JP2006120665A - Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same - Google Patents

Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same Download PDF

Info

Publication number
JP2006120665A
JP2006120665A JP2004303719A JP2004303719A JP2006120665A JP 2006120665 A JP2006120665 A JP 2006120665A JP 2004303719 A JP2004303719 A JP 2004303719A JP 2004303719 A JP2004303719 A JP 2004303719A JP 2006120665 A JP2006120665 A JP 2006120665A
Authority
JP
Japan
Prior art keywords
paste composition
resin paste
conductive resin
conductive
silver powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303719A
Other languages
Japanese (ja)
Inventor
Shoichi Yoshizawa
昌一 吉澤
Toru Miyoshi
徹 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004303719A priority Critical patent/JP2006120665A/en
Publication of JP2006120665A publication Critical patent/JP2006120665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive resin paste composition that has improved migration-resistance properties, adhesion strength, and conductivity, is appropriate for adhering a semiconductor element, such as an IC and an LSI for die-bonding, to a lead frame, a glass epoxy resin substrate, or the like, and contains silver and a carbon nano tube, and to provide a semiconductor device using the conductive resin paste composition. <P>SOLUTION: The conductive resin paste composition contains at least a thermosetting resin A and a conductive filler B, where the conductive filler B contains a sufficient amount of carbon nano tube B2 for improving migration-resistance properties in addition to silver powder B1. The semiconductor substrate and the substrate are adhered by using the conductive resin paste composition before sealing in the semiconductor device. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、銀とカーボンナノチューブを含む導電性樹脂ペースト組成物およびこれを用いた半導体装置に関し、より詳しくは、耐マイグレーション性、接着強度、導電性に優れ、ダイボンド用としてIC、LSI等の半導体素子をリードフレーム、ガラスエポキシ基板等に接着するのに好適な、銀とカーボンナノチューブを含む導電性樹脂ペースト組成物およびこれを用いた半導体装置に関する。   The present invention relates to a conductive resin paste composition containing silver and carbon nanotubes, and a semiconductor device using the same, and more particularly, has excellent migration resistance, adhesive strength, and conductivity, and is a semiconductor such as an IC or LSI for die bonding. The present invention relates to a conductive resin paste composition containing silver and carbon nanotubes, which is suitable for bonding an element to a lead frame, a glass epoxy substrate, and the like, and a semiconductor device using the same.

従来、半導体装置を製造する際の半導体素子とリードフレーム(支持部材)の接合方法として、金−シリコン共晶体等の無機材料を接着剤として用いる方法や、エポキシ樹脂等の有機材料に銀粉等を分散させてペースト状態とし、これを接着剤として用いる方法などがある。しかしながら、金−シリコン共晶体等を用いる前者の方法では接着剤のコストが高く、350℃から400℃程度の高温での熱処理が必要であり、また接着剤が硬く、熱応力によってチップの破壊が起こるという問題がある。   Conventionally, as a method of joining a semiconductor element and a lead frame (support member) when manufacturing a semiconductor device, a method using an inorganic material such as a gold-silicon eutectic as an adhesive, or silver powder or the like as an organic material such as an epoxy resin There is a method of dispersing and making a paste and using this as an adhesive. However, in the former method using a gold-silicon eutectic, etc., the cost of the adhesive is high, heat treatment at a high temperature of about 350 ° C. to 400 ° C. is necessary, the adhesive is hard, and the chip is broken by thermal stress. There is a problem that happens.

そのため、最近では銀粉を含んだ銀ペーストを用いる後者の方法が主流となっている。しかしながら、この方法にしても、銀が高価であることからペーストも高価なものになるという問題があった。また、銀は高温多湿の雰囲気下で電界が印加されると、マイグレーションと称する銀の電析が生じるという問題もあった。さらに、形状が扁平状等の銀フィラーを用いると、導電性は良好であるが粘度が高くなり、作業性が悪くなるという問題もあった。作業性を改善するためには、希釈剤量を増加させねばならず、そうすると接着強度が低下してしまうという現象が起こる。   Therefore, the latter method using a silver paste containing silver powder has become mainstream recently. However, even this method has a problem that the paste becomes expensive because silver is expensive. In addition, silver has a problem that, when an electric field is applied in a hot and humid atmosphere, silver electrodeposition called migration occurs. Furthermore, when a silver filler having a flat shape or the like is used, there is a problem that the conductivity is good but the viscosity is high and the workability is deteriorated. In order to improve workability, the amount of diluent must be increased, which causes a phenomenon that the adhesive strength is lowered.

これに対して、カーボンナノチューブを用いた導電性ペーストが提案されている(例えば、特許文献1参照)。これは、蛍光表示管にアノード電極形成用として、従来の黒鉛粉末に代わりカーボンナノチューブを用いており、導電性フィラーとして銀粉を用いるペースト組成物ではない。そのため、銀粉を用いることで大きな問題となるマイグレーション性に関しては全く言及されていない。   In contrast, a conductive paste using carbon nanotubes has been proposed (for example, see Patent Document 1). This is not a paste composition in which carbon nanotubes are used in place of conventional graphite powder for forming an anode electrode in a fluorescent display tube, and silver powder is used as a conductive filler. For this reason, no mention is made of the migration which becomes a big problem by using silver powder.

このような状況下、導電性フィラーとして銀粉を含むペースト組成物を用いて半導体素子とリードフレーム(支持部材)を接合する際、耐マイグレーション性に優れ、接着強度、導電性とのバランスも良い組成物の出現が切望されていた。
特開2000−63726公報
Under such circumstances, when a semiconductor element and a lead frame (support member) are joined using a paste composition containing silver powder as a conductive filler, the composition has excellent migration resistance and a good balance between adhesive strength and conductivity. The appearance of things was anxious.
JP 2000-63726 A

本発明の目的は、耐マイグレーション性、接着強度、導電性に優れ、ダイボンド用としてIC、LSI等の半導体素子をリードフレーム、ガラスエポキシ基板等に接着するのに好適な、銀とカーボンナノチューブを含む導電性樹脂ペースト組成物およびこれを用いた半導体装置を提供することにある。   The object of the present invention includes silver and carbon nanotubes, which are excellent in migration resistance, adhesive strength, and conductivity, and are suitable for bonding semiconductor elements such as IC and LSI to lead frames, glass epoxy substrates and the like for die bonding. An object is to provide a conductive resin paste composition and a semiconductor device using the same.

