベクトルE(j)とからステップ6に従って周
波数領域で修正ベクトルを求めると同時にステップ7に
従って行列P(j)を計算する。そして、ステップ8
に従って修正ベクトルを補正して適応フィルタ係数を更
新する。更新されたフィルタ係数は、フィルタ処理部4
121〜412Mに渡される。 実施例2 実施例2は、コヒーレンスに基づくステップサイズ制御
方法を、文献 江村、羽田、“付加信号強調型の周波数
領域ステレオ適応アルゴリズム”、日本音響学会200
1年秋季研究発表会、pp.537−538(200
1)で提案されているマルチチャネル適応アルゴリズム
に適用し残差信号を対象信号とした場合について説明す
る。
The filter updating units 433 1 to 433 M obtain a correction vector in the frequency domain in accordance with step 6 from the input signal vector X m (j) in the frequency domain and the residual signal vector E (j) in the frequency domain, and at the same time Compute the matrix P (j) according to 7. And step 8
The correction vector is corrected according to to update the adaptive filter coefficient. The updated filter coefficient is used by the filter processing unit 4
Passed to 12 1 to 412 M. Example 2 In Example 2, a step size control method based on coherence is described in the literature: Emura, Haneda, “Additional Signal Enhancement Type Frequency Domain Stereo Adaptive Algorithm”, Acoustical Society of Japan 200
1st Fall Research Presentation, pp. 537-538 (200
A case will be described in which the residual signal is applied to the multi-channel adaptive algorithm proposed in 1) and the residual signal is used as the target signal.

【0055】この適応アルゴリズムは、入力信号x
m(k)の代わりに修正用信号zm(k)から適応フィルタの
修正ベクトルを求める。そのために、図4のMチャネル
反響消去部7にはMチャネル受話信号um(k)の他に、
相関変動処理部61〜6Mにより生成されたMチャネル付
加信号gm(um(k))も入力される。なお、相関変動処
理部61〜6Mは、マルチチャネル反響消去装置の反響経
路推定性能向上に一般的に使われる装置である。図4の
Mチャネル反響消去部7は、以下のステップに従って適
応フィルタの係数を更新する。
This adaptive algorithm uses the input signal x
determining a correction vector of the adaptive filter from the modified signal z m (k) instead of m (k). Therefore, in addition to the M channel received signal u m (k), the M channel echo canceller 7 of FIG.
M-channel additional signal generated by the correlation variation processing section 6 1 ~6 M g m (u m (k)) is also input. The correlation fluctuation processing units 6 1 to 6 M are devices generally used for improving the echo path estimation performance of the multi-channel echo canceller. The M-channel echo canceller 7 in FIG. 4 updates the coefficient of the adaptive filter according to the following steps.

【0056】(ステップ1)各チャネルの受話信号u
m(k)と受話信号um(k)を相関変動処理部6Mに入力し
て得られた付加信号gm(um(k))とから再生信号x
m(k)と修正用信号zm(k)を xm(k)=um(k)+gm(um(k)) zm(k)=aum(k)+gm(um(k)) (ただし、m=1、…、M、0<a≦1) により生成する。そして、L/Dサンプル毎に長さ2L
の信号ベクトルにブロック化し、FFTにより、Xm (j)=diag(FFT([xm(jL/D−2L
+1)、…、xm(jL/D)]T))Zm (j)=diag(FFT([zm(jL/D−2L
+1)、…、zm(jL/D)]T)) (ただし、m=1、…、M)の様に周波数領域に変換す
る。
(Step 1) Received signal u of each channel
From the additional signal g m (u m (k)) obtained by inputting m (k) and the received signal u m (k) to the correlation fluctuation processing unit 6 M , the reproduced signal x
m (k) and the correction signal z m (k) are x m (k) = u m (k) + g m (u m (k)) z m (k) = au m (k) + g m (u m (k)) (where, m = 1, ..., M, 0 <a ≦ 1). And 2L length for each L / D sample
Of the signal vector of X m (j) = diag (FFT ([x m (jL / D-2L
+1), ..., X m (jL / D)] T )) Z m (j) = diag (FFT ([z m (jL / D-2L
+1), ..., Z m (jL / D)] T )) (where m = 1, ..., M).

