JP5391103B2 - Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor - Google Patents

Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor Download PDF

Info

Publication number
JP5391103B2
JP5391103B2 JP2010027449A JP2010027449A JP5391103B2 JP 5391103 B2 JP5391103 B2 JP 5391103B2 JP 2010027449 A JP2010027449 A JP 2010027449A JP 2010027449 A JP2010027449 A JP 2010027449A JP 5391103 B2 JP5391103 B2 JP 5391103B2
Authority
JP
Japan
Prior art keywords
signal
echo
channel
input
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010027449A
Other languages
Japanese (ja)
Other versions
JP2011166484A (en
Inventor
暁 江村
陽一 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010027449A priority Critical patent/JP5391103B2/en
Publication of JP2011166484A publication Critical patent/JP2011166484A/en
Application granted granted Critical
Publication of JP5391103B2 publication Critical patent/JP5391103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はスピーカM個(Mは2以上の整数)とマイクロホンN個(Nは1以上の整数)が共通の音場に配置され、スピーカからMチャネル受話信号を再生し、マイクロホンで収音した収音信号(以下「第1収音信号」という)から音響エコー(以下、単に「エコー」という)を消去する技術、特にテレビ会議システム等の拡声通話系におけるエコーを消去する技術に関する。   In the present invention, M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) are arranged in a common sound field, and an M channel received signal is reproduced from the speakers and picked up by a microphone. The present invention relates to a technique for erasing acoustic echo (hereinafter simply referred to as “echo”) from a collected sound signal (hereinafter referred to as “first collected signal”), and more particularly to a technique for eliminating echo in a loudspeaker communication system such as a video conference system.

スピーカで受話信号が再生され、その音声がマイクロホンで収音されてエコーが生じる。そのまま送信されると通話の障害や不快感などの問題が生じる。さらに、スピーカやマイクロホンの音量が大きい場合にはハウリングが生じ、通話が不可能になる。特に拡声通話系では、このような問題が顕著となる。   The received signal is reproduced by the speaker, and the sound is picked up by the microphone to generate an echo. If it is transmitted as it is, problems such as troubles in communication and discomfort arise. Further, howling occurs when the volume of the speaker or microphone is high, making it impossible to make a call. In particular, such a problem becomes conspicuous in the voice call system.

この問題を解決するために、従来技術として、適応フィルタを用いてエコーを消去するエコー消去装置がある。非特許文献1が従来技術の多チャネルエコー消去装置として知られている。図1を用いて従来の多チャネルエコー消去装置90を説明する。   In order to solve this problem, there is an echo canceller that cancels echoes using an adaptive filter as a prior art. Non-Patent Document 1 is known as a conventional multi-channel echo canceller. A conventional multi-channel echo canceller 90 will be described with reference to FIG.

M個のスピーカ21,…,2MとN個のマイクロホン31,…,3Nが共通の音場に配置され、スピーカ21,…,2MからMチャネル受話信号x1(k),…,xM(k)を再生した場合に、多チャネルエコー消去装置90は、m×n本のエコー経路hmn(k)を介してマイクロホンに回り込む再生音(エコー)を消去する。但し、m=1,…,Mであり、n=1,…,Nであり、Mは2以上であり、Nは1以上である。多チャネルエコー消去装置90は、受話側の全Mチャネルの受話端子11〜1M、送話側の全Nチャネルの送話端子41,…,4N及びマイクロホン31,…,3Nが接続されており、受話信号x1(k),…,xM(k)及び収音信号y1(k),…,yN(k)が入力され、送話信号u1(k),…,uN(k)を送話端子41,…,4Nに出力する。多チャネルエコー消去装置90は、N個のエコー消去部801,…,80Nを備え、各エコー消去部は、エコー予測部81と、減算部82と、エコー経路推定部83とを有する。図1はエコー消去部801について説明し、y1(k)をy(k)とし、u1(k)をu(k)とし、h11(k),…,hM1(k)をh1(k),…,hM(k)として表す。他のマイクロホンからの収音信号についても同様の処理を行うことができ、図1の構成を並列に並べるだけでよいため、以下では図1を用いて説明する。   M speakers 21,..., 2M and N microphones 31,..., 3N are arranged in a common sound field, and the M channel reception signals x1 (k),. Is reproduced, the multi-channel echo canceller 90 cancels the reproduced sound (echo) that wraps around the microphone via m × n echo paths hmn (k). However, m = 1,..., M, n = 1,..., N, M is 2 or more, and N is 1 or more. The multi-channel echo canceller 90 is connected to all M channel receiving terminals 11 to 1M on the receiving side, all N channel transmitting terminals 41,..., 4N and microphones 31,. The received signals x1 (k),..., XM (k) and the collected sound signals y1 (k),..., YN (k) are input, and the transmitted signals u1 (k),. 41,..., 4N. The multi-channel echo canceller 90 includes N echo cancelers 801,..., 80N, and each echo canceler includes an echo predictor 81, a subtractor 82, and an echo path estimator 83. FIG. 1 illustrates the echo canceller 801, where y1 (k) is y (k), u1 (k) is u (k), h11 (k),..., HM1 (k) is h1 (k), ..., expressed as hM (k). The same processing can be performed on the collected sound signals from other microphones, and it is only necessary to arrange the configurations in FIG. 1 in parallel.

多チャネルエコー消去装置90は、減算部82にて収音信号y(k)と疑似エコー信号y’(k)との差すなわち誤差信号u(k)を求め、この信号u(k)と受話信号x1(k),…,xM(k)からエコー経路推定部83にてエコー経路(フィルタ係数h’(k))を逐次推定し、この推定結果を用いてエコー予測部81で疑似エコー信号y’(k)を生成する。エコー経路推定が精度よく行われた状態では、収音信号y(k)に含まれるエコー成分と疑似エコー信号y’(k)がほぼ等しくなり、誤差信号u(k)中にエコーは殆ど含まれなくなる。   The multi-channel echo canceller 90 obtains a difference between the collected sound signal y (k) and the pseudo echo signal y ′ (k), that is, an error signal u (k) by the subtracting unit 82, and receives this signal u (k) and the received signal. The echo path estimation unit 83 sequentially estimates the echo path (filter coefficient h ′ (k)) from the signals x1 (k),..., XM (k), and the echo prediction unit 81 uses the estimation result to estimate the pseudo echo signal. y ′ (k) is generated. In a state where the echo path estimation is performed with high accuracy, the echo component included in the collected sound signal y (k) and the pseudo echo signal y ′ (k) are almost equal, and the error signal u (k) includes almost no echo. It will not be.

M.M.Sondhi, D.R.Morgan, and J.L.Hall, “Stereophonic Acoustic Echo Cancellation-An Overview of the Fundamental Problem”, IEEE Signal Processing Letters, AUGUST 1995, vol.2, no.8, pp.148-151M.M.Sondhi, D.R.Morgan, and J.L.Hall, “Stereophonic Acoustic Echo Cancellation-An Overview of the Fundamental Problem”, IEEE Signal Processing Letters, AUGUST 1995, vol.2, no.8, pp.148-151

しかしながら、従来技術ではいつも十分にエコーを消去できるとは限らない。   However, the prior art cannot always sufficiently cancel the echo.

エコー経路推定部83によるエコー経路推定が瞬時には完了しないため、人の動き等によりエコー経路が変動するたびに、残留エコーが増大する。   Since the echo path estimation by the echo path estimation unit 83 is not completed instantaneously, the residual echo increases every time the echo path changes due to human movement or the like.

また、ダブルトーク状態では、誤差信号に送話者の音声が含まれるため、エコー経路の推定が乱れ、残留エコーが大きくなる。   In the double talk state, since the error signal includes the voice of the sender, the estimation of the echo path is disturbed and the residual echo becomes large.