本発明者らは、かかる従来の課題に鑑み、鋭意研究を行った結果、少なくとも熱硬化性樹脂、および導電性フィラーを含有してなる導電性樹脂ペースト組成物において、銀粉を主成分とする導電性フィラーに、特定量のカーボンナノチューブを配合することにより、高温多湿の雰囲気下で電界が印加されても、マイグレーションと称する銀の電析が生じなくなることを見出して、本発明を完成するに至った。   As a result of intensive studies in view of such conventional problems, the present inventors have found that a conductive resin paste composition containing at least a thermosetting resin and a conductive filler is a conductive material mainly composed of silver powder. By adding a specific amount of carbon nanotubes to the conductive filler, it was found that even when an electric field was applied in a hot and humid atmosphere, silver deposition called migration did not occur, and the present invention was completed. It was.

すなわち、本発明の第1の発明によれば、少なくとも熱硬化性樹脂(A)と導電性フィラー(B)を含む導電性樹脂ペースト組成物において、導電性フィラー(B)が、銀粉(B1)に加えて、耐マイグレーション性を向上させるに十分な量のカーボンナノチューブ(B2)を含有することを特徴とする導電性樹脂ペースト組成物が提供される。   That is, according to the first invention of the present invention, in the conductive resin paste composition containing at least the thermosetting resin (A) and the conductive filler (B), the conductive filler (B) is silver powder (B1). In addition to the above, a conductive resin paste composition containing a sufficient amount of carbon nanotubes (B2) to improve migration resistance is provided.

また、本発明の第2の発明によれば、第1の発明において、熱硬化性樹脂(A)が、エポキシ樹脂又はフェノール樹脂から選ばれる1種以上の樹脂であることを特徴とする導電性樹脂ペースト組成物が提供される。   According to the second invention of the present invention, in the first invention, the thermosetting resin (A) is one or more resins selected from an epoxy resin and a phenol resin. A resin paste composition is provided.

また、本発明の第3の発明によれば、第1の発明において、熱硬化性樹脂(A)の含有量が、組成物全体に対して5〜80重量%であることを特徴とする導電性樹脂ペースト組成物が提供される。   According to the third invention of the present invention, in the first invention, the content of the thermosetting resin (A) is 5 to 80% by weight based on the entire composition. An adhesive resin paste composition is provided.

また、本発明の第4の発明によれば、第1の発明において、銀粉(B1)の含有量が、組成物全体に対して5〜95重量%であることを特徴とする導電性樹脂ペースト組成物が提供される。   According to a fourth aspect of the present invention, in the first aspect, the conductive resin paste is characterized in that the content of silver powder (B1) is 5 to 95% by weight with respect to the entire composition. A composition is provided.

さらに、本発明の第5の発明によれば、第1の発明において、カーボンナノチューブ(B2)の含有量が、組成物全体に対して0.01〜5重量%であることを特徴とする導電性樹脂ペースト組成物が提供される。   Furthermore, according to the fifth invention of the present invention, in the first invention, the content of the carbon nanotube (B2) is 0.01 to 5% by weight with respect to the whole composition. An adhesive resin paste composition is provided.

一方、本発明の第6の発明によれば、第1〜5のいずれかに記載の導電性樹脂ペースト組成物を用いて半導体素子と基板が接着され、ついで封止されてなる半導体装置が提供される。   On the other hand, according to a sixth aspect of the present invention, there is provided a semiconductor device in which a semiconductor element and a substrate are bonded using the conductive resin paste composition according to any one of the first to fifth, and then sealed. Is done.

本発明によれば、耐マイグレーション性、接着強度、導電性に優れるだけでなく、接着強度及び導電性のバランスに優れている導電性樹脂ペースト組成物が提供される。従って、本発明の導電性樹脂ペースト組成物を用いた半導体装置は、高温多湿の雰囲気でも接着強度、導電性が低下せず優れた電気的特性を維持できる。   According to the present invention, there is provided a conductive resin paste composition that not only has excellent migration resistance, adhesive strength, and electrical conductivity, but also has an excellent balance of adhesive strength and electrical conductivity. Therefore, the semiconductor device using the conductive resin paste composition of the present invention can maintain excellent electrical characteristics without deterioration in adhesive strength and conductivity even in a high temperature and high humidity atmosphere.

1.導電性樹脂ペースト組成物
本発明の導電性樹脂ペースト組成物は、熱硬化性樹脂(A)と導電性フィラー(B)とを含有し、導電性フィラー(B)の主成分である銀粉(B1)にカーボンナノチューブ(B2)を配合したものである。本発明の導電性樹脂ペースト組成物には、ペースト組成物の作製時の作業性、及び使用時の塗布性をより良好するため、必要に応じて希釈剤(C)を添加することができる。
1. Conductive resin paste composition The conductive resin paste composition of the present invention contains a thermosetting resin (A) and a conductive filler (B), and is a silver powder (B1) that is a main component of the conductive filler (B). ) And carbon nanotubes (B2). Diluent (C) can be added to the conductive resin paste composition of the present invention as necessary in order to improve the workability at the time of preparing the paste composition and the applicability at the time of use.

(A)熱硬化性樹脂
本発明において、熱硬化性樹脂は、バインダー樹脂として機能する成分であり、この熱硬化性樹脂は一般的に市販されているものを用いることができる。例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ポリイミド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、およびこれらの各種変性品等が挙げられ、1種もしくは2種以上を混合して用いることができる。
(A) Thermosetting resin In this invention, a thermosetting resin is a component which functions as a binder resin, and what is generally marketed can be used for this thermosetting resin. Examples include epoxy resins, phenol resins, melamine resins, polyimide resins, acrylic resins, unsaturated polyester resins, diallyl phthalate resins, and various modified products thereof. it can.

これらの熱硬化性樹脂の中でも、本発明の効果が充分得られるペースト状の組成物とするためには、20℃(常温)で液状であることが好ましい。特に、ポットライフや硬化後の種々の特性を得るために、比較的調製が容易なエポキシ樹脂やフェノール樹脂を用いることが好ましい。更には、芳香族基を有するエポキシ樹脂が好ましく用いられる。   Among these thermosetting resins, in order to obtain a paste-like composition that can sufficiently obtain the effects of the present invention, it is preferably liquid at 20 ° C. (normal temperature). In particular, in order to obtain various properties after pot life and curing, it is preferable to use an epoxy resin or a phenol resin that is relatively easy to prepare. Furthermore, an epoxy resin having an aromatic group is preferably used.