【0057】(ステップ2)周波数領域でXm(j)
とH^ m(j)を掛けることで、チャネル毎に入力信号
ベクトルをフィルタ処理する。計算結果を逆FFT処理
し、時間領域の信号ベクトルy^ m(j)(ただし、m
=1、…、M)を得る。y^ m (j)=[0LL]IFFT(x
m(j)H^ m(j)) ただし、0LはL×Lの零行列、ILはL×Lの単位
行列である。 (ステップ3)信号ベクトルy^ m(j)(m=1、
…、M)を加算して、予測反響信号のベクトルy
^(j)を得る。
(Step 2) X m (j) in the frequency domain
And H ^ m (j) are multiplied to filter the input signal vector for each channel. Inverse FFT processing is performed on the calculation result, and the time-domain signal vector y ^ m (j) (where m
= 1, ..., M) is obtained. y ^ m (j) = [ 0 L I L] IFFT (x
m (j) H ^ m (j)) where 0 L is an L × L zero matrix and I L is an L × L identity matrix. (Step 3) Signal vector y ^ m (j) (m = 1,
, M), and the vector y of the predicted echo signal
^ (J) is obtained.

【0058】y^(j)=ΣM m=1^ m(j) (ステップ4)時間領域にて収音信号ベクトルy
(j)と予測反響信号のベクトルy^(j)から残差
信号ベクトルを求め、FFTにより周波数領域に変換す
る。
Y ^ (j) = Σ M m = 1 y ^ m (j) (Step 4) Sound pickup signal vector y in the time domain
A residual signal vector is obtained from (j) and the predicted echo signal vector y ^ (j), and is transformed into the frequency domain by FFT.

【0059】[0059]

【数25】 (ステップ5)[Equation 25] (Step 5)

【0060】[0060]

【数26】 [Equation 26]

【0061】[0061]

【数27】 [Equation 27]

【0062】(ステップ6)残差信号と修正用信号を周
波数領域で処理し、修正ベクトルdH^ m(j)を求め
る。
(Step 6) The residual signal and the correction signal are processed in the frequency domain to obtain a correction vector dH ^ m (j).

【0063】[0063]

【数28】 [Equation 28]

【0064】により計算する。ただし、関数Xm(j、
f)、Zm(j、f)は行列Xm(j)および行列Z
m(j)の(f、f)番目の要素である。δは分母が0
になることを防止するための微小な正定数である。行列
P(j)中のp(j、f)は、各チャネルの入力信号
と修正用信号のクロススペクトルの総和になっている。 (ステップ8)ステップ5において求められたコヒーレ
ンスγ2(f)から
Calculate by However, the function X m (j,
f) and Z m (j, f) are the matrix X m (j) and the matrix Z
It is the (f, f) th element of m (j). δ has a denominator of 0
It is a small positive constant for preventing P (j, f) in the matrix P (j) is the sum of the cross spectra of the input signal of each channel and the correction signal. (Step 8) From the coherence γ 2 (f) obtained in Step 5

【0065】[0065]

【数29】 [Equation 29]

【0066】によりコヒーレンスγ2(f)を対角要素と
する行列M(j)を求める。ただし、μ0は0〜1の
間の固定値に設定される。適応フィルタを次式で更新す
る。H^ m (j+1)=H^ m(j)+M(j)P
(j)dH^ m(j) 行列M(j)を掛けることにより周波数帯域毎に対象
信号に占める反響成分の比率に基づいてステップサイズ
が最適に制御される。行列P(j)を修正ベクトルd
^ m(j)に掛けることは入力信号の白色化処理に対
応し、入力信号が音声の様に有色性信号のとき適応フィ
ルタの収束特性を向上させることが知られている。
A matrix M (j) having diagonal elements of coherence γ 2 (f) is obtained by However, μ 0 is set to a fixed value between 0 and 1. Update the adaptive filter with the following formula. H ^ m (j + 1) = H ^ m (j) + M (j) P
(J) dH ^ m (j) By multiplying the matrix M (j), the step size is optimally controlled based on the ratio of the reverberant component to the target signal for each frequency band. Matrix P (j) is modified vector d
It is known that applying H ^ m (j) corresponds to whitening processing of an input signal, and improves the convergence characteristic of an adaptive filter when the input signal is a chromatic signal such as voice.

【0067】Mチャネル反響消去部7の内部は、図5の
様な構成をとる。再生信号xm(k)および修正用信号zm
(k)をTF変換するTF変換部702m、705mは、図
3のTF変換部411mに対応している。加算器701m
により受話信号um(k)に付加信号gm(um(k))が加算
されて再生信号xm(k)が生成され、TF変換部702m
によって行列Xm(j)に変換される。また、受話信
号をum(k) は減衰器703mによりa倍され(ただ
し、aは0から1の値)、加算器704mにより付加信
号gm(um(k))が加算されて修正用信号zm(k)が生成
される。そして、TF変換部705mにより行列Z
m(j)に変換される。
The inside of the M-channel echo canceller 7 has a structure as shown in FIG. Reproduction signal x m (k) and correction signal z m
TF conversion units 702 m and 705 m that perform TF conversion on (k) correspond to the TF conversion unit 411 m in FIG. 3. Adder 701 m
Additional signal to the received signal u m (k) g m ( u m (k)) is summed reproduced signal x m (k) is generated by, TF conversion unit 702 m
Is converted into a matrix X m (j) by. The received signal u m (k) is multiplied by a by the attenuator 703 m (where a is a value from 0 to 1), and the additional signal g m (u m (k)) is added by the adder 704 m. As a result, the correction signal z m (k) is generated. Then, the TF conversion unit 705 m causes the matrix Z
converted to m (j).