さらに、非特許文献1に記載されているように、受話信号が多チャネルの場合には、チャネル間相関が高いために、エコーが消去されている状態であっても推定されたエコー経路と真のエコー経路は必ずしも一致しないことがある。その場合、受話端子側の話者が交代して受話信号のチャネル間の相互相関が変化すると突然残留エコーが大きくなる。   Further, as described in Non-Patent Document 1, when the received signal is multi-channel, since the correlation between channels is high, the estimated echo path and the true path are true even when the echo is canceled. The echo paths may not always match. In that case, when the speaker on the receiving terminal side changes and the cross-correlation between channels of the received signal changes, the residual echo suddenly increases.

そして、残留エコーが大きくなると通話品質が劣化するという問題がある。   Then, there is a problem that the call quality deteriorates when the residual echo becomes large.

上記の課題を解決するために、本発明に係る多チャネルエコー消去技術は、スピーカM個(Mは2以上の整数)とマイクロホンN個(Nは1以上の整数)が共通の音場に配置され、スピーカからMチャネル受話信号を再生した際に、エコー経路を介してマイクロホンに回り込むエコーを消去し、Mチャネル受話信号とマイクロホンで収音する第1収音信号を用いて得られる信号(以下「収音信号等」という)を周波数領域の信号に変換し、Mチャネル受話信号の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と収音信号等の間のクロススペクトルQ(f,j)を求め、パワースペクトルPmm(f,j)、クロススペクトルPm’m(f,j)及びQ(f,j)を用いて、周波数ごとに入出力伝達特性を推定し、周波数領域のMチャネル受話信号と推定した入出力伝達特性から収音信号等に含まれるエコー成分を予測し、周波数領域の収音信号等から、予測したエコー成分を差し引き、送話信号を求め、減算ステップで求めた送話信号を時間領域の信号に変換し、収音信号等は、マイクロホンで収音した第1収音信号、または、第1収音信号から疑似エコー信号を差し引いて得られる第2収音信号の何れかであることを特徴とする。   In order to solve the above-described problem, the multi-channel echo cancellation technique according to the present invention has arranged M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) in a common sound field. When the M channel received signal is reproduced from the speaker, an echo that goes around the microphone via the echo path is deleted, and a signal (hereinafter, referred to as a signal obtained by using the M channel received signal and the first sound pickup signal collected by the microphone) (Referred to as “sound pickup signal etc.”) is converted into a frequency domain signal, and the power spectrum Pmm (f, j) of each channel of the M channel received signal and the cross spectrum Pm′m ( f, j) and the cross spectrum Q (f, j) between the M channel received signal and the collected sound signal, etc., are obtained, and the power spectrum Pmm (f, j), the cross spectrum Pm′m ( , J) and Q (f, j) are used to estimate the input / output transfer characteristics for each frequency, and the echo component contained in the collected sound signal or the like is determined from the M-channel received signal in the frequency domain and the estimated input / output transfer characteristics. Predict and subtract the predicted echo component from the frequency domain collected sound signal, etc. to obtain the transmitted signal, convert the transmitted signal obtained in the subtraction step into a time domain signal, and collect the collected sound signal with a microphone. It is either the first collected sound signal or the second collected signal obtained by subtracting the pseudo echo signal from the first collected signal.

本発明は、Mチャネル受話信号の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と収音信号等間のクロススペクトルQ(f,j)から入出力伝達特性を推定し、Mチャネル受話信号と入出力伝達特性から収音信号等に含まれるエコー成分を迅速に予測するため、エコー経路の変動、ダブルトーク及び受話信号のチャネル間の相互相関に影響されずに、迅速にエコーを消去することができるという効果を奏する。   The present invention relates to the power spectrum Pmm (f, j) of each channel of the M channel received signal, the cross spectrum Pm′m (f, j) between the channels of the M channel received signal, the M channel received signal and the sound collection. In order to estimate the input / output transfer characteristics from the cross spectrum Q (f, j) between the signals, etc., and to quickly predict the echo component contained in the collected sound signal from the M channel received signal and the input / output transfer characteristics, There is an effect that the echo can be quickly canceled without being affected by the cross correlation between the channels of the fluctuation, the double talk and the received signal.

従来の多チャネルエコー消去装置の構成例を示す図。The figure which shows the structural example of the conventional multichannel echo cancellation apparatus. 実施例1の多チャネルエコー消去装置の構成例を示す図。1 is a diagram illustrating a configuration example of a multi-channel echo canceling apparatus according to Embodiment 1. FIG. 実施例1の多チャネルエコー消去装置の処理フローを示す図。FIG. 3 is a diagram illustrating a processing flow of the multi-channel echo canceling apparatus according to the first embodiment. 入出力相関係数算出部の構成例を示す図。The figure which shows the structural example of an input-output correlation coefficient calculation part. 実施例2の多チャネルエコー消去装置の構成例を示す図。FIG. 5 is a diagram illustrating a configuration example of a multi-channel echo canceling apparatus according to a second embodiment. 実施例2及び3の多チャネルエコー消去装置の処理フローを示す図。FIG. 6 is a diagram illustrating a processing flow of the multi-channel echo cancellers according to the second and third embodiments. 実施例3の多チャネルエコー消去装置の構成例を示す図。FIG. 10 is a diagram illustrating a configuration example of a multi-channel echo canceling apparatus according to a third embodiment. 伝達特性調整部の構成例を示す図。The figure which shows the structural example of a transfer characteristic adjustment part.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

<多チャネルエコー消去装置100>
図2及び3を用いて実施例1に係る多チャネルエコー消去装置100を説明する。多チャネルエコー消去装置100は、N個の残留エコー消去部6001,…,600Nを備え、各残留エコー消去部は、M個の周波数領域変換部6011,…,601Mと、周波数領域変換部602と、入出力相関係数算出部603と、入出力伝達特性推定部604と、残留エコー予測部605と、減算部606と、時間領域変換部607とを有する。
<Multi-channel echo canceller 100>
A multi-channel echo canceling apparatus 100 according to the first embodiment will be described with reference to FIGS. The multi-channel echo canceling apparatus 100 includes N residual echo canceling units 6001,..., 600N, and each residual echo canceling unit includes M frequency domain transforming units 6011,..., 601M, and a frequency domain transforming unit 602. , An input / output correlation coefficient calculation unit 603, an input / output transfer characteristic estimation unit 604, a residual echo prediction unit 605, a subtraction unit 606, and a time domain conversion unit 607.

M個のスピーカ21,…,2MとN個のマイクロホン31,…,3Nが共通の音場に配置され、スピーカ21,…,2MからMチャネル受話信号x1(k),…,xM(k)を再生した場合に、多チャネルエコー消去装置100は、m×n本のエコー経路hmn(k)を介してマイクロホンに回り込む再生音(エコー)を消去する。但し、m=1,…,Mであり、n=1,…,Nであり、Mは2以上であり、Nは1以上である。多チャネルエコー消去装置100は、受話側の全Mチャネルの受話端子11〜1M、送話側の全Nチャネルの送話端子41,…,4N及びマイクロホン31,…,3Nが接続されており、受話信号x1(k),…,xM(k)及び収音信号y1(k),…,yN(k)を入力とし、送話信号v1(k),…,vN(k)を送話端子41,…,4Nに出力する。   M speakers 21,..., 2M and N microphones 31,..., 3N are arranged in a common sound field, and the M channel reception signals x1 (k),. Is reproduced, the multi-channel echo canceling apparatus 100 cancels the reproduced sound (echo) that wraps around the microphone via m × n echo paths hmn (k). However, m = 1,..., M, n = 1,..., N, M is 2 or more, and N is 1 or more. The multi-channel echo canceling apparatus 100 is connected to all M channel receiving terminals 11 to 1M on the receiving side, all N channel transmitting terminals 41,..., 4N and microphones 31,. The received signals x1 (k),..., XM (k) and the collected sound signals y1 (k),..., YN (k) are input, and the transmitted signals v1 (k),. 41,..., 4N.