例えば、20℃で液状の熱硬化性樹脂としては、希釈剤を低減できる等の点から、粘度の低いもの、具体的には20℃で粘度が50Pa・s以下のものが好ましく、さらには0.1〜10Pa・sのものが好ましい。   For example, the thermosetting resin that is liquid at 20 ° C. is preferably one having a low viscosity, specifically a viscosity of 50 Pa · s or less at 20 ° C. from the viewpoint that the diluent can be reduced. 1 to 10 Pa · s is preferable.

エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、芳香族系のグリシジルアミン型エポキシ樹脂、レゾルシン型エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、2種以上を適宜組み合わせて用いることもできる。また、上記エポキシ樹脂のうち、粘度が低く、希釈剤量を低減できることから、ビスフェノールF型エポキシ樹脂及びビスフェノールAD型エポキシ樹脂が好ましい。なお、ビスフェノールF型エポキシ樹脂は、2つのヒドロキシフェニル基を結ぶ基がメチレン基である化合物であり、ビスフェノールAD型エポキシ樹脂は、2つのヒドロキシフェニル基を結ぶ基が1,1−エチレン基である化合物である。また、フェノール樹脂としては、アルカリレゾール型のフェノール樹脂が好ましい。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, aromatic glycidylamine type epoxy resin, resorcin type epoxy resin, and the like. Two or more of these epoxy resins can be used in appropriate combination. Of the above epoxy resins, bisphenol F type epoxy resins and bisphenol AD type epoxy resins are preferred because of their low viscosity and the reduced amount of diluent. The bisphenol F type epoxy resin is a compound in which a group connecting two hydroxyphenyl groups is a methylene group, and the bisphenol AD type epoxy resin is a 1,1-ethylene group connecting two hydroxyphenyl groups. A compound. Moreover, as a phenol resin, an alkaline resol type phenol resin is preferable.

熱硬化性樹脂は、樹脂成分(A)と導電性フィラー成分(B)との総量、すなわち組成物全体に対して5〜80重量%使用することが好ましく、耐半田リフロー性の点から、10〜50重量%使用することがより好ましい。   The thermosetting resin is preferably used in a total amount of the resin component (A) and the conductive filler component (B), that is, 5 to 80% by weight with respect to the entire composition. It is more preferable to use ˜50% by weight.

本発明に用いられる熱硬化性樹脂には、必要に応じて硬化剤を併用することができる。併用できる硬化剤は特に制限はないが、熱硬化性樹脂が例えばエポキシ樹脂であれば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ジシアンジアミド、二塩基酸ジヒドラジドなどを用いることができる。   A curing agent can be used in combination with the thermosetting resin used in the present invention, if necessary. The curing agent that can be used in combination is not particularly limited, but if the thermosetting resin is, for example, an epoxy resin, phenol novolac resin, phenol aralkyl resin, dicyandiamide, dibasic acid dihydrazide, or the like can be used.

(B)導電性フィラー
本発明において用いられる導電性フィラーの必須成分は、銀粉およびカーボンナノチューブである。
(B) Conductive filler The essential components of the conductive filler used in the present invention are silver powder and carbon nanotubes.

銀粉としては、例えば微細球状銀粉、粗粒球状銀粉、フレーク状銀粉等が挙げられ、これらのいずれか1種もしくは2種以上を組み合せて用いることができる。特に好ましいのは、フレーク状銀粉である。   Examples of the silver powder include fine spherical silver powder, coarse spherical silver powder, and flaky silver powder, and any one or two or more of these can be used in combination. Particularly preferred is flaky silver powder.

微細球状銀粉の球状とは、アスペクト比、すなわち長短度(長径/短径)が1〜2.5のものを指し、特にその長短度が1〜1.25のものが、より好ましい。ここで、短径とは、前記切断面に現れる粒子について、その粒子の外側に接する二つの平行線の組み合わせが粒子を挟むように選択し、それらの組み合わせのうち最短間隔になる二つの平行線の距離である。一方、長径とは、前記短径を決する平行線に直角方向の二つの平行線であって、粒子外側に接する二つの平行線の組み合わせのうち、最長間隔になる二つの平行線の距離である。これらの四つの線で形成される長方形は、粒子がちょうどその中に納まる大きさとなる。   The spherical shape of the fine spherical silver powder refers to one having an aspect ratio, that is, a length (major axis / minor axis) of 1 to 2.5, and more preferably one having a length of 1 to 1.25. Here, the minor axis is selected such that a combination of two parallel lines in contact with the outside of the particle sandwiches the particle with respect to the particle appearing on the cut surface, and two parallel lines having the shortest distance among these combinations. Is the distance. On the other hand, the major axis is the distance between the two parallel lines that are perpendicular to the parallel line that determines the minor axis and that is the longest interval among the combination of two parallel lines that touch the outside of the particle. . The rectangle formed by these four lines is the size that the particles just fit within.

また、微細球状銀粉の平均粒径は、10μm以下であることが望ましく、これを越えると、十分に緻密な膜が得られない。なお、組成物作製時の混練性を考慮すると、微細球状銀粉の平均粒径は0.1〜5μm程度がより好ましい。また、粗粒球状銀粉は必要に応じて使用することができ、その長短度は、上記微細球状銀粉の場合と同様である。   Moreover, it is desirable that the fine spherical silver powder has an average particle size of 10 μm or less, and beyond this, a sufficiently dense film cannot be obtained. In consideration of kneadability at the time of preparing the composition, the average particle size of the fine spherical silver powder is more preferably about 0.1 to 5 μm. The coarse spherical silver powder can be used as necessary, and the length thereof is the same as that of the fine spherical silver powder.