【0068】行列Xm(j)はフィルタ処理部712m
に渡され、行列Zm(j)はフィルタ更新部733mに渡
される。フィルタ処理部712m 、FT変換部71
m、ベクトル加算部714は、ステップ2およびステ
ップ3の処理を経て予測反響信号が生成される。マイク
ロホン3から得られる収音信号y(k)は、ブロック化部
75でブロック化され、ステップ4に従ってベクトル減
算部72にて予測反響信号ベクトルとの差がとられ、T
F変換部731で周波数領域へ変換される。コヒーレン
ス推定部732は、周波数領域の残差信号ベクトルE
(j)と入力信号ベクトルXm(j)からステップ5
に従ってコヒーレンスを推定する。フィルタ更新部73
m(m=1、…、M)は、ステップ6、ステップ7、
ステップ8に従って周波数領域でH^ m(j)を更新す
る。
The matrix X m (j) is the filter processing unit 712 m.
And the matrix Z m (j) is passed to the filter updating unit 733 m . Filter processing unit 712 m , FT conversion unit 71
3 m , the vector addition unit 714 generates the predicted echo signal through the processes of step 2 and step 3. The sound pickup signal y (k) obtained from the microphone 3 is divided into blocks by the blocking unit 75, and the difference from the predicted echo signal vector is calculated by the vector subtraction unit 72 according to step 4, and T
The F conversion unit 731 converts the frequency domain. The coherence estimation unit 732 determines the residual signal vector E in the frequency domain.
Step 5 from (j) and the input signal vector X m (j)
Estimate the coherence according to. Filter updating unit 73
3 m (m = 1, ..., M) corresponds to Step 6, Step 7,
Update H ^ m (j) in the frequency domain according to step 8.

【0069】図7を参照して実施例2の数値シミュレー
ション結果を説明する。この数値シミュレーションは、
入力チャネル数をM=2とし、サンプリング周波数を8
kHzに設定し、反響経路として残響時間200msの
部屋で実測した室内伝達関数を700タップに打ち切っ
て反響を生成した。また、妨害信号としてはレベル変動
するホス雑音と送話信号が重畳した信号を使用した。反
響信号、妨害信号、収音信号=反響信号+妨害信号およ
び本手法適用後の残差信号e(k)は、それぞれ図6の様
になっている。この信号を使用し、ステップサイズ制御
を行わない従来方法と提案するステップサイズ制御方法
を比較した。
The numerical simulation result of the second embodiment will be described with reference to FIG. This numerical simulation
The number of input channels is M = 2 and the sampling frequency is 8
The echo was generated by setting the frequency to kHz and cutting off the room transfer function measured in a room with a reverberation time of 200 ms as an echo path to 700 taps. As the interfering signal, a signal in which the level-varying Phos noise and the transmission signal were superimposed was used. The echo signal, the disturbing signal, the picked-up signal = the echo signal + the disturbing signal, and the residual signal e (k) after applying this method are as shown in FIG. Using this signal, the conventional method without step size control and the proposed step size control method were compared.

【0070】チャネル当りの適応フィルタタップ数をL
=512とし、適応フィルタが128サンプル即ち16
ms毎に更新される様にD=4に設定した。また、μ0
=0.2に設定した。適応フィルタの係数誤差の変化を
図7に示す。このグラフによれば、妨害信号が若干大き
くなっている区間(t=4〜6s)において、従来方法
(点線)では推定による係数誤差が悪化している。しか
し、提案方法(実線)は、この区間の推定は安定であ
る。また、妨害信号が急激に大きくなる区間(t=6
s)において、従来方法は係数誤差が0dBから8dB
に拡大して反響経路推定が不安定になっている。一方、
提案方法は、この区間の係数誤差の悪化は−6dBから
−5dBの1dBにとどまっている。
Let L be the number of adaptive filter taps per channel.
= 512 and the adaptive filter has 128 samples or 16
D = 4 is set so that it is updated every ms. Also, μ 0
= 0.2 was set. The change in the coefficient error of the adaptive filter is shown in FIG. According to this graph, the coefficient error due to the estimation is deteriorated in the conventional method (dotted line) in the section (t = 4 to 6 s) in which the interference signal is slightly larger. However, with the proposed method (solid line), the estimation of this section is stable. In addition, an interval (t = 6) in which the interfering signal rapidly increases
s), the conventional method has a coefficient error of 0 dB to 8 dB.
The echo path estimation becomes unstable due to the expansion to. on the other hand,
In the proposed method, the deterioration of the coefficient error in this section is -6 dB to -5 dB, which is 1 dB.