図2は残留エコー消去部6001について説明し、y1(k)をy(k)とし、v1(k)をv(k)とし、h11(k),…,hM1(k)をh1(k),…,hM(k)として表す。他のマイクロホンからの収音信号についても同様の処理を行うことができ、図2の構成を並列に並べるだけでよいため、以下では図2を用いて説明する。   FIG. 2 illustrates the residual echo canceller 6001, where y1 (k) is y (k), v1 (k) is v (k), and h11 (k),..., HM1 (k) is h1 (k). ,..., HM (k). Similar processing can be performed on the collected sound signals from other microphones, and the configuration of FIG. 2 only needs to be arranged in parallel.

<周波数領域変換部6011,…,601M及び602>
周波数領域変換部6011,…,601Mは、それぞれMチャネル受話信号x1(k),…,xM(k)を入力とし、周波数領域の信号X1(f,j),…,XM(f,j)に変換し、出力する(s6011,…,s601M)。但し、fは周波数番号を表し、jはフレーム番号を表す。
<Frequency domain transforming units 6011,..., 601M and 602>
.., 601M receive M channel received signals x1 (k),..., XM (k) as inputs, respectively, and frequency domain signals X1 (f, j),..., XM (f, j) And output (s6011,..., S601M). However, f represents a frequency number and j represents a frame number.

周波数領域変換部602は、マイクロホンで収音する第1収音信号y(k)を入力とし、周波数領域の信号Y(f,j)に変換し、出力する(s602)。   The frequency domain conversion unit 602 receives the first collected sound signal y (k) collected by the microphone, converts it to a frequency domain signal Y (f, j), and outputs the signal (s602).

各信号を1フレーム=2Lサンプルとし、L/Dサンプル毎にブロック化し、L/Dサンプルずつずらして、フレームを作成する場合について説明する。但し、Lは自然数であり、DはLを割り切る自然数であり、時刻k=jL/Dである。周波数領域への変換は例えば、FFT(Fast Fourier transform)やDFT(discrete Fourier transform)により行い、計算を簡略化・高速化するために、Lを2のべき乗にとってもよい。例えば、L=64〜512、D=2〜8等とする。   A case will be described in which each signal is set to 1 frame = 2 L samples, the L / D samples are blocked, and the L / D samples are shifted to create a frame. However, L is a natural number, D is a natural number that divides L, and time k = jL / D. The conversion to the frequency domain is performed by, for example, FFT (Fast Fourier transform) or DFT (discrete Fourier transform), and L may be a power of 2 in order to simplify and speed up the calculation. For example, L = 64 to 512, D = 2 to 8 and the like.

<入出力相関係数算出部603>
入出力相関係数算出部603は、Mチャネル受話信号X1(f,j),…,XM(f,j)と、第1収音信号Y(f,j)を入力とし、Mチャネル受話信号X1(f,j),…,XM(f,j)の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と収音信号等の間のクロススペクトルQ(f,j)を求め、出力する(s603)。言い換えると、入出力相関係数算出部603は、パワースペクトルPmm(f,j)とクロススペクトルPm’m(f,j)からなる入力信号間の相関係数P(f,j)と、入出力信号間の相関係数Q(f,j)を求める。
<Input / output correlation coefficient calculation unit 603>
The input / output correlation coefficient calculation unit 603 receives the M channel reception signal X1 (f, j),..., XM (f, j) and the first sound pickup signal Y (f, j) as inputs, and receives the M channel reception signal. X1 (f, j),..., XM (f, j), the power spectrum Pmm (f, j) of each channel, and the cross spectrum Pm′m (f, j) between the channels of the M channel received signal, A cross spectrum Q (f, j) between the M channel received signal and the collected sound signal is obtained and output (s603). In other words, the input / output correlation coefficient calculation unit 603 inputs the correlation coefficient P (f, j) between the input signals composed of the power spectrum Pmm (f, j) and the cross spectrum Pm′m (f, j) and the input signal. A correlation coefficient Q (f, j) between output signals is obtained.

Figure 0005391103
Figure 0005391103

図4を用いて入出力相関係数算出部603を説明する。例えば、入出力相関係数算出部603はパワースペクトル算出部603aと、受話信号間クロススペクトル算出部603bと、受話−収音信号間クロススペクトル算出部603cを備える。 The input / output correlation coefficient calculation unit 603 will be described with reference to FIG. For example, the input / output correlation coefficient calculation unit 603 includes a power spectrum calculation unit 603a, a received signal cross spectrum calculation unit 603b, and a received / acquired sound signal cross spectrum calculation unit 603c.

パワースペクトル算出部603aは、Xm(f,j)を用いて、受話信号の各チャネルのパワースペクトルPmm(f,j)を算出する。   The power spectrum calculation unit 603a calculates the power spectrum Pmm (f, j) of each channel of the received signal using Xm (f, j).

受話信号間クロススペクトル算出部603bは、X1(f,j),…,XM(f,j)を用いて、受話信号の各チャネル間のクロススペクトルPm’m(f,j)を算出する。但し、m’≠mとする。   The inter-received signal cross spectrum calculation unit 603b calculates a cross spectrum Pm′m (f, j) between each channel of the received signal using X1 (f, j),..., XM (f, j). However, m ′ ≠ m.

受話−収音信号間クロススペクトル算出部603cは、X1(f,j),…,XM(f,j)と第1収音信号Y(f,j)間のクロススペクトルQ(f,j)を算出する。   The received-acquired sound pickup signal cross spectrum calculation unit 603c has a cross spectrum Q (f, j) between X1 (f, j),..., XM (f, j) and the first acquired sound signal Y (f, j). Is calculated.

例えば、Pmm(f,j),Pm’m(f,j),Q(f,j)は、時刻k=jL/DにおけるMチャネル受話信号Xm(f,j)と第1収音信号Y(f,j)から   For example, Pmm (f, j), Pm′m (f, j), and Q (f, j) are the M channel received signal Xm (f, j) and the first collected sound signal Y at time k = jL / D. From (f, j)

Figure 0005391103
Figure 0005391103

により算出する。XはXの複素共役を、E[ ]は平均をとることを意味し、平均処理の一例としては、 Calculated by X * means a complex conjugate of X, E [] means taking an average, and as an example of the averaging process,

Figure 0005391103
Figure 0005391103

のように、1フレーム前の処理結果と0〜1の値をとる平滑化定数βを用いる方法や過去の数フレームに時定数を乗じて求める方法等が考えられる。Q(f,j)についても同様である。 As described above, there are a method using a processing result of one frame before and a smoothing constant β that takes a value of 0 to 1, a method of obtaining by multiplying a past several frames by a time constant, and the like. The same applies to Q (f, j).

m=m’のとき、各チャネルのパワースペクトルPmm(f,j)が得られ、m≠m’のとき、受話信号のチャネル間のクロススペクトルPm’m(f,j)が得られる。1≦m≦M、1≦m’≦Mである。   When m = m ′, the power spectrum Pmm (f, j) of each channel is obtained, and when m ≠ m ′, the cross spectrum Pm′m (f, j) between the channels of the received signal is obtained. 1 ≦ m ≦ M and 1 ≦ m ′ ≦ M.

<入出力伝達特性推定部604>
入出力伝達特性推定部604は、パワースペクトルPmm(f,j)、クロススペクトルPm’m(f,j)及びQ(f,j)を入力とし、これらを用いて、周波数ごとに入出力伝達特性G(f,j)を推定し、出力する(s604)。
<Input / output transfer characteristic estimation unit 604>
The input / output transfer characteristic estimation unit 604 receives the power spectrum Pmm (f, j), the cross spectrum Pm′m (f, j), and Q (f, j) as input, and uses these to input / output transfer for each frequency. The characteristic G (f, j) is estimated and output (s604).