一方、フレーク状銀粉は、長径における平均粒径が0.1〜10μmの範囲のものを使用するのが好ましい。その長径における平均粒径が0.1μm未満であると、均一な混合が困難となる上、充填率を向上させる効果が少ないため充分な抵抗率が得られない。また10μmを越えると、スクリーン印刷等を行う際にスクリーンの目詰まりを生じ易くなるため好ましくない。さらに収縮特性を考慮すると、0.5〜5μmの範囲のものがより好ましい。また、フレーク状銀粉のアスペクト比(長短度)は1〜5の範囲内、更に好ましくは1〜3.5の範囲内のものを用いるとよい。その厚さは0.05〜2μm、更に好ましくは0.1〜1.2μmのものを使用するとよい。   On the other hand, it is preferable to use the flaky silver powder having an average particle diameter in the range of 0.1 to 10 μm. If the average particle size of the major axis is less than 0.1 μm, uniform mixing becomes difficult, and a sufficient resistivity cannot be obtained because the effect of improving the filling rate is small. On the other hand, if it exceeds 10 μm, clogging of the screen tends to occur during screen printing or the like, which is not preferable. Further, considering the shrinkage characteristics, those in the range of 0.5 to 5 μm are more preferable. The aspect ratio (long / short) of the flaky silver powder is preferably in the range of 1 to 5, more preferably in the range of 1 to 3.5. The thickness may be 0.05-2 μm, more preferably 0.1-1.2 μm.

上記の微細球状銀粉、粗粒球状銀粉、およびフレーク状銀粉は、必要に応じた混合率で使用できる。混合率としては、銀粉総量の5〜50重量%を微細球状銀粉が占め、残部を粗粒球状銀粉またはフレーク状銀粉となるようにすることが好ましい。   Said fine spherical silver powder, coarse-grained spherical silver powder, and flaky silver powder can be used with the mixing rate as needed. As the mixing ratio, it is preferable that 5 to 50% by weight of the total amount of silver powder is occupied by fine spherical silver powder, and the remainder is coarse spherical silver powder or flaky silver powder.

また、銀粉の含有量は、組成物全体に対して5〜95重量%であることが好ましく、10〜90重量%がより好ましい。5重量%よりも少ないと充分な低抵抗率を確保できず、また95重量%よりも多いと組成物の粘度が上昇して実用に耐えられなくなる。   Moreover, it is preferable that content of silver powder is 5-95 weight% with respect to the whole composition, and 10-90 weight% is more preferable. If it is less than 5% by weight, a sufficiently low resistivity cannot be ensured, and if it is more than 95% by weight, the viscosity of the composition increases and it cannot be put into practical use.

また、本発明において、導電性フィラーのもう一方の必須成分であるカーボンナノチューブは、特に限定されず、多層型、単層型、ホーン型のいずれでも使用することができる。   In the present invention, the carbon nanotube which is another essential component of the conductive filler is not particularly limited, and any of a multi-layer type, a single-layer type and a horn type can be used.

これらの製造方法としては、例えば特開2000−63112号公報、特開2001−64004号公報、特開2003−277032号公報、「カーボンナノチューブの基礎」(斎藤弥八、坂東俊治、1998年11月発行、コロナ社」等に開示されており、ここに記載された方法で得ることができる。   As these production methods, for example, JP 2000-63112 A, JP 2001-64004 A, JP 2003-277032 A, “Basics of Carbon Nanotubes” (Yahachi Saito, Shunji Bando, November 1998). It is disclosed in “Issuance, Corona”, etc., and can be obtained by the method described herein.

カーボンナノチューブは、直径0.5〜200nmであり、長さが0.1〜100μmであることが好ましい。また、アスペクト比は、50〜200,000であることが好ましい。この範囲にあることにより、「多湿下に於ける銀イオンの抑制」というメカニズムによって、耐マイグレーション性を改善できるものと考えられる。特に好ましい直径は0.7〜2.0nmであり、長さは0.1〜50μmであり、また、アスペクト比は、50〜70,000である。   The carbon nanotubes preferably have a diameter of 0.5 to 200 nm and a length of 0.1 to 100 μm. The aspect ratio is preferably 50 to 200,000. By being in this range, it is considered that the migration resistance can be improved by the mechanism of “suppression of silver ions under high humidity”. A particularly preferable diameter is 0.7 to 2.0 nm, a length is 0.1 to 50 μm, and an aspect ratio is 50 to 70,000.

カーボンナノチューブの含有量は、耐マイグレーション性を向上するのに十分な量でなければならない。具体的には組成物全体に対して0.01〜5重量%が好ましく、更には0.05〜2重量%が好ましい。0.01重量%よりも少ないと、耐マイグレーション性を向上できないだけでなく充分な低抵抗率が得られず、一方、5重量%よりも多いと著しい組成物粘度の上昇を招き本発明の効果を得ることができない。   The content of carbon nanotubes must be sufficient to improve migration resistance. Specifically, it is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the entire composition. If the amount is less than 0.01% by weight, not only the migration resistance cannot be improved, but also a sufficiently low resistivity cannot be obtained. On the other hand, if the amount exceeds 5% by weight, the viscosity of the composition is significantly increased and the effect of the present invention is achieved. Can't get.

更に、本発明の導電性樹脂ペースト組成物には、必要に応じて硬化促進剤を添加することができる。硬化促進剤としては、有機ボロン塩、三級アミン類及びその塩、イミダゾール類、アセチルアセトン金属塩などが挙げられる。硬化促進剤は単独でもよく、複数種の硬化促進剤を適宜組み合わせて用いてもよい。これらを用いる場合、その量は熱硬化性樹脂に対して0.1〜20重量%が好ましく、1〜10重量部がより好ましい。   Furthermore, a curing accelerator can be added to the conductive resin paste composition of the present invention as necessary. Examples of the curing accelerator include organic boron salts, tertiary amines and salts thereof, imidazoles, and acetylacetone metal salts. A hardening accelerator may be individual and may use it in combination of multiple types of hardening accelerator suitably. When using these, the amount is preferably from 0.1 to 20% by weight, more preferably from 1 to 10 parts by weight, based on the thermosetting resin.

(C)希釈剤
本発明の導電性樹脂ペースト組成物には、必要に応じて希釈剤を添加することができる。
(C) Diluent A diluent can be added to the conductive resin paste composition of the present invention as necessary.