【0071】[0071]

【発明の効果】以上の通りであって、この発明によれ
ば、周波数領域の適応フィルタ係数と直前フレームのフ
ィルタ係数の間の修正量として、従来の修正ベクトルと
入力信号パワーの逆数の積を、残差信号もしくは収音信
号と入力信号との間のコヒーレンスを用いて補正するこ
とにより、送話、周囲騒音その他の反響以外の妨害信号
の存在する状況下においても適応フィルタの反響経路推
定を頑健にすることができる。
As described above, according to the present invention, the product of the reciprocal of the conventional correction vector and the input signal power is used as the correction amount between the adaptive filter coefficient in the frequency domain and the filter coefficient in the immediately preceding frame. By correcting the residual signal or the picked-up signal and the coherence between the input signal, the echo path of the adaptive filter can be estimated even in the presence of interference signals other than echo, such as speech, ambient noise, etc. You can be robust.

【図面の簡単な説明】[Brief description of drawings]

【図1】多チャネル音響通信装置全体の概略を説明する
図。
FIG. 1 is a diagram illustrating an outline of an entire multi-channel acoustic communication device.

【図2】従来例を説明する図。FIG. 2 is a diagram illustrating a conventional example.

【図3】実施例を説明する図。FIG. 3 is a diagram illustrating an example.

【図4】実施例を含む多チャネル音響通信装置全体の概
略を説明する図。
FIG. 4 is a diagram illustrating an outline of an entire multi-channel acoustic communication device including an embodiment.

【図5】他の実施例を説明する図。FIG. 5 is a diagram illustrating another embodiment.

【図6】反響信号、妨害信号、収音信号を示す図。FIG. 6 is a diagram showing an echo signal, an interference signal, and a sound pickup signal.

【図7】実施例の数値シミュレーション結果を示す図。FIG. 7 is a diagram showing a numerical simulation result of an example.

【図8】コヒーレンスおよび反響成分比率の算出を説明
する図。
FIG. 8 is a diagram for explaining calculation of coherence and echo component ratio.