例えば、入出力伝達特性推定部604は、入出力伝達特性G(f,j)を   For example, the input / output transfer characteristic estimation unit 604 calculates the input / output transfer characteristic G (f, j).

Figure 0005391103
Figure 0005391103

により推定する。 Estimated by

なお上記パワースペクトルとクロススペクトルからなる行列について、逆行列計算を安定化するために、対角成分に微小定数を加えてもよい。   For the matrix composed of the power spectrum and the cross spectrum, a small constant may be added to the diagonal component in order to stabilize the inverse matrix calculation.

<残留エコー予測部605>
残留エコー予測部605は、周波数領域のMチャネル受話信号X1(f,j),…,XM(f,j)と推定した入出力伝達特性G(f,j)を入力とし、これらを用いて第1収音信号Y(f,j)に含まれるエコー成分を予測し、出力する(s605)。
<Residual echo prediction unit 605>
The residual echo prediction unit 605 receives the input / output transfer characteristics G (f, j) estimated as M-channel received signals X1 (f, j),..., XM (f, j) in the frequency domain, and uses them. An echo component included in the first collected sound signal Y (f, j) is predicted and output (s605).

例えば、エコー成分を、   For example, the echo component

Figure 0005391103
Figure 0005391103

として予測する。 To predict.

<減算部606及び時間領域変換部607>
減算部606は、第1収音信号Y(f,j)と予測したエコー成分Y^(f,j)を入力とし、周波数領域の第1収音信号Y(f,j)から、予測したエコー成分Y^(f,j)を差し引き、送話信号V(f,j)を求め、出力する(s606)。
<Subtraction unit 606 and time domain conversion unit 607>
The subtracting unit 606 receives the first sound pickup signal Y (f, j) and the predicted echo component Y ^ (f, j) as input, and predicts from the first sound pickup signal Y (f, j) in the frequency domain. The echo component Y ^ (f, j) is subtracted to obtain and output the transmission signal V (f, j) (s606).

V(f,j)=Y(f,j)-Y^(f,j) (8)
時間領域変換部607は、減算部606で求めた送話信号V(f,j)を入力とし、これを時間領域の信号v(k)に変換し、送話信号として送話端子41へ出力する(s607)。
V (f, j) = Y (f, j) -Y ^ (f, j) (8)
The time domain conversion unit 607 receives the transmission signal V (f, j) obtained by the subtraction unit 606, converts it into a time domain signal v (k), and outputs it to the transmission terminal 41 as a transmission signal. (S607).

<効果>
Mチャネル受話信号の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と収音信号等間のクロススペクトルQ(f,j)から入出力伝達特性を推定し、Mチャネル受話信号と入出力伝達特性から収音信号等に含まれるエコー成分を予測するため、適応フィルタのフィルタ係数を更新する必要がない。そのため、エコー経路の変動に即座に対応し、従来の多チャネルエコー消去装置に比べ高速にエコーを予測することができ、エコー以外の信号による推定揺らぎを抑えることができる。また、周波数領域で伝達特性とエコーに関して振幅と位相を推定し、引き算によりエコーの消去を図るため、ダブルトーク時でも送話損失の歪みを小さくでき、チャネル数によらずエコーを消去することができる。
<Effect>
Between the power spectrum Pmm (f, j) of each channel of the M channel received signal, the cross spectrum Pm′m (f, j) between the channels of the M channel received signal, and between the M channel received signal and the collected sound signal, etc. It is necessary to update the filter coefficient of the adaptive filter in order to estimate the input / output transfer characteristics from the cross spectrum Q (f, j) and predict the echo component included in the collected sound signal from the M channel received signal and the input / output transfer characteristics. There is no. Therefore, it is possible to respond immediately to fluctuations in the echo path, predict an echo faster than conventional multi-channel echo cancellers, and suppress estimated fluctuations due to signals other than echoes. In addition, since the amplitude and phase of the transfer characteristics and echoes are estimated in the frequency domain and the echo is canceled by subtraction, the distortion of transmission loss can be reduced even during double talk, and the echo can be canceled regardless of the number of channels. it can.

<変形例>
各残留エコー消去部内で使用される周波数領域のMチャネル受話信号X1(f,j)〜XM(f,j)の値は6001〜600Nで同じため、N個の残留エコー消去部6001〜600Nが、受話信号の周波数領域変換部の出力を共有してもよい。
<Modification>
Since the values of M-channel received signals X1 (f, j) to XM (f, j) in the frequency domain used in each residual echo canceller are 6001 to 600N, N residual echo cancelers 6001 to 600N The output of the frequency domain transform unit of the received signal may be shared.

全ての送話信号に対しエコー消去処理を行わなくとも、一部の送話信号に対してのみ、エコーを消去してもよい。   Even if echo cancellation processing is not performed for all transmission signals, echoes may be canceled only for some transmission signals.

多チャネルエコー消去装置100への入力は、受話端子11,…,1Mから得られる信号に対し、相関変動処理等を行った受話信号であってもよい。   The input to the multi-channel echo canceller 100 may be a received signal obtained by performing a correlation variation process on the signal obtained from the receiving terminals 11,.

上述した多チャネルエコー消去装置は、コンピュータにより機能させることもできる。この場合はコンピュータに、目的とする装置(実施例で図に示した機能構成をもつ装置)として機能させるためのプログラム、又はその処理手順(実施例で示したもの)の各過程をコンピュータに実行させるためのプログラムを、CD−ROM、磁気ディスク、半導体記憶装置などの記録媒体から、あるいは通信回線を介してそのコンピュータ内にダウンロードし、そのプログラムを実行させればよい。   The above-described multi-channel echo canceller can also be operated by a computer. In this case, each process of the program for causing the computer to function as the target device (the device having the functional configuration shown in the drawings in the embodiment) or the processing procedure (shown in the embodiment) is executed on the computer. The program may be downloaded into a computer from a recording medium such as a CD-ROM, a magnetic disk, or a semiconductor storage device or via a communication line, and the program may be executed.

<多チャネルエコー消去装置200>
図5及び6を用いて実施例2に係る多チャネルエコー消去装置200を説明する。なお、図5では、マイクロホン31からの収音信号の処理について説明するが、他のマイクロホンからの収音信号についても同様の処理を行うことができ、図5の構成を並列に並べるだけでよい。多チャネルエコー消去装置200は、N個のエコー消去部801,…,80NとN個の残留エコー消去部6001,…,600Nを有する。残留エコー消去部6001は、実施例1の多チャネルエコー消去装置100の残留エコー消去部6001と同様の構成であり、第1収音信号y(k)に代えて、第2収音信号u(k)を入力される点が異なる。なお、第2収音信号u(k)はエコー消去部801の出力である誤差信号である。よって、残留エコー消去部6001は、マイクロホンで収音した第1収音信号y(k)に含まれるエコー成分に代えて、第1収音信号から疑似エコー信号を差し引き求めた第2収音信号(誤差信号)u(k)に含まれる残留エコー成分を消去する。
<Multi-channel echo canceller 200>
A multi-channel echo canceling apparatus 200 according to the second embodiment will be described with reference to FIGS. In FIG. 5, the processing of the collected sound signal from the microphone 31 will be described. However, the same processing can be performed on the collected sound signal from other microphones, and the configuration of FIG. 5 only needs to be arranged in parallel. . The multi-channel echo canceller 200 has N echo cancelers 801,..., 80N and N residual echo cancelers 6001,. The residual echo canceling unit 6001 has the same configuration as the residual echo canceling unit 6001 of the multi-channel echo canceling apparatus 100 according to the first embodiment, and instead of the first sound collecting signal y (k), the second sound collecting signal u ( The difference is that k) is input. The second collected sound signal u (k) is an error signal that is an output of the echo canceling unit 801. Therefore, the residual echo canceling unit 6001 replaces the echo component included in the first sound pickup signal y (k) picked up by the microphone, and the second sound pickup signal obtained by subtracting the pseudo echo signal from the first sound pickup signal. (Error signal) The residual echo component included in u (k) is eliminated.