希釈剤としては、ブチルセロソルブ、カルビトール、酢酸ブチルセロソルブ、酢酸カルビトール、エチレングリコールジエチルエーテル、ターピネオールなどの比較的沸点の高い有機溶剤;1分子中に1〜2個のエポキシ基を有する反応性希釈剤が挙げられる。ペースト組成物の作製時の作業性、及び使用時の塗布性をより良好するため、これらは導電性樹脂ペースト組成物中に1重量%以上配合することが好ましく、3〜20重量%配合することがより好ましい。   Diluents include organic solvents having a relatively high boiling point such as butyl cellosolve, carbitol, butyl cellosolve, carbitol acetate, ethylene glycol diethyl ether, terpineol; reactive diluents having 1 to 2 epoxy groups in one molecule Is mentioned. In order to improve the workability at the time of preparation of the paste composition and the applicability at the time of use, these are preferably blended in an amount of 1% by weight or more in the conductive resin paste composition, and blended in an amount of 3 to 20% by weight. Is more preferable.

更に、本発明の導電性樹脂ペースト組成物には、必要に応じてシランカップリング剤、チタンカップリング剤等の接着性向上剤、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ性向上剤、シリコーン油等の消泡剤、無機イオン交換体等のイオントラップ剤などの各種添加剤を適宜添加することができる。   Furthermore, the conductive resin paste composition of the present invention has improved wettability such as adhesion improvers such as silane coupling agents and titanium coupling agents, nonionic surfactants, and fluorosurfactants as necessary. Various additives such as an agent, an antifoaming agent such as silicone oil, and an ion trapping agent such as an inorganic ion exchanger can be appropriately added.

2.導電性樹脂ペースト組成物の製造
本発明の導電性樹脂ペースト組成物は、前記の熱硬化性樹脂(A)、及び導電性フィラー(B)を用い、必要に応じて希釈剤(C)、及び硬化促進剤ほか各種添加剤を配合して製造される。
2. Production of conductive resin paste composition The conductive resin paste composition of the present invention uses the thermosetting resin (A) and the conductive filler (B), and if necessary, a diluent (C), and Manufactured by blending various accelerators and other additives.

これら成分を、一括又は分割して攪拌機、らいかい機、3本ロール、プラネタリーミキサー等の分散、溶解装置又はこれらを適宜組み合わせた装置に投入する。各成分を混合するには、比較的低温で均一な組成物が得られるまで攪拌すればよい。   These components are batched or divided and charged into a stirrer, a raking machine, a three-roll, a planetary mixer or other dispersing / dissolving apparatus or an apparatus in which these are appropriately combined. In order to mix the components, stirring may be performed until a uniform composition is obtained at a relatively low temperature.

その後、必要に応じて加熱して混合、溶解、解粒混練又は分散して均一なペースト状とすることができる。ただし、硬化剤、硬化促進剤の種類にもよるが、50℃を超える温度では液状エポキシ樹脂の硬化反応が進行して固化するので注意が必要である。   Thereafter, the mixture can be heated, if necessary, mixed, dissolved, pulverized, kneaded or dispersed to form a uniform paste. However, depending on the type of curing agent and curing accelerator, care must be taken because the curing reaction of the liquid epoxy resin proceeds and solidifies at temperatures exceeding 50 ° C.

3.半導体装置
本発明においては、上記のようにして製造される導電性樹脂ペースト組成物を接着用樹脂ペースト組成物、すなわちダイボンド材として用いることができる。このダイボンド材によって半導体素子と基板とを接着した後、封止することにより本発明の半導体装置が得られる。
3. Semiconductor Device In the present invention, the conductive resin paste composition produced as described above can be used as an adhesive resin paste composition, that is, a die bond material. The semiconductor device of the present invention is obtained by sealing the semiconductor element and the substrate after bonding them with this die bond material.

本発明の導電性樹脂ペースト組成物を用いて、半導体素子をリードフレーム等の基板と接着させるには、まず、基板上に導電性樹脂ペースト組成物をディスペンス法、スクリーン印刷法、スタンピング法などにより塗布する。   In order to adhere a semiconductor element to a substrate such as a lead frame using the conductive resin paste composition of the present invention, first, the conductive resin paste composition is applied on the substrate by a dispensing method, a screen printing method, a stamping method, or the like. Apply.

次いで、半導体素子を圧着し、その後、オーブン、ヒートブロック等の加熱装置を用いて、例えば100〜300℃に加熱硬化する。加熱条件は、硬化剤の種類によっても異なるが、オーブン中に10〜180分間放置して導電性樹脂ペースト組成物を硬化させればよい。100℃未満、或いは10分間未満では接着剤の硬化が不十分となり、一方、300℃を超えるか180分間を超えると、樹脂成分が分解する恐れが生じるので好ましくない。
さらに、ワイヤボンド工程を経た後、通常の方法、例えば各種封止剤を用いて半導体素子を封止することにより半導体装置を完成することができる。
Next, the semiconductor element is pressure-bonded, and then heated and cured at, for example, 100 to 300 ° C. using a heating device such as an oven or a heat block. Although heating conditions differ also with the kind of hardening | curing agent, what is necessary is just to leave for 10 to 180 minutes in oven, and to cure the conductive resin paste composition. If the temperature is less than 100 ° C. or less than 10 minutes, curing of the adhesive becomes insufficient. On the other hand, if it exceeds 300 ° C. or exceeds 180 minutes, the resin component may be decomposed, which is not preferable.
Further, after the wire bonding step, the semiconductor device can be completed by sealing the semiconductor element using a normal method, for example, various sealing agents.

以下、本発明を実施例及び比較例によってさらに具体的に説明するが、本発明はこれら実施例によって限定されるものではない。
なお、実施例及び比較例で用いた材料は、下記の方法で作製したもの、あるいは入手したものである。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.
In addition, the material used by the Example and the comparative example was produced by the following method, or was obtained.