【図9】相関成分除去演算を説明する図。FIG. 9 is a diagram illustrating a correlation component removal calculation.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 スピーカM個(Mは2以上の整数)とマ
イクロホンN個(Nは1以上の整数)が共通の音場に配
置され、スピーカからMチャネル信号を再生し、 各マイクロホンに対応する適応フィルタにMチャネル再
生信号を入力することで反響信号を予測し、収音信号か
ら予測した反響信号を差し引き、得られた残差信号を小
さくするように適応フィルタ係数を更新する多チャネル
音響通信システムにおいて、 残差信号を対象信号として、対象信号に占める反響成分
の比率を求め、この情報をもちいて適応フィルタ係数を
更新すること、 を特徴とする反響消去方法。
1. M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) are arranged in a common sound field, and M channel signals are reproduced from the speakers to correspond to each microphone. A multi-channel acoustic in which an echo signal is predicted by inputting an M channel reproduction signal to the adaptive filter, the predicted echo signal is subtracted from the sound pickup signal, and the adaptive filter coefficient is updated so as to reduce the obtained residual signal. In the communication system, the residual signal is used as a target signal, the ratio of the reverberation component in the target signal is calculated, and the adaptive filter coefficient is updated using this information.
【請求項2】 スピーカM個(Mは2以上の整数)とマ
イクロホンN個(Nは1以上の整数)が共通の音場に配
置され、スピーカからMチャネル信号を再生し、各マイ
クロホンに対応する適応フィルタにMチャネル再生信号
を入力することで反響信号を予測し、収音信号から予測
した反響信号を差し引き、得られた残差信号を小さくす
るように適応フィルタ係数を更新する多チャネル音響通
信システムにおいて、 収音信号を対象信号として、対象信号に占める反響成分
の比率を求め、この情報をもちいて適応フィルタ係数を
更新すること、 を特徴とする反響消去方法。
2. M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) are arranged in a common sound field, and M channel signals are reproduced from the speakers to support each microphone. A multi-channel acoustic in which an echo signal is predicted by inputting an M channel reproduction signal to the adaptive filter, the predicted echo signal is subtracted from the sound pickup signal, and the adaptive filter coefficient is updated so as to reduce the obtained residual signal. In the communication system, a sound pickup signal is used as a target signal, the ratio of the reverberation component in the target signal is calculated, and the adaptive filter coefficient is updated using this information.
【請求項3】 請求項1、2の反響消去方法において、
(A) Mチャネル再生信号を短時間区間ごとに周波数領
域に変換し、周波数領域の適応フィルタ係数に乗算し、
時間領域に変換して反響信号を予測し、(B) 収音信号
から予測した反響信号を差し引いて得られた残差信号を
短時間区間ごとに周波数領域に変換し、(C) 再生信号
と対象信号の短時間スペクトルから、周波数帯域ごとに
対象信号に占める反響成分の比率を求め、(D) 周波数
領域で周波数帯域ごとに残差信号と再生信号を乗算して
求めた修正ベクトルを、対象信号に占める反響成分の比
率および入力信号と修正用信号の情報に基づいて周波数
帯域ごとに補正して、適応フィルタ係数を更新する、 というステップを含む反響消去方法。
3. The echo canceling method according to claim 1, wherein
(A) The M channel playback signal is converted into the frequency domain for each short time period, and the frequency domain adaptive filter coefficient is multiplied,
Transform the time domain to predict the echo signal, (B) subtract the predicted echo signal from the picked-up signal, transform the residual signal into the frequency domain for each short time interval, and (C) regenerate the signal. From the short-time spectrum of the target signal, find the ratio of the reverberation component in the target signal for each frequency band, and (D) modify the correction vector obtained by multiplying the residual signal and the playback signal for each frequency band in the frequency domain. An echo canceling method, which comprises the step of updating the adaptive filter coefficient by correcting for each frequency band based on the ratio of the echo component in the signal and the information of the input signal and the correction signal.
【請求項4】 請求項1、2の反響消去方法において、
(A)Mチャネル受話信号を処理して、チャネル間相関
がほぼ無相関とみなせるMチャネル付加信号を生成し、
(B)Mチャネル付加信号をそれぞれ受話信号に加算し
て再生信号とし、(C)Mチャネル再生信号を短時間区
間ごとに周波数領域に変換し、周波数領域の適応フィル
タ係数に乗算し、時間領域に変換して反響信号を予測
し、(D) 収音信号と予測した反響信号との残差信号
を、短時間区間ごとに周波数領域に変換し、(E) 再
生信号と対象信号の短時間スペクトルから、周波数帯域
ごとに対象信号に占める反響成分の比率を求め、(E)
Mチャネル付加信号にa倍(aは0〜1の値)したMチャネ
ル受話信号を加算して修正用信号を生成し、(F) 修
正用信号を短時間区間ごとに周波数領域に変換し、
(G) 周波数領域で周波数帯域ごとに残差信号と修正
用信号を乗算して求めた修正ベクトルを、対象信号に占
める反響成分の比率および入力信号と修正用信号の情報
に基づいて周波数帯域ごとに補正して、適応フィルタ係
数を更新する、というステップを含む反響消去方法。
4. The echo canceling method according to claim 1, wherein
(A) M channel received signal is processed to generate an M channel additional signal whose inter-channel correlation can be regarded as almost uncorrelated,