例えば、周波数領域変換部602は、エコー消去部801の出力である誤差信号を第2収音信号u(k)とし、入力され、周波数領域の信号U(f,j)に変換し、出力する。   For example, the frequency domain conversion unit 602 receives the error signal output from the echo cancellation unit 801 as the second collected sound signal u (k), converts the error signal into a frequency domain signal U (f, j), and outputs the signal. .

入出力相関係数算出部603は、Mチャネル受話信号X1(f,j),…,XM(f,j)と、第2収音信号U(f,j)を入力とし、Mチャネル受話信号X1(f,j),…,XM(f,j)の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と第2収音信号の間のクロススペクトルQ(f,j)を求め、出力する。   The input / output correlation coefficient calculation unit 603 receives the M channel received signal X1 (f, j),..., XM (f, j) and the second collected sound signal U (f, j) as inputs, and receives the M channel received signal. X1 (f, j),..., XM (f, j), the power spectrum Pmm (f, j) of each channel, and the cross spectrum Pm′m (f, j) between the channels of the M channel received signal, A cross spectrum Q (f, j) between the M channel reception signal and the second sound pickup signal is obtained and output.

Figure 0005391103
Figure 0005391103

残留エコー予測部605は、周波数領域のMチャネル受話信号X1(f,j),…,XM(f,j)と推定した入出力伝達特性G(f,j)を入力とし、これらを用いて第2収音信号U(f,j)に含まれるエコー成分を予測し、出力する。 The residual echo prediction unit 605 receives the input / output transfer characteristics G (f, j) estimated as M-channel received signals X1 (f, j),..., XM (f, j) in the frequency domain, and uses them. An echo component included in the second collected sound signal U (f, j) is predicted and output.

Figure 0005391103
Figure 0005391103

として予測する。 To predict.

減算部606は、第2収音信号U(f,j)と予測したエコー成分U^(f,j)を入力とし、周波数領域の第2収音信号Y(f,j)から、予測したエコー成分U^(f,j)を差し引き、送話信号V(f,j)を求め、出力する。   The subtraction unit 606 receives the second collected sound signal U (f, j) and the predicted echo component U ^ (f, j) as input, and predicts from the second collected sound signal Y (f, j) in the frequency domain. The echo component U ^ (f, j) is subtracted to obtain and output the transmission signal V (f, j).

V(f,j)=U(f,j)-U^(f,j) (8')
なお、第1収音信号Y(f,j)または第2収音信号U(f,j)が請求項の収音信号等S(f,j)に相当し、残留エコー予測部605で予測する第1収音信号に含まれるエコー成分Y^(f,j)または第2収音信号に含まれるエコー成分U^(f,j)が、請求項の収音信号等に含まれるエコー成分S^(f,j)に相当する。
V (f, j) = U (f, j) -U ^ (f, j) (8 ')
The first sound collection signal Y (f, j) or the second sound collection signal U (f, j) corresponds to the sound collection signal etc. S (f, j) in the claims, and is predicted by the residual echo prediction unit 605. The echo component Y ^ (f, j) included in the first collected sound signal or the echo component U ^ (f, j) included in the second collected sound signal is the echo component included in the collected sound signal etc. It corresponds to S ^ (f, j).

<エコー消去部801>
一方、エコー消去部801,…,80Nは、従来のエコー消去装置90と同様の構成である。例えば、以下のようにして、エコー消去部801は誤差信号を求める。エコー消去部801は、エコー予測部81、減算部82及びエコー経路推定部83を備える。
<Echo elimination unit 801>
On the other hand, the echo cancellers 801,..., 80N have the same configuration as the conventional echo canceller 90. For example, the echo canceling unit 801 obtains an error signal as follows. The echo cancellation unit 801 includes an echo prediction unit 81, a subtraction unit 82, and an echo path estimation unit 83.

まず、スピーカ2mからマイクロホン31までのエコー経路のインパルス応答をhm(k)、その長さをLとすると、Mチャネル受話信号と収音信号y(k)の間には次の関係がある。   First, assuming that the impulse response of the echo path from the speaker 2m to the microphone 31 is hm (k) and the length thereof is L, the following relationship exists between the M channel received signal and the collected sound signal y (k).

Figure 0005391103
Figure 0005391103

各チャネルのインパルス応答と受話信号を
hm=[hm(0)…hm(L-1)]T (12)
xm=[xm(0)…xm(L-1)]T (13)
として、ベクトル化すると、Mチャネル受話信号と第1収音信号の関係は次のように記述される。
Impulse response and received signal of each channel
hm = [hm (0)… hm (L-1)] T (12)
xm = [xm (0)… xm (L-1)] T (13)
As a vector, the relationship between the M channel received signal and the first collected sound signal is described as follows.

y(k)=h1Tx1(k)+…+hMTxM(k) (14)
但し、Tは転置を表す。
y (k) = h1 T x1 (k) +… + hM T xM (k) (14)
However, T represents transposition.

<エコー予測部81>
エコー予測部81は、適応フィルタによる疑似エコー経路に受話信号x1(k),…,xM(k)を入力して疑似エコー信号y’(k)を生成、出力する(s81)。エコー予測部81は適応フィルタによって構成され、受話状態における減算部82の誤差信号が最小となるように後述するエコー経路推定部83で適応フィルタの特性が制御される。
<Echo Prediction Unit 81>
The echo prediction unit 81 inputs the received signals x1 (k),..., XM (k) to the pseudo echo path by the adaptive filter, and generates and outputs a pseudo echo signal y ′ (k) (s81). The echo prediction unit 81 includes an adaptive filter, and the characteristic of the adaptive filter is controlled by an echo path estimation unit 83 (to be described later) so that the error signal of the subtraction unit 82 in the reception state is minimized.

例えば、各チャネルの適応フィルタのフィルタ係数を
h'm=[h'm(0)…h'm(L-1)]T (15)
とし、
y'(k)=h'1Tx1(k)+…+h'MTxM(k) (16)
を生成する。
For example, the filter coefficient of the adaptive filter for each channel
h'm = [h'm (0)… h'm (L-1)] T (15)
age,
y '(k) = h'1 T x1 (k) +… + h'M T xM (k) (16)
Is generated.

<減算部82>
減算部82は、第1収音信号y(k)と疑似エコー信号y’(k)を入力とし、第1収音信号y(k)から疑似エコー信号y’(k)を差し引き、第2収音信号u(k)を求め、出力する(s82)。
<Subtraction unit 82>
The subtracting unit 82 receives the first collected sound signal y (k) and the pseudo echo signal y ′ (k), subtracts the pseudo echo signal y ′ (k) from the first collected sound signal y (k), The collected sound signal u (k) is obtained and output (s82).

u(k)=y(k)-y'(k) (17)
求めた第2収音信号(誤差信号)u(k)をエコー経路推定部83と残留エコー消去部6001内の周波数領域変換部602に出力する。
u (k) = y (k) -y '(k) (17)
The obtained second collected sound signal (error signal) u (k) is output to the echo path estimation unit 83 and the frequency domain conversion unit 602 in the residual echo cancellation unit 6001.