(1)導電性樹脂ペースト組成物の材料
B1 銀粉
・銀粉1:フレーク状銀粉 (商品名 シルコートAgC−2011、福田金属箔工業社製)、平均粒径1.8μm
・銀粉2:フレーク状銀粉 (商品名 シルコートAgC−2411、福田金属箔工業社製)、平均粒径7.7μm
B2 カーボンナノチューブ
・SCNT(単層カーボンナノチューブ、米国カーボンナノテクノロジーズ社製)、直径0.7〜1.5nm、長さ0.1〜100μm、アスペクト比70〜100,000。
A 熱硬化性樹脂
1)エポキシ樹脂
・樹脂1:ビスフェノールF型エポキシ樹脂(商品名:エピコート806、ジャパンエポキシレジン株式会社製)、20℃の粘度3Pa・s
・樹脂2:ビスフェノールA型エポキシ樹脂(商品名:エピコート825、ジャパンエポキシレジン株式会社製)、20℃の粘度7Pa・s
2)エポキシ樹脂用硬化剤
・DICY(ジシアンジアミド、商品名:DICY7、ジャパンエポキシレジン社製)
3)レゾール型フェノール樹脂
・樹脂3:(商品名:PL4348、群栄化学工業(株))、20℃の粘度4Pa・s
C 有機溶媒
・BCA(ブチルカルビトールアセテート、沸点245℃)
(1) Material of conductive resin paste composition B1 Silver powder Silver powder 1: Flaky silver powder (trade name SILCOAT AgC-2011, manufactured by Fukuda Metal Foil Industry Co., Ltd.), average particle size 1.8 μm
Silver powder 2: flaky silver powder (trade name SILCOAT AgC-2411, manufactured by Fukuda Metal Foil Industry Co., Ltd.), average particle size 7.7 μm
B2 carbon nanotube SCNT (single-walled carbon nanotube, manufactured by US Carbon Nano Technologies), diameter 0.7 to 1.5 nm, length 0.1 to 100 μm, aspect ratio 70 to 100,000.
A Thermosetting resin 1) Epoxy resin Resin 1: Bisphenol F type epoxy resin (trade name: Epicoat 806, manufactured by Japan Epoxy Resin Co., Ltd.), viscosity at 20 ° C. 3 Pa · s
Resin 2: Bisphenol A type epoxy resin (trade name: Epicoat 825, manufactured by Japan Epoxy Resin Co., Ltd.), viscosity at 20 ° C. 7 Pa · s
2) Curing agent for epoxy resin-DICY (dicyandiamide, trade name: DICY7, manufactured by Japan Epoxy Resin Co., Ltd.)
3) Resol type phenol resin Resin 3: (trade name: PL4348, Gunei Chemical Industry Co., Ltd.), viscosity at 20 ° C. 4 Pa · s
C Organic solvent BCA (Butyl carbitol acetate, boiling point 245 ° C)

(2)作製した導電性樹脂ペースト組成物は、以下の通り評価した。
(i)接着強度
導電性樹脂ペースト組成物を銅板上にスクリーン印刷し、この上に2mm×2mmのSiチップ(厚さ0.4mm)を圧着し、更に200℃に設定したオーブンに入れ、約60分加熱した。常温に戻した後、この試料について自動接着力試験装置(Dage社、マイクロテスター)を用いて、室温における剪断接着強度(kg/チップ)を測定した。当該接着強度は、数値が大きいほど好ましい。
(2) The produced conductive resin paste composition was evaluated as follows.
(I) Adhesive strength The conductive resin paste composition was screen-printed on a copper plate, a 2 mm × 2 mm Si chip (thickness 0.4 mm) was pressure-bonded thereon, and further placed in an oven set at 200 ° C. Heated for 60 minutes. After returning to normal temperature, the shear adhesive strength (kg / chip) at room temperature was measured for this sample using an automatic adhesive strength test apparatus (Dage, Micro Tester). The adhesive strength is preferably as the numerical value is larger.

(ii)シート抵抗値
導電性樹脂ペースト組成物をアルミナ基板上に塗布し、更に200℃で1時間オーブンに入れて加熱した。常温に戻した後、この試料についてデジタルマルチメーター(岩通電子社製 VOAC−7411)を用いて、シート抵抗値を測定した。当該シート抵抗値は、数値が小さいほど好ましい。
(Ii) Sheet resistance value The conductive resin paste composition was applied onto an alumina substrate, and further heated in an oven at 200 ° C for 1 hour. After returning to room temperature, the sheet resistance value of this sample was measured using a digital multimeter (VOAC-7411 manufactured by Iwatatsu Electronics Co., Ltd.). The sheet resistance value is more preferable as the numerical value is smaller.

(iii)耐マイグレ−ション性
ウォータードロップ法で耐マイグレーション性を評価した。導電性樹脂ペースト組成物をよく洗浄したアルミナ基板上にスクリーン印刷し、更に200℃で1時間、オーブン中で加熱した。常温に戻した後、この電極間上に純水で湿らせたろ紙を置き、10Vを印加した。印加中、ろ紙が乾かないように純水を随時ろ紙に滴下し、電極間に100mA流れるまでの時間を測定した。この時間が長いほど耐マイグレーション性は良好である。
(Iii) Migration resistance Migration resistance was evaluated by the water drop method. The conductive resin paste composition was screen printed on a well-washed alumina substrate and further heated in an oven at 200 ° C. for 1 hour. After returning to normal temperature, a filter paper moistened with pure water was placed between the electrodes, and 10 V was applied. During the application, pure water was dropped onto the filter paper as needed so that the filter paper did not dry, and the time until 100 mA flowed between the electrodes was measured. The longer this time, the better the migration resistance.

(実施例1〜12)
銀、カーボンナノチューブ及び熱硬化性樹脂を含む各材料を表1〜2に示す配合割合で計量した後、三本ロールミルで混合混練し、得られた組成物を666.61Pa(5トール(Torr))以下で10分間脱泡処理を行い、本発明の導電性樹脂ペースト組成物を得た。この樹脂ペースト組成物の特性(接着強度、シート抵抗及び耐マイグレーション性)を前記の方法で測定した。結果を表1〜2に示す。
尚、本実施例における銀粉のアスペクト比の具体的測定法を以下に示す。低粘度のエポキシ樹脂(ビューラー社)の主剤(No.10−8130)8gと、硬化剤(No.10−8132)2gを混合し、ここへ銀粉2gを混合して良く分散させ、そのまま30℃で真空脱泡した後、10時間30℃で静置して粒子を沈降させ硬化させた。その後、得られた硬化物を垂直方向に切断し、切断面を電子顕微鏡で1000倍に拡大して切断面に現れた150個の粒子について長径/短径を求め、それらの平均値をもって、アスペクト比とした。
(Examples 1-12)
Each material containing silver, carbon nanotubes, and thermosetting resin was weighed at the blending ratios shown in Tables 1-2, and then mixed and kneaded by a three-roll mill. The resulting composition was 666.61 Pa (5 Torr). ) Defoaming treatment was performed for 10 minutes below to obtain a conductive resin paste composition of the present invention. The properties (adhesive strength, sheet resistance, and migration resistance) of this resin paste composition were measured by the methods described above. The results are shown in Tables 1-2.
In addition, the specific measuring method of the aspect-ratio of the silver powder in a present Example is shown below. 8 g of the main agent (No. 10-8130) of a low-viscosity epoxy resin (Buhler) and 2 g of a curing agent (No. 10-8132) are mixed, and 2 g of silver powder is mixed and well dispersed therein, and is kept at 30 ° C. After vacuum defoaming, the particles were allowed to stand at 30 ° C. for 10 hours to precipitate and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 1000 times with an electron microscope, and the major axis / minor axis were obtained for 150 particles appearing on the cut surface. Ratio.