(B) The M channel additional signal is added to each of the received signals to obtain a reproduction signal, and (C) the M channel reproduction signal is converted into the frequency domain for each short time interval, and the adaptive filter coefficient in the frequency domain is multiplied to obtain the time domain. (E) The residual signal between the picked-up signal and the predicted echo signal is converted into the frequency domain for each short time interval, and (E) the reproduction signal and the target signal From the spectrum, find the ratio of the reverberant component to the target signal for each frequency band, and (E)
A correction signal is generated by adding the M channel reception signal multiplied by a times (a is a value of 0 to 1) to the M channel addition signal, and (F) the correction signal is converted into the frequency domain for each short time interval,
(G) The correction vector obtained by multiplying the residual signal and the correction signal for each frequency band in the frequency domain is used for each frequency band based on the ratio of the reverberation component in the target signal and the information of the input signal and the correction signal. The echo canceling method, which comprises the step of:
【請求項5】 請求項1、2、3、4の反響消去方法に
おいて、 第mチャネル再生信号xm(k)(m=2,・・・,
M)より第1〜第m-1チャネル再生信号x1(k),・・
・,xm-1(k)との相関成分を除去した信号の短時間
スペクトル 【数1】 を求め、 対象信号v(k)より、第1〜第m-1チャネル再生信号
1(k),・・・,x m-1(k)との相関成分を除去し
た信号の短時間スペクトル 【数2】 を求め、 2つの短時間スペクトル 【数3】 について、コヒーレンス 【数4】 を求め、 第1チャネル再生信号と対象信号の短時間スペクトルか
らコヒーレンスγ2 1v(f)を求め、 対象信号v(k)に占める反響成分の比率を 【数5】 で求めることを特徴とする反響消去方法。
5. The echo canceling method according to claim 1, 2, 3, or 4.
Be careful M-th channel reproduction signal xm(K) (m = 2, ...,
M) to the reproduction signal x of the 1st to m-1st channels1(K), ...
., Xm-1Short time of signal without correlation component with (k)
Spectrum [Equation 1] Seeking From the target signal v (k), the 1st to (m-1) th channel reproduction signals
x1(K), ..., x m-1Remove the correlation component with (k)
Short time spectrum of the signal [Equation 2] Seeking Two short time spectra [Equation 3] About coherence [Equation 4] Seeking Is the short-time spectrum of the 1st channel playback signal and the target signal?
Coherence γ2 1vFind (f), The ratio of the reverberant component to the target signal v (k) [Equation 5] An echo canceling method characterized by being obtained in.
【請求項6】 共通の音場に配置されたスピーカM個
(Mは2以上の整数)とマイクロホンN個(Nは1以上
の整数)と接続され、 マイクロホンごとに、Mチャネル再生信号から反響信号
を予測する適応フィルタとマイクロホンによる収音信号
から予測した反響信号を差し引いて残差信号を得る手段
と、 残差信号を対象信号として、対象信号に占める反響成分
の比率を求める手段と対象信号に占める反響成分の比率
をもちいて、得られた残差信号を小さくするように適応
フィルタ係数を更新する手段と、 を備える反響消去装置
6. Reverberation from an M channel reproduction signal for each microphone connected to M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) arranged in a common sound field. An adaptive filter that predicts the signal and a means that obtains a residual signal by subtracting the predicted echo signal from the sound pickup signal by the microphone, and a means that obtains the ratio of the echo component in the target signal with the residual signal as the target signal and the target signal. Means for updating the adaptive filter coefficient so as to reduce the obtained residual signal by using the ratio of the echo component occupying in the echo canceller.
【請求項7】 共通の音場に配置されたスピーカM個
(Mは2以上の整数)とマイクロホンN個(Nは1以上
の整数)に接続され、 マイクロホンごとに、Mチャネル再生信号から反響信号
を予測する適応フィルタと、 マイクロホンによる収音信号から予測した反響信号を差
し引いて残差信号を得る手段と、 収音信号を対象信号として、対象信号に占める反響成分
の比率を求める手段と、 対象信号に占める反響成分の比率をもちいて残差信号を
小さくするよう適応フィルタ係数を更新する手段と、 を備える反響消去装置。
7. Reverberation from an M channel reproduction signal for each microphone, which is connected to M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) arranged in a common sound field. An adaptive filter for predicting the signal, a means for subtracting the predicted echo signal from the sound pickup signal from the microphone to obtain a residual signal, a means for obtaining the residual signal as the target signal, and a means for obtaining the ratio of the reverberation component in the target signal, An echo canceller comprising means for updating the adaptive filter coefficient so as to reduce the residual signal by using the ratio of the echo component in the target signal.