<エコー経路推定部83>
エコー経路推定部は、第2収音信号u(k)と受話信号x1(k),…,xM(k)を入力とし、これらを用いて、適応フィルタのフィルタ係数h’(k)を更新し、出力する(s83)。適応フィルタの係数修正法としてNormalized Least Mean Squareアルゴリズム(NLMSアルゴリズム)を用いた場合を説明する。
<Echo path estimation unit 83>
The echo path estimation unit receives the second collected sound signal u (k) and the received signals x1 (k),..., XM (k) and updates the filter coefficient h ′ (k) of the adaptive filter using them. And output (s83). A case where the Normalized Least Mean Square algorithm (NLMS algorithm) is used as a coefficient correction method for the adaptive filter will be described.

h'm(k+1)=h'm(k)+μu(k)xm(k) (18)
但し、μはステップサイズであり、
h'm (k + 1) = h'm (k) + μu (k) xm (k) (18)
Where μ is the step size,

Figure 0005391103
Figure 0005391103

により決定される。μ0と入力信号のパワーに基づいて制御される。但し、μ0は推定を安定するために、あらかじめ0〜1の値に設定されるパラメータである。エコー経路推定部83は、更新したフィルタ係数h’(k+1)をコピーして、エコー予測部81に出力する。 Determined by. Control is based on μ0 and the power of the input signal. However, μ0 is a parameter set in advance to a value of 0 to 1 in order to stabilize the estimation. The echo path estimation unit 83 copies the updated filter coefficient h ′ (k + 1) and outputs it to the echo prediction unit 81.

<効果>
このような構成とすることによって、従来技術と同等のエコー消去量及び音声品質を保ったまま、実施例1と同様の効果を得ることができる。
<Effect>
By adopting such a configuration, it is possible to obtain the same effects as those of the first embodiment while maintaining the echo cancellation amount and the voice quality equivalent to those of the prior art.

エコー消去部80nにおけるエコー経路推定に時間がかかる初期段階や状況が変化する等の場合に、高速な残留エコー消去部によるエコー消去処理を行うことで残留エコーを抑えることができる。また、エコー消去部におけるエコー経路推定が安定した場合には、エコー消去部による性能によりさらに残留エコーを抑えることできる。そのため、エコー消去部及び残留エコー消去部を単独で使う場合に比べて、処理時間全体にわたり残留エコーを低減した通話が可能になる。   Residual echoes can be suppressed by performing echo cancellation processing by the high-speed residual echo canceling unit in the case where the initial stage or situation where it takes time to estimate the echo path in the echo canceling unit 80n changes. Further, when the echo path estimation in the echo canceling unit is stable, the residual echo can be further suppressed by the performance of the echo canceling unit. Therefore, compared with the case where the echo canceling unit and the residual echo canceling unit are used alone, it is possible to perform a call with the residual echo reduced over the entire processing time.

<変形例>
フィルタ係数は、学習同定法以外の従来技術(例えば、射影アルゴリズム、指数重み付けアルゴリズム、指数重み付け射影アルゴリズム等)で更新してもよい。
<Modification>
The filter coefficient may be updated by a conventional technique other than the learning identification method (for example, a projection algorithm, an exponential weighting algorithm, an exponential weighted projection algorithm, etc.).

実施例1と同様に残留エコー消去部6001〜600Nは受話信号の周波数領域変換部の出力を共有してもよい。   Similar to the first embodiment, the residual echo cancellers 6001 to 600N may share the output of the frequency domain transform unit of the received signal.

<多チャネルエコー消去装置300>
図6、7及び8を用いて実施例3に係る多チャネルエコー消去装置300を説明する。
<Multi-channel echo canceller 300>
A multi-channel echo canceling apparatus 300 according to the third embodiment will be described with reference to FIGS.

多チャネルエコー消去装置300は伝達特性調整部3604を有する点が、多チャネルエコー消去装置200と異なる。   The multi-channel echo canceller 300 is different from the multi-channel echo canceller 200 in that it includes a transfer characteristic adjustment unit 3604.

<伝達特性調整部3604>
伝達特性調整部3604は、大きさ算出部3604aと、判定部3604bと、調整部3604cを備え、推定した入出力伝達特性G(f,j)の大きさが基準値よりも大きいとき、入出力伝達特性G(f,j)の大きさが基準値と一致するように調整する処理、いわゆるクリップ処理を行う。
<Transfer characteristic adjustment unit 3604>
The transfer characteristic adjustment unit 3604 includes a size calculation unit 3604a, a determination unit 3604b, and an adjustment unit 3604c. When the estimated input / output transfer characteristic G (f, j) is larger than the reference value, the input / output is performed. A process for adjusting the size of the transfer characteristic G (f, j) to match the reference value, so-called clip process, is performed.

伝達特性調整部3604は、入出力伝達特性推定部604の出力である入出力伝達特性G(f,j)を入力とし、これを格納し、調整された入出力伝達特性G’(f,j)または入力値である入出力伝達特性G(f,j)をそのまま出力する。以下、各部の処理を説明する。   The transfer characteristic adjustment unit 3604 receives the input / output transfer characteristic G (f, j), which is the output of the input / output transfer characteristic estimation unit 604, stores the input / output transfer characteristic G '(f, j). ) Or the input / output transfer characteristic G (f, j) as an input value is output as it is. Hereinafter, processing of each unit will be described.

大きさ算出部3604aは、例えば、推定した入出力伝達特性G(f,j)の大きさとしてノルム|G(f,j)|を算出する。例えば、   The magnitude calculator 3604a calculates, for example, a norm | G (f, j) | as the magnitude of the estimated input / output transfer characteristic G (f, j). For example,

Figure 0005391103
Figure 0005391103

として求める。 Asking.

判定部3604bは、予め指定した基準値Cよりもノルム|G(f,j)|が大きいか否か判定する。ノルム|G(f,j)|が基準値Cよりも小さい場合には、入力値である入出力伝達特性G(f,j)をそのまま出力する。ノルムが基準値よりも大きい場合には、調整部3604cに対し、調整指示を送信する。基準値(クリップする値)Cは例えば、[1音響パスの想定される音響結合量]×[音響パス数(sqrt)]として設定する。   The determination unit 3604b determines whether or not the norm | G (f, j) | is larger than the reference value C designated in advance. When the norm | G (f, j) | is smaller than the reference value C, the input / output transfer characteristic G (f, j) as an input value is output as it is. When the norm is larger than the reference value, an adjustment instruction is transmitted to the adjustment unit 3604c. The reference value (value to be clipped) C is set as, for example, [an assumed acoustic coupling amount of one acoustic path] × [number of acoustic paths (sqrt)].

調整部3604cは、調整指示を受け取ると、入出力伝達特性G(f,j)に基準値Cを乗じ、さらに、ノルム|G(f,j)|で割ることによって、入出力伝達特性G(f,j)を調整する(s3604)。例えば、以下の式で表される。   When the adjustment unit 3604c receives the adjustment instruction, the adjustment unit 3604c multiplies the input / output transfer characteristic G (f, j) by the reference value C, and further divides by the norm | G (f, j) | f, j) is adjusted (s3604). For example, it is represented by the following formula.

Figure 0005391103
Figure 0005391103

残留エコー予測部605は、周波数領域のMチャネル受話信号X1(f,j),…,XM(f,j)と推定した入出力伝達特性G(f,j)または調整した入出力伝達特性G’(f,j)から第2収音信号U(f,j)に含まれる残留エコー成分を予測する。   The residual echo prediction unit 605 is configured to estimate the input / output transfer characteristic G (f, j) or the adjusted input / output transfer characteristic G as the M-channel received signal X1 (f, j),..., XM (f, j) in the frequency domain. A residual echo component included in the second collected sound signal U (f, j) is predicted from '(f, j).

<効果>
実施例2と同様の効果を得ることができ、さらに、このように閾値比較を行って入出力伝達特性を修正することで、送話と受話の相関によりときに入出力伝達特性が過大評価されてしまうことを防止できる。
<Effect>
The same effect as in the second embodiment can be obtained, and the input / output transfer characteristics are sometimes overestimated due to the correlation between the transmission and the reception by correcting the input / output transfer characteristics by comparing the threshold values in this way. Can be prevented.