(比較例1〜3)
銀、及び熱硬化性樹脂を配合し、カーボンナノチューブを配合しなかった以外は実施例と同様にして、比較用の導電性樹脂ペースト組成物を得た。この樹脂ペースト組成物の特性(接着強度、シート抵抗及び耐マイグレーション性)を前記の方法で測定した。結果を表3に示す。
(Comparative Examples 1-3)
A comparative conductive resin paste composition was obtained in the same manner as in Example except that silver and a thermosetting resin were blended and no carbon nanotube was blended. The properties (adhesive strength, sheet resistance, and migration resistance) of this resin paste composition were measured by the methods described above. The results are shown in Table 3.

(参考例1、2)
カーボンナノチューブの配合量を変えた以外は実施例と同様にして、導電性樹脂ペースト組成物を得た。この樹脂ペースト組成物の特性(接着強度、シート抵抗及び耐マイグレーション性)を前記の方法で測定した。結果を表3に示す。
(Reference Examples 1 and 2)
Except having changed the compounding quantity of the carbon nanotube, it carried out similarly to the Example, and obtained the conductive resin paste composition. The properties (adhesive strength, sheet resistance, and migration resistance) of this resin paste composition were measured by the methods described above. The results are shown in Table 3.

Figure 2006120665
Figure 2006120665

Figure 2006120665
Figure 2006120665

Figure 2006120665
Figure 2006120665

表1〜3に示した結果から、銀粉およびカーボンナノチューブを含む本発明の導電性樹脂ペースト組成物を用いた場合は、抵抗値や接着強度に問題を与えることなく、耐マイグレーション性が著しく向上することが確認された。これに対して、カーボンナノチューブを含まない比較例の導電性樹脂ペースト組成物を用いた場合は、抵抗値や接着強度に問題を与えることはないものの、耐マイグレーション性が著しく低下することが確認された。   From the results shown in Tables 1 to 3, when the conductive resin paste composition of the present invention containing silver powder and carbon nanotubes is used, the migration resistance is remarkably improved without causing a problem in the resistance value and the adhesive strength. It was confirmed. On the other hand, when the conductive resin paste composition of the comparative example not containing carbon nanotubes was used, it was confirmed that the resistance to migration and the adhesion strength were not adversely affected, but the migration resistance was significantly reduced. It was.

Claims (6)

少なくとも熱硬化性樹脂(A)と導電性フィラー(B)を含む導電性樹脂ペースト組成物において、
導電性フィラー(B)が、銀粉(B1)に加えて、耐マイグレーション性を向上させるに十分な量のカーボンナノチューブ(B2)を含有することを特徴とする導電性樹脂ペースト組成物。
In the conductive resin paste composition containing at least the thermosetting resin (A) and the conductive filler (B),
The conductive resin paste composition, wherein the conductive filler (B) contains a sufficient amount of carbon nanotubes (B2) to improve migration resistance in addition to the silver powder (B1).
熱硬化性樹脂(A)が、エポキシ樹脂又はフェノール樹脂から選ばれる1種以上の樹脂であることを特徴とする請求項1に記載の導電性樹脂ペースト組成物。   2. The conductive resin paste composition according to claim 1, wherein the thermosetting resin (A) is at least one resin selected from an epoxy resin and a phenol resin. 熱硬化性樹脂(A)の含有量が、組成物全体に対して5〜80重量%であることを特徴とする請求項1に記載の導電性樹脂ペースト組成物。   Content of a thermosetting resin (A) is 5 to 80 weight% with respect to the whole composition, The conductive resin paste composition of Claim 1 characterized by the above-mentioned. 銀粉(B1)の含有量が、組成物全体に対して5〜95重量%であることを特徴とする請求項1に記載の導電性樹脂ペースト組成物。   Content of silver powder (B1) is 5-95 weight% with respect to the whole composition, The conductive resin paste composition of Claim 1 characterized by the above-mentioned. カーボンナノチューブ(B2)の含有量が、組成物全体に対して0.01〜5重量%であることを特徴とする請求項1に記載の導電性樹脂ペースト組成物。   Content of a carbon nanotube (B2) is 0.01 to 5 weight% with respect to the whole composition, The conductive resin paste composition of Claim 1 characterized by the above-mentioned. 請求項1〜5のいずれかに記載の導電性樹脂ペースト組成物を用いて半導体素子と基板が接着され、ついで封止されてなる半導体装置。   A semiconductor device in which a semiconductor element and a substrate are bonded using the conductive resin paste composition according to claim 1 and then sealed.
JP2004303719A 2004-10-19 2004-10-19 Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same Pending JP2006120665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303719A JP2006120665A (en) 2004-10-19 2004-10-19 Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303719A JP2006120665A (en) 2004-10-19 2004-10-19 Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2006120665A true JP2006120665A (en) 2006-05-11

Family

ID=36538304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303719A Pending JP2006120665A (en) 2004-10-19 2004-10-19 Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2006120665A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001730A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Epoxy resin composition for vacuum, its manufacturing method and equipment for vacuum using the resin
KR100888324B1 (en) * 2007-05-04 2009-03-12 앰코 테크놀로지 코리아 주식회사 Fabricating Method of Conductive Adhesive
JP2009117340A (en) * 2007-11-07 2009-05-28 Samsung Electro-Mechanics Co Ltd Conductive paste and printed circuit board using the same
WO2010062254A1 (en) * 2008-11-27 2010-06-03 Agency For Science, Technology And Research Room temperature direct metal-metal bonding
WO2010101418A2 (en) * 2009-03-04 2010-09-10 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates
WO2010110626A2 (en) * 2009-03-27 2010-09-30 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates with surface-modifying metal nano particles
KR101131247B1 (en) 2009-11-09 2012-04-23 주식회사모나미 A HEAT RADIATING MATERIAL including C-CNT-Ag AND A MANUFACURING METHOD THEREOF, A HEAT RADIATING TAPE AND A USING METHOD THEREOF
KR101258441B1 (en) * 2011-01-14 2013-04-26 전북대학교산학협력단 Adhesives of Improved Electrical and Thermal Conductivities and Method of Using the Same
US8592135B2 (en) 2008-06-09 2013-11-26 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing printed circuit board
WO2015019414A1 (en) * 2013-08-06 2015-02-12 千住金属工業株式会社 Electronic component joint material
JP2016092154A (en) * 2014-10-31 2016-05-23 日本ゼオン株式会社 Conductive composition, electrode for dye-sensitized solar battery and manufacturing method thereof, and dye-sensitized solar battery
KR20160104911A (en) * 2015-02-27 2016-09-06 전북대학교산학협력단 Polymer composition comprising carbon filler and metal powder, and method for manufacturing of the same
JP2017128719A (en) * 2016-01-19 2017-07-27 ゼロックス コーポレイションXerox Corporation Conductive Polymer Composite
CN109929235A (en) * 2019-03-03 2019-06-25 姜丽丽 A kind of electric-conductivity heat-conductivity high carbon nano-complex and preparation method thereof
CN110014541A (en) * 2017-09-11 2019-07-16 苏州大学 Four-layer structure polymer matrix composites

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001730A (en) * 2006-06-20 2008-01-10 Yaskawa Electric Corp Epoxy resin composition for vacuum, its manufacturing method and equipment for vacuum using the resin
KR100888324B1 (en) * 2007-05-04 2009-03-12 앰코 테크놀로지 코리아 주식회사 Fabricating Method of Conductive Adhesive
JP2009117340A (en) * 2007-11-07 2009-05-28 Samsung Electro-Mechanics Co Ltd Conductive paste and printed circuit board using the same
US8592135B2 (en) 2008-06-09 2013-11-26 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing printed circuit board
WO2010062254A1 (en) * 2008-11-27 2010-06-03 Agency For Science, Technology And Research Room temperature direct metal-metal bonding
US20110226841A1 (en) * 2008-11-27 2011-09-22 Jun Wei Room temperature direct metal-metal bonding
WO2010101418A2 (en) * 2009-03-04 2010-09-10 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates
WO2010101418A3 (en) * 2009-03-04 2010-12-09 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates
WO2010110626A2 (en) * 2009-03-27 2010-09-30 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates with surface-modifying metal nano particles
WO2010110626A3 (en) * 2009-03-27 2010-12-09 Ls Cable Ltd. Composition for conductive paste containing nanometer-thick metal microplates with surface-modifying metal nano particles
KR101131247B1 (en) 2009-11-09 2012-04-23 주식회사모나미 A HEAT RADIATING MATERIAL including C-CNT-Ag AND A MANUFACURING METHOD THEREOF, A HEAT RADIATING TAPE AND A USING METHOD THEREOF
KR101258441B1 (en) * 2011-01-14 2013-04-26 전북대학교산학협력단 Adhesives of Improved Electrical and Thermal Conductivities and Method of Using the Same
WO2015019414A1 (en) * 2013-08-06 2015-02-12 千住金属工業株式会社 Electronic component joint material
JP2016092154A (en) * 2014-10-31 2016-05-23 日本ゼオン株式会社 Conductive composition, electrode for dye-sensitized solar battery and manufacturing method thereof, and dye-sensitized solar battery
KR20160104911A (en) * 2015-02-27 2016-09-06 전북대학교산학협력단 Polymer composition comprising carbon filler and metal powder, and method for manufacturing of the same
KR101699606B1 (en) * 2015-02-27 2017-01-24 전북대학교산학협력단 Polymer composition comprising carbon filler and metal powder, and method for manufacturing of the same
JP2017128719A (en) * 2016-01-19 2017-07-27 ゼロックス コーポレイションXerox Corporation Conductive Polymer Composite
CN110014541A (en) * 2017-09-11 2019-07-16 苏州大学 Four-layer structure polymer matrix composites
CN110014541B (en) * 2017-09-11 2021-08-27 苏州大学 Resin-based composite material with four-layer structure
CN109929235A (en) * 2019-03-03 2019-06-25 姜丽丽 A kind of electric-conductivity heat-conductivity high carbon nano-complex and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007149522A (en) Conductive resin paste composition containing silver and carbon nanotube, and semiconductor device using this
JP2006120665A (en) Conductive resin paste composition containing silver and carbon nano tube, and semiconductor device using the same
EP2315215A1 (en) Conductive adhesive and led substrate using the same
JPWO2018225773A1 (en) Thermally conductive conductive adhesive composition
TWI701316B (en) Conductive adhesive composition
JP5976382B2 (en) Die attach paste, manufacturing method thereof, and semiconductor device
JPWO2014051149A1 (en) Conductive adhesive
JPH1166953A (en) Conductive adhesive and usage thereof
JP2000053733A (en) Electroconductive resin paste and semiconductor apparatus using the same
JP4174088B2 (en) Conductive resin paste and semiconductor device manufactured using the same
JP2006302834A (en) Die bonding paste
JP5169517B2 (en) Conductive adhesive and electronic components
JP6283520B2 (en) Adhesive composition for semiconductor and semiconductor device
JP2007142117A (en) Die-bonding paste and semiconductor device using same
JP2004168870A (en) Adhesive composition, adhesive film using the same and semiconductor device
JP2006140206A (en) Conductive resin paste composite comprising silver and carbon nanotube and semiconductor device using the same
JP3526183B2 (en) Conductive resin paste and semiconductor device manufactured using the same
CN110692126A (en) Resin composition for bonding electronic component, method for bonding small chip component, electronic circuit board, and method for manufacturing electronic circuit board
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP3695226B2 (en) One-part thermosetting resin composition
JP2005317491A (en) Conductive paste and electronic component mounting substrate using it
JP5119766B2 (en) Conductive adhesive and electronic component using the same
JP2003147317A (en) Adhesive resin paste composition and semiconductor device using the same
JPH08176521A (en) Electroconductive adhesive
JP2001226596A (en) Electroconductive resin paste and semiconductor device manufactured therewith