【請求項8】 請求項6、7の反響消去装置において、 Mチャネル受話信号を処理して、チャネル間相関がほぼ
無相関とみなせるMチャネル付加信号を生成する手段と
Mチャネル付加信号をそれぞれ受話信号に加算して再生
信号とする手段とMチャネル再生信号を短時間区間ごと
に周波数領域に変換する手段と、 周波数領域の適応フィルタ係数を乗算する手段と、時間
領域に変換して予測反響信号を得る手段と、 収音信号と予測した反響信号との残差信号を、短時間区
間ごとに周波数領域に変換する手段と、 再生信号と対象信号の短時間スペクトルを求める手段
と、再生信号と対象信号の短時間スペクトルから、周波
数帯域ごとに対象信号に占める反響成分の比率を求める
手段と、 Mチャネル付加信号にa倍(aは0〜1の値)したMチャネ
ル受話信号を加算して修正用信号を生成する手段と、 修正用信号を短時間区間ごとに周波数領域に変換する手
段と、 周波数領域で周波数帯域ごとに残差信号と修正用信号を
乗算して修正ベクトルを求める手段と、 対象信号に占める反響成分の比率および入力信号と修正
用信号の情報に基づいて周波数帯域ごとに修正ベクトル
を補正する手段と、 補正された修正ベクトルをもちいて適応フィルタ係数を
更新する手段とを備える反響消去装置。
8. The echo canceller according to claim 6, wherein the means for processing the M channel received signal and generating the M channel additional signal whose inter-channel correlation can be regarded as substantially uncorrelated and the M channel additional signal are received respectively. A means for adding the signal to the reproduced signal, a means for converting the M channel reproduced signal into the frequency domain for each short time interval, a means for multiplying the adaptive filter coefficient in the frequency domain, and a predicted echo signal for conversion into the time domain A means for obtaining the residual signal of the collected signal and the predicted echo signal into a frequency domain for each short time interval, a means for obtaining a short time spectrum of the reproduced signal and the target signal, and a reproduced signal A means for obtaining the ratio of the reverberation component occupying in the target signal for each frequency band from the short-time spectrum of the target signal, and an M channel reception signal in which the M channel additional signal is multiplied by a (a is a value of 0 to 1) A means for adding signals to generate a correction signal, a means for converting the correction signal into the frequency domain for each short time period, and a correction by multiplying the residual signal and the correction signal for each frequency band in the frequency domain A means for obtaining a vector, a means for correcting the correction vector for each frequency band based on the ratio of the reverberation component in the target signal and the information of the input signal and the correction signal, and an adaptive filter coefficient using the corrected correction vector. An echo canceller having means for updating.
【請求項9】 請求項6、7、8の反響消去装置におい
て、 第mチャネル再生信号より第1〜第m-1チャネル再生信
号 との相関成分を除去した信号の短時間スペクトルを
求める手段と、 対象信号より、第1〜第m-1チャネル再生信号 との相関
成分を除去した信号の短時間スペクトルを求める手段
と、 2つの短時間スペクトルとについて、コヒーレンスを求
める手段と、 第1チャネル再生信号と対象信号の短時間スペクトルか
らコヒーレンスを求める手段と対象信号に占める反響成
分の比率を、コヒーレンスから求める手段と、 を備える反響消去装置。
9. The echo canceller according to claim 6, 7, or 8, further comprising: means for obtaining a short-time spectrum of a signal obtained by removing a correlation component between the m-th channel reproduced signal and the 1st to (m-1) th channel reproduced signals. , A means for obtaining a short-time spectrum of a signal from which a correlation component with the first to m-1th channel reproduction signals has been removed from the target signal, a means for obtaining coherence of two short-time spectra, and a first channel reproduction An echo canceller comprising: means for obtaining a coherence from a short-time spectrum of a signal and a target signal; and means for obtaining a ratio of an echo component occupying the target signal from the coherence.
【請求項10】 請求項1〜5に記載の反響消去方法を
コンピュータにより実行する反響消去プログラム。
10. An echo canceling program for executing the echo canceling method according to claim 1 by a computer.
【請求項11】 請求項10に記載の反響消去プログラ
ムを記録したコンピュータ読み取り可能な記録媒体。
11. A computer-readable recording medium in which the echo canceling program according to claim 10 is recorded.
JP2002048553A 2002-02-25 2002-02-25 Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor Expired - Fee Related JP3756828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048553A JP3756828B2 (en) 2002-02-25 2002-02-25 Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048553A JP3756828B2 (en) 2002-02-25 2002-02-25 Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor

Publications (2)

Publication Number Publication Date
JP2003250193A true JP2003250193A (en) 2003-09-05
JP3756828B2 JP3756828B2 (en) 2006-03-15

Family

ID=28661324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048553A Expired - Fee Related JP3756828B2 (en) 2002-02-25 2002-02-25 Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor

Country Status (1)

Country Link
JP (1) JP3756828B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005125272A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Howling suppression device, program, integrated circuit, and howling suppression method
WO2005125273A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Howling detector and its method
JP2006121589A (en) * 2004-10-25 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> Echo cancellation method, apparatus for executing same, program, and recording medium thereof
JP2006524970A (en) * 2003-04-28 2006-11-02 ソーラーフレア・コミュニケーションズ・インコーポレイテッド Eliminate interference in multiple channels
JP2006319925A (en) * 2005-05-16 2006-11-24 Advanced Telecommunication Research Institute International Adaptive filter
US7742386B2 (en) 2003-04-28 2010-06-22 Solarflare Communications, Inc. Multiple channel interference cancellation
US7808407B2 (en) 2007-06-15 2010-10-05 Solarflare Communications, Inc. Sub-channel distortion mitigation in parallel digital systems
US7948862B2 (en) 2007-09-26 2011-05-24 Solarflare Communications, Inc. Crosstalk cancellation using sliding filters
JP2012529211A (en) * 2009-06-02 2012-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Acoustic multichannel cancellation
US8363535B2 (en) 2003-04-28 2013-01-29 Marvell International Ltd. Frequency domain echo and next cancellation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363535B2 (en) 2003-04-28 2013-01-29 Marvell International Ltd. Frequency domain echo and next cancellation
JP2006524970A (en) * 2003-04-28 2006-11-02 ソーラーフレア・コミュニケーションズ・インコーポレイテッド Eliminate interference in multiple channels
US7742386B2 (en) 2003-04-28 2010-06-22 Solarflare Communications, Inc. Multiple channel interference cancellation
US8743674B2 (en) 2003-04-28 2014-06-03 Marvell International Ltd. Frequency domain echo and next cancellation
WO2005125273A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Howling detector and its method
US7760888B2 (en) 2004-06-16 2010-07-20 Panasonic Corporation Howling suppression device, program, integrated circuit, and howling suppression method
WO2005125272A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Howling suppression device, program, integrated circuit, and howling suppression method
US7912230B2 (en) 2004-06-16 2011-03-22 Panasonic Corporation Howling detection device and method
JP2006121589A (en) * 2004-10-25 2006-05-11 Nippon Telegr & Teleph Corp <Ntt> Echo cancellation method, apparatus for executing same, program, and recording medium thereof
JP4504782B2 (en) * 2004-10-25 2010-07-14 日本電信電話株式会社 Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor
JP2006319925A (en) * 2005-05-16 2006-11-24 Advanced Telecommunication Research Institute International Adaptive filter
JP4581114B2 (en) * 2005-05-16 2010-11-17 株式会社国際電気通信基礎技術研究所 Adaptive beamformer
US7808407B2 (en) 2007-06-15 2010-10-05 Solarflare Communications, Inc. Sub-channel distortion mitigation in parallel digital systems
US8294606B2 (en) 2007-06-15 2012-10-23 Marvell International Ltd. Sub-channel distortion mitigation in parallel digital systems
US8912934B2 (en) 2007-06-15 2014-12-16 Marvell International Ltd. Systems with bias offset and gain mismatch removal from parallel transmitted signals
US7948862B2 (en) 2007-09-26 2011-05-24 Solarflare Communications, Inc. Crosstalk cancellation using sliding filters
USRE45794E1 (en) 2007-09-26 2015-11-03 Marvell International Ltd. Crosstalk cancellation using sliding filters
JP2012529211A (en) * 2009-06-02 2012-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Acoustic multichannel cancellation

Also Published As

Publication number Publication date
JP3756828B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4161628B2 (en) Echo suppression method and apparatus
US8594320B2 (en) Hybrid echo and noise suppression method and device in a multi-channel audio signal
JP3727258B2 (en) Echo suppression processing system
RU2546717C2 (en) Multichannel acoustic echo cancellation
JP5038143B2 (en) Echo cancellation
JP4957810B2 (en) Sound processing apparatus, sound processing method, and sound processing program
JP5391103B2 (en) Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor
JP4689269B2 (en) Static spectral power dependent sound enhancement system
JP2007129736A (en) Method and device for suppressing background noise in voice signal, and corresponding device with echo cancellation
WO2006111369A1 (en) A method and device for removing echo in an audio signal
EP1252796A1 (en) System and method for dual microphone signal noise reduction using spectral subtraction
JP2004349806A (en) Multichannel acoustic echo canceling method, apparatus thereof, program thereof, and recording medium thereof
JP5662232B2 (en) Echo canceling apparatus, method and program
JP5469564B2 (en) Multi-channel echo cancellation method, multi-channel echo cancellation apparatus and program thereof
JP3756828B2 (en) Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor
JP3787088B2 (en) Acoustic echo cancellation method, apparatus, and acoustic echo cancellation program
JP3756839B2 (en) Reverberation reduction method, Reverberation reduction device, Reverberation reduction program
JP4119328B2 (en) Sound collection method, apparatus thereof, program thereof, and recording medium thereof.
JP3673727B2 (en) Reverberation elimination method, apparatus thereof, program thereof, and recording medium thereof
JP2005513874A (en) Echo canceller with spectral echo tail predictor
JP3881300B2 (en) Voice switch method, voice switch and voice switch program, and recording medium recording the program
JP4041770B2 (en) Acoustic echo cancellation method, apparatus, program, and recording medium
JP6143702B2 (en) Echo canceling apparatus, method and program
JP4504782B2 (en) Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor
JP4478045B2 (en) Echo erasing device, echo erasing method, echo erasing program and recording medium therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20050830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A7423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20051222

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100106

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120106

LAPS Cancellation because of no payment of annual fees