通常、送話者の話す音声と受話信号の間には、相関がないが、処理単位のフレームを短くすると、送話者の話す音声と受話信号の間に偽りの相関が生じることがある。その場合、式(4)、(6)により入出力伝達特性が過大に評価され、式(7)のY^(f,j)の値が必要以上に大きくなり、音声品質を劣化させてしまう可能性がある。本実施例では、その劣化を防止できる。   Usually, there is no correlation between the voice spoken by the sender and the received signal. However, if the frame of the processing unit is shortened, a false correlation may occur between the voice spoken by the sender and the received signal. In that case, the input / output transfer characteristics are overestimated by the equations (4) and (6), the value of Y ^ (f, j) in the equation (7) becomes larger than necessary, and the voice quality is deteriorated. there is a possibility. In this embodiment, the deterioration can be prevented.

<変形例>
実施例1の多チャネルエコー消去装置100と伝達特性調整部3604を組合せてもよい。その場合も入出力伝達特性が過大評価されてしまうことを防止できる。
<Modification>
The multi-channel echo canceller 100 according to the first embodiment and the transfer characteristic adjustment unit 3604 may be combined. Even in this case, it is possible to prevent the input / output transfer characteristic from being overestimated.

また、入出力伝達特性の大きさを式(21)以外の従来技術により求めてもよい。   Further, the magnitude of the input / output transfer characteristic may be obtained by a conventional technique other than Expression (21).

90、100、200、300 多チャネルエコー消去装置
6001,…,600N、36001,…3600N 残留エコー消去部
801,…,801N エコー消去部
6011,…,601M,602 周波数領域変換部
603 入出力相関係数算出部
604 入出力伝達特性推定部
605 残留エコー予測部
606 減算部
607 時間領域変換部
90, 100, 200, 300 Multi-channel echo cancellers 6001,..., 600N, 36001,... 3600N Residual echo cancellers 801..., 801N Echo cancellers 6011, ..., 601M, 602 Frequency domain converter 603 Input / output phase relationship Number calculation unit 604 Input / output transfer characteristic estimation unit 605 Residual echo prediction unit 606 Subtraction unit 607 Time domain conversion unit

Claims (6)

スピーカM個(Mは2以上の整数)とマイクロホンN個(Nは1以上の整数)が共通の音場に配置され、スピーカからMチャネル受話信号を再生した際に、エコー経路を介してマイクロホンに回り込むエコーを消去する多チャネルエコー消去方法であって、
適応フィルタによる疑似エコー経路に前記受話信号を入力して疑似エコー信号を生成するエコー予測ステップと、
前記マイクロホンで収音する第1収音信号から前記疑似エコー信号を差し引き、第2収音信号を求める減算ステップと、
前記第2収音信号と前記受話信号を用いて、前記適応フィルタのフィルタ係数を更新するエコー経路推定ステップと
Mチャネル受話信号と、第2収音信号とを周波数領域の信号に変換する周波数領域変換ステップと、
Mチャネル受話信号の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と第2収音信号の間のクロススペクトルQ(f,j)とを周波数ごとに求める入出力相関係数算出ステップと、
前記パワースペクトルPmm(f,j)、クロススペクトルPm’m(f,j)及びQ(f,j)を用いて、周波数ごとに入出力伝達特性を推定する入出力伝達特性推定ステップと、
前記周波数領域のMチャネル受話信号と推定した入出力伝達特性とから第2収音信号に含まれるエコー成分を周波数ごとに予測する残留エコー予測ステップと、
周波数領域の第2収音信号から、予測したエコー成分を差し引き、送話信号を周波数ごとに求める減算ステップと、
前記減算ステップで求めた送話信号を時間領域の信号に変換する時間領域変換ステップと、を有する、
ことを特徴とする多チャネルエコー消去方法。
M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) are arranged in a common sound field. When an M channel received signal is reproduced from the speakers, the microphone is connected via an echo path. A multi-channel echo cancellation method for canceling echoes that wrap around
An echo prediction step of generating the pseudo echo signal by inputting the received signal to the pseudo echo path by the adaptive filter;
A subtraction step of subtracting the pseudo echo signal from a first sound pickup signal picked up by the microphone to obtain a second sound pickup signal;
An echo path estimating step of updating a filter coefficient of the adaptive filter using the second collected sound signal and the received signal ;
A frequency domain conversion step of converting the M channel received signal and the second sound pickup signal into a frequency domain signal;
The power spectrum Pmm (f, j) of each channel of the M channel received signal, the cross spectrum Pm′m (f, j) between the channels of the M channel received signal, the M channel received signal and the second collected sound signal An input / output correlation coefficient calculating step for obtaining a cross spectrum Q (f, j) between the respective frequencies;
An input / output transfer characteristic estimation step for estimating an input / output transfer characteristic for each frequency using the power spectrum Pmm (f, j), cross spectrum Pm′m (f, j) and Q (f, j);
A residual echo prediction step for predicting, for each frequency, an echo component included in the second collected signal from the frequency domain M-channel received signal and the estimated input / output transfer characteristics;
A subtracting step of subtracting the predicted echo component from the second collected signal in the frequency domain to obtain a transmission signal for each frequency;
A time domain conversion step of converting the transmission signal obtained in the subtraction step into a time domain signal,
And a multi-channel echo cancellation method.
請求項1記載の多チャネルエコー消去方法であって、
前記推定した入出力伝達特性の大きさを算出する大きさ算出ステップと、
予め指定した基準値よりも前記入出力伝達特性の大きさが大きいか否かを判定する判定ステップと、
前記入出力伝達特性の大きさが前記基準値よりも大きい場合には、前記推定した入出力伝達特性に前記基準値を乗じ、さらに、前記入出力伝達特性の大きさで割ることによって、前記入出力伝達特性を調整する調整ステップを備える、
ことを特徴とする多チャネルエコー消去方法。
A multi-channel echo canceling method of claim 1 Symbol placement,
A magnitude calculating step for calculating the magnitude of the estimated input / output transfer characteristic;
A determination step of determining whether or not the size of the input / output transfer characteristic is larger than a reference value designated in advance;
When the magnitude of the input / output transfer characteristic is larger than the reference value, the input / output transfer characteristic is multiplied by the reference value, and further divided by the magnitude of the input / output transfer characteristic. An adjustment step for adjusting the output transfer characteristic;
And a multi-channel echo cancellation method.
請求項1または2記載の多チャネルエコー消去方法であって、
前記入出力相関係数算出ステップにおいて、前記Pmm(f,j),Pm’m(f,j),Q(f,j)は、受話信号をXm(f,j)、第2収音信号をS(f,j)とすると、
Figure 0005391103

により算出し、前記入出力伝達特性推定ステップにおいて、前記入出力伝達特性G(f,j)は、
Figure 0005391103

により推定し、前記残留エコー予測ステップにおいて、前記エコー成分を、
Figure 0005391103

として予測する、
ことを特徴とする多チャネルエコー消去方法。
The multi-channel echo cancellation method according to claim 1 or 2 ,
In the input / output correlation coefficient calculating step, the Pmm (f, j), Pm′m (f, j), and Q (f, j) are the received signal Xm (f, j) and the second collected sound signal. Let S (f, j) be
Figure 0005391103

In the input / output transfer characteristic estimation step, the input / output transfer characteristic G (f, j) is
Figure 0005391103

In the residual echo prediction step, the echo component is
Figure 0005391103

Predict as
And a multi-channel echo cancellation method.
スピーカM個(Mは2以上の整数)とマイクロホンN個(Nは1以上の整数)が共通の音場に配置され、スピーカからMチャネル受話信号を再生した際に、エコー経路を介してマイクロホンに回り込むエコーを消去する多チャネルエコー消去装置であって、
適応フィルタによる疑似エコー経路に前記受話信号を入力して疑似エコー信号を生成するエコー予測部と、
前記マイクロホンで収音する第1収音信号から前記疑似エコー信号を差し引き、第2収音信号を求める減算部と、
前記第2収音信号と前記受話信号を用いて、前記適応フィルタのフィルタ係数を更新するエコー経路推定部と、
Mチャネル受話信号と、第2収音信号とを周波数領域の信号に変換する周波数領域変換部と、
Mチャネル受話信号の各チャネルのパワースペクトルPmm(f,j)と、Mチャネル受話信号の各チャネル間のクロススペクトルPm’m(f,j)と、Mチャネル受話信号と第2収音信号の間のクロススペクトルQ(f,j)周波数ごとに求める入出力相関係数算出部と、
前記パワースペクトルPmm(f,j)、クロススペクトルPm’m(f,j)及びQ(f,j)を用いて、周波数ごとに入出力伝達特性を推定する入出力伝達特性推定部と、
前記周波数領域のMチャネル受話信号と推定した入出力伝達特性から第2収音信号に含まれるエコー成分を周波数ごとに予測する残留エコー予測部と、
周波数領域の第2収音信号から、予測したエコー成分を差し引き、送話信号を周波数ごとに求める減算部と、
前記減算部で求めた送話信号を時間領域の信号に変換する時間領域変換部と、を有する
ことを特徴とする多チャネルエコー消去装置。
M speakers (M is an integer of 2 or more) and N microphones (N is an integer of 1 or more) are arranged in a common sound field. When an M channel received signal is reproduced from the speakers, the microphone is connected via an echo path. A multi-channel echo canceller that cancels echoes that wrap around
An echo prediction unit that generates the pseudo echo signal by inputting the received signal into the pseudo echo path by the adaptive filter;
A subtractor for subtracting the pseudo echo signal from a first sound pickup signal picked up by the microphone to obtain a second sound pickup signal;
An echo path estimator that updates a filter coefficient of the adaptive filter using the second collected sound signal and the received signal;
A frequency domain converter that converts the M-channel received signal and the second collected sound signal into a frequency domain signal;
The power spectrum Pmm (f, j) of each channel of the M channel received signal, the cross spectrum Pm′m (f, j) between the channels of the M channel received signal, the M channel received signal and the second collected sound signal An input / output correlation coefficient calculation unit that obtains a cross spectrum Q (f, j) between each frequency ,
An input / output transfer characteristic estimator that estimates input / output transfer characteristics for each frequency using the power spectrum Pmm (f, j), cross spectrum Pm′m (f, j), and Q (f, j);
A residual echo prediction unit that predicts, for each frequency, an echo component included in the second collected signal from the input / output transfer characteristics estimated as the M-channel received signal in the frequency domain;
A subtracting unit that subtracts the predicted echo component from the second collected sound signal in the frequency domain and obtains a transmission signal for each frequency ;
To have a, and the time domain converter for converting the transmission signal obtained by the subtraction unit into a signal in the time domain,
And a multi-channel echo canceller.
請求項1からの何れかに記載の方法をコンピュータに実行させるためのプログラム。 The program for making a computer perform the method in any one of Claim 1 to 3 . 請求項記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium on which the program according to claim 5 is recorded.
JP2010027449A 2010-02-10 2010-02-10 Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor Expired - Fee Related JP5391103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027449A JP5391103B2 (en) 2010-02-10 2010-02-10 Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027449A JP5391103B2 (en) 2010-02-10 2010-02-10 Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor

Publications (2)

Publication Number Publication Date
JP2011166484A JP2011166484A (en) 2011-08-25
JP5391103B2 true JP5391103B2 (en) 2014-01-15

Family

ID=44596640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027449A Expired - Fee Related JP5391103B2 (en) 2010-02-10 2010-02-10 Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor

Country Status (1)

Country Link
JP (1) JP5391103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110829463A (en) * 2019-11-19 2020-02-21 国网湖南省电力有限公司 Power grid weak damping identification method, system and medium based on frequency decomposition and correlation coefficient method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469564B2 (en) * 2010-08-09 2014-04-16 日本電信電話株式会社 Multi-channel echo cancellation method, multi-channel echo cancellation apparatus and program thereof
JP5662232B2 (en) * 2011-04-14 2015-01-28 日本電信電話株式会社 Echo canceling apparatus, method and program
JP5927887B2 (en) * 2011-12-13 2016-06-01 沖電気工業株式会社 Non-target sound suppression device, non-target sound suppression method, and non-target sound suppression program
JP6143702B2 (en) * 2014-04-09 2017-06-07 日本電信電話株式会社 Echo canceling apparatus, method and program
JP6356087B2 (en) * 2015-03-30 2018-07-11 日本電信電話株式会社 Echo canceling apparatus, method and program
US10200540B1 (en) 2017-08-03 2019-02-05 Bose Corporation Efficient reutilization of acoustic echo canceler channels
US10542153B2 (en) * 2017-08-03 2020-01-21 Bose Corporation Multi-channel residual echo suppression
US10594869B2 (en) 2017-08-03 2020-03-17 Bose Corporation Mitigating impact of double talk for residual echo suppressors
US10863269B2 (en) 2017-10-03 2020-12-08 Bose Corporation Spatial double-talk detector
US10964305B2 (en) 2019-05-20 2021-03-30 Bose Corporation Mitigating impact of double talk for residual echo suppressors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756839B2 (en) * 2002-04-17 2006-03-15 日本電信電話株式会社 Reverberation reduction method, Reverberation reduction device, Reverberation reduction program
JP4448423B2 (en) * 2004-10-25 2010-04-07 日本電信電話株式会社 Echo suppression method, apparatus for implementing this method, program, and recording medium therefor
JP4504782B2 (en) * 2004-10-25 2010-07-14 日本電信電話株式会社 Echo cancellation method, apparatus for implementing this method, program, and recording medium therefor
JP4533427B2 (en) * 2005-02-21 2010-09-01 富士通株式会社 Echo canceller
JP4978352B2 (en) * 2007-07-11 2012-07-18 ヤマハ株式会社 Echo canceller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110829463A (en) * 2019-11-19 2020-02-21 国网湖南省电力有限公司 Power grid weak damping identification method, system and medium based on frequency decomposition and correlation coefficient method

Also Published As

Publication number Publication date
JP2011166484A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5391103B2 (en) Multi-channel echo canceling method, multi-channel echo canceling apparatus, multi-channel echo canceling program and recording medium therefor
JP5394373B2 (en) Apparatus and method for processing audio signals
JP3727258B2 (en) Echo suppression processing system
EP1855457B1 (en) Multi channel echo compensation using a decorrelation stage
JP5501527B2 (en) Echo canceller and echo detector
US20190273988A1 (en) Beamsteering
JP4957810B2 (en) Sound processing apparatus, sound processing method, and sound processing program
JP4568439B2 (en) Echo suppression device
JPWO2006049260A1 (en) Signal processing method, signal processing apparatus, and signal processing program
JPWO2010035308A1 (en) Echo canceller
JPH09139696A (en) Method and device for both adaptive identification and related adaptive echo canceler thereto
JP5662232B2 (en) Echo canceling apparatus, method and program
JP5469564B2 (en) Multi-channel echo cancellation method, multi-channel echo cancellation apparatus and program thereof
JP2004349806A (en) Multichannel acoustic echo canceling method, apparatus thereof, program thereof, and recording medium thereof
US10129410B2 (en) Echo canceller device and echo cancel method
JP3756839B2 (en) Reverberation reduction method, Reverberation reduction device, Reverberation reduction program
JP3787088B2 (en) Acoustic echo cancellation method, apparatus, and acoustic echo cancellation program
JP3756828B2 (en) Reverberation elimination method, apparatus for implementing this method, program, and recording medium therefor
JP4413205B2 (en) Echo suppression method, apparatus, echo suppression program, recording medium
JP4700673B2 (en) Echo cancellation method, apparatus, program, and recording medium
JP4709714B2 (en) Echo canceling apparatus, method thereof, program thereof, and recording medium thereof
JP6143702B2 (en) Echo canceling apparatus, method and program
JP5937451B2 (en) Echo canceling apparatus, echo canceling method and program
CN112863532A (en) Echo suppressing device, echo suppressing method, and storage medium
JP2011160429A (en) Echo elimination device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees